Categorification of Donaldson–Thomas theory using perverse sheaves

Dominic Joyce, Oxford University

June 2013

Based on: arXiv:1304.4508, arXiv:1305.6302, arXiv:1211.3259, arXiv:1305.6428, and work in progress.
Joint work with Oren Ben-Bassat, Chris Brav, Vittoria Bussi, Dennis Borisov, Delphine Dupont, Sven Meinhardt, and Balázs Szendrői. Funded by the EPSRC.

Dominic Joyce, Oxford University Categorification of D–T theory

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci Categorification using perverse sheaves Motivic Milnor fibres

Plan of talk:

1 PTVV's shifted symplectic geometry

2 A Darboux theorem for shifted symplectic schemes

3 D-critical loci

4 Categorification using perverse sheaves

5 Motivic Milnor fibres

1. PTVV's shifted symplectic geometry

Let \mathbb{K} be an algebraically closed field of characteristic zero, e.g. $\mathbb{K} = \mathbb{C}$. Work in the context of Toën and Vezzosi's theory of *derived algebraic geometry*. This gives ∞ -categories of *derived* \mathbb{K} -schemes **dSch**_{\mathbb{K}} and *derived stacks* **dSt**_{\mathbb{K}}. For this talk we are interested in derived schemes, though we are working on extensions to derived Artin stacks. Think of a derived \mathbb{K} -scheme **X** as a geometric space which can be covered by Zariski open sets $\mathbf{Y} \subseteq \mathbf{X}$ with $\mathbf{Y} \simeq \operatorname{Spec} A$ for A = (A, d) a commutative differential graded algebra (cdga) over \mathbb{K} .

Dominic Joyce, Oxford University Categorification of D–T theory

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci Categorification using perverse sheaves Motivic Milnor fibres

Cotangent complexes of derived schemes and stacks

Pantev, Toën, Vaquié and Vezzosi (arXiv:1111.3209) defined a notion of *k*-shifted symplectic structure on a derived K-scheme or derived K-stack **X**, for $k \in \mathbb{Z}$. This is complicated, but here is the basic idea. The cotangent complex \mathbb{L}_X of **X** is an element of a derived category $L_{qcoh}(\mathbf{X})$ of quasicoherent sheaves on **X**. It has exterior powers $\Lambda^p \mathbb{L}_X$ for $p = 0, 1, \ldots$ The *de Rham differential* $d_{dR} : \Lambda^p \mathbb{L}_X \to \Lambda^{p+1} \mathbb{L}_X$ is a morphism of complexes, though not of \mathcal{O}_X -modules. Each $\Lambda^p \mathbb{L}_X$ is a complex, so has an internal differential $d : (\Lambda^p \mathbb{L}_X)^k \to (\Lambda^p \mathbb{L}_X)^{k+1}$. We have $d^2 = d_{dR}^2 = d \circ d_{dR} + d_{dR} \circ d = 0$. *p*-forms and closed *p*-forms

A *p*-form of degree k on **X** for $k \in \mathbb{Z}$ is an element $[\omega^0]$ of $H^k(\Lambda^p \mathbb{L}_{\mathbf{X}}, d)$. A closed *p*-form of degree k on **X** is an element

$$[(\omega^0, \omega^1, \ldots)] \in H^k \big(\bigoplus_{i=0}^{\infty} \Lambda^{p+i} \mathbb{L}_{\mathbf{X}}[i], \mathrm{d} + \mathrm{d}_{dR} \big).$$

There is a projection $\pi : [(\omega^0, \omega^1, \ldots)] \mapsto [\omega^0]$ from closed *p*-forms $[(\omega^0, \omega^1, \ldots)]$ of degree *k* to *p*-forms $[\omega^0]$ of degree *k*. Note that a closed *p*-form *is not a special example of a p-form*, but a *p*-form with an extra structure. The map π from closed *p*-forms to *p*-forms can be neither injective nor surjective.

Dominic Joyce, Oxford University Categorification of D–T theory

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci Categorification using perverse sheaves Motivic Milnor fibres

Nondegenerate 2-forms and symplectic structures

Let $[\omega^0]$ be a 2-form of degree k on \mathbf{X} . Then $[\omega^0]$ induces a morphism $\omega^0 : \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$, where $\mathbb{T}_{\mathbf{X}} = \mathbb{L}_{\mathbf{X}}^{\vee}$ is the tangent complex of \mathbf{X} . We call $[\omega^0]$ nondegenerate if $\omega^0 : \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$ is a quasi-isomorphism.

If **X** is a derived scheme then $\mathbb{L}_{\mathbf{X}}$ lives in degrees $(-\infty, 0]$ and $\mathbb{T}_{\mathbf{X}}$ in degrees $[0, \infty)$. So $\omega^0 : \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$ can be a quasi-isomorphism only if $k \leq 0$, and then $\mathbb{L}_{\mathbf{X}}$ lives in degrees [k, 0]and $\mathbb{T}_{\mathbf{X}}$ in degrees [0, -k]. If k = 0 then **X** is a smooth classical \mathbb{K} -scheme, and if k = -1 then **X** is quasi-smooth. A closed 2-form $\omega = [(\omega^0, \omega^1, \ldots)]$ of degree k on **X** is called a

k-shifted symplectic structure if $[\omega^0] = \pi(\omega)$ is nondegenerate.

A Darboux theorem for shifted symplectic geometry D-critical loci Categorification using perverse sheaves Motivic Milnor fibres

Calabi–Yau moduli schemes and moduli stacks

Pantev et al. prove that if Y is a Calabi-Yau *m*-fold over \mathbb{K} and \mathcal{M} is a derived moduli scheme or stack of (complexes of) coherent sheaves on Y, then \mathcal{M} has a natural (2 - m)-shifted symplectic structure ω . So Calabi-Yau 3-folds give -1-shifted derived schemes or stacks. We can understand the associated nondegenerate 2-form $[\omega^0]$ in terms of *Serre duality*. At a point $[E] \in \mathcal{M}$, we have $h^i(\mathbb{T}_{\mathcal{M}})|_{[E]} \cong \operatorname{Ext}^{i-1}(E, E)$ and $h^i(\mathbb{L}_{\mathcal{M}})|_{[E]} \cong \operatorname{Ext}^{1-i}(E, E)^*$. The Calabi-Yau condition gives $\operatorname{Ext}^i(E, E) \cong \operatorname{Ext}^{m-i}(E, E)^*$, which corresponds to $h^i(\mathbb{T}_{\mathcal{M}})|_{[E]} \cong h^i(\mathbb{L}_{\mathcal{M}}[2-m])|_{[E]}$. This is the cohomology at [E] of the quasi-isomorphism $\omega^0: \mathbb{T}_{\mathcal{M}} \to \mathbb{L}_{\mathcal{M}}[2-m]$.

Dominic Joyce, Oxford University Categorification of D–T theory

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci Categorification using perverse sheaves Motivic Milnor fibres

Lagrangians and Lagrangian intersections

Let (\mathbf{X}, ω) be a *k*-shifted symplectic derived scheme or stack. Then Pantev et al. define a notion of *Lagrangian* \mathbf{L} in (\mathbf{X}, ω) , which is a morphism $\mathbf{i} : \mathbf{L} \to \mathbf{X}$ of derived schemes or stacks together with a homotopy $i^*(\omega) \sim 0$ satisfying a nondegeneracy condition, implying that $\mathbb{T}_{\mathbf{L}} \simeq \mathbb{L}_{\mathbf{L}/\mathbf{X}}[k-1]$. If \mathbf{L} , \mathbf{M} are Lagrangians in (\mathbf{X}, ω) , then the fibre product $\mathbf{L} \times_{\mathbf{X}} \mathbf{M}$ has a natural (k-1)-shifted symplectic structure. If (S, ω) is a classical smooth symplectic scheme, then it is a 0-shifted symplectic derived scheme in the sense of PTVV, and if $L, M \subset S$ are classical smooth Lagrangian subschemes, then they are Lagrangians in the sense of PTVV. Therefore the (derived) Lagrangian intersection $L \cap M = L \times_S M$ is a -1-shifted symplectic derived scheme.

2. A Darboux theorem for shifted symplectic schemes

Theorem (Brav, Bussi and Joyce arXiv:1305.6302)

Suppose (\mathbf{X}, ω) is a k-shifted symplectic derived \mathbb{K} -scheme for k < 0. If $k \not\equiv 2 \mod 4$, then each $x \in \mathbf{X}$ admits a Zariski open neighbourhood $\mathbf{Y} \subseteq \mathbf{X}$ with $\mathbf{Y} \simeq \operatorname{Spec} A$ for (A, d) an explicit cdga over \mathbb{K} generated by graded variables x_j^{-i}, y_j^{k+i} for $0 \leq i \leq -k/2$, and $\omega|_{\mathbf{Y}} = [(\omega^0, 0, 0, \ldots)]$ where x_j^l, y_j^l have degree l, and $\omega^0 = \sum_{i=0}^{\lfloor -k/2 \rfloor} \sum_{j=1}^{m_i} d_{dR} y_j^{k+i} d_{dR} x_j^{-i}$.

Also the differential d in (A, d) is given by Poisson bracket with a Hamiltonian H in A of degree k + 1.

If $k \equiv 2 \mod 4$, we have two statements, one étale local with ω^0 standard, and one Zariski local with the components of ω^0 the degree k/2 variables depending on some invertible functions.

Dominic Joyce, Oxford University Categorification of D–T theory

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci Categorification using perverse sheaves <u>Motivic Milnor fibres</u>

Sketch of the proof of the theorem

Suppose (\mathbf{X}, ω) is a *k*-shifted symplectic derived \mathbb{K} -scheme for k < 0, and $x \in \mathbf{X}$. Then $\mathbb{L}_{\mathbf{X}}$ lives in degrees [k, 0]. We first show that we can build Zariski open $x \in \mathbf{Y} \subseteq \mathbf{X}$ with $\mathbf{Y} \simeq \operatorname{Spec} A$, for $A = \bigoplus_{i \leq 0} A^i$ a cdga over \mathbb{K} with A^0 a smooth \mathbb{K} -algebra, and such that A is freely generated over A^0 by graded variables x_j^{-i}, y_j^{k+i} in degrees $-1, -2, \ldots, k$. We take dim A^0 and the number of x_j^{-i}, y_j^{k+i} to be minimal at x. Using theorems about periodic cyclic cohomology, we show that on $Y \simeq \operatorname{Spec} A$ we can write $\omega|_Y = [(\omega^0, 0, 0, \ldots)]$, for ω^0 a 2-form of degree k with $d\omega^0 = d_{dR}\omega^0 = 0$. Minimality at x implies ω^0 is

strictly nondegenerate near x, so we can change variables to write $\omega^0 = \sum_{i,j} d_{dR} y_j^{k+i} d_{dR} x_j^{-i}$. Finally, we show d in (A, d) is a symplectic vector field, which integrates to a Hamiltonian H.

The case of -1-shifted symplectic derived schemes

When k = -1 the Hamiltonian *H* in the theorem has degree 0. Then the theorem reduces to:

Corollary

Suppose (\mathbf{X}, ω) is a -1-shifted symplectic derived \mathbb{K} -scheme. Then (\mathbf{X}, ω) is Zariski locally equivalent to a derived critical locus $\operatorname{Crit}(H : U \to \mathbb{A}^1)$, for U a smooth classical \mathbb{K} -scheme and $H : U \to \mathbb{A}^1$ a regular function. Hence, the underlying classical \mathbb{K} -scheme $X = t_0(\mathbf{X})$ is Zariski locally isomorphic to a classical critical locus $\operatorname{Crit}(H : U \to \mathbb{A}^1)$.

Dominic Joyce, Oxford University Categorification of D–T theory

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci Categorification using perverse sheaves Motivic Milnor fibres

Combining this with results of Pantev et al. from $\S1$ gives interesting consequences in classical algebraic geometry:

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y. Then \mathcal{M} is Zariski locally isomorphic to the critical locus $\operatorname{Crit}(H: U \to \mathbb{A}^1)$ of a regular function on a smooth \mathbb{K} -scheme.

Here we note that $\mathcal{M} = t_0(\mathcal{M})$ for \mathcal{M} the corresponding derived moduli scheme, which is -1-shifted symplectic by PTVV. A complex analytic analogue of this for moduli of coherent sheaves was proved using gauge theory by Joyce and Song arXiv:0810.5645, and for moduli of complexes was claimed by Behrend and Getzler. Note that the proof of the corollary is wholly algebro-geometric.

Corollary

Let (S, ω) be a classical smooth symplectic \mathbb{K} -scheme, and $L, M \subseteq S$ be smooth algebraic Lagrangians. Then the intersection $L \cap M$, as a \mathbb{K} -subscheme of S, is Zariski locally isomorphic to the critical locus $\operatorname{Crit}(H : U \to \mathbb{A}^1)$ of a regular function on a smooth \mathbb{K} -scheme.

In real or complex symplectic geometry, where Darboux Theorem holds, the analogue of the corollary is easy to prove, but in classical algebraic symplectic geometry we do not have a Darboux Theorem, so the corollary is not obvious.

Dominic Joyce, Oxford University Categorification of D–T theory

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci Categorification using perverse sheaves Motivic Milnor fibres

3. D-critical loci

Theorem (Joyce arXiv:1304.4508)

Let X be a classical \mathbb{K} -scheme. Then there exists a canonical sheaf S_X of \mathbb{K} -vector spaces on X, such that if $R \subseteq X$ is Zariski open and $i : R \hookrightarrow U$ is a closed embedding of R into a smooth \mathbb{K} -scheme U, and $I_{R,U} \subseteq \mathcal{O}_U$ is the ideal vanishing on i(R), then

$$\mathcal{S}_X|_R \cong \operatorname{Ker}\left(\frac{\mathcal{O}_U}{I_{R,U}^2} \xrightarrow{\mathrm{d}} \frac{T^*U}{I_{R,U} \cdot T^*U}\right).$$

Also S_X splits naturally as $S_X = S_X^0 \oplus \mathbb{K}_X$, where \mathbb{K}_X is the sheaf of locally constant functions $X \to \mathbb{K}$.

The meaning of the sheaves $\mathcal{S}_X, \mathcal{S}_X^0$

If $X = \operatorname{Crit}(f : U \to \mathbb{A}^1)$ then taking R = X, $i = \operatorname{inclusion}$, we see that $f + I_{X,U}^2$ is a section of \mathcal{S}_X . Also $f|_{X^{\operatorname{red}}} : X^{\operatorname{red}} \to \mathbb{K}$ is locally constant, and if $f|_{X^{\operatorname{red}}} = 0$ then $f + I_{X,U}^2$ is a section of \mathcal{S}_X^0 . Note that $f + I_{X,U} = f|_X$ in $\mathcal{O}_X = \mathcal{O}_U/I_{X,U}$. The theorem means that $f + I_{X,U}^2$ makes sense *intrinsically on* X, without reference to the embedding of X into U.

That is, if $X = \operatorname{Crit}(f : U \to \mathbb{A}^1)$ then we can remember f up to second order in the ideal I_X as a piece of data on X, not on U. Suppose $X = \operatorname{Crit}(f : U \to \mathbb{A}^1) = \operatorname{Crit}(g : V \to \mathbb{A}^1)$ is written as a critical locus in two different ways. Then $f + I_{X,U}^2$, $g + I_{X,V}^2$ are sections of S_X , so we can ask whether $f + I_{X,U}^2 = g + I_{X,V}^2$. This gives a way to compare isomorphic critical loci in different smooth classical schemes.

Dominic Joyce, Oxford University Categorification of D–T theory

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci Categorification using perverse sheaves Motivic Milnor fibres

The definition of d-critical loci

Definition (Joyce arXiv:1304.4508)

An (algebraic) d-critical locus (X, s) is a classical \mathbb{K} -scheme X and a global section $s \in H^0(\mathcal{S}^0_X)$ such that X may be covered by Zariski open $R \subseteq X$ with an isomorphism $i : R \to \operatorname{Crit}(f : U \to \mathbb{A}^1)$ identifying $s|_R$ with $f + I^2_{R,U}$, for f a regular function on a smooth \mathbb{K} -scheme U.

That is, a d-critical locus (X, s) is a \mathbb{K} -scheme X which may Zariski locally be written as a critical locus $\operatorname{Crit}(f : U \to \mathbb{A}^1)$, and the section s remembers f up to second order in the ideal $I_{X,U}$. We also define *complex analytic d-critical loci*, with X a complex analytic space locally modelled on $\operatorname{Crit}(f : U \to \mathbb{C})$ for U a complex manifold and f holomorphic.

Orientations on d-critical loci

Theorem (Joyce arXiv:1304.4508)

Let (X, s) be an algebraic d-critical locus and X^{red} the reduced \mathbb{K} -subscheme of X. Then there is a natural line bundle $K_{X,s}$ on X^{red} called the **canonical bundle**, such that if (X, s) is locally modelled on $\text{Crit}(f : U \to \mathbb{A}^1)$ then $K_{X,s}$ is locally modelled on $K_U^{\otimes^2}|_{\text{Crit}(f)^{\text{red}}}$, for K_U the usual canonical bundle of U.

Definition

Let (X, s) be a d-critical locus. An *orientation* on (X, s) is a choice of square root line bundle $K_{X,s}^{1/2}$ for $K_{X,s}$ on X^{red} .

This is related to orientation data in Kontsevich-Soibelman 2008.

Dominic Joyce, Oxford University Categorification of D–T theory

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci Categorification using perverse sheaves Motivic Milnor fibres

A truncation functor from -1-symplectic derived schemes

Theorem (Brav, Bussi and Joyce arXiv:1305.6302)

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived \mathbb{K} -scheme. Then the classical \mathbb{K} -scheme $X = t_0(\mathbf{X})$ extends naturally to an algebraic d-critical locus (X, s). The canonical bundle of (X, s)satisfies $K_{X,s} \cong \det \mathbb{L}_{\mathbf{X}}|_{X^{red}}$.

That is, we define a *truncation functor* from -1-shifted symplectic derived \mathbb{K} -schemes to algebraic d-critical loci. Examples show this functor is not full. Think of d-critical loci as *classical truncations* of -1-shifted symplectic derived \mathbb{K} -schemes.

An alternative semi-classical truncation, used in D–T theory, is *schemes with symmetric obstruction theory*. D-critical loci appear to be better, for both categorified and motivic D–T theory.

The corollaries in $\S2$ imply:

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y. Then \mathcal{M} extends naturally to a d-critical locus (\mathcal{M}, s) . The canonical bundle satisfies $K_{\mathcal{M},s} \cong \det(\mathcal{E}^{\bullet})|_{\mathcal{M}^{red}}$, where $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$ is the (symmetric) obstruction theory on \mathcal{M} defined by Thomas or Huybrechts and Thomas.

Corollary

Let (S, ω) be a classical smooth symplectic \mathbb{K} -scheme, and $L, M \subseteq S$ be smooth algebraic Lagrangians. Then $X = L \cap M$ extends to naturally to a d-critical locus (X, s). The canonical bundle satisfies $K_{X,s} \cong K_L|_{X^{red}} \otimes K_M|_{X^{red}}$. Hence, choices of square roots $K_L^{1/2}, K_M^{1/2}$ give an orientation for (X, s).

Dominic Joyce, Oxford University Categorification of D–T theory

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci Categorification using perverse sheaves Motivic Milnor fibres

4. Categorification using perverse sheaves

Theorem (Brav, Bussi, Dupont, Joyce, Szendrői arXiv:1211.3259)

Let (X, s) be an algebraic d-critical locus over \mathbb{K} , with an orientation $\mathcal{K}_{X,s}^{1/2}$. Then we can construct a canonical perverse sheaf $P_{X,s}^{\bullet}$ on X, such that if (X, s) is locally modelled on $\operatorname{Crit}(f : U \to \mathbb{A}^1)$, then $P_{X,s}^{\bullet}$ is locally modelled on the perverse sheaf of vanishing cycles $\mathcal{PV}_{U,f}^{\bullet}$ of (U, f). Similarly, we can construct a natural \mathcal{D} -module $D_{X,s}^{\bullet}$ on X, and when $\mathbb{K} = \mathbb{C}$ a natural mixed Hodge module $M_{X,s}^{\bullet}$ on X.

Sketch of the proof of the theorem

Roughly, we prove the theorem by taking a Zariski open cover $\{R_i : i \in I\}$ of X with $R_i \cong \operatorname{Crit}(f_i : U_i \to \mathbb{A}^1)$, and showing that $\mathcal{PV}_{U_i,f_i}^{\bullet}$ and $\mathcal{PV}_{U_j,f_j}^{\bullet}$ are canonically isomorphic on $R_i \cap R_j$, so we can glue the $\mathcal{PV}_{U_i,f_i}^{\bullet}$ to get a global perverse sheaf $P_{X,s}^{\bullet}$ on X. In fact things are more complicated: the (local) isomorphisms $\mathcal{PV}_{U_i,f_i}^{\bullet} \cong \mathcal{PV}_{U_j,f_j}^{\bullet}$ are only canonical *up to sign*. To make them canonical, we use the orientation $\mathcal{K}_{X,s}^{1/2}$ to define natural principal \mathbb{Z}_2 -bundles Q_i on R_i , such that $\mathcal{PV}_{U_i,f_i}^{\bullet} \otimes_{\mathbb{Z}_2} Q_i \cong \mathcal{PV}_{U_j,f_j}^{\bullet} \otimes_{\mathbb{Z}_2} Q_j$ is canonical, and then we glue the $\mathcal{PV}_{U_i,f_i}^{\bullet} \otimes_{\mathbb{Z}_2} Q_i$ to get $P_{X,s}^{\bullet}$.

Dominic Joyce, Oxford University Categorification of D–T theory

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci Categorification using perverse sheaves Motivic Milnor fibres

The first corollary in $\S2$ implies:

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y, with (symmetric) obstruction theory $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$. Suppose we are given a square root det $(\mathcal{E}^{\bullet})^{1/2}$ for det (\mathcal{E}^{\bullet}) (i.e. orientation data, K–S). Then we have a natural perverse sheaf $P^{\bullet}_{\mathcal{M},s}$ on \mathcal{M} .

The hypercohomology $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ is a finite-dimensional graded vector space. The pointwise Euler characteristic $\chi(P^{\bullet}_{\mathcal{M},s})$ is the Behrend function $\nu_{\mathcal{M}}$ of \mathcal{M} . Thus

 $\sum_{i\in\mathbb{Z}}(-1)^{i}\dim\mathbb{H}^{i}(P^{\bullet}_{\mathcal{M},s})=\chi(\mathcal{M},\nu_{\mathcal{M}}).$

Now by Behrend 2005, the Donaldson–Thomas invariant of \mathcal{M} is $DT(\mathcal{M}) = \chi(\mathcal{M}, \nu_{\mathcal{M}})$. So, $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ is a graded vector space with dimension $DT(\mathcal{M})$, that is, a *categorification* of $DT(\mathcal{M})$.

Categorifying Lagrangian intersections

The second corollary in §2 implies:

Corollary

Let (S, ω) be a classical smooth symplectic \mathbb{K} -scheme of dimension 2n, and $L, M \subseteq S$ be smooth algebraic Lagrangians, with square roots $K_L^{1/2}, K_M^{1/2}$ of their canonical bundles. Then we have a natural perverse sheaf $P_{L,M}^{\bullet}$ on $X = L \cap M$.

This is related to Behrend and Fantechi 2009, and Kai's talk. We think of the hypercohomology $\mathbb{H}^*(P^{\bullet}_{L,M})$ as being morally related to the Lagrangian Floer cohomology $HF^*(L, M)$ by

$$\mathbb{H}^{i}(P^{\bullet}_{L,M}) \approx HF^{i+n}(L,M).$$

We are working on defining 'Fukaya categories' for algebraic/complex symplectic manifolds using these ideas.

Dominic Joyce, Oxford University Categorification of D–T theory

PTVV's shifted symplectic geometry A Darboux theorem for shifted symplectic schemes D-critical loci Categorification using perverse sheaves <u>Motivic Milnor fibres</u>

5. Motivic Milnor fibres

By similar arguments to those used to construct the perverse sheaves $P^{\bullet}_{X,s}$ in §4, we prove:

Theorem (Bussi, Joyce and Meinhardt arXiv:1305.6428)

Let (X, s) be an algebraic d-critical locus over \mathbb{K} , with an orientation $K_{X,s}^{1/2}$. Then we can construct a natural motive $MF_{X,s}$ in a certain ring of $\hat{\mu}$ -equivariant motives $\overline{\mathcal{M}}_X^{\hat{\mu}}$ on X, such that if (X, s) is locally modelled on $\operatorname{Crit}(f : U \to \mathbb{A}^1)$, then $MF_{X,s}$ is locally modelled on $\mathbb{L}^{-\dim U/2}([X] - MF_{U,f}^{\mathrm{mot}})$, where $MF_{U,f}^{\mathrm{mot}}$ is the **motivic Milnor fibre** of f.

Vittoria Bussi's talk will give more details.

Relation to motivic D–T invariants

The first corollary in §2 implies:

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y, with (symmetric) obstruction theory $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$. Suppose we are given a square root det $(\mathcal{E}^{\bullet})^{1/2}$ for det (\mathcal{E}^{\bullet}) (i.e. orientation data, K–S). Then we have a natural motive $MF^{\bullet}_{\mathcal{M},s}$ on \mathcal{M} .

This motive $MF^{\bullet}_{\mathcal{M},s}$ is essentially the motivic Donaldson–Thomas invariant of \mathcal{M} defined (partially conjecturally) by Kontsevich and Soibelman 2008. K–S work with motivic Milnor fibres of formal power series at each point of \mathcal{M} . Our results show the formal power series can be taken to be a regular function, and clarify how the motivic Milnor fibres vary in families over \mathcal{M} .

Dominic Joyce, Oxford University Categorification of D–T theory