# Categorification of shifted symplectic geometry using perverse sheaves

Dominic Joyce, Oxford University, April 2016 Based on: arXiv:1304.4508, arXiv:1305.6302, arXiv:1211.3259, arXiv:1305.6428, arXiv:1312.0090, arXiv:1403.2403, arXiv:1404.1329, arXiv:1504.00690, arXiv:1506.04024, arXiv:1509.05672, arXiv:1601.01536 and work in progress.

Joint with Lino Amorim, Oren Ben-Bassat, Chris Brav, Vittoria Bussi, Dennis Borisov, Delphine Dupont, Sven Meinhardt, Pavel Safronov, and Balázs Szendrői. Funded by the EPSRC.

These slides available at

http://people.maths.ox.ac.uk/~joyce/talks.html



Plan of talk:

Shifted symplectic geometry

2 A Darboux theorem for shifted symplectic schemes

3 Categorification using perverse sheaves: objects

4 Categorification using perverse sheaves: morphisms

#### Shifted symplectic geometry

A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

### 1. Shifted symplectic geometry

Let  $\mathbb{K}$  be an algebraically closed field of characteristic zero, e.g.  $\mathbb{K} = \mathbb{C}$ . Work in the context of Toën and Vezzosi's theory of Derived Algebraic Geometry. This gives  $\infty$ -categories of *derived*   $\mathbb{K}$ -schemes  $\mathbf{dSch}_{\mathbb{K}}$  and *derived*  $\mathbb{K}$ -stacks  $\mathbf{dSt}_{\mathbb{K}}$ , including *derived Artin*  $\mathbb{K}$ -stacks.

Think of a derived  $\mathbb{K}$ -scheme **X** as a geometric space which can be covered by Zariski open sets  $\mathbf{Y} \subseteq \mathbf{X}$  with  $\mathbf{Y} \simeq \operatorname{Spec} A^{\bullet}$  for  $A^{\bullet} = (A^*, d)$  a commutative differential graded algebra (cdga) over  $\mathbb{K}$ , in degrees  $\leq 0$ .

We require **X** to be *locally finitely presented*, that is, we can take the  $A^{\bullet}$  to be finitely presented, a strong condition.

A derived  $\mathbb{K}$ -scheme or  $\mathbb{K}$ -stack X has a *tangent complex*  $\mathbb{T}_X$  and a dual *cotangent complex*  $\mathbb{L}_X$ , which are perfect complexes of coherent sheaves on X, of rank the virtual dimension  $\operatorname{vdim} X \in \mathbb{Z}$ .

Dominic Joyce, Oxford University Categorification of PTVV using perverse sheaves

Shifted symplectic geometry A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

# PTVV's shifted symplectic geometry

Pantev, Toën, Vaquié and Vezzosi (arXiv:1111.3209) defined a version of symplectic geometry in the derived world. Let **X** be a derived K-scheme or K-stack. The cotangent complex  $\mathbb{L}_{\mathbf{X}}$  has exterior powers  $\Lambda^{p}\mathbb{L}_{\mathbf{X}}$ . The *de Rham differential*  $d_{dR} : \Lambda^{p}\mathbb{L}_{\mathbf{X}} \to \Lambda^{p+1}\mathbb{L}_{\mathbf{X}}$  is a morphism of complexes. Each  $\Lambda^{p}\mathbb{L}_{\mathbf{X}}$  is a complex, so has an internal differential  $d : (\Lambda^{p}\mathbb{L}_{\mathbf{X}})^{k} \to (\Lambda^{p}\mathbb{L}_{\mathbf{X}})^{k+1}$ . We have  $d^{2} = d_{dR}^{2} = d \circ d_{dR} + d_{dR} \circ d = 0$ . A *p*-form of degree *k* on **X** for  $k \in \mathbb{Z}$  is an element  $[\omega^{0}]$  of  $H^{k}(\Lambda^{p}\mathbb{L}_{\mathbf{X}}, d)$ . A closed *p*-form of degree *k* on **X** is an element  $[(\omega^{0}, \omega^{1}, \ldots)] \in H^{k}(\bigoplus_{i=0}^{\infty} \Lambda^{p+i}\mathbb{L}_{\mathbf{X}}[i], d + d_{dR})$ . There is a projection  $\pi : [(\omega^{0}, \omega^{1}, \ldots)] \mapsto [\omega^{0}]$  from closed *p*-forms

 $[(\omega^0, \omega^1, \ldots)]$  of degree k to p-forms  $[\omega^0]$  of degree k.

## Nondegenerate 2-forms and symplectic structures

Let  $[\omega^0]$  be a 2-form of degree k on  $\mathbf{X}$ . Then  $[\omega^0]$  induces a morphism  $\omega^0 : \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$ , where  $\mathbb{T}_{\mathbf{X}} = \mathbb{L}_{\mathbf{X}}^{\vee}$  is the tangent complex of  $\mathbf{X}$ . We call  $[\omega^0]$  nondegenerate if  $\omega^0 : \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$  is a quasi-isomorphism.

If **X** is a derived scheme then the complex  $\mathbb{L}_{\mathbf{X}}$  lives in degrees  $(-\infty, 0]$  and  $\mathbb{T}_{\mathbf{X}}$  in degrees  $[0, \infty)$ . So  $\omega^0 : \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$  can be a quasi-isomorphism only if  $k \leq 0$ , and then  $\mathbb{L}_{\mathbf{X}}$  lives in degrees [k, 0] and  $\mathbb{T}_{\mathbf{X}}$  in degrees [0, -k]. If k = 0 then **X** is a smooth classical K-scheme, and if k = -1 then **X** is quasi-smooth.

A closed 2-form  $\omega = [(\omega^0, \omega^1, \ldots)]$  of degree k on X is called a *k-shifted symplectic structure* if  $[\omega^0] = \pi(\omega)$  is nondegenerate.

| Б  | 11  | 25 |  |  |  |  |
|----|-----|----|--|--|--|--|
| э. | / 4 | 20 |  |  |  |  |

Dominic Joyce, Oxford University Categorification of PTVV using perverse sheaves

Shifted symplectic geometry A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

#### Calabi–Yau moduli schemes and moduli stacks

PTVV prove that if Y is a Calabi–Yau *m*-fold over  $\mathbb{K}$  and  $\mathcal{M}$  is a derived moduli scheme or stack of (complexes of) coherent sheaves on Y, then  $\mathcal{M}$  has a (2 - m)-shifted symplectic structure  $\omega$ . This suggests applications — lots of interesting geometry concerns Calabi–Yau moduli schemes, e.g. Donaldson–Thomas theory. We can understand the associated nondegenerate 2-form  $[\omega^0]$  in terms of *Serre duality*. At a point  $[E] \in \mathcal{M}$ , we have  $h^i(\mathbb{T}_{\mathcal{M}})|_{[E]} \cong \operatorname{Ext}^{i-1}(E, E)$  and  $h^i(\mathbb{L}_{\mathcal{M}})|_{[E]} \cong \operatorname{Ext}^{1-i}(E, E)^*$ . The Calabi–Yau condition gives  $\operatorname{Ext}^i(E, E) \cong \operatorname{Ext}^{m-i}(E, E)^*$ , which corresponds to  $h^{i+1}(\mathbb{T}_{\mathcal{M}})|_{[E]} \cong h^{i+1}(\mathbb{L}_{\mathcal{M}}[2-m])|_{[E]}$ . This is the cohomology at [E] of the quasi-isomorphism  $\omega^0: \mathbb{T}_{\mathcal{M}} \to \mathbb{L}_{\mathcal{M}}[2-m]$ .

Lagrangians and Lagrangian intersections

Let  $(\mathbf{X}, \omega)$  be a *k*-shifted symplectic derived scheme or stack. Then Pantev et al. define a notion of *Lagrangian*  $\mathbf{L}$  in  $(\mathbf{X}, \omega)$ , which is a morphism  $\mathbf{i} : \mathbf{L} \to \mathbf{X}$  of derived schemes or stacks together with a homotopy  $\mathbf{i}^*(\omega) \sim 0$  satisfying a nondegeneracy condition, implying that  $\mathbb{T}_{\mathbf{L}} \simeq \mathbb{L}_{\mathbf{L}/\mathbf{X}}[k-1]$ . If  $\mathbf{L}$ ,  $\mathbf{M}$  are Lagrangians in  $(\mathbf{X}, \omega)$ , then the fibre product  $\mathbf{L} \times_{\mathbf{X}} \mathbf{M}$  has a natural (k-1)-shifted symplectic structure. If  $(S, \omega)$  is a classical smooth symplectic scheme, then it is a 0-shifted symplectic derived scheme in the sense of PTVV, and if  $L, M \subset S$  are classical smooth Lagrangian subschemes, then they are Lagrangians in the sense of PTVV. Therefore the (derived) Lagrangian intersection  $L \cap M = L \times_S M$  is a -1-shifted symplectic derived scheme.

7 / 25

Dominic Joyce, Oxford University Categorification of PTVV using perverse sheaves

Shifted symplectic geometry A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

## 2. A Darboux theorem for shifted symplectic schemes

#### Theorem 1 (Brav, Bussi and Joyce arXiv:1305.6302)

Let  $(\mathbf{X}, \omega)$  be a k-shifted symplectic derived  $\mathbb{K}$ -scheme for k < 0. If  $k \not\equiv 2 \mod 4$ , then each  $x \in \mathbf{X}$  admits a Zariski open neighbourhood  $\mathbf{Y} \subseteq \mathbf{X}$  with  $\mathbf{Y} \simeq \operatorname{Spec} A^{\bullet}$  for  $A^{\bullet} = (A^*, \mathrm{d})$  an explicit cdga generated by graded variables  $x_j^{-i}, y_j^{k+i}$  for  $0 \leq i \leq -k/2$ , and  $\omega|_{\mathbf{Y}} = [(\omega^0, 0, 0, \ldots)]$  where  $x_j^l, y_j^l$  have degree l, and  $\omega^0 = \sum_{i=0}^{\lfloor -k/2 \rfloor} \sum_{j=1}^{m_i} \mathrm{d}_{dR} y_j^{k+i} \mathrm{d}_{dR} x_j^{-i}$ .

Also the differential d in  $A^{\bullet}$  is given by Poisson bracket with a Hamiltonian H in A of degree k + 1.

If  $k \equiv 2 \mod 4$ , we have two statements, one étale local with  $\omega^0$  standard, and one Zariski local with the components of  $\omega^0$  in the degree k/2 variables depending on some invertible functions.

Ben-Bassat–Brav–Bussi–Joyce extend this to derived Artin  $\mathbb{K}$ -stacks.

## Sketch of the proof of Theorem 1

Suppose  $(\mathbf{X}, \omega)$  is a *k*-shifted symplectic derived K-scheme for k < 0, and  $x \in \mathbf{X}$ . Then  $\mathbb{L}_{\mathbf{X}}$  lives in degrees [k, 0]. We first show that we can build Zariski open  $x \in \mathbf{Y} \subseteq \mathbf{X}$  with  $\mathbf{Y} \simeq \operatorname{Spec} A^{\bullet}$ , for  $A^{\bullet} = (\bigoplus_{i \leq 0} A^{i}, d)$  a cdga over K with  $A^{0}$  a smooth K-algebra, and such that  $A^{*}$  is freely generated over  $A^{0}$  by graded variables  $x_{j}^{-i}, y_{j}^{k+i}$  in degrees  $-1, -2, \ldots, k$ . We take dim  $A^{0}$  and the number of  $x_{j}^{-i}, y_{j}^{k+i}$  to be minimal at x. Using theorems about periodic cyclic cohomology, we show that on  $Y \simeq \operatorname{Spec} A^{\bullet}$  we can write  $\omega|_{Y} = [(\omega^{0}, 0, 0, \ldots)]$ , for  $\omega^{0}$  a 2-form of degree k with  $d\omega^{0} = d_{dR}\omega^{0} = 0$ . Minimality at x implies  $\omega^{0}$  is strictly nondegenerate near x, so we can change variables to write  $\omega^{0} = \sum_{i,j} d_{dR} y_{j}^{k+i} d_{dR} x_{j}^{-i}$ . Finally, we show d in  $A^{\bullet}$  is a symplectic vector field, which integrates to a Hamiltonian H.

9 / 25

Dominic Joyce, Oxford University Categorification of PTVV using perverse sheaves

Shifted symplectic geometry A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

The case of -1-shifted symplectic derived schemes

When k = -1 the Hamiltonian H in Theorem 1 has degree 0. Then Theorem 1 reduces to:

#### Corollary

Suppose  $(\mathbf{X}, \omega)$  is a -1-shifted symplectic derived  $\mathbb{K}$ -scheme. Then  $(\mathbf{X}, \omega)$  is Zariski locally equivalent to a derived critical locus  $\operatorname{Crit}(H : U \to \mathbb{A}^1)$ , for U a smooth classical  $\mathbb{K}$ -scheme and  $H : U \to \mathbb{A}^1$  a regular function. Hence, the underlying classical  $\mathbb{K}$ -scheme  $X = t_0(\mathbf{X})$  is Zariski locally isomorphic to a classical critical locus  $\operatorname{Crit}(H : U \to \mathbb{A}^1)$ .

This implies that classical Calabi–Yau 3-fold moduli schemes are, Zariski locally, critical loci of regular functions on smooth schemes.

# D-critical loci: classical truncations of -1-shifted symplectic schemes

#### Theorem (Joyce arXiv:1304.4508)

Let X be a classical  $\mathbb{K}$ -scheme. Then there exists a canonical sheaf  $S_X$  of  $\mathbb{K}$ -vector spaces on X, such that if  $R \subseteq X$  is Zariski open and  $i : R \hookrightarrow U$  is a closed embedding of R into a smooth  $\mathbb{K}$ -scheme U, and  $I_{R,U} \subseteq \mathcal{O}_U$  is the ideal vanishing on i(R), then

$$\mathcal{S}_X|_R \cong \operatorname{Ker}\left(rac{\mathcal{O}_U}{I_{R,U}^2} \stackrel{\mathrm{d}}{\longrightarrow} rac{T^*U}{I_{R,U} \cdot T^*U}
ight).$$

Also  $S_X$  splits naturally as  $S_X = S_X^0 \oplus \mathbb{K}_X$ , where  $\mathbb{K}_X$  is the sheaf of locally constant functions  $X \to \mathbb{K}$ .

$$11 \, / \, 25$$

Dominic Joyce, Oxford University Categorification

Categorification of PTVV using perverse sheaves

Shifted symplectic geometry A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

## The meaning of the sheaves $\mathcal{S}_X, \mathcal{S}_X^0$

If  $X = \operatorname{Crit}(f : U \to \mathbb{A}^1)$  then taking R = X,  $i = \operatorname{inclusion}$ , we see that  $f + I_{X,U}^2$  is a section of  $\mathcal{S}_X$ . Also  $f|_{X^{\operatorname{red}}} : X^{\operatorname{red}} \to \mathbb{K}$  is locally constant, and if  $f|_{X^{\operatorname{red}}} = 0$  then  $f + I_{X,U}^2$  is a section of  $\mathcal{S}_X^0$ . Note that  $f + I_{X,U} = f|_X$  in  $\mathcal{O}_X = \mathcal{O}_U/I_{X,U}$ . The theorem means that  $f + I_{X,U}^2$  makes sense *intrinsically on* X, without reference to the embedding of X into U.

That is, if  $X = \operatorname{Crit}(f : U \to \mathbb{A}^1)$  then we can remember f up to second order in the ideal  $I_{X,U}$  as a piece of data on X, not on U. Suppose  $X = \operatorname{Crit}(f : U \to \mathbb{A}^1) = \operatorname{Crit}(g : V \to \mathbb{A}^1)$  is written as a critical locus in two different ways. Then  $f + I_{X,U}^2$ ,  $g + I_{X,V}^2$  are sections of  $S_X$ , so we can ask whether  $f + I_{X,U}^2 = g + I_{X,V}^2$ . This gives a way to compare isomorphic critical loci in different smooth classical schemes. Shifted symplectic geometry A Darboux theorem for shifted symplectic schemes

Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

#### Definition (Joyce arXiv:1304.4508)

An (algebraic) d-critical locus (X, s) is a classical  $\mathbb{K}$ -scheme X and a global section  $s \in H^0(\mathcal{S}^0_X)$  such that X may be covered by Zariski open  $R \subseteq X$  with an isomorphism  $i : R \to \operatorname{Crit}(f : U \to \mathbb{A}^1)$  identifying  $s|_R$  with  $f + I^2_{R,U}$ , for f a regular function on a smooth  $\mathbb{K}$ -scheme U.

That is, a d-critical locus (X, s) is a  $\mathbb{K}$ -scheme X which may Zariski locally be written as a critical locus  $\operatorname{Crit}(f : U \to \mathbb{A}^1)$ , and the section s remembers f up to second order in the ideal  $I_{X,U}$ . We also define *complex analytic d-critical loci*.

Theorem 2 (Brav, Bussi and Joyce arXiv:1305.6302)

Let  $(\mathbf{X}, \omega)$  be a -1-shifted symplectic derived  $\mathbb{K}$ -scheme. Then the classical  $\mathbb{K}$ -scheme  $X = t_0(\mathbf{X})$  extends naturally to an algebraic d-critical locus (X, s). The 'canonical bundle' of (X, s)satisfies  $K_{X,s} \cong \det \mathbb{L}_{\mathbf{X}}|_{X^{red}}$ .

13 / 25

Dominic Joyce, Oxford University Categor

Categorification of PTVV using perverse sheaves

Shifted symplectic geometry A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

## 3. Categorification using perverse sheaves: objects

#### Theorem 3 (Brav, Bussi, Dupont, Joyce, Szendrői arXiv:1211.3259)

Let  $(\mathbf{X}, \omega)$  be a -1-shifted symplectic derived  $\mathbb{K}$ -scheme. Then the 'canonical bundle' det $(\mathbb{L}_{\mathbf{X}})$  is a line bundle over the classical scheme  $X = t_0(\mathbf{X})$ . Suppose we are given an **orientation** of  $(\mathbf{X}, \omega)$ , i.e. a square root line bundle det $(\mathbb{L}_{\mathbf{X}})^{1/2}$ . Then we can construct a canonical perverse sheaf  $P^{\bullet}_{\mathbf{X},\omega}$  on X, such that if  $(\mathbf{X}, \omega)$  is Zariski locally modelled on  $\mathbf{Crit}(f : U \to \mathbb{A}^1)$ , then  $P^{\bullet}_{\mathbf{X},\omega}$ is locally modelled on the perverse sheaf of vanishing cycles  $\mathcal{PV}^{\bullet}_{U,f}$ of (U, f). Similarly, we can construct a natural  $\mathscr{D}$ -module  $D^{\bullet}_{\mathbf{X},\omega}$  on X, and when  $\mathbb{K} = \mathbb{C}$  a natural mixed Hodge module  $M^{\bullet}_{\mathbf{X},\omega}$  on X.

In fact we actually construct the perverse sheaf on the oriented d-critical locus (X, s) associated to  $(\mathbf{X}, \omega)$  in Theorem 2. We also define perverse sheaves on oriented complex analytic d-critical loci.

#### Sketch of the proof of Theorem 3

Roughly, we prove Theorem 3 by taking a Zariski open cover  $\{\mathbf{R}_i : i \in I\}$  of  $\mathbf{X}$  with  $\mathbf{R}_i \cong \operatorname{Crit}(f_i : U_i \to \mathbb{A}^1)$ , and showing that  $\mathcal{PV}_{U_i,f_i}^{\bullet}$  and  $\mathcal{PV}_{U_j,f_j}^{\bullet}$  are canonically isomorphic on  $R_i \cap R_j$ , so we can glue the  $\mathcal{PV}_{U_i,f_i}^{\bullet}$  to get a global perverse sheaf  $P_{\mathbf{X},\omega}^{\bullet}$  on X. In fact things are more complicated: the (local) isomorphisms  $\mathcal{PV}_{U_i,f_i}^{\bullet} \cong \mathcal{PV}_{U_j,f_j}^{\bullet}$  are only canonical *up to sign*. To make them canonical, we use the square root det $(\mathbb{L}_{\mathbf{X}})^{1/2}$  to define natural principal  $\mathbb{Z}_2$ -bundles  $Q_i$  on  $R_i$ , such that  $\mathcal{PV}_{U_i,f_i}^{\bullet} \otimes_{\mathbb{Z}_2} Q_i \cong \mathcal{PV}_{U_j,f_j}^{\bullet} \otimes_{\mathbb{Z}_2} Q_j$  is canonical, and then we glue the  $\mathcal{PV}_{U_i,f_i}^{\bullet} \otimes_{\mathbb{Z}_2} Q_i$  to get  $P_{\mathbf{X},\omega}^{\bullet}$ .

#### $15 \, / \, 25$

Dominic Joyce, Oxford University Cate

Categorification of PTVV using perverse sheaves

Shifted symplectic geometry A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

#### Categorifying Calabi–Yau 3-fold moduli spaces

#### Corollary

Let Y be a Calabi–Yau 3-fold over  $\mathbb{K}$  and  $\mathcal{M}$  a classical moduli  $\mathbb{K}$ -scheme of coherent sheaves, or complexes of coherent sheaves, on Y, with (symmetric) obstruction theory  $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$ . Suppose we are given a square root det $(\mathcal{E}^{\bullet})^{1/2}$  for det $(\mathcal{E}^{\bullet})$  (i.e. orientation data, K–S). Then we have a natural perverse sheaf  $P^{\bullet}_{\mathcal{M},s}$  on  $\mathcal{M}$ .

The hypercohomology  $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$  is a finite-dimensional graded vector space. The pointwise Euler characteristic  $\chi(P^{\bullet}_{\mathcal{M},s})$  is the Behrend function  $\nu_{\mathcal{M}}$  of  $\mathcal{M}$ . Thus

 $\sum_{i\in\mathbb{Z}} (-1)^i \dim \mathbb{H}^i(P^{\bullet}_{\mathcal{M},s}) = \chi(\mathcal{M},\nu_{\mathcal{M}}).$ 

Now by Behrend 2005, the Donaldson–Thomas invariant of  $\mathcal{M}$  is  $DT(\mathcal{M}) = \chi(\mathcal{M}, \nu_{\mathcal{M}})$ . So,  $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$  is a graded vector space with dimension  $DT(\mathcal{M})$ , that is, a *categorification* of  $DT(\mathcal{M})$ .

## Categorifying Lagrangian intersections

#### Corollary

Let  $(S, \omega)$  be a classical smooth symplectic  $\mathbb{K}$ -scheme of dimension 2n, and  $L, M \subseteq S$  be smooth algebraic Lagrangians, with square roots  $K_L^{1/2}, K_M^{1/2}$  of their canonical bundles. Then we have a natural perverse sheaf  $P_{L,M}^{\bullet}$  on  $X = L \cap M$ .

We also prove an analogue for complex Lagrangians in holomorphic symplectic manifolds, using complex analytic d-critical loci. This is related to Kashiwara and Schapira 2008, and Behrend and Fantechi 2009. We think of the hypercohomology  $\mathbb{H}^*(P_{L,M}^{\bullet})$  as being morally related to the (undefined) Lagrangian Floer cohomology  $HF^*(L, M)$  by  $\mathbb{H}^i(P_{L,M}^{\bullet}) \approx HF^{i+n}(L, M)$ . We are working on defining 'Fukaya categories' for algebraic/complex symplectic manifolds using these ideas.

 $17 \, / \, 25$ 

Dominic Joyce, Oxford University Categorification of PTVV using perverse sheaves

Shifted symplectic geometry A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

#### 4. Categorification using perverse sheaves: morphisms

We have seen that oriented -1-shifted symplectic derived K-schemes/stacks  $(\mathbf{X}, \omega)$  carry perverse sheaves  $P_{\mathbf{X}, \omega}^{\bullet}$ . We also expect that proper, oriented Lagrangians  $\mathbf{i} : \mathbf{L} \to \mathbf{X}$  should have associated hypercohomology elements  $\mu_{\mathbf{L}} \in \mathbb{H}^*(P_{\mathbf{X}, \omega}^{\bullet})$  with interesting properties, which can be interpreted as the morphisms in a categorification of -1-shifted symplectic geometry.

#### Definition

Let  $(\mathbf{X}, \omega)$  be a -1-shifted symplectic derived scheme, and  $\mathbf{i} : \mathbf{L} \to \mathbf{X}$  a Lagrangian. Choose an orientation  $\det(\mathbb{L}_{\mathbf{X}})^{1/2}$  for  $(\mathbf{X}, \omega)$ . The Lagrangian structure induces a natural isomorphism  $\alpha : \mathcal{O}_L \xrightarrow{\cong} i^*(\det(\mathbb{L}_{\mathbf{X}}))$ . An *orientation* for  $\mathbf{L}$  is an isomorphism  $\beta : \mathcal{O}_L \xrightarrow{\cong} i^*(\det(\mathbb{L}_{\mathbf{X}})^{1/2})$  with  $\beta^2 = \alpha$ .

Let  $(\mathbf{X}, \omega)$  be a *k*-shifted symplectic derived  $\mathbb{K}$ -scheme for k < 0, and  $\mathbf{i} : \mathbf{L} \to \mathbf{X}$  a Lagrangian. Then Theorem 1 shows that  $\mathbf{X}, \omega$  can be put in an explicit local 'Darboux form' (Spec  $A^{\bullet}, \omega_A$ ). Joyce and Safronov prove a 'Lagrangian Neighbourhood Theorem' saying that  $\mathbf{L}, \mathbf{i}$  and the homotopy  $h : \mathbf{i}^*(\omega) \sim 0$  can also be put in an explicit local form relative to  $A^{\bullet}, \omega_A$ . When k = -1 this yields:

Theorem 4 (Joyce and Safronov arXiv:1506.04024)

Let  $(\mathbf{X}, \omega)$  be a -1-shifted symplectic derived  $\mathbb{K}$ -scheme, and  $\mathbf{i} : \mathbf{L} \to \mathbf{X}$  a Lagrangian, and  $y \in \mathbf{L}$  with  $\mathbf{i}(y) = x \in \mathbf{X}$ . Theorem 1 implies that  $(\mathbf{X}, \omega)$  is equivalent near x to  $\mathbf{Crit}(H : U \to \mathbb{A}^1)$ , for U a smooth, affine  $\mathbb{K}$ -scheme. Then  $\mathbf{L}, \mathbf{i}, h$  near y have an explicit local model depending on a smooth, affine  $\mathbb{K}$ -scheme V, a trivial vector bundle  $E \to V$ , a nondegenerate quadratic form Q on E, a section  $s \in H^0(E)$ , and a smooth morphism  $\phi : V \to U$  with  $Q(s, s) = \phi^*(H)$ , where  $t_0(\mathbf{L}) \cong s^{-1}(0) \subseteq V$  Zariski locally.

 $19 \, / \, 25$ 

Dominic Joyce, Oxford University Categori

Categorification of PTVV using perverse sheaves

Shifted symplectic geometry A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

#### Conjecture A

Let  $(\mathbf{X}, \omega)$  be an oriented -1-shifted symplectic derived  $\mathbb{K}$ -scheme or  $\mathbb{K}$ -stack, and  $\mathbf{i} : \mathbf{L} \to \mathbf{X}$  an oriented Lagrangian. Then there is a natural morphism in  $D_c^b(\mathbf{L})$ 

 $\mu_{\mathsf{L}}: \mathbb{Q}_{\mathsf{L}}[\operatorname{vdim} \mathsf{L}] \longrightarrow i^{!}(P^{\bullet}_{\mathsf{X},\omega}),$ 

with given local models in the 'Darboux form' presentations for  $\mathbf{X}, \omega, \mathbf{L}$  in Theorem 4.

Lino Amorim and I have an outline proof of Conjecture A in the scheme case over  $\mathbb{K} = \mathbb{C}$ , and also of a complex analytic version. In fact Conjecture A is only the first and simplest in a series of conjectures, which really should be written using  $\infty$ -categories, concerning higher coherences of the morphisms  $\mu_{L}$  under products, Verdier duality, composition of Lagrangian correspondences, etc. Our methods also allow us to prove these further conjectures. See Amorim and Ben-Bassat arXiv:1601.01536 for more on this.

## Consequences of Conjecture A: perverse COHAs for CY3's

Let Y be a Calabi–Yau 3-fold, and  $\mathcal{M}$  the moduli stack of coherent sheaves on Y, so  $\mathcal{M}$  is -1-shifted symplectic. Let  $\mathcal{E}$ **xact** be the derived stack of short exact sequences  $0 \rightarrow F_1 \rightarrow F_2 \rightarrow F_3 \rightarrow 0$  in  $\operatorname{coh}(Y)$ , with projections  $\pi_1, \pi_2, \pi_3 : \mathcal{E}$ **xact**  $\rightarrow \mathcal{M}$ . Ben-Bassat (work in progress) shows  $\pi_1 \times \pi_2 \times \pi_3 : \mathcal{E}$ **xact**  $\rightarrow (\mathcal{M}, \omega) \times (\mathcal{M}, -\omega) \times (\mathcal{M}, \omega)$  is Lagrangian. Suppose we have 'orientation data' for Y, i.e. an orientation for  $(\mathcal{M}, \omega)$ , with a compatibility condition on exact sequences, which is equivalent to an orientation on  $\mathcal{E}$ **xact**.

Then as in Theorem 3 we have a perverse sheaf  $P^{\bullet}_{\mathcal{M},s}$ , with hypercohomology  $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ . Applying Conjecture A to  $\mathcal{E}$ xact and using Verdier duality should (?) give an associative multiplication on  $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ , making it into a *Cohomological Hall Algebra*, as in Kontsevich–Soibelman arXiv:1006.2706, COHAs for CY3 quivers.

Dominic Joyce, Oxford University Categorification of PTVV using perverse sheaves

Shifted symplectic geometry A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

Consequences of Conjecture A: 'Fukaya categories' for algebraic / complex symplectic manifolds

Let  $(S, \omega)$  be a algebraic/complex symplectic manifold, with  $\dim_{\mathbb{C}} S = 2n$ , and  $L, M \subset S$  be algebraic/complex Lagrangians (not supposed compact or closed), with square roots of canonical bundles  $\mathcal{K}_{L}^{1/2}, \mathcal{K}_{M}^{1/2}$ .

Then the intersection  $L \cap M$  is oriented -1-shifted symplectic / an oriented complex analytic d-critical locus, and carries a perverse sheaf  $P_{L,M}^{\bullet}$  by Theorem 3.

We should think of the shifted hypercohomology  $\mathbb{H}^{*-n}(P^{\bullet}_{L,M})$  as a substitute for the Lagrangian Floer cohomology  $HF^*(L, M)$  in symplectic geometry. But  $HF^*(L, M)$  is the morphisms in the derived Fukaya category  $D^b \mathscr{F}(S, \omega)$  in symplectic geometry.

If L, M, N are Lagrangians in  $(S, \omega)$ , then  $M \cap L, N \cap M, L \cap N$  are -1-shifted symplectic / d-critical loci, and  $L \cap M \cap N$  is Lagrangian in the product  $(M \cap L) \times (N \cap M) \times (L \cap N)$  (Ben-Bassat arXiv:1309.0596).

Applying Conjecture A to  $L \cap M \cap N$  and rearranging using Verdier duality  $P^{\bullet}_{M,L} \simeq \mathbb{D}(P^{\bullet}_{M,L})$  gives

$$\mu_{L,M,N}: P^{\bullet}_{L,M} \overset{L}{\otimes} P^{\bullet}_{M,N}[n] \longrightarrow P^{\bullet}_{L,N}.$$

Taking hypercohomology gives the multiplication  $HF^*(L, M) \times HF^*(M, N) \rightarrow HF^*(L, N)$ , which is composition of morphisms in the derived Fukaya category  $D^b \mathscr{F}(S, \omega)$ . Higher coherences for such morphisms  $\mu_{L,M,N}$  under composition should give the  $A_{\infty}$ -structure needed to define a derived 'Fukaya category'  $D^b \mathscr{F}(S, \omega)$ , which we hope to do.

23 / 25

Dominic Joyce, Oxford University Categorification of PTVV using perverse sheaves

Shifted symplectic geometry A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

## Comments on a proof of Conjecture A

In Theorem 3 we constructed a perverse sheaf  $P_{\mathbf{X},\omega}^{\bullet}$  on an oriented -1-shifted symplectic  $(\mathbf{X}, \omega)$ . We did this by constructing a Zariski open cover  $\{R_i : i \in I\}$  of  $X = t_0(\mathbf{X})$ , and perverse sheaves  $P_i^{\bullet}$  on  $R_i$ , and isomorphisms  $\alpha_{ij} : P_i^{\bullet}|_{R_i \cap R_j} \to P_j^{\bullet}|_{R_i \cap R_j}$  on all double overlaps  $R_i \cap R_j$ , with  $\alpha_{ik} = \alpha_{jk} \circ \alpha_{ij}$  on triple overlaps  $R_i \cap R_j$ . Then a unique  $P_{\mathbf{X},\omega}^{\bullet}$  exists with  $P_{\mathbf{X},\omega}^{\bullet}|_{R_i} \cong P_i^{\bullet}$ , as perverse sheaves glue like sheaves.

In Conjecture A, we have explicit local models  $\mu_j$  for the morphism  $\mu_{\mathbf{L}}$  on an open cover  $\{S_j : j \in J\}$  of  $L = t_0(\mathbf{L})$ , constructed using our local models for  $\mathbf{L}, \mathbf{X}, \mathbf{i}$  in Theorem 4. However, this is not enough to define  $\mu_{\mathbf{L}}$ , as such morphisms do not glue like sheaves. It is an  $\infty$ -category gluing problem: we need to construct higher coherences between  $\mu_{j_1}, \ldots, \mu_{j_n}$  on *n*-fold overlaps  $S_{j_1} \cap \cdots \cap S_{j_n}$  for all  $n = 2, \ldots$ . This is difficult, as perverse sheaves of vanishing cycles are not easy to handle on the cochain level.

Actually, to prove Conjecture A we need first to re-prove Theorem 3 in an  $\infty$ -categorical way, without using the sheaf property of perverse sheaves, but constructing  $P^{\bullet}_{\mathbf{X},\omega}$  directly as a complex on X. We can define *d*-correspondences  $i : L \to (X, s)$  in d-critical loci, which are classical truncations of Lagrangians  $\mathbf{i} : \mathbf{L} \to (\mathbf{X}, \omega)$  in -1-shifted symplectic schemes. Our proposed proof of Conjecture A factors through these classical truncations, and also has a complex analytic version.

One of our key ideas is to give a new expression for the perverse sheaf of vanishing cycles  $\mathcal{PV}_{U,f}^{\bullet}$  for a holomorphic function  $f: U \to \mathbb{C}$  of a complex manifold, as an explicit complex on  $\operatorname{Crit}(f)$ , using the theory of 'M-cohomology' in Joyce arXiv:1509.05672. This new expression is easier to glue on overlaps between critical charts  $(U_i, f_i), (U_j, f_j)$ , and to control the higher coherences on multiple overlaps. This complex is built using differential geometry of manifolds, which is why we need  $\mathbb{K} = \mathbb{C}$ .

Dominic Joyce, Oxford University Categorification of PTVV using perverse sheaves