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PTVV's shifted symplectic geometry

1. PTVV's shifted symplectic geometry

Let K be an algebraically closed field of characteristic zero, e.g.

K = C. Work in the context of Toén and Vezzosi's theory of
derived algebraic geometry. This gives oo-categories of derived
K-schemes dSchyi and derived stacks dStx, including derived
Artin stacks dArtx. Think of a derived K-scheme X as a
geometric space which can be covered by Zariski open sets Y C X
with Y =~ Spec A for A = (A, d) a commutative differential graded
algebra (cdga) over K.
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Cotangent complexes of derived schemes and stacks

Pantev, Toén, Vaquié and Vezzosi (arXiv:1111.3209) defined a
notion of k-shifted symplectic structure on a derived K-scheme or
derived K-stack X, for k € Z. This is complicated, but here is the
basic idea. The cotangent complex ILyx of X is an element of a
derived category Lqcon(X) of quasicoherent sheaves on X. It has
exterior powers APLLx for p = 0,1,.... The de Rham differential
dgr : APLx — APT1Lyx is a morphism of complexes, though not of
Ox-modules. Each APLLy is a complex, so has an internal
differential d : (APLx)* — (APLx) 1. We have

d> =d?; =dodygr +dggrod = 0.
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p-forms and closed p-forms

A p-form of degree k on X for k € Z is an element [w°] of
Hk (/\PLx,d). A closed p-form of degree k on X is an element

[(wo,wl, .. )] c Hk (@zo /\p+iLx[i], d+ ddR)-

There is a projection 7 : [(w%, w?,...)] — [w°] from closed p-forms
[(w®, w?,...)] of degree k to p-forms [wO] of degree k.

Note that a closed p-form is not a special example of a p-form, but
a p-form with an extra structure. The map 7 from closed p-forms
to p-forms can be neither injective nor surjective.
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Nondegenerate 2-forms and symplectic structures

Let [w®] be a 2-form of degree k on X. Then [w°] induces a
morphism w? : Tx — Lx[k], where Tx = LLy is the tangent
complex of X. We call [w°] nondegenerate if w° : Tx — Lx[k] is a
quasi-isomorphism.

If X is a derived scheme then LLx lives in degrees (—oo, 0] and Tx
in degrees [0, 00). So w? : Tx — Lx[k] can be a
quasi-isomorphism only if kK < 0, and then Lx lives in degrees [k, 0]
and Tx in degrees [0, —k]. If k =0 then X is a smooth classical
K-scheme, and if k = —1 then X is quasi-smooth.

A closed 2-form w = [(w® w?,...)] of degree k on X is called a
k-shifted symplectic structure if [w°] = m(w) is nondegenerate.
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Calabi—Yau moduli schemes and moduli stacks

Pantev et al. prove that if Y is a Calabi—Yau m-fold over K and
M is a derived moduli scheme or stack of (complexes of) coherent
sheaves on Y, then M has a natural (2 — m)-shifted symplectic
structure w. So Calabi—Yau 3-folds give —1-shifted derived
schemes or stacks.

We can understand the associated nondegenerate 2-form [wP] in
terms of Serre duality. At a point [E] € M, we have

W (Ta)lig) = Ext'"H(E, E) and h'(Laq)|ig) = Ext'~'(E, E)*.

The Calabi-Yau condition gives Ext/(E, E) = Ext™'(E, E)*,
which corresponds to hi(TM)|[E] >~ hi(Laq[2 — m])|(g;- This is the
cohomology at [E] of the quasi-isomorphism

WP Ty — LM[z — m].
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Lagrangians and Lagrangian intersections

Let (X,w) be a k-shifted symplectic derived scheme or stack.
Then Pantev et al. define a notion of Lagrangian L in (X,w),
which is a morphism i : L — X of derived schemes or stacks
together with a homotopy /*(w) ~ 0 satisfying a nondegeneracy
condition, implying that Ty ~ Ly )x[k — 1].

If L, M are Lagrangians in (X,w), then the fibre product L xx M
has a natural (k — 1)-shifted symplectic structure.

If (S,w) is a classical smooth symplectic scheme, then it is a
0-shifted symplectic derived scheme in the sense of PTVV, and if
L,M C S are classical smooth Lagrangian subschemes, then they
are Lagrangians in the sense of PTVV. Therefore the (derived)
Lagrangian intersection LN M = L xg M is a —1-shifted
symplectic derived scheme.
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2. A Darboux theorem for shifted symplectic schemes

Theorem (Brav, Bussi and Joyce arXiv:1305.6302)

Suppose (X,w) is a k-shifted symplectic derived K-scheme for

k <0. If k#2 mod 4, then each x € X admits a Zariski open
neighbourhood Y C X with Y ~ SpecA for (A, d) an explicit cdga
over K generated by graded variables X yk+’ for 0 < i< —k/2,

and wly = [(w°,0,0,...)] where x ,y have degree I, and

w _z[ k/Q]E 1d R}/J+ddRX i
Also the differential d in (A, d) is given by Poisson bracket with a
Hamiltonian H in A of degree k + 1.
If k=2 mod 4, we have two statements, one étale local with w°
standard, and one Zariski local with the components of WO in the
degree k/2 variables depending on some invertible functions.

Dominic Joyce, Oxford University Shifted symplectic geometry

A Darboux theorem for shifted symplectic schemes

Sketch of the proof of the theorem

Suppose (X, w) is a k-shifted symplectic derived K-scheme for

k <0, and x € X. Then LLx lives in degrees [k,0]. We first show
that we can build Zariski open x € Y C X with Y ~ Spec A, for
A= @igo A’ a cdga over K with A® a smooth K-algebra, and
such that A is freely generated over A? by graded variables

,kaJr’ in degrees —1, —2, ..., k. We take dim A° and the

number of x;~ ,yk+’ to be minimal at x.

Using theorems about periodic cyclic cohomology, we show that on
Y ~ Spec A we can write w|y = [(w?,0,0,...)], for w® a 2-form of
degree k with dw® = dgrw® = 0. Minimality at x implies w9 is
strictly nondegenerate near x, so we can change variables to write
Wl = Zi’j ddRyjkjL"ddej_". Finally, we show d in (A,d) is a

symplectic vector field, which integrates to a Hamiltonian H.
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The case of —1-shifted symplectic derived schemes

When k = —1 the Hamiltonian H in the theorem has degree O.
Then the theorem reduces to:

Corollary

Suppose (X,w) is a —1-shifted symplectic derived K-scheme.
Then (X,w) is Zariski locally equivalent to a derived critical locus
Crit(H : U — A'), for U a smooth classical K-scheme and

H: U — Al a regular function. Hence, the underlying classical
K-scheme X = to(X) is Zariski locally isomorphic to a classical
critical locus Crit(H : U — Al).
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Combining this with results of Pantev et al. from §1 gives
interesting consequences in classical algebraic geometry:

Corollary

Let Y be a Calabi—Yau 3-fold over K and M a classical moduli
K-scheme of coherent sheaves, or complexes of coherent sheaves,
on Y. Then M is Zariski locally isomorphic to the critical locus
Crit(H : U — A') of a regular function on a smooth K-scheme.

v

Here we note that M = ty(M) for M the corresponding derived
moduli scheme, which is —1-shifted symplectic by PTVV.

A complex analytic analogue of this for moduli of coherent sheaves
was proved using gauge theory by Joyce and Song arXiv:0810.5645,
and for moduli of complexes was claimed by Behrend and Getzler.
Note that the proof of the corollary is wholly algebro-geometric.
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Corollary

Let (S,w) be a classical smooth symplectic K-scheme, and

L,M C S be smooth algebraic Lagrangians. Then the intersection

LN M, as a K-subscheme of S, is Zariski locally isomorphic to the
critical locus Crit(H : U — A') of a regular function on a smooth

K-scheme.

In real or complex symplectic geometry, where Darboux Theorem
holds, the analogue of the corollary is easy to prove, but in
classical algebraic symplectic geometry we do not have a Darboux
Theorem, so the corollary is not obvious.
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3. D-critical loci

Theorem (Joyce arXiv:1304.4508)

Let X be a classical K-scheme. Then there exists a canonical
sheaf Sx of K-vector spaces on X, such that if R C X is Zariski
open and i : R — U is a closed embedding of R into a smooth
K-scheme U, and Ir,y C Oy is the ideal vanishing on i(R), then

Oy d . T"U )

Sx|lr =2 K >

>
I

Also Sx splits naturally as Sx = Sﬁ)( D Kx, where Kx is the sheaf
of locally constant functions X — K.

Dominic Joyce, Oxford University Shifted symplectic geometry



D-critical loci

The meaning of the sheaves Sx, Sy

If X = Crit(f: U — Al) then taking R = X, i =inclusion, we see
that f + I)2<7U is a section of Sx. Also f|xrea : X™4 — K is locally
constant, and if f|yrea = 0 then f + I)2< y 1s a section of Sﬁ)(. Note
that f + Ix y = f|x in Ox = OU/IX,Uj The theorem means that
f -+ l)2<7U makes sense intrinsically on X, without reference to the

embedding of X into U.

That is, if X = Crit(f : U — A!) then we can remember f up to
second order in the ideal Ix y as a piece of data on X, not on U.

Suppose X = Crit(f : U — A') = Crit(g : V — Al) is written as
a critical locus in two different ways. Then f + I)2<7U, g+ I)%,V are
sections of Sx, so we can ask whether f + I)2< y=28+ I)2< v- This
gives a way to compare isomorphic critical loci in different smooth
classical schemes.
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The definition of d-critical loci

Definition (Joyce arXiv:1304.4508)

An (algebraic) d-critical locus (X, s) is a classical K-scheme X and
a global section s € H(S%) such that X may be covered by
Zariski open R C X with an isomorphism

i R— Crit(f : U— A') identifying s|g with f + I3, for f a
regular function on a smooth K-scheme U. ,

That is, a d-critical locus (X, s) is a K-scheme X which may
Zariski locally be written as a critical locus Crit(f : U — A!), and
the section s remembers f up to second order in the ideal Ix y.
We also define complex analytic d-critical loci, with X a complex
analytic space locally modelled on Crit(f : U — C) for U a
complex manifold and f holomorphic.
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Orientations on d-critical loci

Theorem (Joyce arXiv:1304.4508)

Let (X,s) be an algebraic d-critical locus and X*®9 the reduced
K-subscheme of X. Then there is a natural line bundle Kx s on
X*d called the canonical bundle, such that if (X,s) is locally
modelled on Crit(f : U — A') then Kx s is locally modelled on

Kﬁ2|crit(f)red, for Ky the usual canonical bundle of U.

Definition

Let (X, s) be a d-critical locus. An orientation on (X,s) is a
choice of square root line bundle K)l/s2 for Kx s on jiuee

This is related to orientation data in Kontsevich—Soibelman 2008.
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A truncation functor from —1-symplectic derived schemes

Theorem (Brav, Bussi and Joyce arXiv:1305.6302)

Let (X,w) be a —1-shifted symplectic derived K-scheme. Then
the classical K-scheme X = ty(X) extends naturally to an
algebraic d-critical locus (X, s). The canonical bundle of (X, s)
satisfies Kx s = det Lix| xred.

v

That is, we define a truncation functor from —1-shifted symplectic
derived K-schemes to algebraic d-critical loci. Examples show this
functor is not full. Think of d-critical loci as classical truncations
of —1-shifted symplectic derived K-schemes.

An alternative semi-classical truncation, used in DT theory, is
schemes with symmetric obstruction theory. D-critical loci appear
to be better, for both categorified and motivic D-T theory.
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The corollaries in §2 imply:

Corollary

Let Y be a Calabi—Yau 3-fold over K and M a classical moduli
K-scheme of coherent sheaves, or complexes of coherent sheaves,
on Y. Then M extends naturally to a d-critical locus (M, s). The
canonical bundle satisfies Krq s = det(E°®)| \ qrea, where

¢ : E* — Ly is the (symmetric) obstruction theory on M defined
by Thomas or Huybrechts and Thomas.

4
Corollary

Let (S,w) be a classical smooth symplectic K-scheme, and

L,M C S be smooth algebraic Lagrangians. Then X = LN M
extends naturally to a d-critical locus (X,s). The canonical bundle
satisfies Kx s = Ki|xrea @ Kp|xrea. Hence, choices of square roots

KL1/2, K,\lﬂ/2 give an orientation for (X, s).

A\
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4. A ‘Darboux Theorem’ for shifted symplectic stacks

In Ben-Bassat, Bussi, Brav and Joyce (in progress) we extend the
material of §2 from (derived) schemes to (derived) Artin stacks.
We define a derived Artin stack X to be ‘strongly 1-geometric’ in
the sense of Toen and Vezzosi. Then the cotangent complex LLx
lives in degrees (—o0, 1], and X = tp(X) is a classical Artin stack
(in particular, not a higher stack). A derived Artin stack X admits
a smooth atlas ¢ : U — X with U a derived scheme. If Y is a
smooth projective scheme and M is a derived moduli stack of
coherent sheaves F on Y, or of complexes F* in D coh(Y) with
Ext<C(F*, F*) = 0, then M is a derived Artin stack.
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A ‘Darboux Theorem' for atlases of derived stacks

Theorem (Ben-Bassat, Bussi, Brav, Joyce)

Let (X,wx) be a k-shifted symplectic derived Artin stack for

k <0, and p € X. Then there exist ‘standard form’ affine derived
schemes U = Spec A, V = Spec B, points u € U, v € V with A, B
minimal at u, v, morphisms ¢ : U — X and i: U — V with

p(u) = p, i(u) = v, such that ¢ is smooth of relative dimension
dim H (Lx|p), and to(i) : to(U) — to(V) is an isomorphism on
classical schemes, and LLy,y ~ Ty x[1 — k]|, and a ‘Darboux form’
k-shifted symplectic form wg on V = Spec B such that

i"(wg) ~ ¢*(wx) in k-shifted closed 2-forms on U.
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Discussion of the ‘Darboux Theorem’ for stacks

Let (X, wx) be a k-shifted symplectic derived Artin stack for

k <0, and p € X. Although we do not know how to give a
complete, explicit ‘standard model’ for (X,wx) near p, we can give
standard models for a smooth atlas ¢ : U — X for X near p with
U = Spec A a derived scheme, and for the pullback 2-form
@*(wx). We may think of ¢ : U — X as an open neighbourhood
of p in the smooth topology, rather than the Zariski topology.
Now (U, ¢*(wx)) is not k-shifted symplectic, as ¢*(wx) is closed,
but not nondegenerate. However, there is a way to modify U, A to
get another derived scheme V = Spec B, where A has generators
in degrees 0, —1,...,—k — 1, and B C A is the dg-subalgebra
generated by the generators in degrees 0, —1,..., —k only.
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Then V has a natural k-shifted symplectic form wg, which we may
take to be in ‘Darboux form’ as in §2, with i*(wg) ~ ¢*(wx). In
terms of cotangent complexes, Ly is obtained from ¢*(ILx) by
deleting a vector bundle Ly x in degree 1. Also Ly is obtained
from Ly by deleting the dual vector bundle Ty x in degree k — 1.
As these two deletions are dual under ¢*(wx), the symplectic form
descends to V.

An example in which we have this picture

(V,wg) <— U 25 (X, wx) is a ‘k-shifted symplectic quotient’,
when an algebraic group G acts on a k-shifted symplectic derived
scheme (V,wpg) with ‘moment map’ 1 € H*(V, g* ® Oy), and
U=1x"10), and X = [U/G].
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—1-shifted symplectic derived stacks

When k = —1, (V,wg) is a derived critical locus Crit(f : S — Al)
for S a smooth scheme. Then t3(V) = tp(U) is the classical
critical locus Crit(f : S — Al), and U = tg(U) is a smooth atlas
for the classical Artin stack X = to(X). Thus we deduce:

Corollary

Let (X,wx) be a —1-shifted symplectic derived stack. Then the
classical Artin stack X = to(X) locally admits smooth atlases

¢: U — X with U = Crit(f : S — Al), for S a smooth scheme
and f a regular function.
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Calabi—Yau 3-fold moduli stacks

If Y is a Calabi—Yau 3-fold and M a moduli stack of coherent
sheaves F on Y, or complexes F*® in D? coh(Y) with
Ext<C(F®, F*) =0, then by PTVV the corresponding derived
moduli stack M with to(M) = M has a —1-shifted symplectic
structure waq. So the previous corollary gives:

Corollary

Suppose Y is a Calabi—Yau 3-fold and M a classical moduli stack
of coherent sheaves F on Y, or of complexes F® in D coh(Y)
with Ext<C(F*, F®) = 0. Then M locally admits smooth atlases
¢ : U— X with U= Crit(f : S = Al), for S a smooth scheme.

o

A holomorphic version of this was proved by Joyce and Song using
gauge theory, and is important in D-T theory.
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5. D-critical stacks

To generalize the d-critical loci in §3 to Artin stacks, we need a
good notion of sheaves on Artin stacks. This is already well
understood. Roughly, a sheaf S on an Artin stack X assigns a
sheaf S(U, ¢) on U (in the usual sense for schemes) for each
smooth morphism ¢ : U — X with U a scheme, and a morphism
S(a,n) : a*(S(V,v¥)) = S(U, ¢) (often an isomorphism) for each
2-commutative diagram

V
P

with U, V schemes and ¢, ¢ smooth, such that S(a, n) have the
obvious associativity properties. So, we pass from stacks X to
schemes U by working with smooth atlases ¢ : U — X.
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The definition of d-critical stacks

Generalizing d-critical loci to stacks is now straightforward. As in
§3, on each scheme U we have a canonical sheaf 88. fa:U—V
is @ morphism of schemes we have pullback morphisms

o 1 aH(SY) — 8P with associativity properties.

So, for any classical Artin stack X, we define a sheaf S% on X by
Sx(U,p) = 88 for all smooth ¢ : U — X with U a scheme, and
S(ar, ) = o for all diagrams (1).

A global section s € HO(SY) assigns s(U, ¢) € HO(SP) for all
smooth ¢ : U — X with o*[a"1(s(V,v))] = s(U, p) for all
diagrams (1). We call (X, s) a d-critical stack if (U,s(U,¢)) is a
d-critical locus for all smooth ¢ : U — X.

That is, if X is a d-critical stack then any smooth atlas ¢ : U — X
for X is a d-critical locus.
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A truncation functor from —1-symplectic derived stacks

As for the scheme case in §3, we prove:

Theorem (Ben-Bassat, Brav, Bussi, Joyce)

Let (X,w) be a —1-shifted symplectic derived Artin stack. Then
the classical Artin stack X = ty(X) extends naturally to a d-critical
stack (X,s), with canonical bundle Kx s = det L|xred.

Corollary

Let Y be a Calabi-Yau 3-fold over K and M a classical moduli
stack of coherent sheaves F on Y, or complexes F® in D? coh(Y)
with Ext<°(F®, F*) = 0. Then M extends naturally to a d-critical
locus (M, s) with canonical bundle Ky s = det(E°®)| \ jrea, where
¢ : E* — L is the natural obstruction theory on M.
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Canonical bundles and orientations

For schemes, a d-critical locus (U, s) has a canonical bundle
Ku.s — U™4, and an orientation on (U, s) is a square root Ktl/sz
Similarly, a d-critical stack (X, s) has a canonical bundle

Kx s — X*®d_ For any smooth ¢ : U — X with U a scheme we
have Kx s(U™d, o) = Ky 5(,0) ® (detLyx)® . An
orientation on (X, s) is a choice of square root K)l/f for Kx s.

Note that as (detILU/X)®_2 has a natural square root, an
orientation for (X, s) gives an orientation for (U,s(U, ga)) for any
smooth atlas ¢ : U — X.
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