Derived differential geometry

Dominic Joyce, Oxford.

B.M.C., Leicester, April, 2010.

work in progress,
chapters of a book on it
may be downloaded from
people.ox.ac.uk/~joyce/dmanifolds.html.

See also arXiv:0910.3518 and arXiv:1001.0023.

These slides available at people.ox.ac.uk/ \sim joyce/talks.html.

1. Introduction

Many important areas in both differential and algebraic geometry involve forming 'moduli spaces' ${\cal M}$ of some geometric objects, and then 'counting' the points in ${\mathcal M}$ to get an 'invariant' $I(\mathcal{M})$ with interesting properties, for example Donaldson, Seiberg-Witten, Gromov-Witten and Donaldson–Thomas invariants. Taking the 'invariant' to be a vector space, category, . . . , rather than number, Floer homology theories, contact homology, Symplectic Field Theory, and Fukaya categories also fit in this framework.

All these 'invariants' theories have some common features:

- You start with some geometrical space X you want to study.
- ullet You define a moduli space $\mathcal M$ of auxiliary geometric objects E on X.
- ullet This \mathcal{M} is a topological space, hopefully compact and Hausdorff, but generally not a manifold it may have bad singularities.
- Nevertheless, \mathcal{M} behaves as if it is a compact, oriented manifold of known dimension k. One defines a virtual class $[\mathcal{M}]_{\text{vir}}$ in $H_k(\mathcal{M};\mathbb{Q})$, which 'counts' the points in \mathcal{M} .
- This $[\mathcal{M}]_{\text{vir}}$ is then independent of choices in the construction, deformations of X etc.

Methods for defining $[\mathcal{M}]_{\text{vir}}$ vary. In good cases, with generic initial data \mathcal{M} is smooth. Otherwise, we prove \mathcal{M} has some extra geometric structure \mathcal{G} , and use \mathcal{G} to define $[\mathcal{M}]_{\text{vir}}$.

- In algebraic geometry problems \mathcal{M} is a scheme or Deligne–Mumford stack with obstruction theory.
- In areas of symplectic geometry based on moduli of *J*-holomorphic curves Gromov–Witten theory, Lagrangian Floer cohomology, Symplectic Field Theory, Fukaya categories there are two main geometric structures: *Kuranishi spaces* (Fukaya–Oh–Ohta–Ono) and *polyfolds* (Hofer–Wysocki–Zehnder).

2. D-manifolds and d-orbifolds

I will describe a new class of geometric objects I call *d-manifolds*—'derived' smooth manifolds. Some properties of d-manifolds:

- They form a *strict* 2-*category* dMan. That is, we have objects X, the d-manifolds, 1-morphisms $f,g:X \to Y$, the smooth maps, and also 2-morphisms $\eta:f\Rightarrow g$.
- Smooth manifolds embed into dmanifolds as a full (2)-subcategory.
- There are also 2-categories $dMan^b$, $dMan^c$ of d-manifolds with boundary and with corners, and orbifold versions dOrb, $dOrb^b$, $dOrb^c$ of these, d-orbifolds.

- Many concepts of differential geometry extend nicely to d-manifolds: submersions, immersions, orientations, submanifolds, transverse fibre products, cotangent bundles,
- Almost any moduli space used in any enumerative invariant problem over \mathbb{R} or \mathbb{C} has a d-manifold or d-orbifold structure, natural up to equivalence. There are truncation functors to d-manifolds and d-orbifolds from structures currently used $-\mathbb{C}$ -schemes with obstruction theories, Kuranishi spaces, polyfolds.
- Virtual classes/cycles/chains can be constructed for compact oriented d-manifolds and d-orbifolds.

So, d-manifolds and d-orbifolds provide a unified framework for studying enumerative invariants and moduli spaces. They also have other applications, and are interesting and beautiful in their own right.

D-manifolds and d-orbifolds are related to other classes of spaces already studied, in particular to the *Kuranishi spaces* of Fukaya—Oh—Ohta—Ono in symplectic geometry, and to David Spivak's *derived manifolds*, from Jacob Lurie's 'derived algebraic geometry' programme.

2.1. Kuranishi spaces

Kuranishi spaces were defined by Fukaya-Ono 1999 and Fukaya-Oh-Ohta-Ono 2009 as the geometric structure on moduli spaces \mathcal{M} of J-holomorphic curves in symplectic geometry. A Kuranishi space is locally modelled on the zeroes $s^{-1}(0)$ of a smooth section s of a vector bundle $E \to V$ over an orbifold V. The theory has a lot of problems, and is basically incomplete.

My starting point for this project was to find the 'right' definition of Kuranishi space. I claim that this is: a Kuranishi space is (should really be) a d-orbifold with corners.

2.2. Derived manifolds

Derived manifolds were defined by David Spivak (Duke Math. J. 153, 2010), a student of Jacob Lurie. A lot of my ideas are stolen from Spivak. D-manifolds are much simpler than derived manifolds. D-manifolds are a 2-category, using Hartshorne-level algebraic geometry. Derived manifolds are an ∞-category, and use very advanced and scary technology − homotopy sheaves, Bousfeld localization,

D-manifolds are a 2-category truncation of derived manifolds. I claim that this truncation remembers all the geometric information of importance to symplectic geometers, and other real people.

3. The definition of d-manifolds

Algebraic geometry (based on algebra and polynomials) has excellent tools for studying singular spaces — the theory of schemes.

In contrast, conventional differential geometry (based on smooth real functions and calculus) deals well with nonsingular spaces — manifolds — but poorly with singular spaces.

There is a little-known theory of schemes in differential geometry.

schemes in differential geometry, C^{∞} -schemes, going back to Lawvere, Dubuc, Moerdijk and Reyes, . . . in synthetic differential geometry in the 1960s-1980s. This will be the foundation of our d-manifolds.

3.1. C^{∞} -rings

Let X be a manifold, and $C^{\infty}(X)$ the set of smooth functions $c: X \to \mathbb{R}$. Then $C^{\infty}(X)$ is an \mathbb{R} -algebra, by adding and multiplying smooth functions. But there are many more operations on $C^{\infty}(X)$, e.g. if $c: X \to \mathbb{R}$ is smooth then $\exp(c): X \to \mathbb{R}$ is smooth, giving $\exp: C^{\infty}(X) \to C^{\infty}(X)$, algebraically independent of addition and multiplication. Let $f: \mathbb{R}^n \to \mathbb{R}$ be smooth. Define

Let $f: \mathbb{R}^n \to \mathbb{R}$ be smooth. Define $\Phi_f: C^\infty(X)^n \to C^\infty(X)$ by

 $\Phi_f(c_1,\ldots,c_n)(x) = f(c_1(x),\ldots,c_n(x))$ for all $x \in X$. Addition comes from $f: \mathbb{R}^2 \to \mathbb{R}$, $f: (c_1,c_2) \mapsto c_1 + c_2$, multiplication from $(c_1,c_2) \mapsto c_1c_2$.

Definition. A C^{∞} -ring is a set \mathfrak{C} together with n-fold operations $\Phi_f: \mathfrak{C}^n \to \mathfrak{C}$ for all smooth maps $f: \mathbb{R}^n \to \mathbb{R}, \ n \geqslant 0$, satisfying the following conditions:

Let $m,n\geqslant 0$, and $f_i:\mathbb{R}^n\to\mathbb{R}$ for $i=1,\ldots,m$ and $g:\mathbb{R}^m\to\mathbb{R}$ be smooth functions. Define $h:\mathbb{R}^n\to\mathbb{R}$ by

$$h(x_1,\ldots,x_n)=g(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)),$$

for $(x_1, \ldots, x_n) \in \mathbb{R}^n$. Then for all c_1, \ldots, c_n in $\mathfrak C$ we have

$$\Phi_h(c_1,\ldots,c_n) = \Phi_g(\Phi_{f_1}(c_1,\ldots,c_n),\ldots,\Phi_{f_m}(c_1,\ldots,c_n)).$$

Also defining $\pi_j: (x_1,\ldots,x_n) \mapsto x_j$ for $j=1,\ldots,n$ we have $\Phi_{\pi_j}: (c_1,\ldots,c_n) \mapsto c_j$. A morphism of C^{∞} -rings is $\phi: \mathfrak{C} \to \mathfrak{D}$ with $\Phi_f \circ \phi^n = \phi \circ \Phi_f: \mathfrak{C}^n \to \mathfrak{D}$ for all smooth $f: \mathbb{R}^n \to \mathbb{R}$. Write $\mathbf{C}^{\infty}\mathbf{Rings}$ for the category of C^{∞} -rings.

Then $C^{\infty}(X)$ is a C^{∞} -ring for any manifold X, and from $C^{\infty}(X)$ we can recover X up to isomorphism. If $f:X\to Y$ is smooth then f^* : $C^{\infty}(Y) \to C^{\infty}(X)$ is a morphism of C^{∞} -rings. This gives a full and faithful functor $F: \operatorname{Man} \to \operatorname{C}^{\infty}\operatorname{Rings}^{\operatorname{op}}$ by $F: X \mapsto C^{\infty}(X)$, $F: f \mapsto f^*$. Thus, we think of manifolds as examples of C^{∞} -rings, and C^{∞} -rings as generalizations of manifolds. But there are many more C^{∞} -rings than manifolds, e.g. $C^0(X)$ is a C^{∞} -ring for any topological space X.

3.2. C^{∞} -schemes

We can now develop the whole machinery of scheme theory in algebraic geometry, replacing rings or algebras by C^{∞} -rings throughout — see my arXiv:1001.0023.

We obtain a category C^{∞} sch of C^{∞} schemes $X = (X, \mathcal{O}_X)$, which are topological space X equipped with a sheaf of C^{∞} -rings \mathcal{O}_X locally modelled on the spectrum of a C^{∞} -ring. If X is a manifold, define a C^{∞} scheme $X = (X, \mathcal{O}_X)$ by $\mathcal{O}_X(U) = C^{\infty}(U)$ for all open $U \subseteq X$. This defines a full and faithful embedding $\operatorname{Man} \hookrightarrow C^{\infty}\operatorname{Sch}$.

We also define vector bundles, coherent sheaves coh(X) and quasicoherent sheaves qcoh(X), and the cotangent sheaf T^*X on X. Then qcoh(X) is an abelian category. Some differences with conventional algebraic geometry:

- affine schemes are Hausdorff. No need to introduce étale topology.
- ullet partitions of unity exist subordinate to any open cover of a (nice) C^{∞} -scheme X.
- C^{∞} -rings such as $C^{\infty}(\mathbb{R}^n)$ are not noetherian as \mathbb{R} -algebras. Causes problems with coherent sheaves: $\mathrm{coh}(\underline{X})$ is not closed under kernels, so not an abelian category.

3.3. The 2-category of d-spaces

We define d-manifolds as a 2-subcategory of a larger 2-category of d-spaces. These are 'derived' versions of C^{∞} -schemes.

Definition. A *d-space* is a is a quintuple $X = (X, \mathcal{O}'_X, \mathcal{E}_X, \imath_X, \jmath_X)$ where $X = (X, \mathcal{O}_X)$ is a separated, second countable, locally fair C^{∞} -scheme, \mathcal{O}'_X is a second sheaf of C^{∞} -rings on X, and \mathcal{E}_X is a quasicoherent sheaf on X, and X, and X is a surjective morphism of sheaves of X is a surjective morphism of shear of X is a sheaf of square zero ideals in X, and X, and X is a surjective morphism in X in X in X is a surjective morphism in X in X

$$\mathcal{E}_X \xrightarrow{\jmath_X} \mathcal{O}_X' \xrightarrow{\imath_X} \mathcal{O}_X \longrightarrow 0.$$

A 1-morphism $f: X \to Y$ is a triple $f = (\underline{f}, f', f'')$, where $\underline{f} = (f, f^{\sharp}) : \underline{X} \to \underline{Y}$ is a morphism of C^{∞} -schemes and $f': f^{-1}(\mathcal{O}'_Y) \to \mathcal{O}'_X$, $f'': \underline{f}^*(\mathcal{E}_Y) \to \mathcal{E}_X$ are sheaf morphisms such that the following commutes:

$$f^{-1}(\mathcal{E}_{Y}) \xrightarrow{f^{-1}(\mathcal{I}_{Y})} f^{-1}(\mathcal{O}_{Y}') \xrightarrow{f^{-1}(\imath_{Y})} f^{-1}(\mathcal{O}_{X}) \longrightarrow 0$$

$$\downarrow f'' f^{-1}(\jmath_{Y}) \qquad \downarrow f' f^{-1}(\imath_{Y}) \qquad \downarrow f^{\sharp}$$

$$\mathcal{E}_{X} \xrightarrow{\jmath_{X}} \mathcal{O}_{X}' \xrightarrow{\imath_{X}} \mathcal{O}_{X} \longrightarrow 0.$$

Let $f,g:X\to Y$ be 1-morphisms with $f=(\underline{f},f',f'')$, $f=(\underline{g},g',g'')$. Suppose $\underline{f}=\underline{g}$. A 2-morphism $\eta:f\Rightarrow g$ is a morphism

$$\eta: f^{-1}(\Omega_{\mathcal{O}'_Y}) \otimes_{f^{-1}(\mathcal{O}'_Y)} \mathcal{O}_X \longrightarrow \mathcal{E}_X$$

in $\operatorname{qcoh}(\underline{X})$, where $\Omega_{\mathcal{O}_Y'}$ is the sheaf of cotangent modules of \mathcal{O}_Y' , such that $g'=f'+\jmath_X\circ\eta\circ\Pi_{XY}$ and $g''=f''+\eta\circ\underline{f}^*(\phi_Y)$, for natural morphisms Π_{XY},ϕ_Y .

Theorem 1. This defines a strict 2-category dSpa. All fibre products exist in dSpa.

We can map $\mathbf{C}^{\infty}\mathbf{Sch}$ into \mathbf{dSpa} by taking a C^{∞} -scheme $\underline{X}=(X,\mathcal{O}_X)$ to the d-space $\mathbf{X}=(\underline{X},\mathcal{O}_X,0,\mathrm{id}_{\mathcal{O}_X},0)$, with exact sequence

$$0 \longrightarrow \mathcal{O}_X \xrightarrow{\mathsf{id}_{\mathcal{O}_X}} \mathcal{O}_X \longrightarrow 0.$$

This embeds $C^{\infty}Sch$, and hence manifolds Man, as discrete 2-subcategories of dSpa. For *transverse* fibre products of manifolds, the fibre products in Man and dSpa agree.

3.4. The 2-subcategory of d-manifolds **Definition.** A d-space X is a d-manifold of dimension $n \in \mathbb{Z}$ if X may be covered by open d-subspaces Y equivalent in dSpa to a fibre product $U \times_W V$, where U, V, W are manifolds without boundary and $\dim U + \dim V - \dim W = n$. We allow n < 0.

Think of a d-manifold $X = (\underline{X}, \mathcal{O}_X', \mathcal{E}_X, \imath_X, \jmath_X)$ as a 'classical' C^{∞} -scheme \underline{X} , with extra 'derived' data $\mathcal{O}_X', \mathcal{E}_X, \imath_X, \jmath_X$.

Write dMan for the full 2-subcategory of d-manifolds in dSpa. It is not closed under fibre products in dSpa, but we can say:

Theorem 2. All fibre products of the form $X \times_Z Y$ with X, Y d-manifolds and Z a manifold exist in the 2-category dMan.

4. Properties of d-manifolds 4.1. Gluing by equivalences

A 1-morphism f:X o Y in dMan is an equivalence if there exist a 1morphism $g: Y \rightarrow X$ and 2-morphisms $\eta:g\circ f\Rightarrow \mathrm{id}_X$ and $\zeta:f\circ g\Rightarrow \mathrm{id}_Y.$ **Theorem 3.** Let X, Y be d-manifolds, $\emptyset \neq U \subseteq X, \emptyset \neq V \subseteq Y$ open dsubmanifolds, and f:U o V an equivalence. Suppose the topological space $Z = X \cup_{U=V} Y$ made by gluing X, Y using f is Hausdorff. Then there exists a d-manifold Z, unique up to equivalence, open $\hat{X},\hat{Y}\subseteq$ Z with $Z = \hat{X} \cup \hat{Y}$, equivalences g: $X \rightarrow \hat{X}$ and $h: Y \rightarrow \hat{Y}$, and a 2morphism $\eta:g|_{IJ}\Rightarrow h\circ f$.

Equivalence is the natural notion of when two objects in dMan are 'the same'. In Theorem 3, Z is a pushout $X\coprod_{\mathrm{id}_{U},U,f}Y$ in dMan. Theorem 3 generalizes to gluing families of d-manifolds $X_i:i\in I$ by equivalences on double overlaps $X_i\cap X_j$, with (weak) conditions on triple overlaps $X_i\cap X_j\cap X_k$.

This is very useful for proving existence of d-manifold structures on moduli spaces.

4.2. Virtual vector bundles

Vector bundle and cotangent bundles have good 2-category generalizations. Let X be a C^{∞} -scheme. Define a 2-category vqcoh(X) of virtual quasicoherent sheaves to have objects morphisms $\phi:\mathcal{E}^1 \to \mathcal{E}^2$ in $\operatorname{qcoh}(\underline{X})$. If $\phi: \mathcal{E}^1 \to \mathcal{E}^2$ and $\psi:$ $\mathcal{F}^1 \to \mathcal{F}^2$ are objects, a 1-morphism $(f^1, f^2): \phi \rightarrow \psi$ is morphisms f^j : $\mathcal{E}^{j} \to \mathcal{F}^{j}$ in $\operatorname{qcoh}(\underline{X})$ for j = 1, 2with $\psi \circ f^1 = f^2 \circ \phi$. If $(f^1, f^2), (g^1, g^2)$ are 1-morphisms $\phi \to \psi$, a 2-morphism η : $(f^1, f^2) \Rightarrow (g^1, g^2)$ is a morphism $\eta:\mathcal{E}^2\to\mathcal{F}^1$ in $\operatorname{qcoh}(\underline{X})$ with $g^{1} = f^{1} + \eta \circ \phi$ and $g^{2} = f^{2} + \psi \circ \eta$.

Call $\phi: \mathcal{E}^1 \to \mathcal{E}^2$ a virtual vector bundle on \underline{X} of rank $k \in \mathbb{Z}$ if X may be covered by open $\underline{U} \subseteq \underline{X}$ such that $\phi|_{\underline{U}}: \mathcal{E}^1|_{\underline{U}} \to \mathcal{E}^2|_{\underline{U}}$ is equivalent in the 2-category vqcoh(\underline{U}) to $\psi: \mathcal{F}^1 \to \mathcal{F}^2$, where $\mathcal{F}^1, \mathcal{F}^2$ are vector bundles on \underline{U} with rank \mathcal{F}^2 - rank $\mathcal{F}^1 = k$. Write vvect(\underline{X}) for the full 2-subcategory of virtual vector bundles on vqcoh(\underline{X}).

If X is a d-manifold, it has a natural virtual cotangent bundle T^*X in vvect(X), of rank vdim X.

If $f: X \to Y$ is a 1-morphism in dMan, there is a natural 1-morphism $\Omega_f: \underline{f}^*(T^*Y) \to T^*X$ in $\operatorname{vvect}(\underline{X})$.

Then f is étale (a local equivalence) if and only if Ω_f is an equivalence in vvect(X). Similarly, f is an immersion or submersion if Ω_f is surjective or injective in a suitable sense. If $\phi: \mathcal{E}^1 \to \mathcal{E}^2$ lies in $\operatorname{vvect}(\underline{X})$ we can define a line bundle \mathcal{L}_{ϕ} on Xanalogous to the 'top exterior power' of $\phi: \mathcal{E}^1 \to \mathcal{E}^2$. So for a d-manifold X, \mathcal{L}_{T^*X} is a line bundle on X which we think of as $\Lambda^{top}T^*X$. An orientation on X is an orientation on the line bundle \mathcal{L}_{T^*X} . Orientations have the properties one would expect from the manifold case.