A Darboux theorem for shifted symplectic derived schemes; d-critical loci

Dominic Joyce, Oxford University

November 2013

Based on: arXiv:1304.4508, arXiv:1305.6302, and work in progress. Joint work with Oren Ben-Bassat, Chris Brav and Vittoria Bussi. Funded by the EPSRC.

1 / 29	Dominic Joyce, Oxford University	Shifted symplectic geometry
	PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks	

Plan of talk:

1 PTVV's shifted symplectic geometry

2 A Darboux theorem for shifted symplectic schemes

3 D-critical loci

4 A 'Darboux Theorem' for shifted symplectic stacks

5 D-critical stacks

1. PTVV's shifted symplectic geometry

Let \mathbb{K} be an algebraically closed field of characteristic zero, e.g. $\mathbb{K} = \mathbb{C}$. Work in the context of Toën and Vezzosi's theory of *derived algebraic geometry*. This gives ∞ -categories of *derived* \mathbb{K} -schemes $dSch_{\mathbb{K}}$ and *derived stacks* $dSt_{\mathbb{K}}$, including *derived Artin stacks* $dArt_{\mathbb{K}}$. Think of a derived \mathbb{K} -scheme X as a geometric space which can be covered by Zariski open sets $Y \subseteq X$ with $Y \simeq \operatorname{Spec} A$ for A = (A, d) a commutative differential graded algebra (cdga) over \mathbb{K} .

3 / 29

Dominic Joyce, Oxford University Shifted symplectic geometry

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks

Cotangent complexes of derived schemes and stacks

Pantev, Toën, Vaquié and Vezzosi (arXiv:1111.3209) defined a notion of *k*-shifted symplectic structure on a derived K-scheme or derived K-stack **X**, for $k \in \mathbb{Z}$. This is complicated, but here is the basic idea. The cotangent complex \mathbb{L}_X of **X** is an element of a derived category $L_{qcoh}(\mathbf{X})$ of quasicoherent sheaves on **X**. It has exterior powers $\Lambda^p \mathbb{L}_X$ for $p = 0, 1, \ldots$. The *de Rham differential* $d_{dR} : \Lambda^p \mathbb{L}_X \to \Lambda^{p+1} \mathbb{L}_X$ is a morphism of complexes, though not of \mathcal{O}_X -modules. Each $\Lambda^p \mathbb{L}_X$ is a complex, so has an internal differential $d : (\Lambda^p \mathbb{L}_X)^k \to (\Lambda^p \mathbb{L}_X)^{k+1}$. We have $d^2 = d_{dR}^2 = d \circ d_{dR} + d_{dR} \circ d = 0$. *p*-forms and closed *p*-forms

A *p*-form of degree k on **X** for $k \in \mathbb{Z}$ is an element $[\omega^0]$ of $H^k(\Lambda^p \mathbb{L}_{\mathbf{X}}, d)$. A closed *p*-form of degree k on **X** is an element

$$[(\omega^0, \omega^1, \ldots)] \in H^k \bigl(\bigoplus_{i=0}^{\infty} \Lambda^{p+i} \mathbb{L}_{\mathbf{X}}[i], \mathrm{d} + \mathrm{d}_{dR} \bigr).$$

There is a projection $\pi : [(\omega^0, \omega^1, \ldots)] \mapsto [\omega^0]$ from closed *p*-forms $[(\omega^0, \omega^1, \ldots)]$ of degree *k* to *p*-forms $[\omega^0]$ of degree *k*. Note that a closed *p*-form *is not a special example of a p-form*, but a *p*-form with an extra structure. The map π from closed *p*-forms to *p*-forms can be neither injective nor surjective.

5 / 29

Dominic Joyce, Oxford University Shifted symplectic geometry

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks

Nondegenerate 2-forms and symplectic structures

Let $[\omega^0]$ be a 2-form of degree k on \mathbf{X} . Then $[\omega^0]$ induces a morphism $\omega^0 : \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$, where $\mathbb{T}_{\mathbf{X}} = \mathbb{L}_{\mathbf{X}}^{\vee}$ is the tangent complex of \mathbf{X} . We call $[\omega^0]$ nondegenerate if $\omega^0 : \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$ is a quasi-isomorphism.

If **X** is a derived scheme then $\mathbb{L}_{\mathbf{X}}$ lives in degrees $(-\infty, 0]$ and $\mathbb{T}_{\mathbf{X}}$ in degrees $[0, \infty)$. So $\omega^0 : \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$ can be a quasi-isomorphism only if $k \leq 0$, and then $\mathbb{L}_{\mathbf{X}}$ lives in degrees [k, 0]and $\mathbb{T}_{\mathbf{X}}$ in degrees [0, -k]. If k = 0 then **X** is a smooth classical \mathbb{K} -scheme, and if k = -1 then **X** is quasi-smooth. A closed 2-form $\omega = [(\omega^0, \omega^1, \ldots)]$ of degree k on **X** is called a

Calabi–Yau moduli schemes and moduli stacks

Pantev et al. prove that if Y is a Calabi–Yau *m*-fold over \mathbb{K} and \mathcal{M} is a derived moduli scheme or stack of (complexes of) coherent sheaves on Y, then \mathcal{M} has a natural (2 - m)-shifted symplectic structure ω . So Calabi–Yau 3-folds give -1-shifted derived schemes or stacks. We can understand the associated nondegenerate 2-form $[\omega^0]$ in terms of *Serre duality*. At a point $[E] \in \mathcal{M}$, we have $h^i(\mathbb{T}_{\mathcal{M}})|_{[E]} \cong \operatorname{Ext}^{i-1}(E, E)$ and $h^i(\mathbb{L}_{\mathcal{M}})|_{[E]} \cong \operatorname{Ext}^{1-i}(E, E)^*$. The Calabi–Yau condition gives $\operatorname{Ext}^i(E, E) \cong \operatorname{Ext}^{m-i}(E, E)^*$,

which corresponds to $h^i(\mathbb{T}_{\mathcal{M}})|_{[E]} \cong h^i(\mathbb{L}_{\mathcal{M}}[2-m])|_{[E]}$. This is the cohomology at [E] of the quasi-isomorphism $\omega^0 : \mathbb{T}_{\mathcal{M}} \to \mathbb{L}_{\mathcal{M}}[2-m]$.

7 / 29

Dominic Joyce, Oxford University Shifted symplectic geometry

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks

Lagrangians and Lagrangian intersections

Let (\mathbf{X}, ω) be a *k*-shifted symplectic derived scheme or stack. Then Pantev et al. define a notion of *Lagrangian* \mathbf{L} in (\mathbf{X}, ω) , which is a morphism $\mathbf{i} : \mathbf{L} \to \mathbf{X}$ of derived schemes or stacks together with a homotopy $i^*(\omega) \sim 0$ satisfying a nondegeneracy condition, implying that $\mathbb{T}_{\mathbf{L}} \simeq \mathbb{L}_{\mathbf{L}/\mathbf{X}}[k-1]$. If \mathbf{L} , \mathbf{M} are Lagrangians in (\mathbf{X}, ω) , then the fibre product $\mathbf{L} \times_{\mathbf{X}} \mathbf{M}$ has a natural (k-1)-shifted symplectic structure. If (S, ω) is a classical smooth symplectic scheme, then it is a 0-shifted symplectic derived scheme in the sense of PTVV, and if $L, M \subset S$ are classical smooth Lagrangian subschemes, then they are Lagrangians in the sense of PTVV. Therefore the (derived) Lagrangian intersection $L \cap M = L \times_S M$ is a -1-shifted symplectic derived scheme. PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci

A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks

2. A Darboux theorem for shifted symplectic schemes

Theorem (Brav, Bussi and Joyce arXiv:1305.6302)

Suppose (\mathbf{X}, ω) is a k-shifted symplectic derived \mathbb{K} -scheme for k < 0. If $k \not\equiv 2 \mod 4$, then each $x \in \mathbf{X}$ admits a Zariski open neighbourhood $\mathbf{Y} \subseteq \mathbf{X}$ with $\mathbf{Y} \simeq \operatorname{Spec} A$ for (A, d) an explicit cdga over \mathbb{K} generated by graded variables x_j^{-i}, y_j^{k+i} for $0 \leq i \leq -k/2$, and $\omega|_{\mathbf{Y}} = [(\omega^0, 0, 0, \ldots)]$ where x_j^l, y_j^l have degree l, and $\omega^0 = \sum_{i=0}^{\lfloor -k/2 \rfloor} \sum_{j=1}^{m_i} d_{dR} y_j^{k+i} d_{dR} x_j^{-i}$.

Also the differential d in (A, d) is given by Poisson bracket with a Hamiltonian H in A of degree k + 1.

If $k \equiv 2 \mod 4$, we have two statements, one étale local with ω^0 standard, and one Zariski local with the components of ω^0 in the degree k/2 variables depending on some invertible functions.

9 / 29

Dominic Joyce, Oxford University Shifted symplectic geometry

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks

Sketch of the proof of the theorem

Suppose (\mathbf{X}, ω) is a *k*-shifted symplectic derived K-scheme for k < 0, and $x \in \mathbf{X}$. Then $\mathbb{L}_{\mathbf{X}}$ lives in degrees [k, 0]. We first show that we can build Zariski open $x \in \mathbf{Y} \subseteq \mathbf{X}$ with $\mathbf{Y} \simeq \operatorname{Spec} A$, for $A = \bigoplus_{i \leq 0} A^i$ a cdga over K with A^0 a smooth K-algebra, and such that A is freely generated over A^0 by graded variables x_j^{-i}, y_j^{k+i} in degrees $-1, -2, \ldots, k$. We take dim A^0 and the number of x_j^{-i}, y_j^{k+i} to be minimal at x. Using theorems about periodic cyclic cohomology, we show that on $Y \simeq \operatorname{Spec} A$ we can write $\omega|_Y = [(\omega^0, 0, 0, \ldots)]$, for ω^0 a 2-form of degree k with $d\omega^0 = d_{dR}\omega^0 = 0$. Minimality at x implies ω^0 is strictly nondegenerate near x, so we can change variables to write $\omega^0 = \sum_{i,j} d_{dR} y_i^{k+i} d_{dR} x_i^{-i}$. Finally, we show d in (A, d) is a

symplectic vector field, which integrates to a Hamiltonian H.

The case of -1-shifted symplectic derived schemes

When k = -1 the Hamiltonian *H* in the theorem has degree 0. Then the theorem reduces to:

Corollary

Suppose (\mathbf{X}, ω) is a -1-shifted symplectic derived \mathbb{K} -scheme. Then (\mathbf{X}, ω) is Zariski locally equivalent to a derived critical locus $\operatorname{Crit}(H : U \to \mathbb{A}^1)$, for U a smooth classical \mathbb{K} -scheme and $H : U \to \mathbb{A}^1$ a regular function. Hence, the underlying classical \mathbb{K} -scheme $X = t_0(\mathbf{X})$ is Zariski locally isomorphic to a classical critical locus $\operatorname{Crit}(H : U \to \mathbb{A}^1)$.

$11 \, / \, 29$

Dominic Joyce, Oxford University Shifted symplectic geometry

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks

Combining this with results of Pantev et al. from $\S1$ gives interesting consequences in classical algebraic geometry:

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y. Then \mathcal{M} is Zariski locally isomorphic to the critical locus $\operatorname{Crit}(H: U \to \mathbb{A}^1)$ of a regular function on a smooth \mathbb{K} -scheme.

Here we note that $\mathcal{M} = t_0(\mathcal{M})$ for \mathcal{M} the corresponding derived moduli scheme, which is -1-shifted symplectic by PTVV. A complex analytic analogue of this for moduli of coherent sheaves was proved using gauge theory by Joyce and Song arXiv:0810.5645, and for moduli of complexes was claimed by Behrend and Getzler. Note that the proof of the corollary is wholly algebro-geometric.

Corollary

Let (S, ω) be a classical smooth symplectic \mathbb{K} -scheme, and $L, M \subseteq S$ be smooth algebraic Lagrangians. Then the intersection $L \cap M$, as a \mathbb{K} -subscheme of S, is Zariski locally isomorphic to the critical locus $\operatorname{Crit}(H : U \to \mathbb{A}^1)$ of a regular function on a smooth \mathbb{K} -scheme.

In real or complex symplectic geometry, where Darboux Theorem holds, the analogue of the corollary is easy to prove, but in classical algebraic symplectic geometry we do not have a Darboux Theorem, so the corollary is not obvious.

13 / 29

Dominic Joyce, Oxford University Shifted symplectic geometry

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks

3. D-critical loci

Theorem (Joyce arXiv:1304.4508)

Let X be a classical \mathbb{K} -scheme. Then there exists a canonical sheaf S_X of \mathbb{K} -vector spaces on X, such that if $R \subseteq X$ is Zariski open and $i : R \hookrightarrow U$ is a closed embedding of R into a smooth \mathbb{K} -scheme U, and $I_{R,U} \subseteq \mathcal{O}_U$ is the ideal vanishing on i(R), then

$$\mathcal{S}_X|_R \cong \operatorname{Ker}\left(rac{\mathcal{O}_U}{I_{R,U}^2} \xrightarrow{\mathrm{d}} rac{T^*U}{I_{R,U} \cdot T^*U}
ight).$$

Also S_X splits naturally as $S_X = S_X^0 \oplus \mathbb{K}_X$, where \mathbb{K}_X is the sheaf of locally constant functions $X \to \mathbb{K}$.

Parboux Theorem for shifted symplectic stacks D-critical stacks

The meaning of the sheaves $\mathcal{S}_X, \mathcal{S}_X^0$

If $X = \operatorname{Crit}(f : U \to \mathbb{A}^1)$ then taking R = X, $i = \operatorname{inclusion}$, we see that $f + I_{X,U}^2$ is a section of \mathcal{S}_X . Also $f|_{X^{\operatorname{red}}} : X^{\operatorname{red}} \to \mathbb{K}$ is locally constant, and if $f|_{X^{\operatorname{red}}} = 0$ then $f + I_{X,U}^2$ is a section of \mathcal{S}_X^0 . Note that $f + I_{X,U} = f|_X$ in $\mathcal{O}_X = \mathcal{O}_U/I_{X,U}$. The theorem means that $f + I_{X,U}^2$ makes sense *intrinsically on* X, without reference to the embedding of X into U.

That is, if $X = \operatorname{Crit}(f : U \to \mathbb{A}^1)$ then we can remember f up to second order in the ideal $I_{X,U}$ as a piece of data on X, not on U. Suppose $X = \operatorname{Crit}(f : U \to \mathbb{A}^1) = \operatorname{Crit}(g : V \to \mathbb{A}^1)$ is written as a critical locus in two different ways. Then $f + I_{X,U}^2$, $g + I_{X,V}^2$ are sections of S_X , so we can ask whether $f + I_{X,U}^2 = g + I_{X,V}^2$. This gives a way to compare isomorphic critical loci in different smooth classical schemes.

 $15 \, / \, 29$

Dominic Joyce, Oxford University Shifted symplectic geometry

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks

The definition of d-critical loci

Definition (Joyce arXiv:1304.4508)

An (algebraic) d-critical locus (X, s) is a classical \mathbb{K} -scheme X and a global section $s \in H^0(\mathcal{S}^0_X)$ such that X may be covered by Zariski open $R \subseteq X$ with an isomorphism $i : R \to \operatorname{Crit}(f : U \to \mathbb{A}^1)$ identifying $s|_R$ with $f + I^2_{R,U}$, for f a regular function on a smooth \mathbb{K} -scheme U.

That is, a d-critical locus (X, s) is a \mathbb{K} -scheme X which may Zariski locally be written as a critical locus $\operatorname{Crit}(f : U \to \mathbb{A}^1)$, and the section s remembers f up to second order in the ideal $I_{X,U}$. We also define *complex analytic d-critical loci*, with X a complex analytic space locally modelled on $\operatorname{Crit}(f : U \to \mathbb{C})$ for U a complex manifold and f holomorphic.

Orientations on d-critical loci

Theorem (Joyce arXiv:1304.4508)

Let (X, s) be an algebraic d-critical locus and X^{red} the reduced \mathbb{K} -subscheme of X. Then there is a natural line bundle $K_{X,s}$ on X^{red} called the **canonical bundle**, such that if (X, s) is locally modelled on $\text{Crit}(f : U \to \mathbb{A}^1)$ then $K_{X,s}$ is locally modelled on $K_U^{\otimes^2}|_{\text{Crit}(f)^{\text{red}}}$, for K_U the usual canonical bundle of U.

Definition

Let (X, s) be a d-critical locus. An *orientation* on (X, s) is a choice of square root line bundle $K_{X,s}^{1/2}$ for $K_{X,s}$ on X^{red} .

This is related to orientation data in Kontsevich-Soibelman 2008.

17 / 29

Dominic Joyce, Oxford University Shifted symplectic geometry

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks

A truncation functor from -1-symplectic derived schemes

Theorem (Brav, Bussi and Joyce arXiv:1305.6302)

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived \mathbb{K} -scheme. Then the classical \mathbb{K} -scheme $X = t_0(\mathbf{X})$ extends naturally to an algebraic d-critical locus (X, s). The canonical bundle of (X, s)satisfies $K_{X,s} \cong \det \mathbb{L}_{\mathbf{X}}|_{X^{red}}$.

That is, we define a *truncation functor* from -1-shifted symplectic derived \mathbb{K} -schemes to algebraic d-critical loci. Examples show this functor is not full. Think of d-critical loci as *classical truncations* of -1-shifted symplectic derived \mathbb{K} -schemes.

An alternative semi-classical truncation, used in D–T theory, is *schemes with symmetric obstruction theory*. D-critical loci appear to be better, for both categorified and motivic D–T theory.

D-critical stacks

The corollaries in $\S2$ imply:

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y. Then \mathcal{M} extends naturally to a d-critical locus (\mathcal{M}, s) . The canonical bundle satisfies $K_{\mathcal{M},s} \cong \det(\mathcal{E}^{\bullet})|_{\mathcal{M}^{red}}$, where $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$ is the (symmetric) obstruction theory on \mathcal{M} defined by Thomas or Huybrechts and Thomas.

Corollary

Let (S, ω) be a classical smooth symplectic \mathbb{K} -scheme, and $L, M \subseteq S$ be smooth algebraic Lagrangians. Then $X = L \cap M$ extends naturally to a d-critical locus (X, s). The canonical bundle satisfies $K_{X,s} \cong K_L|_{X^{red}} \otimes K_M|_{X^{red}}$. Hence, choices of square roots $K_L^{1/2}, K_M^{1/2}$ give an orientation for (X, s).

19 / 29

Dominic Joyce, Oxford University Shifted symplectic geometry

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks

4. A 'Darboux Theorem' for shifted symplectic stacks

In Ben-Bassat, Bussi, Brav and Joyce (in progress) we extend the material of §2 from (derived) schemes to (derived) Artin stacks. We define a *derived Artin stack* **X** to be 'strongly 1-geometric' in the sense of Toën and Vezzosi. Then the cotangent complex $\mathbb{L}_{\mathbf{X}}$ lives in degrees $(-\infty, 1]$, and $X = t_0(\mathbf{X})$ is a classical Artin stack (in particular, not a higher stack). A derived Artin stack **X** admits a smooth atlas $\varphi : \mathbf{U} \to \mathbf{X}$ with **U** a derived scheme. If Y is a smooth projective scheme and \mathcal{M} is a derived moduli stack of coherent sheaves F on Y, or of complexes F^{\bullet} in $D^b \operatorname{coh}(Y)$ with $\operatorname{Ext}^{<0}(F^{\bullet}, F^{\bullet}) = 0$, then \mathcal{M} is a derived Artin stack.

PTVV's shifted symplectic geometry

A Darboux theorem for shifted symplectic schemes D-critical loci

A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks

A 'Darboux Theorem' for atlases of derived stacks

Theorem (Ben-Bassat, Bussi, Brav, Joyce)

Let $(\mathbf{X}, \omega_{\mathbf{X}})$ be a k-shifted symplectic derived Artin stack for k < 0, and $p \in \mathbf{X}$. Then there exist 'standard form' affine derived schemes $\mathbf{U} = \operatorname{Spec} A$, $\mathbf{V} = \operatorname{Spec} B$, points $u \in \mathbf{U}$, $v \in \mathbf{V}$ with A, B minimal at u, v, morphisms $\varphi : \mathbf{U} \to \mathbf{X}$ and $\mathbf{i} : \mathbf{U} \to \mathbf{V}$ with $\varphi(u) = p$, $\mathbf{i}(u) = v$, such that φ is smooth of relative dimension $\dim H^1(\mathbb{L}_{\mathbf{X}}|_p)$, and $t_0(\mathbf{i}) : t_0(\mathbf{U}) \to t_0(\mathbf{V})$ is an isomorphism on classical schemes, and $\mathbb{L}_{\mathbf{U}/\mathbf{V}} \simeq \mathbb{T}_{\mathbf{U}/\mathbf{X}}[1-k]$, and a 'Darboux form' k-shifted symplectic form ω_B on $\mathbf{V} = \operatorname{Spec} B$ such that $\mathbf{i}^*(\omega_B) \sim \varphi^*(\omega_{\mathbf{X}})$ in k-shifted closed 2-forms on \mathbf{U} .

$21 \, / \, 29$

Dominic Joyce, Oxford University Shifted symplectic geometry

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks

Discussion of the 'Darboux Theorem' for stacks

Let $(\mathbf{X}, \omega_{\mathbf{X}})$ be a *k*-shifted symplectic derived Artin stack for k < 0, and $p \in \mathbf{X}$. Although we do not know how to give a complete, explicit 'standard model' for $(\mathbf{X}, \omega_{\mathbf{X}})$ near p, we can give standard models for a smooth atlas $\varphi : \mathbf{U} \to \mathbf{X}$ for \mathbf{X} near p with $\mathbf{U} = \operatorname{Spec} A$ a derived scheme, and for the pullback 2-form $\varphi^*(\omega_{\mathbf{X}})$. We may think of $\varphi : \mathbf{U} \to \mathbf{X}$ as an open neighbourhood of p in the smooth topology, rather than the Zariski topology. Now $(\mathbf{U}, \varphi^*(\omega_{\mathbf{X}}))$ is not *k*-shifted symplectic, as $\varphi^*(\omega_{\mathbf{X}})$ is closed, but not nondegenerate. However, there is a way to modify \mathbf{U}, A to get another derived scheme $\mathbf{V} = \operatorname{Spec} B$, where A has generators in degrees $0, -1, \ldots, -k - 1$, and $B \subseteq A$ is the dg-subalgebra generated by the generators in degrees $0, -1, \ldots, -k$ only.

Then **V** has a natural *k*-shifted symplectic form ω_B , which we may take to be in 'Darboux form' as in §2, with $\mathbf{i}^*(\omega_B) \sim \varphi^*(\omega_X)$. In terms of cotangent complexes, \mathbb{L}_U is obtained from $\varphi^*(\mathbb{L}_X)$ by deleting a vector bundle $\mathbb{L}_{U/X}$ in degree 1. Also \mathbb{L}_V is obtained from \mathbb{L}_U by deleting the dual vector bundle $\mathbb{T}_{U/X}$ in degree k - 1. As these two deletions are dual under $\varphi^*(\omega_X)$, the symplectic form descends to **V**.

An example in which we have this picture

 $(\mathbf{V}, \omega_B) \xleftarrow{\mathbf{i}} \mathbf{U} \xrightarrow{\varphi} (\mathbf{X}, \omega_{\mathbf{X}})$ is a 'k-shifted symplectic quotient', when an algebraic group G acts on a k-shifted symplectic derived scheme (\mathbf{V}, ω_B) with 'moment map' $\mu \in H^k(\mathbf{V}, \mathfrak{g}^* \otimes \mathcal{O}_{\mathbf{V}})$, and $\mathbf{U} = \mu^{-1}(0)$, and $X = [\mathbf{U}/G]$.

23 / 29

Dominic Joyce, Oxford University Shifted symplectic geometry

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks

-1-shifted symplectic derived stacks

When k = -1, (\mathbf{V}, ω_B) is a derived critical locus $\operatorname{Crit}(f : S \to \mathbb{A}^1)$ for S a smooth scheme. Then $t_0(\mathbf{V}) \cong t_0(\mathbf{U})$ is the classical critical locus $\operatorname{Crit}(f : S \to \mathbb{A}^1)$, and $U = t_0(\mathbf{U})$ is a smooth atlas for the classical Artin stack $X = t_0(\mathbf{X})$. Thus we deduce:

Corollary

Let $(\mathbf{X}, \omega_{\mathbf{X}})$ be a -1-shifted symplectic derived stack. Then the classical Artin stack $X = t_0(\mathbf{X})$ locally admits smooth atlases $\varphi : U \to X$ with $U = \operatorname{Crit}(f : S \to \mathbb{A}^1)$, for S a smooth scheme and f a regular function.

arboux Theorem' for shifted symplectic stacks D-critical stacks

Calabi–Yau 3-fold moduli stacks

If Y is a Calabi–Yau 3-fold and \mathcal{M} a moduli stack of coherent sheaves F on Y, or complexes F^{\bullet} in $D^b \operatorname{coh}(Y)$ with $\operatorname{Ext}^{<0}(F^{\bullet}, F^{\bullet}) = 0$, then by PTVV the corresponding derived moduli stack \mathcal{M} with $t_0(\mathcal{M}) = \mathcal{M}$ has a -1-shifted symplectic structure $\omega_{\mathcal{M}}$. So the previous corollary gives:

Corollary

Suppose Y is a Calabi–Yau 3-fold and \mathcal{M} a classical moduli stack of coherent sheaves F on Y, or of complexes F^{\bullet} in $D^{b} \operatorname{coh}(Y)$ with $\operatorname{Ext}^{<0}(F^{\bullet}, F^{\bullet}) = 0$. Then \mathcal{M} locally admits smooth atlases $\varphi : U \to X$ with $U = \operatorname{Crit}(f : S \to \mathbb{A}^{1})$, for S a smooth scheme.

A holomorphic version of this was proved by Joyce and Song using gauge theory, and is important in D-T theory.

25 / 29

Dominic Joyce, Oxford University Shifted symplectic geometry

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks

5. D-critical stacks

To generalize the d-critical loci in §3 to Artin stacks, we need a good notion of sheaves on Artin stacks. This is already well understood. Roughly, a sheaf S on an Artin stack X assigns a sheaf $S(U, \varphi)$ on U (in the usual sense for schemes) for each smooth morphism $\varphi : U \to X$ with U a scheme, and a morphism $S(\alpha, \eta) : \alpha^*(S(V, \psi)) \to S(U, \varphi)$ (often an isomorphism) for each 2-commutative diagram

$$U \xrightarrow{\alpha \qquad \psi \qquad \psi} X \qquad (1)$$

with U, V schemes and φ, ψ smooth, such that $\mathcal{S}(\alpha, \eta)$ have the obvious associativity properties. So, we pass from stacks X to schemes U by working with smooth atlases $\varphi: U \to X$.

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci

A 'Darboux Theorem' for shifted symplectic stacks

D-critical stacks

The definition of d-critical stacks

Generalizing d-critical loci to stacks is now straightforward. As in §3, on each scheme U we have a canonical sheaf S_U^0 . If $\alpha : U \to V$ is a morphism of schemes we have pullback morphisms $\alpha^* : \alpha^{-1}(S_V^0) \to S_U^0$ with associativity properties. So, for any classical Artin stack X, we define a sheaf S_X^0 on X by $S_X(U,\varphi) = S_U^0$ for all smooth $\varphi : U \to X$ with U a scheme, and $S(\alpha, \eta) = \alpha^*$ for all diagrams (1). A global section $s \in H^0(S_X^0)$ assigns $s(U,\varphi) \in H^0(S_U^0)$ for all smooth $\varphi : U \to X$ with $\alpha^*[\alpha^{-1}(s(V,\psi))] = s(U,\varphi)$ for all diagrams (1). We call (X, s) a *d-critical stack* if $(U, s(U,\varphi))$ is a d-critical locus for all smooth $\varphi : U \to X$. That is, if X is a d-critical stack then any smooth atlas $\varphi : U \to X$

for X is a d-critical locus.

Dominic Joyce, Oxford University Shifted symplectic geometry

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci A 'Darboux Theorem' for shifted symplectic stacks D-critical stacks

A truncation functor from -1-symplectic derived stacks

As for the scheme case in $\S3$, we prove:

Theorem (Ben-Bassat, Brav, Bussi, Joyce)

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived Artin stack. Then the classical Artin stack $X = t_0(\mathbf{X})$ extends naturally to a d-critical stack (X, s), with canonical bundle $K_{X,s} \cong \det \mathbb{L}_{\mathbf{X}}|_{X^{red}}$.

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli stack of coherent sheaves F on Y, or complexes F^{\bullet} in $D^{b} \operatorname{coh}(Y)$ with $\operatorname{Ext}^{<0}(F^{\bullet}, F^{\bullet}) = 0$. Then \mathcal{M} extends naturally to a d-critical locus (\mathcal{M}, s) with canonical bundle $K_{\mathcal{M},s} \cong \operatorname{det}(\mathcal{E}^{\bullet})|_{\mathcal{M}^{\operatorname{red}}}$, where $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$ is the natural obstruction theory on \mathcal{M} .

27 / 29

Canonical bundles and orientations

For schemes, a d-critical locus (U, s) has a canonical bundle $K_{U,s} \rightarrow U^{\text{red}}$, and an orientation on (U, s) is a square root $K_{U,s}^{1/2}$. Similarly, a d-critical stack (X, s) has a *canonical bundle* $K_{X,s} \rightarrow X^{\text{red}}$. For any smooth $\varphi : U \rightarrow X$ with U a scheme we have $K_{X,s}(U^{\text{red}}, \varphi^{\text{red}}) = K_{U,s(U,\varphi)} \otimes (\det \mathbb{L}_{U/X})^{\otimes^{-2}}$. An *orientation* on (X, s) is a choice of square root $K_{X,s}^{1/2}$ for $K_{X,s}$. Note that as $(\det \mathbb{L}_{U/X})^{\otimes^{-2}}$ has a natural square root, an orientation for (X, s) gives an orientation for $(U, s(U, \varphi))$ for any smooth atlas $\varphi : U \rightarrow X$.

Dominic Joyce, Oxford University Shifted symplectic geometry