"Fukaya categories" of complex Lagrangians in complex symplectic manifolds

Dominic Joyce, Oxford University, July 2016

Based on: arXiv:1304.4508, arXiv:1305.6302, arXiv:1211.3259, arXiv:1403.2403, arXiv:1404.1329, arXiv:1506.04024, arXiv:1509.05672, arXiv:1601.01536 and work in progress.

Joint with Lino Amorim, Oren Ben-Bassat, Chris Brav, Vittoria Bussi, Delphine Dupont, Pavel Safronov, and Balázs Szendrői. Funded by the EPSRC.

These slides available at http://people.maths.ox.ac.uk/~joyce/talks.html

1/20

Dominic Joyce, Oxford University

"Fukaya categories" of complex symplectic manifolds

Shifted symplectic geometry
The -1-shifted symplectic case and d-critical loci
Categorification using perverse sheaves: objects
Categorification using perverse sheaves: morphisms

Plan of talk:

- Shifted symplectic geometry
- 2 The -1-shifted symplectic case and d-critical loci
- 3 Categorification using perverse sheaves: objects
- 4 Categorification using perverse sheaves: morphisms

0. Introduction

Let (S, ω) be a real C^{∞} symplectic manifold. Then under some assumptions one can define a derived Fukaya category $D^b \mathscr{F}(S,\omega)$, with objects Lagrangians L, M in S, and morphisms $\operatorname{Hom}^*(L, M) = HF^*(L, M)$ the Lagrangian Floer cohomology groups. Here $HF^*(L, M)$ is not local on L, M or $L \cap M$, as it is defined by counting 'large' *J*-holomorphic curves $u: \Sigma \to S$. Now suppose (S, ω) is a *complex* (holomorphic) symplectic manifold, where S has complex structure I, and we consider complex Lagrangians L, M in S. Then $\operatorname{Re}\omega$ is a real C^{∞} symplectic structure on the underlying real manifold $S_{\mathbb{R}}$ of S, so we can define $HF^*(L, M)$ for $(S_{\mathbb{R}}, \operatorname{Re} \omega)$. Note that the almost complex structure J used to do this is not the complex structure Ion S, but is orthogonal to it, in a hyperkähler triple I, J, K.

3/20

Dominic Joyce, Oxford University

"Fukaya categories" of complex symplectic manifolds

Shifted symplectic geometry The -1-shifted symplectic case and d-critical loci Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

A simple argument using ${
m Im}\,\omega$ shows that the only J-holomorphic curves in the definition of $HF^*(L, M)$ are constant. This suggests that in the complex case, $HF^*(L, M)$ might be local on $L \cap M$. Also note that in the real C^{∞} case we can always perturb Lagrangians L, M to intersect transversely. But complex Lagrangians are more rigid, we must allow L, M to be non-transverse. I will outline a programme to define a 'Fukaya category' of complex Lagrangians L, M in a complex symplectic manifold (S,ω) , in which the morphisms $\mathrm{Hom}^*(L,M)=\mathrm{"}HF^*(L,M)\mathrm{"}$ are defined by constructing a perverse sheaf $P_{L,M}^{ullet}$ on $L\cap M$ and taking its hypercohomology $\mathbb{H}^*(P_{L,M}^{\bullet})$. We do not need S,L,M to be compact or closed. We can also include singular 'derived' Lagrangians in our picture.

This programme also works for algebraic Lagrangians in a symplectic scheme over a field \mathbb{K} of characteristic zero. It originates from the 'shifted symplectic geometry' of Pantev-Toën-Vaquié-Vezzosi in Derived Algebraic Geometry.

1. Shifted symplectic geometry

Let \mathbb{K} be an algebraically closed field of characteristic zero, e.g. $\mathbb{K}=\mathbb{C}.$ Work in Toën and Vezzosi's theory of Derived Algebraic Geometry. This gives ∞ -categories of *derived* \mathbb{K} -schemes $\operatorname{dSch}_{\mathbb{K}}$ and derived K-stacks dSt_K. Pantev, Toën, Vaquié and Vezzosi (arXiv:1111.3209) defined a derived version of symplectic geometry. Let **X** be a derived \mathbb{K} -scheme or \mathbb{K} -stack, supposed locally finitely presented. The cotangent complex $\mathbb{L}_{\mathbf{X}}$ has exterior powers $\Lambda^{p}\mathbb{L}_{\mathbf{X}}$. The de Rham differential is $d_{dR}: \Lambda^p \mathbb{L}_{\mathbf{X}} \to \Lambda^{p+1} \mathbb{L}_{\mathbf{X}}$. Each $\Lambda^p \mathbb{L}_{\mathbf{X}}$ is a complex, so has an internal differential $d: (\Lambda^p \mathbb{L}_{\mathbf{X}})^k \to (\Lambda^p \mathbb{L}_{\mathbf{X}})^{k+1}$. We have $d^2 = d_{dR}^2 = d \circ d_{dR} + d_{dR} \circ d = 0$. A p-form of degree k on **X** for $k \in \mathbb{Z}$ is an element $[\omega^0]$ of $H^k(\Lambda^p \mathbb{L}_{\mathbf{X}}, \mathrm{d})$. A closed p-form of degree k on **X** is an element $[(\dot{\omega}^0,\omega^1,\ldots)]\in H^k\big(\bigoplus_{i=0}^\infty \Lambda^{p+i}\mathbb{L}_{\mathbf{X}}[i],\mathrm{d}+\mathrm{d}_{dR}\big).$

There is a projection $\pi: [(\omega^0, \omega^1, \ldots)] \mapsto [\omega^0]$ from closed *p*-forms $[(\omega^0, \omega^1, \ldots)]$ of degree k to p-forms $[\omega^0]$ of degree k.

5 / 20

Dominic Joyce, Oxford University "Fukaya categories" of complex symplectic manifolds

Shifted symplectic geometry

The -1-shifted symplectic case and d-critical loci Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

Shifted symplectic structures and Lagrangians

Let $[\omega^0]$ be a 2-form of degree k on **X**. Then $[\omega^0]$ induces a morphism $\omega^0: \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$, where $\mathbb{T}_{\mathbf{X}} = \mathbb{L}_{\mathbf{X}}^{\vee}$ is the tangent complex of **X**. We call $[\omega^0]$ nondegenerate if $\omega^0: \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$ is a quasi-isomorphism.

A closed 2-form $\omega = [(\omega^0, \omega^1, \ldots)]$ of degree k on \mathbf{X} is called a k-shifted symplectic structure if $[\omega^0] = \pi(\omega)$ is nondegenerate.

If **X** is a derived scheme we must have $k \leq 0$, and if k = 0 then (\mathbf{X},ω) is a smooth classical \mathbb{K} -scheme.

Let (\mathbf{X}, ω) be a k-shifted symplectic derived scheme or stack.

Then PTVV define a notion of Lagrangian L in (\mathbf{X}, ω) , which is a morphism $\mathbf{i}: \mathbf{L} \to \mathbf{X}$ of derived schemes or stacks together with a homotopy $\mathbf{i}^*(\omega) \sim 0$ satisfying a nondegeneracy condition, implying that $\mathbb{T}_{\mathsf{L}} \simeq \mathbb{L}_{\mathsf{L}/\mathsf{X}}[k-1]$.

If L, M are Lagrangians in (X, ω) , then the fibre product $L \times_X M$ has a natural (k-1)-shifted symplectic structure.

Derived Lagrangians in classical symplectic schemes

If (S, ω) is a classical smooth symplectic scheme, then it is a 0-shifted symplectic derived scheme in the sense of PTVV, and if $L, M \subset S$ are classical smooth Lagrangian subschemes, then they are Lagrangians in the sense of PTVV.

However, if $\mathbf{i}: \mathbf{L} \to S$ is a derived Lagrangian in the PTVV sense, it need not be a classical smooth Lagrangian. PTVV Lagrangians are more general. This should be of interest even to classical symplectic geometers, we may get an enlarged Fukaya category. As a typical local model for PTVV derived Lagrangians, suppose $(S_1, \omega_1), (S_2, \omega_2)$ are classical symplectic schemes, and $L_1 \rightarrow (S_1, \omega_1), L_{12} \rightarrow (S_1 \times S_2, -\omega_1 \boxplus \omega_2)$ are classical Lagrangians. If $L_1 o S_1$, $L_{12} o S_1$ are transverse, the fibre product $L_1 \times_{S_1} L_{12}$ is smooth and a classical Lagrangian in (S_2, ω_2) . If they are not transverse, the derived fibre product $L_1 imes_{\mathcal{S}_1} L_{12}$ is still a derived scheme, and a PTVV derived Lagrangian in (S_2, ω_2) .

7 / 20

Dominic Joyce, Oxford University "Fukaya categories" of complex symplectic manifolds

Shifted symplectic geometry The -1-shifted symplectic case and d-critical loci Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

2. The -1-shifted symplectic case and d-critical loci

Theorem 1 (Brav, Bussi and Joyce arXiv:1305.6302)

Let (\mathbf{X}, ω) be a k-shifted symplectic derived \mathbb{K} -scheme for k < 0. If $k \not\equiv 2 \mod 4$, then each $x \in \mathbf{X}$ admits a Zariski open neighbourhood $\mathbf{Y} \subseteq \mathbf{X}$ with $\mathbf{Y} \simeq \operatorname{Spec} A^{\bullet}$ for $A^{\bullet} = (A^*, d)$ an explicit cdga generated by graded variables x_i^{-i}, y_i^{k+i} for $0 \le i \le -k/2$, and $\omega|_{\mathbf{Y}} = [(\omega^0, 0, 0, \ldots)]$ where x_i^I, y_i^I have degree I, and $\omega^{0} = \sum_{i=0}^{[-k/2]} \sum_{j=1}^{m_{i}} d_{dR} y_{i}^{k+i} d_{dR} x_{i}^{-i}.$

Also the differential d in A is given by Poisson bracket with a Hamiltonian H in A of degree k + 1.

If $k \equiv 2 \mod 4$, we have two statements, one étale local with ω^0 standard, and one Zariski local with the components of ω^0 in the degree k/2 variables depending on some invertible functions.

Ben-Bassat-Brav-Bussi-Joyce extend this to derived Artin K-stacks.

The case of -1-shifted symplectic derived schemes

When k = -1 the Hamiltonian H in Theorem 1 has degree 0. Then Theorem 1 reduces to:

Corollary

Suppose (\mathbf{X}, ω) is a -1-shifted symplectic derived \mathbb{K} -scheme. Then (\mathbf{X}, ω) is Zariski locally equivalent to a derived critical locus $\mathbf{Crit}(H:U\to\mathbb{A}^1)$, for U a smooth classical \mathbb{K} -scheme and $H: U \to \mathbb{A}^1$ a regular function. Hence, the underlying classical \mathbb{K} -scheme $X = t_0(\mathbf{X})$ is Zariski locally isomorphic to a classical *critical locus* Crit($H: U \to \mathbb{A}^1$).

Note that if $\mathbf{i}: \mathbf{L} \to S$, $\mathbf{j}: \mathbf{M} \to S$ are classical/derived Lagrangians in a classical (0-shifted) symplectic scheme (S, ω) , then $\mathbf{X} = \mathbf{L} \times_S \mathbf{M}$ is -1-shifted symplectic. Thus, the corollary tells us that (derived) Lagrangian intersections $L \cap M$ in classical symplectic schemes are locally (derived) critical loci.

9 / 20

Dominic Joyce, Oxford University "Fukaya categories" of complex symplectic manifolds

Shifted symplectic geometry The -1-shifted symplectic case and d-critical loci Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

Theorem (Jovce arXiv:1304.4508)

Let X be a classical \mathbb{K} -scheme. Then there exists a canonical sheaf S_X of \mathbb{K} -vector spaces on X, such that if $R \subseteq X$ is Zariski open and $i: R \hookrightarrow U$ is a closed embedding of R into a smooth \mathbb{K} -scheme U, and $I_{R,U} \subseteq \mathcal{O}_U$ is the ideal vanishing on i(R), then $\mathcal{S}_X|_R \cong \operatorname{Ker}\left(\frac{\mathcal{O}_U}{I_{R,U}^2} \xrightarrow{\operatorname{d}} \frac{T^*U}{I_{R,U} \cdot T^*U}\right)$.

Also \mathcal{S}_X splits naturally as $\mathcal{S}_X = \mathcal{S}_X^0 \oplus \mathbb{K}_X$, where \mathbb{K}_X is the sheaf of locally constant functions $X \to \mathbb{K}$

If $X = \text{Crit}(f : U \to \mathbb{A}^1)$ then taking R = X, i = inclusion, we see that $f+I_{X,U}^2$ is a section of \mathcal{S}_X . Also $f|_{X^{\mathrm{red}}}:X^{\mathrm{red}} o\mathbb{K}$ is locally constant, and if $f|_{X^{\mathrm{red}}}=0$ then $f+I_{X,U}^2$ is a section of \mathcal{S}_X^0 . Note that $f+I_{X,U}=f|_X$ in $\mathcal{O}_X=\mathcal{O}_U/I_{X,U}$. The theorem means that $f + I_{X,U}^2$ makes sense intrinsically on X, without reference to the embedding of X into U. This allows us to compare ways of writing a scheme X as a critical locus in different ways.

D-critical loci

Definition (Joyce arXiv:1304.4508)

An (algebraic) d-critical locus (X,s) is a classical \mathbb{K} -scheme X and a global section $s \in H^0(\mathcal{S}_X^0)$ such that X may be covered by Zariski open $R \subseteq X$ with an isomorphism $i: R \to \operatorname{Crit}(f: U \to \mathbb{A}^1)$ identifying $s|_R$ with $f + I_{R,U}^2$, for f a regular function on a smooth \mathbb{K} -scheme U.

That is, a d-critical locus (X,s) is a \mathbb{K} -scheme X which may Zariski locally be written as a critical locus $\operatorname{Crit}(f:U\to\mathbb{A}^1)$, and the section s remembers f up to second order in the ideal $I_{X,U}$. We also define *complex analytic d-critical loci*, which are complex analytic spaces X with a section of a natural sheaf \mathcal{S}_X^0 that are locally modelled on the critical locus of a holomorphic function $f:U\to\mathbb{C}$ for U a complex manifold.

11/20

Dominic Joyce, Oxford University

"Fukaya categories" of complex symplectic manifolds

Shifted symplectic geometry

The —1-shifted symplectic case and d-critical loci

Categorification using perverse sheaves: objects

Categorification using perverse sheaves: morphisms

Theorem 2 (Brav, Bussi and Joyce arXiv:1305.6302)

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived \mathbb{K} -scheme. Then the classical \mathbb{K} -scheme $X = t_0(\mathbf{X})$ extends naturally to an algebraic d-critical locus (X,s). The 'canonical bundle' of (X,s) satisfies $K_{X,s} \cong \det \mathbb{L}_{\mathbf{X}}|_{X^{\mathrm{red}}}$.

This means that d-critical loci are *classical truncations* of —1-shifted symplectic derived schemes. We are working on a similar definition of classical truncation of derived Lagrangians in classical (0-symplectic) symplectic schemes.

Theorem 3 (Bussi arXiv:1404.1329)

Let (S,ω) be a complex symplectic manifold and $i:L\to S,$ $j:M\to S$ be smooth complex Lagrangians. Then the fibre product $X=L\times_{i,S,j}M$ as a complex analytic space extends naturally to a complex analytic d-critical locus (X,s).

3. Categorification using perverse sheaves: objects

Theorem 4 (Brav, Bussi, Dupont, Joyce, Szendrői arXiv:1211.3259)

Let (\mathbf{X},ω) be a -1-shifted symplectic derived \mathbb{K} -scheme. Then the 'canonical bundle' $\det(\mathbb{L}_{\mathbf{X}})$ is a line bundle over the classical scheme $X=t_0(\mathbf{X})$. Suppose we are given an **orientation** of (\mathbf{X},ω) , i.e. a square root line bundle $\det(\mathbb{L}_{\mathbf{X}})^{1/2}$. Then we can construct a canonical perverse sheaf $P_{\mathbf{X},\omega}^{\bullet}$ on X, such that if (\mathbf{X},ω) is Zariski locally modelled on $\mathbf{Crit}(f:U\to\mathbb{A}^1)$, then $P_{\mathbf{X},\omega}^{\bullet}$ is locally modelled on the perverse sheaf of vanishing cycles $\mathcal{PV}_{U,f}^{\bullet}$ of (U,f). Similarly, we can construct a natural \mathscr{D} -module $D_{\mathbf{X},\omega}^{\bullet}$ on X, and when $\mathbb{K}=\mathbb{C}$ a natural mixed Hodge module $M_{\mathbf{X},\omega}^{\bullet}$ on X.

In fact we actually construct the perverse sheaf on the oriented d-critical locus (X, s) associated to (X, ω) in Theorem 2. We also define perverse sheaves on oriented complex analytic d-critical loci.

13 / 20

Dominic Joyce, Oxford University

"Fukaya categories" of complex symplectic manifolds

Shifted symplectic geometry
The -1-shifted symplectic case and d-critical loci
Categorification using perverse sheaves: objects
Categorification using perverse sheaves: morphisms

Sketch of the proof of Theorem 4

Roughly, we prove Theorem 4 by taking a Zariski open cover $\{\mathbf{R}_i: i \in I\}$ of \mathbf{X} with $\mathbf{R}_i \cong \mathbf{Crit}(f_i: U_i \to \mathbb{A}^1)$, and showing that $\mathcal{PV}_{U_i,f_i}^{\bullet}$ and $\mathcal{PV}_{U_j,f_j}^{\bullet}$ are canonically isomorphic on $R_i \cap R_j$, so we can glue the $\mathcal{PV}_{U_i,f_i}^{\bullet}$ to get a global perverse sheaf $P_{\mathbf{X},\omega}^{\bullet}$ on X. In fact things are more complicated: the (local) isomorphisms $\mathcal{PV}_{U_i,f_i}^{\bullet} \cong \mathcal{PV}_{U_j,f_j}^{\bullet}$ are only canonical up to sign. To make them canonical, we use the square root $\det(\mathbb{L}_{\mathbf{X}})^{1/2}$ to define natural principal \mathbb{Z}_2 -bundles Q_i on R_i , such that $\mathcal{PV}_{U_i,f_i}^{\bullet} \otimes_{\mathbb{Z}_2} Q_i \cong \mathcal{PV}_{U_j,f_j}^{\bullet} \otimes_{\mathbb{Z}_2} Q_j$ is canonical, and then we glue the $\mathcal{PV}_{U_i,f_i}^{\bullet} \otimes_{\mathbb{Z}_2} Q_i$ to get $P_{\mathbf{X},\omega}^{\bullet}$.

Categorifying Lagrangian intersections

Corollary

Let (S, ω) be a classical smooth symplectic \mathbb{K} -scheme of dimension 2n, and $L,M\subseteq S$ be smooth algebraic Lagrangians, with square roots $K_L^{1/2}, K_M^{1/2}$ of their canonical bundles. Then we have a natural perverse sheaf $P_{L,M}^{\bullet}$ on $X = L \cap M$. The analogue holds for complex Lagrangians in complex symplectic manifolds.

This looks similar to results on quantization of symplectic manifolds, e.g. Kashiwara and Schapira's DQ-modules. K-S build a category of modules \mathcal{V} on S supported on Lagrangians. If $\mathcal{V}_L, \mathcal{V}_M$ are supported on L, M, then $\mathcal{H}om(\mathcal{V}_L, \mathcal{V}_M)$ is a perverse sheaf over $\mathbb{C}[[\hbar]]$ supported on $L \cap M$. But our $P_{L,M}^{\bullet}$ can be defined over any *commutative ring*, not just over $\mathbb{C}[[\hbar]]$.

We think of the hypercohomology $\mathbb{H}^*(P_{L,M}^{\bullet})$ as related to the (undefined) Lagrangian Floer cohomology by $\mathbb{H}^i(P_{L,M}^{\bullet}) \approx HF^{i+n}(L,M)$.

15/20

Dominic Joyce, Oxford University "Fukaya categories" of complex symplectic manifolds

Shifted symplectic geometry The -1-shifted symplectic case and d-critical loci Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

4. Categorification using perverse sheaves: morphisms

We have seen that oriented -1-shifted symplectic derived \mathbb{K} -schemes/stacks (\mathbf{X}, ω) carry perverse sheaves $P_{\mathbf{X}, \omega}^{\bullet}$. We also expect that proper, oriented PTVV Lagrangians $\mathbf{i}: \hat{\mathbf{L}} \to \mathbf{X}$ should have associated hypercohomology elements $\mu_{\mathbf{L}} \in \mathbb{H}^*(P^{ullet}_{\mathbf{X}.\omega})$ with interesting properties, which can be interpreted as the morphisms in a categorification of -1-shifted symplectic geometry.

Definition

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived scheme, and $\mathbf{i}: \mathbf{L} \to \mathbf{X}$ a Lagrangian. Choose an orientation $\det(\mathbb{L}_{\mathbf{X}})^{1/2}$ for (\mathbf{X}, ω) . The Lagrangian structure induces a natural isomorphism $\alpha: \mathcal{O}_L \stackrel{\cong}{\longrightarrow} i^*(\det(\mathbb{L}_{\mathbf{X}}))$. An *orientation* for **L** is an isomorphism $\beta: \mathcal{O}_L \xrightarrow{\cong} i^*(\det(\mathbb{L}_{\mathbf{X}})^{1/2}) \text{ with } \beta^2 = \alpha.$

Let (\mathbf{X},ω) be a k-shifted symplectic derived \mathbb{K} -scheme for k<0, and $\mathbf{i}:\mathbf{L}\to\mathbf{X}$ a Lagrangian. Then Theorem 1 shows that \mathbf{X},ω can be put in an explicit local 'Darboux form' $(\operatorname{Spec} A^{\bullet},\omega_A)$. Joyce and Safronov prove a 'Lagrangian Neighbourhood Theorem' saying that \mathbf{L},\mathbf{i} and the homotopy $h:\mathbf{i}^*(\omega)\sim 0$ can also be put in an explicit local form relative to A^{\bullet},ω_A . When k=-1 this yields:

Theorem 5 (Joyce and Safronov arXiv:1506.04024)

Let (\mathbf{X},ω) be a -1-shifted symplectic derived \mathbb{K} -scheme, and $\mathbf{i}: \mathbf{L} \to \mathbf{X}$ a Lagrangian, and $y \in \mathbf{L}$ with $\mathbf{i}(y) = x \in \mathbf{X}$. Theorem 1 implies that (\mathbf{X},ω) is equivalent near x to $\mathbf{Crit}(H:U\to\mathbb{A}^1)$, for U a smooth, affine \mathbb{K} -scheme. Then \mathbf{L},\mathbf{i} , h near y have an explicit local model depending on a smooth, affine \mathbb{K} -scheme V, a trivial vector bundle $E \to V$, a nondegenerate quadratic form Q on E, a section $s \in H^0(E)$, and a smooth morphism $\phi: V \to U$ with $Q(s,s) = \phi^*(H)$, where $t_0(\mathbf{L}) \cong s^{-1}(0) \subseteq V$ Zariski locally.

17 / 20

Dominic Joyce, Oxford University

"Fukaya categories" of complex symplectic manifolds

Shifted symplectic geometry
The -1-shifted symplectic case and d-critical loci
Categorification using perverse sheaves: objects
Categorification using perverse sheaves: morphisms

Conjecture A

Let (\mathbf{X}, ω) be an oriented -1-shifted symplectic derived \mathbb{K} -scheme or \mathbb{K} -stack, and $\mathbf{i} : \mathbf{L} \to \mathbf{X}$ an oriented Lagrangian. Then there is a natural morphism in $D^b_c(\mathbf{L})$

$$\mu_{\mathbf{L}}: \mathbb{Q}_{\mathbf{L}}[\operatorname{vdim} \mathbf{L}] \longrightarrow i^{!}(P_{\mathbf{X},\omega}^{\bullet}),$$

with given local models in the 'Darboux form' presentations for $\mathbf{X}, \omega, \mathbf{L}$ in Theorem 5.

Lino Amorim and I have an outline proof of Conjecture A in the scheme case over $\mathbb{K}=\mathbb{C}$, and also of a complex analytic version. In fact Conjecture A is only the first and simplest in a series of conjectures, which really should be written using ∞ -categories, concerning higher coherences of the morphisms μ_L under products, Verdier duality, composition of Lagrangian correspondences, etc. Our methods also allow us to prove these further conjectures. See Amorim and Ben-Bassat arXiv:1601.01536 for more on this.

Consequences of Conjecture A: 'Fukaya categories' for algebraic / complex symplectic manifolds

Let (S,ω) be a algebraic/complex symplectic manifold, with $\dim_{\mathbb{C}} S=2n$, and $L,M\subset S$ be algebraic/complex Lagrangians (not supposed compact or closed), with square roots of canonical bundles $K_L^{1/2},K_M^{1/2}$.

Then the intersection $L \cap M$ is oriented -1-shifted symplectic / an oriented complex analytic d-critical locus, and carries a perverse sheaf $P_{L,M}^{\bullet}$ by Theorem 4.

We should think of the shifted hypercohomology $\mathbb{H}^{*-n}(P_{L,M}^{\bullet})$ as a substitute for the Lagrangian Floer cohomology $HF^*(L,M)$ in symplectic geometry. But $HF^*(L,M)$ is the morphisms in the derived Fukaya category $D^b\mathscr{F}(S,\omega)$ in symplectic geometry.

19 / 20

Dominic Joyce, Oxford University

"Fukaya categories" of complex symplectic manifolds

Shifted symplectic geometry
The —1-shifted symplectic case and d-critical loci
Categorification using perverse sheaves: objects
Categorification using perverse sheaves: morphisms

If L, M, N are Lagrangians in (S, ω) , then $M \cap L, N \cap M, L \cap N$ are -1-shifted symplectic / d-critical loci, and $L \cap M \cap N$ is Lagrangian in the product $(M \cap L) \times (N \cap M) \times (L \cap N)$ (Ben-Bassat arXiv:1309.0596).

Applying Conjecture A to $L \cap M \cap N$ and rearranging using Verdier duality $P_{M,L}^{\bullet} \simeq \mathbb{D}(P_{M,L}^{\bullet})$ gives

$$\mu_{L,M,N}: P_{L,M}^{\bullet} \otimes P_{M,N}^{\bullet}[n] \longrightarrow P_{L,N}^{\bullet}.$$

Taking hypercohomology gives the multiplication $HF^*(L,M) \times HF^*(M,N) \to HF^*(L,N)$, which is composition of morphisms in the derived Fukaya category $D^b\mathscr{F}(S,\omega)$. Higher coherences for such morphisms $\mu_{L,M,N}$ under composition should give the A_{∞} -structure needed to define a derived 'Fukaya category' $D^b\mathscr{F}(S,\omega)$, which we hope to do. [End of talk.]

Comments on a proof of Conjecture A

In Theorem 4 we constructed a perverse sheaf $P_{\mathbf{X},\omega}^{\bullet}$ on an oriented -1-shifted symplectic (\mathbf{X},ω) . We did this by constructing a Zariski open cover $\{R_i:i\in I\}$ of $X=t_0(\mathbf{X})$, and perverse sheaves P_i^{\bullet} on R_i , and isomorphisms $\alpha_{ij}:P_i^{\bullet}|_{R_i\cap R_j}\to P_j^{\bullet}|_{R_i\cap R_j}$ on all double overlaps $R_i\cap R_j$, with $\alpha_{ik}=\alpha_{jk}\circ\alpha_{ij}$ on triple overlaps $R_i\cap R_j\cap R_k$. Then a unique $P_{\mathbf{X},\omega}^{\bullet}$ exists with $P_{\mathbf{X},\omega}^{\bullet}|_{R_i}\cong P_i^{\bullet}$, as perverse sheaves glue like sheaves.

In Conjecture A, we have explicit local models μ_j for the morphism $\mu_{\mathbf{L}}$ on an open cover $\{S_j: j\in J\}$ of $L=t_0(\mathbf{L})$, constructed using our local models for $\mathbf{L},\mathbf{X},\mathbf{i}$ in Theorem 5. However, this is not enough to define $\mu_{\mathbf{L}}$, as such morphisms do not glue like sheaves. It is an ∞ -category gluing problem: we need to construct higher coherences between $\mu_{j_1},\ldots,\mu_{j_n}$ on n-fold overlaps $S_{j_1}\cap\cdots\cap S_{j_n}$ for all $n=2,\ldots$ This is difficult, as perverse sheaves of vanishing cycles are not easy to handle on the cochain level.

21/20

Dominic Joyce, Oxford University

"Fukaya categories" of complex symplectic manifolds

Shifted symplectic geometry
The -1-shifted symplectic case and d-critical loci
Categorification using perverse sheaves: objects
Categorification using perverse sheaves: morphisms

Actually, to prove Conjecture A we need first to re-prove Theorem 4 in an ∞ -categorical way, without using the sheaf property of perverse sheaves, but constructing $P_{\mathbf{X},\omega}^{\bullet}$ directly as a complex on X. We can define d-correspondences $i:L\to(X,s)$ in d-critical loci, which are classical truncations of Lagrangians $\mathbf{i}:\mathbf{L}\to(\mathbf{X},\omega)$ in -1-shifted symplectic schemes. Our proposed proof of Conjecture A factors through these classical truncations, and also has a complex analytic version.

One of our key ideas is to give a new expression for the perverse sheaf of vanishing cycles $\mathcal{PV}_{U,f}^{\bullet}$ for a holomorphic function $f:U\to\mathbb{C}$ of a complex manifold, as an explicit complex on $\mathrm{Crit}(f)$, using the theory of 'M-cohomology' in Joyce arXiv:1509.05672. This new expression is easier to glue on overlaps between critical charts $(U_i,f_i),(U_j,f_j)$, and to control the higher coherences on multiple overlaps. This complex is built using differential geometry of manifolds, which is why we need $\mathbb{K}=\mathbb{C}$.