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Introduction

Vertex algebras are complicated algebraic objects. They are
difficult to define, and when you have a definition, it is hard,
initially, to see the point of it. I hope that the reasons for studying
vertex algebras will become clearer in the next few lectures.
The most helpful definitions of vertex algebra are in terms of ‘states’
and ‘fields’, and are written in terms of formal power series in a
(complex) variable z . Roughly speaking, we have a complex vector
space V (usually infinite-dimensional) and a C-linear operator
Y (z) : V ⊗ V → V [[z ]][z−1] giving a family of ‘multiplications’
u ?z v = Y (z)(u ⊗ v) = Y (u, z)v depending on (infinitesimally)
small z ∈ C \ 0, where u ?z v may have poles in z at z = 0, roughly
satisfying (u ?z1 v) ?z2 w = u ?z1+z2 (v ?z2 w), and other identities.

We explain the state-field approach next lecture. Today we use the
definition of vertex algebra due to Richard Borcherds, who invented
them, as it is easy to write down, though difficult to interpret.
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Borcherds’ vertex algebras (Will see this again later)

Here is the original definition of vertex algebra from Borcherds 1986.
Let R be a commutative ring (often R = C). A vertex algebra over
R is an R-module V equipped with morphisms D(n) : V → V for
n = 0, 1, 2, . . . with D(0) = idV and vn : V → V for all v ∈ V and
n ∈ Z, with vn R-linear in v , and a distinguished element 1 ∈ V
called the identity or vacuum vector, satisfying:
(i) For all u, v ∈ V we have un(v) = 0 for n� 0.
(ii) If v ∈ V then 1−1(v) = v and 1n(v) = 0 for −1 6= n ∈ Z.
(iii) If v ∈ V then vn(1) = D(−n−1)(v) for n < 0 and vn(1) = 0 for
n > 0.
(iv) un(v) =

∑
k>0(−1)k+n+1D(k)(vn+k(u)) for all u, v ∈ V and

n ∈ Z, where the sum makes sense by (i), as it has only finitely
many nonzero terms.
(v) (ul(v))m(w)=

∑
n>0

(−1)n
( l
n

)(
ul−n(vm+n(w))−(−1)lvl+m−n(un(w))

)
for all u, v ,w ∈ V and l ,m ∈ Z, where the sum makes sense by (i).
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Remarks on the definition

• The relation with the state-field definition is that

Y (z)(u ⊗ v) = Y (u, z)v =
∑

n∈Z un(v)z−n−1.

• Condition (i), that un(v) = 0 for n� 0, is needed for many
formulae to make sense. We do not require un(v) = 0 for n� 0.
So Y (z) maps V ⊗ V → V [[z ]][z−1] (more next lecture).
• One can show from the axioms that for m, n > 0

D(m) ◦ D(n) =
(m+n

n

)
D(m+n).

Hence if R has characteristic 0 (i.e. Q ⊆ R) then by induction
D(n) = 1

n!D
n for all n > 0, with D = D(1). Thus, when charR = 0

the operators D(n) simplify to a single operator D, which
is called the translation operator. By (iii) the D(m) are determined by
the operations (u, v) 7→ un(v) and 1, so the D(m) are not extra data.
• You can think of the operations (u, v) 7→ un(v) as being like an
infinite family of Lie brackets, and (v) as like the Jacobi identity.
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What are vertex algebras for? (A first attempt.)

Some reasons to study vertex algebras:
• Vertex algebras come up in Moonshine: the mathematics around
the Monster (a finite simple group of order ≈ 1054). One definition of
the Monster is as the automorphism group of a certain vertex algebra.

• Given a vertex algebra, one can define a Lie algebra (see §1.4).
For some classes of interesting infinite-dimensional Lie algebras
(e.g. Kac–Moody algebras), perhaps the best way to construct them
is to first construct a vertex algebra, and then pass to the Lie algebra.
Borcherds invented vertex algebras starting from Lie algebra definitions.
• Vertex algebra notation can express some special ∞-dimensional
Lie algebras very succinctly, using one, or just a few, vertex operators.
• Vertex algebras are important in Physics: roughly, given a vertex
(operator) algebra, one can build a kind of Conformal Field Theory.
CFTs are supposed to quantize maps u : Σ→ X for Riemann
surfaces Σ, with X a classical space-time. The formal complex
variable z in Y (z) is roughly a local formal coordinate on Σ.
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1.1. Basic definitions and constructions

Definition 1.1 (Borcherds’ 1986 definition again)
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n = 0, 1, 2, . . . with D(0) = idV and vn : V → V for all v ∈ V and
n ∈ Z, with vn R-linear in v , and a distinguished element 1 ∈ V
called the identity or vacuum vector, satisfying:
(i) For all u, v ∈ V we have un(v) = 0 for n� 0.
(ii) If v ∈ V then 1−1(v) = v and 1n(v) = 0 for −1 6= n ∈ Z.
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Vertex superalgebras and graded vertex algebras

Often it is important to take a vertex algebra V = V∗ to be graded
over Z2 (i.e. V = V0 ⊕ V1 is a super vector space) or over Z (i.e.
V =

⊕
n∈Z Vn), with operations graded, and with sign changes (red).

Definition 1.2

Let R be a commutative ring, and V∗ be an R-module graded over
Z2 or Z. We call V∗ a vertex superalgebra (for Z2 grading) or
graded vertex algebra) (for Z grading) if V∗ is equipped with
R-linear morphisms D(n) : Vk → Vk+2n for n = 0, 1, 2, . . . , and
vn : Vb → Va+b−2n−2 for all v ∈ Va and a, b in Z2 or Z and n ∈ Z,
and an identity 1 ∈ V0, satisfying Definition 1.1(i)–(iii) and:

(iv)′ un(v) =
∑

k>0(−1)ab+k+n+1D(k)(vn+k(u)) for all u∈Va,
v ∈Vb, with a, b in Z2 or Z and n∈Z.

(v)′ (ul(v))m(w)=
∑

n>0(−1)n
( l
n

)(
ul−n(vm+n(w))

−(−1)ab+lvl+m−n(un(w))
)

for all a, b, c in Z2 or Z, u ∈ Va,
v ∈ Vb, w ∈ Vc and l ,m ∈ Z.
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If V∗ =
⊕

n∈Z Vn is a graded vertex algebra then V0 ⊕ V1 is a
vertex superalgebra, where V0 =

⊕
k∈Z V2k and V1 =

⊕
k∈Z V2k+1.

If V∗ = V0 ⊕ V1 is a vertex superalgebra then V0 is an ordinary
vertex algebra. Definitions and constructions for vertex algebras
basically always extend to vertex superalgebras/graded vertex
algebras in an obvious way, with sign changes like (−1)ab in (iv)′,(v)′.

If V ,W are vertex algebras over R we can make the direct sum
V ⊕W into a vertex algebra in an obvious way, with

D(n)(v ⊕ w) = (D(n)v)⊕ (D(n)w),

(v ⊕ w)n(v ′ ⊕ w ′) = (vn(v ′))⊕ (wn(w ′)),

1V⊕W = 1V ⊕ 1W .

This extends to vertex superalgebras and graded vertex algebras.

9 / 44 Dominic Joyce, Oxford University Lecture 1: Borcherds’ approach to vertex algebras



Borcherds’ approach to vertex algebras
Vertex algebras in terms of formal power series

Basic definitions and constructions
Vertex operator algebras
Commutative vertex algebras
Lie algebras from vertex algebras

If V∗ =
⊕

n∈Z Vn is a graded vertex algebra then V0 ⊕ V1 is a
vertex superalgebra, where V0 =

⊕
k∈Z V2k and V1 =

⊕
k∈Z V2k+1.

If V∗ = V0 ⊕ V1 is a vertex superalgebra then V0 is an ordinary
vertex algebra. Definitions and constructions for vertex algebras
basically always extend to vertex superalgebras/graded vertex
algebras in an obvious way, with sign changes like (−1)ab in (iv)′,(v)′.
If V ,W are vertex algebras over R we can make the direct sum
V ⊕W into a vertex algebra in an obvious way, with

D(n)(v ⊕ w) = (D(n)v)⊕ (D(n)w),

(v ⊕ w)n(v ′ ⊕ w ′) = (vn(v ′))⊕ (wn(w ′)),

1V⊕W = 1V ⊕ 1W .

This extends to vertex superalgebras and graded vertex algebras.

9 / 44 Dominic Joyce, Oxford University Lecture 1: Borcherds’ approach to vertex algebras



Borcherds’ approach to vertex algebras
Vertex algebras in terms of formal power series

Basic definitions and constructions
Vertex operator algebras
Commutative vertex algebras
Lie algebras from vertex algebras

Tensor products of vertex algebras

If V ,W are vertex algebras over R we can make the tensor
product V ⊗R W into a vertex algebra, with

D(n)(v ⊗ w) =
n∑

k=0

(
n

k

)
(D(k)v)⊗ (D(n−k)w),

(v ⊗ w)n(v ′ ⊗ w ′) =
∑
k∈Z

(vk(v ′))⊗ (wn−k−1(w ′)),

1V⊗W = 1V ⊗ 1W .

This extends to vertex superalgebras and graded vertex algebras.
Note that for (v ⊗w)n(v ′ ⊗w ′), the sum is finite as vk(v ′) = 0 for
k � 0, and wn−k−1(w ′) = 0 for k � 0.
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Morphisms, ideals, quotient vertex algebras

If V ,W are vertex algebras over R, a morphism φ : V →W is an
R-module morphism preserving all the structure, i.e. φ(1V ) = 1W ,
D(n) ◦ φ(v) = φ ◦ D(n)(v), (φ(v))n(φ(v ′)) = φ(vn(v ′)). For vertex
superalgebras and graded vertex algebras we also require φ to
preserve gradings.

An ideal I in a vertex algebra V is an R-submodule I ⊆ V such
that if u ∈ I and v ∈ V then D(n)u, un(v), vn(u) ∈ I for all n.
Then the quotient V /I has a unique vertex algebra structure such
that π : V � V /I is a (surjective) vertex algebra morphism.
(Multiple) intersections of ideals are ideals. If S ⊂ V is any subset,
there is a unique smallest ideal IS =

⋂
S ⊆ I , I ideal I containing S ,

the ideal generated by S , and VS = V /IS is a vertex algebra.
A vertex algebra V is simple if it has no nonzero ideals.
All this extends to vertex superalgebras and graded vertex algebras.

11 / 44 Dominic Joyce, Oxford University Lecture 1: Borcherds’ approach to vertex algebras



Borcherds’ approach to vertex algebras
Vertex algebras in terms of formal power series

Basic definitions and constructions
Vertex operator algebras
Commutative vertex algebras
Lie algebras from vertex algebras

Morphisms, ideals, quotient vertex algebras

If V ,W are vertex algebras over R, a morphism φ : V →W is an
R-module morphism preserving all the structure, i.e. φ(1V ) = 1W ,
D(n) ◦ φ(v) = φ ◦ D(n)(v), (φ(v))n(φ(v ′)) = φ(vn(v ′)). For vertex
superalgebras and graded vertex algebras we also require φ to
preserve gradings.
An ideal I in a vertex algebra V is an R-submodule I ⊆ V such
that if u ∈ I and v ∈ V then D(n)u, un(v), vn(u) ∈ I for all n.
Then the quotient V /I has a unique vertex algebra structure such
that π : V � V /I is a (surjective) vertex algebra morphism.
(Multiple) intersections of ideals are ideals. If S ⊂ V is any subset,
there is a unique smallest ideal IS =

⋂
S ⊆ I , I ideal I containing S ,

the ideal generated by S , and VS = V /IS is a vertex algebra.
A vertex algebra V is simple if it has no nonzero ideals.
All this extends to vertex superalgebras and graded vertex algebras.

11 / 44 Dominic Joyce, Oxford University Lecture 1: Borcherds’ approach to vertex algebras



Borcherds’ approach to vertex algebras
Vertex algebras in terms of formal power series

Basic definitions and constructions
Vertex operator algebras
Commutative vertex algebras
Lie algebras from vertex algebras

Representations of vertex algebras

Let V be a vertex algebra over R. A representation of V is an
R-module W and R-module morphisms vρn : W →W for all
v ∈ V and n ∈ Z, with vρn R-linear in v , satisfying:
(i) For all v ∈ V and w ∈W we have vρn (w) = 0 for n� 0.
(ii) If w ∈W then 1

ρ
−1(w) = w and 1

ρ
n(w) = 0 for −1 6= n ∈ Z.

(v) (ul(v))ρm(w)=
∑
n>0

(−1)n
( l
n

)(
uρl−n(vρm+n(w))−(−1)lvρl+m−n(uρn(w))

)
for all u, v ∈ V , w ∈W and l ,m ∈ Z, where the sum exists by (i).
These are the obvious generalizations of Definition 1.1(i),(ii),(v).
Definition 1.1(iii),(iv) do not make sense for representations.
There are obvious notions of morphism, subrepresentation,
quotient representation, irreducible representation, etc. V has an
obvious representation on itself.
All this extends to vertex superalgebras and graded vertex algebras.
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1.2. Vertex operator algebras
The Virasoro algebra (needed for vertex operator algebras)

Let R be a field of characteristic zero. The Virasoro algebra Vir is
the Lie algebra over R with basis elements Ln, n ∈ Z and c (the
central charge), and Lie bracket

[c , Ln] = 0, [Lm, Ln] = (m−n)Lm+n+ 1
12 (m3−m)δm,−nc , m, n ∈ Z.

The factor 1
12 is a convention, and can be eliminated by replacing

c by 12c . To define the Virasoro algebra VirR over a general
commutative ring R we omit 1

12 , in case 1
12 /∈ R.

The quotient Vir /〈c〉 is called the Witt algebra, and may be
regarded as the Lie algebra of complex vector fields on the circle
S1 when R = C. The Virasoro algebra is the unique central
extension of the Witt algebra. It is very important in Conformal
Field Theory and String Theory.

13 / 44 Dominic Joyce, Oxford University Lecture 1: Borcherds’ approach to vertex algebras



Borcherds’ approach to vertex algebras
Vertex algebras in terms of formal power series

Basic definitions and constructions
Vertex operator algebras
Commutative vertex algebras
Lie algebras from vertex algebras

Vertex operator algebras (VOAs)

Vertex operator algebras are vertex algebras with an extra structure.
Arguably, they are the most important kind of vertex algebra.

Definition 1.3

Let R be a field of characteristic zero. A vertex operator algebra
(VOA, or conformal vertex algebra) over R is a graded vertex
algebra V∗ =

⊕
a∈Z Va over R as in Definition 1.2, with a

distinguished conformal element ω ∈ V4 and a central charge
cV∗ ∈ R, such that writing Ln = ωn+1 : V∗ → V∗, we have

(i) L−1 = D(1) = D is the translation operator.
(ii) L0|Va = 1

2a · idVa for a ∈ Z.
(iii) [Lm, Ln] = (m − n)Lm+n + 1

12cV∗(m
3 −m)δm,−n idV∗ for

m, n ∈ Z. That is, the Ln define an action of the Virasoro
algebra on V∗, with central charge cV∗ .
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Remarks on vertex operator algebras

• A graded vertex algebra V∗ need not admit a conformal element
ω, and if ω exists it may not be unique.
• Many authors also impose additional conditions on VOAs, such
as dimVn <∞ and Vn = 0 for n� 0, but we do not do this.
• The Z-grading on V∗ is determined by (ii), so it is not extra data.
• Physicists nearly always care about VOAs, not VAs. VAs/VOAs
are connected to CFTs, which quantize maps u : Σ→ X for
Riemann surfaces Σ, with X a classical space-time. The formal
complex variable z in Y (z) is roughly a local formal coordinate on
Σ. The VOA structure is something to do with the CFT being
independent of choice of coordinates on Σ, it is physically
essential. The Virasoro algebra appears as a central extension of a
Lie algebra of changes of formal coordinate near a point, I think.
• Many VAs of importance in mathematics are also VOAs.
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Why the Virasoro algebra? (Best answer I’ve got for now.)

Proposition 1.4 (Frenkel and Ben-Zvi Lem. 3.4.5)

Let R be a field of characteristic zero, V∗ a graded vertex algebra
over R, and ω ∈ V4. Then ω is a conformal element for V∗,
making V∗ into a vertex operator algebra with central charge
cV∗ ∈ R, if and only if:

(a) ω0 = D is the translation operator.
(b) ω1|Va = 1

2a · idVa for a ∈ Z.

(c) ω3(ω) = 1
2cV∗ · 1.

Here we can take (b) as defining the grading on V∗, and (c) as
defining the central charge cV∗ . So the important condition is (a).
Roughly, the proposition says that (a) forces Ln = ωn+1 to satisfy
the Virasoro algebra relations. So the Virasoro algebra is already
somehow hidden in the structure of vertex algebras, it is not being
imposed from the outside in an arbitrary way.
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1.3. Commutative vertex algebras

Definition 1.5

A vertex algebra V over R is called commutative if un(v) = 0 for
all u, v ∈ V and n > 0. This implies that Y (u, z1) and Y (v , z2)
commute as operators on V for all u, v ∈ V .

Given a commutative VA V , define ∗ : V × V → V by u ∗ v = u−1(v).
This is commutative and associative, and makes V a commutative
R-algebra with identity 1. The translation operator D : V → V is
a derivation of this algebra, i.e. D(u ∗ v) = (Du) ∗ v + u ∗ (Dv).
Conversely, if R is a Q-algebra, given a commutative R-algebra
(V ,1, ∗) with a derivation D : V → V , defining D(n) = 1

n!D
n and

un(v) = 0, n > 0, un(v) =
(

1
(−n−1)!D

−n−1(u)
)
∗ v , n < 0,

gives a commutative vertex algebra over R.
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This extends to vertex superalgebras and graded vertex algebras,
giving equivalences of categories for R a Q-algebra:

commutative vertex
R-algebras

⇐⇒ commutative R-algebras
with derivation,

commutative vertex
R-superalgebras

⇐⇒ supercommutative R-superalgebras
with even derivation,

commutative graded
vertex R-algebras

⇐⇒ graded commutative R-algebras
with degree 2 derivation.

Commutative VAs are an easy class of examples. Unfortunately:

Proposition 1.6

Let R be a field of characteristic zero and V a non-commutative
vertex algebra over R. Then V is infinite-dimensional.

So all non-commutative VAs are complicated, and take quite a lot
of work to write down.
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1.4. Lie algebras from vertex algebras

Here is an important connection between vertex and Lie algebras:

Proposition 1.7 (Borcherds 1986)

Let V be a vertex algebra over R. Write D(V ) ⊂ V for the
R-submodule generated by D(n)v for all v ∈ V and n > 0. If
charR = 0 then D(n) = 1

n!D
n, so D(V ) = {D(v) : v ∈ V }.

Then the quotient R-module V /D(V ) has the structure of a Lie
algebra over R, with Lie bracket[

u + D(V ), v + D(V )
]
= u0(v) + D(V ). (1.1)

Similarly, vertex superalgebras V∗ over R yield Lie superalgebras
over R, and graded vertex superalgebras V∗ over R yield graded
Lie algebras over R, but with the shifted grading(
V /D(V )

)
n = Vn+2/D(V )n+2, where D(V )n+2 = D(Vn) when

charR = 0. In particular,
(
V /D(V )

)
0 is a Lie algebra over R.
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Proof of Proposition 1.7 (vertex algebra case)

• To prove [ , ] in (1.1) is well defined, use the identities in any VA:

(D(m)(u))l(v) = (−1)m
( l
m

)
· ul−m(v),

ul
(
D(m)(v)

)
=
∑m

k=0

( l
m−k

)
· D(k)(uk+l−m(v)).

In particular, for l = 0 and m > 0 these imply that

(D(m)(u))0(v) = 0, u0

(
D(m)(v)

)
= D(m)(u0(v)),

so changing u or v by an element of D(V ) changes u0(v) by an
element of D(V ).

• To prove [ , ] is antisymmetric, by Definition 1.1(iv)

u0(v) =
∑

k>0(−1)k+1D(k)(vk(u)) = −v0(u) + terms in D(V ).

• To prove the Jacobi identity for [ , ], by Definition 1.1(v)

(u0(v))0(w) = u0(v0(w))− v0(u0(w)).
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Remarks on vertex algebras and Lie algebras
• Quite often, one can construct graded vertex algebras V∗, such
that

(
V /D(V )

)
0 is an interesting (usually infinite-dimensional) Lie

algebra that representation theorists care about. It may be difficult
to build

(
V /D(V )

)
0 without going via the vertex algebra V∗. For

example, lattice vertex algebras V∗ yield Kac–Moody Lie algebras(
V /D(V )

)
0, which generalize finite dim’l semisimple Lie algebras.

• If V is a vertex algebra and W is a representation of V then the
identity from §1.1

(ul(v))ρm(w)=
∑
n>0

(−1)n
( l
n

)(
uρl−n(vρm+n(w))−(−1)lvρl+m−n(uρn(w))

)
restricts when l = m = 0 to

(u0(v))ρ0(w) = uρ0(vρ0 (w))− vρ0 (uρ0(w)).

Using this we can show that W is a representation of the (perhaps
super or graded) Lie algebra V /D(V ). So the representation
theories of V and V /D(V ) are closely linked.
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2 Vertex algebras in terms of formal power series

2.1 Formal power series notation

2.2 Defining vertex algebras using formal power series

2.3 Vertex algebras via meromorphic functions

2.4 Ways to explain vertex algebras
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Introduction

Last lecture we defined vertex algebras V following Borcherds, whose
structure is determined by an identity 1 ∈ V and operations
(u, v) 7→ un(v) for n ∈ Z. These are usually encoded in one operator

Y (z)(u ⊗ v) = Y (u, z)v =
∑

n∈Z un(v)z−n−1,

where Y (z) : V ⊗ V → V [[z ]][z−1] or Y : V → End(V )[[z , z−1]]
is called the state-field correspondence. Today we explain this
notation. We need to start with a lot of preliminaries on formal
power series spaces like V [[z ]][z−1] and operations on them.

It turns out that Y (z) satisfies many extra identities on top of the
original defining identities, and that various subsets of these
identities imply all the rest. Therefore there are several equivalent
definitions of vertex algebra, depending which identities you choose
as primary, and different authors use different definitions.
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2.1. Formal power series notation

Throughout let R be a commutative ring (sometimes we want a
field of characteristic zero) and V be an R-module (vector space).
We define R-modules V [z ],V [[z ]], . . . to be the R-modules of
formal expressions v(z) =

∑
n∈Z vnz

n for vn ∈ V , with vanishing
conditions on the vn as follows:

(i) V [z ]: vn = 0 if n < 0 or n� 0.

(ii) V [[z ]]: vn = 0 if n < 0.

(iii) V [z , z−1]: vn = 0 if n� 0 or n� 0.

(iv) V [[z ]][z−1] (also written V ((z)) ): vn = 0 if n� 0.

(v) V [[z , z−1]]: no vanishing conditions on vn.

Think of V [z ] as polynomials with values in V , V [[z ]] as V -valued
formal power series, V [z , z−1] as V -valued Laurent polynomials, etc.
Note that for V [[z ]],V [[z ]][z−1],V [[z , z−1]] it does not make sense
to give z an actual value in R or R \ 0, it is just a formal variable.
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We can also introduce similar spaces in several variables, such as
V [x , y ], etc. As a complicated example, consider

V [[x , y ]][x−1, y−1, (x−y)−1] = V [[x , y ]]⊗R[x ,y ]R[x±1, y±1, (x−y)−1].

Elements of this space may be written as xayb(x − y)cv(x , y) for
v(x , y) ∈ V [[x , y ]] and a, b, c ∈ Z, with the relations for l ,m, n > 0

xayb(x−y)cv(x , y)=xa−lyb−m(x−y)c−n
(
x lym(x−y)nv(x , y)

)
.

We can multiply by functions, take tensor products, etc., but we
must be careful about doubly infinite series such as V [[z , z−1]].
For example, R[z ],R[z , z−1],R[[z ]][z−1] are all rings under
multiplication fg(z) = f (z)g(z), and if R is a field then
R[[z ]][z−1] is a field. But R[[z , z−1]] is not a ring, as f (z)g(z) is
not always defined. For example, f (z) =

∑
n∈Z z

n lies in R[[z±1]],
but f (z)2 does not make sense as the coefficient of
each zn is a sum with infinitely many nonzero terms. We want sums
to have finitely many nonzero terms, we don’t use convergence.
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Observe that R[[x±1, y±1]] is a module over the ring R[x±1, y±1],
but has zero divisors. For example,

∑
n∈Z x

ny−n ∈ R[[x±1, y±1]]
and x − y ∈ R[x±1, y±1] with (x − y) ·

(∑
n∈Z x

ny−n
)

= 0.
Because of this there is no unique way to write expressions like
(x − y)−1 as series in R[[x±1, y±1]]. Two obvious guesses would be

(x−y)−1 ∼
∑
n>0

x−n−1yn, (x−y)−1 = −(y−x)−1 ∼ −
∑
n>0

y−n−1xn,

by expansion using the Binomial Theorem. Define morphisms

ix ,y , iy ,x : V [[x , y ]][x−1, y−1, (x − y)−1] −→ V [[x±1, y±1]]

such that ix ,y replaces (x − y)−1 by
∑

n>0 x
−n−1yn, and iy ,x

replaces (x − y)−1 by −
∑

n>0 y
−n−1xn. That is, ix ,yv(x , y) is the

power series expansion of v(x , y) in the region |x | > |y |, and
iy ,xv(x , y) the power series expansion in the region |y | > |x |.
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The delta function δ(x − y) ∈ R[[x±1, y±1]] is

δ(x − y) =
∑
n∈Z

x−n−1yn = ix ,y (x − y)−1 − iy ,x(x − y)−1.

Then (x − y) · δ(x − y) = 0.

If v(z) =
∑

n∈Z vnz
n ∈ V [[z , z−1]], its residue is Resz v(z) = v−1.

It satisfies Resz
(

d
dz v(z)

)
= 0 for any v(z). We can also take

residues in one of several variables, for example

Resx : V [[x±1, y±1]] −→ V [[y±1]]

maps x−1yn 7→ yn and xmyn 7→ 0 for m 6= −1. The delta function
has the property that for all v(x) ∈ V [[x , x−1]] and k > 0

Resx

(
v(x)

∂k

∂xk
δ(x − y)

)
= (−1)k

dk

dyk
v(y) in V [[y , y−1]].
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Fields

A field a(z) on V is an R-linear morphism a(z) : V → V [[z ]][z−1].
It is usual to write a(z) =

∑
n∈Z a(n)z

−n−1 where a(n) ∈ End(V ).
But this expression only says that a(z) ∈ End(V )[[z , z−1]], or
equivalently that a(z) is a morphism a(z) : V → V [[z , z−1]].
Requiring a(z) to map to V [[z ]][z−1] (that is, for a(z) to be a
field) is equivalent to the condition that for each v ∈ V there
exists Nv with a(n)(v) = 0 for all n > Nv . But if V is
infinite-dimensional, there may be no such Nv = N independent of
v for all v (this would mean that a(z) ∈ End(V )[[z ]][z−1]).
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2.2. Defining vertex algebras using formal power series

The next definition is equivalent to Definition 1.1:

Definition 2.1

A vertex algebra (V ,1, ezD ,Y ) over a commutative ring R is an
R-module V with an identity element 1 ∈ V , and R-linear
operators ezD : V → V [[z ]] written ezDv =

∑
n>0 D

(n)(v) zn for

D(n) ∈ End(V ), with D(0) = idV , and Y : V ⊗ V → V [[z ]][z−1]
written Y (z)(u ⊗ v) = Y (u, z)v =

∑
n∈Z un(v)z−n−1, satisfying:

(i) Y (1, z)v = v for all v ∈ V .
(ii) Y (v , z)1 = ezDv for all v ∈ V .
(iii) For all u, v ,w ∈ V , in V [[z±1

0 , z±1
1 , z±1

2 ]] we have

z−1
2 δ

(z1−z0

z2

)
Y (Y (u, z0)v , z2)w =z−1

0 δ
(z1−z2

z0

)
Y (u, z1)Y (v , z2)w

− z−1
0 δ

(z2−z1

−z0

)
Y (v , z2)Y (u, z1)w . (2.1)

Equation (2.1) is called the Jacobi identity.
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Remarks on the definition

• In physics language, V is the space of states. Then Y maps states
v to fields Y (v , z) on V . We call Y the state-field correspondence.
• ezD is determined by (ii), so is not really extra data.
• Definition 1.1(i) says that for u, v ∈ V we have un(v) = 0 for
n� 0. This is encoded in Y mapping Y : V ⊗ V → V [[z ]][z−1],
rather than Y : V ⊗ V → V [[z , z−1]] for example.
• Definition 2.1(i),(ii) are equivalent to Definition 1.1(ii),(iii).
• Taking the coefficient of z−l−1

0 z−1
1 z−m−1

2 in (2.1) yields
Definition 1.1(v). One can also deduce Definition 1.1(iv) from (2.1).
• Equation (2.1) is an exact identity. Later we meet ‘weak’ identities
which hold only after multiplying by (x − y)N for N � 0, for example.
• There are versions of Definition 2.1 for vertex superalgebras and
graded vertex algebras. We take z graded of degree −2, and then
1 ∈ V0 and ezD ,Y (z) are grading-preserving. If u ∈ Va, v ∈ Vb,
w ∈ Vc then the final term in (2.1) has an extra sign (−1)ab.
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Weak commutativity
For proofs of the next theorems, see e.g. the books by Frenkel–
Huang–Lepowsky, Kac, and Lepowksy–Li. We state them for
vertex algebras, but analogues hold in the super and graded cases.

Theorem 2.2 (Weak commutativity)

Let (V ,1, ezD ,Y ) be a vertex algebra over R. Then for all
u, v ,w ∈ V there exists N > 0 depending only on u, v such that in
V [[z±1

1 , z±1
2 ]] we have

(z1−z2)N
[
Y (u, z1)◦Y (v , z2)w−Y (v , z2)◦Y (u, z1)w

]
= 0. (2.2)

That is, Y (u, z1) and Y (v , z2) commute in a weak sense. Note
that this is nontrivial even if u = v.

Equation (2.2) would be a mess to write down in Borcherds’ notation.

Note that (z1 − z2)N · ∂k
∂zk1

δ(z1 − z2) = 0 for 0 6 k < N, so [· · · ] in

(2.2) could (and must) be a sum of terms ∂k

∂zk1
δ(z1 − z2) · fk(z1).
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Weak associativity

Theorem 2.3 (Weak associativity)

Let (V ,1, ezD ,Y ) be a vertex algebra over R. Then for all
u, v ,w ∈ V there exists N > 0 depending only on u, v such that in
V [[z±1

1 , z±1
2 ]] we have the weak associativity property

(z1 + z2)NY (Y (u, z1)v , z2)w

= (z1 + z2)N iz1,z2 ◦ Y (u, z1 + z2) ◦ Y (v , z2)w .
(2.3)

If we write v ?z w = Y (v , z)w this says that modulo weird formal
power series issues we have (u ?z1 v) ?z2 w ≈ u ?z1+z2 (v ?z2 w).

Again, (2.3) would be a mess to write down in Borcherds’ notation.
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Skew symmetry, translation covariance, exponential

Theorem 2.4

Let (V ,1, ezD ,Y ) be a vertex algebra over R, and u, v ∈ V . Then:
(a) The skew symmetry property holds

Y (u, z)v = ezD ◦ Y (v ,−z)u. (2.4)

(b) The translation covariance properties hold

ez2D ◦ Y (u, z1) ◦ e−z2D(v) = iz1,z2 ◦ Y (u, z1 + z2)v , (2.5)

Y (ez2Du, z1)v = iz1,z2 ◦ Y (u, z1 + z2)v . (2.6)

(c) The exponential property holds

e(z1+z2)D(v) = ez1D ◦ ez2D(v). (2.7)
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Equivalent definitions of vertex algebra

Various combinations of (2.1)–(2.7) imply the rest:

Theorem 2.5

The following are equivalent conditions on (V ,1, ezD ,Y ) :
(a) (V ,1, ezD ,Y ) is a vertex algebra as in Definition 2.1, in
particular, the Jacobi identity (2.1) holds. This definition of vertex
algebra is used by Frenkel–Lepowksy–Meurmann 1988.
(b) (V ,1, ezD ,Y ) satisfies Definition 2.1(i)-(ii), weak
commutativity (2.2), and the first translation covariance property
(2.5). This definition of vertex algebra is used by Kac 1998 and
Frenkel–Ben-Zvi 2004.
(c) (V ,1, ezD ,Y ) satisfies Definition 2.1(i)-(ii), weak associativity
(2.3), and skew symmetry (2.4). This definition of vertex algebra
appears in Bakalov–Kac 2003.
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2.3. Vertex algebras via meromorphic functions

Theorem 2.6 (Based on Anguelova–Bergvelt, N. Kim, and . . . )

Let (V ,1, ezD ,Y ) be a vertex algebra over R. Then for all n > 1
and v1, . . . , vn+1 ∈ V there exists N > 0 such that[ ∏

16i<j6n

(zi − zj)
N
]
· Y (v1, z1) ◦ · · · ◦ Y (vn, zn)vn+1

lies in V [[z1, . . . , zn]][z−1
1 , . . . , z−1

n ]. Hence for all n > 0 there exist

unique R-linear maps, where by convention V⊗
0

= R,

Xn(z1, . . . , zn) : V⊗
n −→ V [[z1, . . . , zn]][(zi − zj)

−1 : i < j ], (2.8)

such that for all v1, . . . , vn ∈ V we have

iz1,z2,...,zn

(
Xn(z1, . . . , zn)(v1 ⊗ · · · ⊗ vn)

)
= Y (v1, z1) ◦ Y (v2, z2) ◦ · · · ◦ Y (vn, zn)1,

(2.9)

where iz1,z2,...,zn expands (zi − zj)
−d for i < j and d > 0 in

nonnegative powers of zj , generalizing ix ,y in §2.1.
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Theorem 2.6 (. . . Frenkel–Huang–Lepowsky. Continued.)

Furthermore these Xn satisfy:
(a) If 1 6 i 6 m, n > 0 and va,wb ∈ V then

Xm(y1, . . . , ym)(v1 ⊗ · · · ⊗ vi−1 ⊗ (2.10)

Xn(z1, . . . , zn)(w1 ⊗ · · · ⊗ wn)⊗ vi+1 ⊗ · · · ⊗ vm) =

iy ,z
(
Xm+n−1(y1, . . . , yi−1, z1 + yi , . . . , zn + yi , yi+1, . . . , ym)

(v1 ⊗ · · · ⊗ vi−1 ⊗ w1 ⊗ · · · ⊗ wn ⊗ vi+1 ⊗ · · · ⊗ vm)
)

in V [[y1, . . . , ym]][(yj−yk)−1 : j<k][[z1, . . . , zn]][(zj−zk)−1 : j<k].
(b) For all n > 0, σ ∈ Sn and v1, . . . , vn ∈ V we have

Xn(z1, . . . , zn)(v1 ⊗ · · · ⊗ vn)

= Xn(zσ(1), . . . , zσ(n))(vσ(1) ⊗ · · · ⊗ vσ(n)).
(2.11)

(c) X0(a) = a1 for all a ∈ R.
(d) X1(z) = ezD : V → V [[z ]]. In particular, X1(0) = idV .
(e) Y (z) = X2(z , 0) : V ⊗ V → V [[z ]][z−1].
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Theorem 2.6 gives us another way to define vertex algebras:

Definition 2.7

A vertex algebra over R is a triple (V ,1,X∗) where V is an
R-module, X∗ = (Xn)n>0 with each Xn an R-module morphism

Xn(z1, . . . , zn) : V⊗
n−→V [[z1, . . . , zn]][(zi−zj)−1 : i< j ], (2.12)

satisfying Theorem 2.6(a)–(c). This is equivalent to a vertex
algebra (V ,1, ezD ,Y ) from §2.2 as in Theorem 2.6(d)–(e).

If we work with graded vertex algebras (V∗,1,X∗) then the
component of Xn(z1, . . . , zn) in Vk for each k ∈ Z lies in
Vk [z1, . . . , zn][(zi − zj)

−1 : i < j ], that is, it is a genuine
meromorphic function, not just a formal function, and say over
R = C we could substitute actual complex numbers for z1, . . . , zn.
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The Borcherds or (V ,1, ezD ,Y ) definitions of vertex algebras have
the advantage of economy: they put the least information in the
definition. The (V ,1,X∗) definition requires more data, but has
other advantages. For example, weak commutativity for N � 0

(z1 − z2)N
[
Y (u, z1) ◦ Y (v , z2)w − Y (v , z2) ◦ Y (u, z1)w

]
= 0

is replaced by the exact symmetry in V [[z1, z2]][z−1
1 , z−1

2 , (z1−z2)−1]

X3(z1, z2, 0)(u ⊗ v ⊗ w) = X3(z2, z1, 0)(v ⊗ u ⊗ w). (2.13)

That is, Y (u, z1) ◦ Y (v , z2)w and Y (v , z2) ◦ Y (u, z1)w are both
power series expansions of the same meromorphic (2.13) in the two
different regions |z1| > |z2| > 0 and |z2| > |z1| > 0.
In general, the (V ,1,X∗) definition tends to replace ‘weak’
identities by exact identities in meromorphic functions. It also
makes clear where the poles are.
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2.4. Ways to explain vertex algebras

Borcherds (1997) motivates vertex algebras this way: think of a
vertex algebra (V ,1, ezD ,Y ) as like a commutative ring V with
identity 1, (partially defined) multiplication ?, and an action
ρ : C→ End(V ) of the additive group C preserving 1, ?. Then
ezD ,Y and Xn in §2.3 are written in terms of ?, ρ by

ρ(z)v = ezDv =
∑
n>0

znD(n)(v), Y (v , z)w = (ρ(z)v) ? w ,

Xn(z1, . . . , zn)(v1 ⊗ · · · ⊗ vn) = (ρ(z1)v1) ? · · · ? (ρ(zn)vn).

(2.14)

The catch is that ? is ‘singular’, so u ? v is not always defined, and
in particular (ρ(z)u) ? v might have poles in z .

Actually I don’t find Borcherds’ attempt to make all this rigorous
very helpful. But this picture is good for justifying the identities in
§2.2–§2.3, modulo weird power series issues. For example:
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• Definition 2.1(i) Y (1, z)v = v becomes (ρ(z)1) ? v = 1 ? v = v .
• If weak commutativity held in the strong sense it would become
Y (u, z1) ◦ Y (v , z2)w = Y (v , z2) ◦ Y (u, z1)w . This corresponds to

(ρ(z1)(u)) ?
(
(ρ(z2)(v)) ? w

)
= (ρ(z2)(v)) ?

(
(ρ(z1)(u)) ? w

)
,

as ? is commutative and associative.
• If weak associativity held in the strong sense it would become
Y (Y (u, z1)v , z2)w = Y (u, z1 + z2) ◦ Y (v , z2)w . This corresponds to(
ρ(z2)(ρ(z1)(u) ? v)

)
? w = (ρ(z1 + z2)(u)) ?

(
(ρ(z2)(v)) ? w

)
.

• Skew symmetry Y (u, z)v = ezD ◦ Y (v ,−z)u becomes
(ρ(z)u) ? v = ρ(z) ◦ ρ(−z) ◦

(
v ? (ρ(z)u)

)
= ρ(z)

(
(ρ(−z)v) ? u

)
.

• Translation covariance Y (ez2Du, z1)v = iz1,z2 ◦ Y (u, z1 + z2)v
becomes ρ(z1)(ρ(z2)(u)) ? v = (ρ(z1 + z2)(u)) ? v .
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Physical meaning of vertex operator algebras???

I am very confused, so all the following may be lies . . .
As I understand it, a VOA (V∗,1, e

zD ,Y , ω) roughly corresponds
to a kind of QFT in Physics. See Huang 1991 for an attempt to
make this precise. Consider the following class of objects (Σ,p, x):
a compact Riemann surface Σ, with n + 1 marked points p0, . . . , pn
where p1, . . . , pn are ‘inputs’ and p0 the ‘output’, and choices of
local (formal?) holomorphic coordinates x0, . . . , xn on Σ, with xj
defined near pj with xj |pj = 0. To each such triple (Σ,p, x) we

would like to associate a morphism F(Σ,p,x) : V⊗
n → V (possibly

up to scale?), where F(Σ,p,x)(v1 ⊗ · · · ⊗ vn) means we insert states
v1, . . . , vn from V∗ at the marked points p1, . . . , pn, and then the
physics outputs a state F(Σ,p,x)(v1 ⊗ · · · ⊗ vn) at p0.
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We would like to make this independent of the choices of centred
local coordinates x0, . . . , xn in the following sense: there should be
a group G of (germs of centred) coordinate changes with a
(projective) representation on V , and acting on x0, . . . , xn by
g0, . . . , gn ∈ G should change F(Σ,p,x)(v1 ⊗ · · · ⊗ vn) to

F(Σ,p,g ·x)(v1 ⊗ · · · ⊗ vn) = g−1
0 · F(Σ,p,x)(g1 · v1 ⊗ · · · ⊗ gn · vn). At

the Lie algebra level, G corresponds (roughly) to the Witt algebra
W , with central extension the Virasoro algebra Vir, so as the VOA
V∗ is a representation of Vir with central charge cV∗ , it is a
projective representation of W .

There should be composition rules for the F(Σ,p,x) as follows: given
(Σ,p, x) and (Σ′,p′, x ′), suppose the domains of xk for k > 0 and
x ′0 include closed balls B r (0), B1/r (0) for r > 0 containing no other
xj , x

′
j . We make a new triple (Σ′′,p′′, x ′′) by gluing Σ \ xk(Br (0))

and Σ′ \ x ′0(B1/r (0)) along their boundary circle. Then F(Σ′′,p′′,x ′′)
corresponds to substituting F(Σ′,p′,x ′) into the kth input of F(Σ,p,x).
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Then Y (z) : V ⊗ V → V [[z ]][z−1] should correspond to F(Σ,p,x)

for Σ = CP1 = Cq {∞}, p = (p0, p1, p2) = (∞, z , 0),
x0(y) = 1/y , x1(y) = y + z , x2(y) = y , where z varies in CP1 and
we expect singularities at z = 0,∞ when p1 collides with p0 or p2.
More generally, Xn(z1, . . . , zn) should correspond to F(Σ,p,x) for

Σ = CP1, p = (∞, z1, . . . , zn), x0(y) = 1/y , xk(y) = y + zk ,
k = 1, . . . , n.
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