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1. Introduction

Let P be a projective K-scheme, coh(P )

the abelian category of coherent sheaves

on P , and (τ, T, 6) a stability condition on

coh(P ) – for instance, Gieseker stability

w.r.t. some ample line bundle L. Then we

can form moduli spaces Objαst(τ),Objαss(τ)

of τ-(semi)stable sheaves in coh(P ) with

fixed Chern character α ∈ Heven(P ).

Basically these moduli spaces are sets of

isomorphism (or other equivalence) classes

of sheaves, upon which we hope to put

some algebraic structure (K-scheme, alge-

braic K-space,. . . ).

The usual approach is to use S-equivalence

rather than isomorphism, and make

Objαss(τ) into a coarse moduli scheme.
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But I’m interested in comparing moduli

spaces Objαss(τ),Objαss(τ̃) for two differ-

ent stability conditions (τ, T, 6), (τ̃ , T̃ , 6) –

say, defined using different ample line bun-

dles L, L̃. To do this we want to regard

Objαss(τ),Objαss(τ̃) as subsets of a larger

‘moduli space’ Objcoh(P )(K) of all coher-

ent sheaves. To define Objcoh(P )(K) we

can’t use S-equivalence as this depends on

τ , so use isomorphism.

The right framework is Artin stacks. That

is, there is a natural moduli stack Objcoh(P )

of coherent sheaves on P such that the

set of K-points Objcoh(P )(K) is the set of

isomorphism classes of coherent sheaves.

Then Objαss(τ),Objαss(τ̃) are constructible

subsets in Objcoh(P ).
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My plan for relating τ- and τ̃-semistability

is to construct Objαss(τ̃) from the Objβss(τ)

by adding and subtracting subsets of [X] ∈
Objcoh(P )(K) with filtrations of the form

0 = A0 ⊂ A1 ⊂ · · · ⊂ An = X with Si =

Ai/Ai−1 τ-semistable.

A convenient way to do this is to repre-

sent a constructible set Objαss(τ̃) by its

characteristic function, and work with con-

structible functions on Objcoh(P ); then can

add and subtract functions rather than sets.

So, we need a theory of constructible func-

tions on Artin stacks.
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Also, I want to study invariants of moduli

spaces Objαss(τ). For these to be compat-

ible with adding and subtracting subsets,

they must:

• be defined for constructible subsets in

Artin K-stacks;

• take values in an abelian group;

• be additive over finite disjoint unions of

constructible subsets.

Call such an invariant motivic. For in-

stance, Euler characteristics are motivic,

but cohomology is not.

5



Goals of this talk:

To develop tools to use in the programme.

• Describe the theory of constructible func-

tions on Artin stacks, pushforwards and

pullbacks along 1-morphisms, and so on.

• Explain ‘stack functions’, a universal gen-

eralization of constructible functions.

• Explain how to define natural motivic in-

variants of constructible sets in Artin stacks,

such as Euler characteristics and virtual

Hodge and Poincaré polynomials. We do

this by extending known invariants for K-

varieties to stacks.
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2. Constructible functions on C-varieties
Let X be a C-variety. A constructible set

S in X is a finite union of subvarieties in

X, regarded as a set of points in X. If

A, B ⊆ X are constructible and φ : X → Y

a morphism then A ∪ B, A ∩ B, A \ B and

φ∗(A) are constructible.

Call f : X → Q constructible if f(X) is

finite and f−1(c) ⊆ X is constructible for

all c ∈ Q. Write CF(X) for the Q-algebra

of constructible functions on X.

If φ : X → Y is a morphism of C-varieties,

and f ∈ CF(Y ), then f ◦ φ ∈ CF(X). De-

fine the pullback φ∗ : CF(Y ) → CF(X) by

φ∗(f) = f ◦ φ. It is a contravariant func-

tor, i.e. (ψ ◦ φ)∗ = φ∗ ◦ ψ∗ for morphisms

φ : X → Y , ψ : Y → Z.
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Any constructible set A ⊆ X may be writ-

ten as a disjoint union A =
∐n

i=1 Yi for Yi

a (locally closed) subvariety. Define the

Euler characteristic χ(A) =
∑n

i=1 χan(Yi),

where χan(Yi) is the Euler characteristic of

the compactly-supported cohomology of

Yi in the analytic topology.

Write χ(X, f) =
∑

c∈f(X) c · χ(f−1(c)) for

f ∈ CF(X). Following MacPherson, for

φ : X → Y a morphism and f ∈ CF(X),

define the pushforward φ∗(f) ∈ CF(Y ) by

(φ∗(f))(y) = χ(X, f · δφ−1({y})) for y ∈ Y ,

where δφ−1(y) is the characteristic function

of φ−1({y}) ⊆ X. This is functorial, i.e.

(ψ ◦φ)∗ = ψ∗ ◦φ∗, because of good proper-

ties of χan on fibrations. Pushforwards do

not commute with multiplication.
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If W, X, Y, Z are C-varieties and

W η
//

θ²²

Y
ψ

²²

X
φ

// Z

commutes and is a

Cartesian square,

i.e. W is a fibre product X ×φ,Z,ψ Y , then

the following commutes:

CF(W ) η∗ //CF(Y )

CF(X)
φ∗ //

θ∗
OO

CF(Z).
ψ∗

OO

All this extends to K-varieties for K an

algebraically closed field of characteristic

zero (Kennedy,. . . ), defining φ∗ using Eu-

ler characteristic in compactly-supported

l-adic cohomology. But it doesn’t work

in positive characteristic, as counterexam-

ples show (ψ ◦ φ)∗ = ψ∗ ◦ φ∗ must fail.
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3. Extension to Artin stacks

Fix K algebraically closed of characteristic

zero. Artin K-stacks F are a very gen-

eral kind of space in algebraic geometry.

They include K-schemes. Write F(K) for

the set of geometric points of F. Each

x ∈ F(K) has a stabilizer group IsoK(x), an

algebraic K-group, with IsoK(x) = {1} if F

is a scheme. Examples are quotient stacks

[X/G], for X a K-scheme acted on by an

algebraic K-group G.

Call S ⊆ F(K) constructible if S =
⋃n

i=1 Gi(K)

for finite type K-substacks Gi ⊆ F.

Call f : F(K) → Q constructible if f(F(K))

is finite and f−1(c) is constructible for all

0 6= c ∈ Q. Write CF(F) for the Q-algebra

of constructible functions on F.
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For φ : F → G a finite type 1-morphism

and f ∈ CF(G) define the pullback φ∗(g) =

g ◦ φ∗, where φ∗ : F(K) → G(K). Then φ∗ :

CF(G) → CF(F) is a Q-algebra morphism,

and (ψ ◦ φ)∗ = φ∗ ◦ ψ∗.
Defining pushforwards is more difficult,

though: we need a good notion of Eu-

ler characteristic of constructible sets in

Artin stacks. The next theorem, using re-

sults of Kresch and Rosenlicht, is a tool for

extending results from varieties to stacks.

We say F has affine stabilizers if every

IsoK(x) is an affine K-group.

11



Theorem. Let F be a finite type alge-

braic K-stack with affine stabilizers. Then

F(K) =
∐n

i=1 Fi(K), where Fi is a K-substack

of F which is 1-isomorphic to a quotient

stack [Xi/Gi], for Xi a quasiprojective K-

variety and Gi an affine algebraic K-group.

Furthermore there exists a geometric quo-

tient Yi = Xi//Gi, a quasiprojective K-

variety whose points are Gi-orbits in Xi.

Then CF(F) ∼= ⊕n
i=1 CF(Fi) and CF(Fi)

∼=
CF(Yi), so we reduce constructible func-

tions on stacks CF(F) to those on varieties

CF(Yi). Define the näıve Euler character-

istic χna(F) =
∑n

i=1 χ(Yi). It is called näıve

as it takes no account of stabilizer groups.
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Then χna extends to constructible sets,

and for a 1-morphism φ : F → G we can

define CFna(φ) : CF(F) → CF(G), with

CFna(ψ ◦φ) = CFna(ψ)◦CFna(φ). But be-

cause fibre products of stacks involve sta-

bilizer groups, CFna(· · · ) do not commute

with pullbacks in Cartesian squares.

Instead, for representable φ define the stack

pushforward CFstk(φ)f = CFna(φ)(mφ ·f),

where mφ : F(K) → Z with

mφ(x) = χ
(
IsoK(φ∗(x))/φ∗(IsoK(x))

)
.

Then CFstk(ψ ◦ φ) = CFstk(ψ) ◦ CFstk(φ),

and CFstk(· · · ) do commute with pullbacks

in Cartesian squares.
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4. Stack functions

Constructible functions on stacks satisfy:

• To each K-stack F with affine stabilizers,

associate a Q-algebra CF(F).

• Constructible S ⊆ F(K) have character-

istic functions δS ∈ CF(F).

• To each finite type 1-morphism φ : F →
G associate a pullback algebra morphism

φ∗ : CF(G) → CF(F), with (ψ◦φ)∗ = φ∗◦ψ∗.
• To each representable 1-morphism φ :

F → G associate a linear pushforward

CFstk(φ) : CF(G) → CF(F), with

CFstk(ψ ◦ φ) = CFstk(ψ) ◦CFstk(φ).

• In a Cartesian square of Artin K-stacks

E η
//

θ²²

G
ψ

²²

F
φ

// H,

the following

commutes:

CF(E)
CFstk(η)

//CF(G)

CF(F)
CFstk(φ)

//

θ∗
OO

CF(H).
ψ∗

OO
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Stack functions are a universal theory with

this package of properties. Fix an alge-

braically closed field K. Let F be an Artin

K-stack with affine stabilizers. Consider

pairs (R, ρ), where R is finite type with

affine stabilizers and ρ : R → F a repre-

sentable 1-morphism. Call (R, ρ), (R′, ρ′)
equivalent if there is a 1-isomorphism ι :

R → R′ with ρ′ ◦ ι and ρ 2-isomorphic 1-

morphisms R → F.

Write [(R, ρ)] for the equivalence class of

(R, ρ). Define SF(F) to be the Q-vector

space generated by such [(R, ρ)] with for

each closed K-substack S of R a relation

[(R, ρ)] = [(S, ρ|S)] + [(R \S, ρ|R\S)].
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Define multiplication ‘ · ’ on SF(F) by

[(R, ρ)] · [(S, σ)] = [(R×ρ,F,σ S, ρ ◦ πR)].

For G ⊆ F a finite type K-substack with

inclusion ι : G → F define the characteristic

function δ̄G(K) = [(G, ι)].

For φ : F → G of finite type define the

pullback φ∗ : SF(G) → SF(F) by

φ∗ : [(R, ρ)] 7→ [(R×ρ,G,φ F, πF)].

For φ : F → G representable define the

pushforward φ∗ : SF(F) → SF(G) by

φ∗ : [(R, ρ)] 7→ [(R, φ ◦ ρ)].

These satisfy the same properties as the

constructible functions operations. When

charK=0, define πstk
F :SF(F)→CF(F) by

πstk
F : [(R, ρ)] 7→ CFstk(ρ)1,

Then πstk
F takes ‘ · ’,δ̄S,φ∗, φ∗ on SF(· · · ) to

‘ · ’,δS,φ∗, φ∗ on CF(· · · ).
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5. Motivic invariants

Let Υ be an invariant of quasiprojective K-

varieties X up to isomorphism. Suppose:

(i) Υ takes values in a commutative Q-

algebra Λ;

(ii) If Y ⊆ X is a closed subvariety then

Υ(X) = Υ(X \ Y ) + Υ(Y );

(iii) Υ(X × Y ) = Υ(X)Υ(Y );

(iv) Write ` = Υ(K). Then ` and `k−1 for

k = 1,2, . . . are invertible in Λ.

For example, virtual Hodge polynomials

HX(s, t) for K = C and virtual Poincaré

polynomials PX(z) for all K satisfy these,

with Λ an algebra of rational functions of

(s, t) or z. Euler characteristics satisfy (i)-

(iii) but not (iv), since ` = χ(K) = 1 and

`k − 1 = 0 is not invertible.
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We want to extend Υ to Υ′ on Artin stacks.

Using the Theorem in §3 we define a näıve

version Υna(F) =
∑n

i=1 Υ(Yi), ignoring sta-

bilizer groups. But here is a better way.

For F 1-isomorphic to a quotient stack

[X/G] we would like Υ′(F) = Υ(X)Υ(G)−1.

In general this depends on the choice of

X, G, and Υ(G) may not be invertible. But

for special K-groups G it is independent.

Call a K-group G special if every principal

G-bundle is Zariski locally trivial. GL(m,K)

is special. Given [X/G] with G affine, have

[X/G] ∼= [X ×G GL(m,K)/GL(m,K)] for

some m. If π : X → Y is a Zariski locally

trivial fibration of K-varieties with fibre F

then Υ(X) = Υ(Y )Υ(F ). Part (iv) im-

plies Υ(G) is invertible in Λ for special G.
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Suppose F ∼= [X/G] ∼= [Y/H] for special

G, H. Define Z = X ×F Y , an algebraic

K-space, but treat it as a variety. Then

Z has a G ×H action with Z/H ∼= X and

Z/G ∼= Y , and projections Z → X, Z →
Y are principal H, G-bundles. As G, H are

special these are Zariski locally trivial, so

Υ(Z) = Υ(X)Υ(H) = Υ(Y )Υ(G). Thus

Υ(X)Υ(G)−1 = Υ(Y )Υ(H)−1.

Using this we define Υ′(F) for finite type

F with affine stabilizers, with Υ′([X/G]) =

Υ(X)Υ(G)−1 for G special, and Υ′(F) =

Υ′(G) + Υ′(F \ G) for closed G ⊆ F, and

Υ′(F×G) = Υ′(F)Υ′(G). Also define Υ′(S)

for constructible sets S ⊆ F(K). Then

Υ′(Objαss(τ)) will be invariants ‘counting’

τ-semistables with nice properties.
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6. Twisting stack functions

by motivic invariants

For F a K-stack with affine stabilizers and

Υ,Λ as in §5, define SF(F,Υ,Λ) to be the

Λ-module generated by [(R, ρ)] as in §4
with relations:

(i) for S ⊆ R a closed K-substack

[(R, ρ)] = [(S, ρ|S)] + [(R \S, ρ|R\S)],

(ii) if U is a quasiprojective K-variety and

πR : R× U → R the projection then

[(R× U, ρ ◦ πR)] = Υ([U ])[(R, ρ)].

(iii) If R ∼= [X/G] with G special and π :

X → G the projection then

[(R, ρ)] = Υ([G])−1[(X, ρ ◦ π)].

These relations are compatible with the

definitions of ‘ · ’,δ̄S,φ∗, φ∗, so all the oper-

ations on SF(· · · ) extend to SF(· · · ,Υ,Λ).
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Using Υ′ we prove SF(SpecK,Υ,Λ) ∼= Λ.

The space SF(F,Υ,Λ) is like Λ-valued con-

structible functions CF(F)⊗QΛ, with push-

forwards φ∗ defined by ‘integration’ along

the fibres of φ using Υ rather than χ.

But SF(· · · ,Υ,Λ) pushforwards satisfy

(ψ ◦ φ)∗ = ψ∗ ◦ φ∗, which does not hold

for such CF(F)⊗Q Λ pushforwards.

There are other ways to make stack func-

tion spaces twisted by motivic invariants,

some of which ‘abelianize’ stabilizer groups,

interesting projections on stack function

spaces, and so on. These will be impor-

tant tools in my programme to define al-

gebras and invariants from an abelian cat-

egory with a stability condition.
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