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1. Introduction

Let P be a projective K-scheme, coh(P)
the abelian category of coherent sheaves
on P, and (7,T,<) a stability condition on
coh(P) — for instance, Gieseker stability
w.r.t. some ample line bundle L. Then we
can form moduli spaces Obj g (1), Objgs(7)
of 7-(semi)stable sheaves in coh(P) with
fixed Chern character a € HEVE"(P).
Basically these moduli spaces are sets of
isomorphism (or other equivalence) classes
of sheaves, upon which we hope to put
some algebraic structure (K-scheme, alge-
braic K-space,...).

The usual approach is to use S-equivalence
rather than isomorphism, and make

Obj&(7) into a coarse moduli scheme.
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But I'm interested in comparing moduli
spaces ODbjgs(7),Objs(7) for two differ-
ent stability conditions (7, 7T,<), (7,1T,<) —
say, defined using different ample line bun-
dles L,L. To do this we want to regard
Objd(7),0Objs(7) as subsets of a larger
‘moduli space’ Objqnpy(K) of all coher-
ent sheaves. To define Obj.op(p)(K) we
can’'t use S-equivalence as this depends on
T, SO use isomorphism.

The right framework is Artin stacks. That
is, there is a natural moduli stack Objon(p)
of coherent sheaves on P such that the
set of K-points Obj.qn(p)(K) is the set of
iIsomorphism classes of coherent sheaves.
Then Obj&(7),Objd(7) are constructible
subsets in Objcon(p).



My plan for relating - and 7-semistability
is to construct Objgs(7) from the ODb] ?S(T)
by adding and subtracting subsets of [ X] €
Dbjcoh(P)(K) with filtrations of the form
O=Ag C A1 C --- C Ap = X with §; =
A;/A;_1 T-semistable.

A convenient way to do this is to repre-
sent a constructible set ObjS(7) by its
characteristic function, and work with con-
structible functions on Objqn(py; then can
add and subtract functions rather than sets.
So, we need a theory of constructible func-

tions on Artin stacks.



Also, I want to study invariants of moduli
spaces Obj& (7). For these to be compat-
ible with adding and subtracting subsets,
they must:

e be defined for constructible subsets in
Artin K-stacks;

e take values in an abelian group;

e be additive over finite disjoint unions of
constructible subsets.

Call such an invariant motivic. For in-
stance, Euler characteristics are motivic,

but cohomology is not.



Goals of this talk:

To develop tools to use in the programme.
e Describe the theory of constructible func-
tions on Artin stacks, pushforwards and
pullbacks along 1-morphisms, and so on.
e EXplain ‘stack functions’, a universal gen-
eralization of constructible functions.

e Explain how to define natural motivic in-
variants of constructible sets in Artin stacks,
such as Euler characteristics and virtual
Hodge and Poincaré polynomials. We do
this by extending known invariants for K-

varieties to stacks.



2. Constructible functions on C-varieties
Let X be a C-variety. A constructible set
S in X is a finite union of subvarieties in
X, regarded as a set of points in X. If
A, B C X are constructible and ¢ : X — Y
a morphism then AUB, AnB, A\ B and
o« (A) are constructible.

Call f : X — Q constructible if f(X) is
finite and f~1(¢) C X is constructible for
all c € Q. Write CF(X) for the Q-algebra
of constructible functions on X.

If . X —- Y is a morphism of C-varieties,
and f € CF(Y), then fo¢ € CF(X). De-
fine the pullback ¢* : CF(Y) — CF(X) by
o*(f) = foo. It is a contravariant func-
tor, i.e. (Y o @)* = ¢* o ™ for morphisms
. X—-Y, V.Y — 2.



Any constructible set A C X may be writ-
ten as a disjoint union A = 1Il'_1 Y; for Y;
a (locally closed) subvariety. Define the
Euler characteristic x(A) = X1 x*"(Y;),
where x2"(Y;) is the Euler characteristic of
the compactly-supported cohomology of
Y; in the analytic topology.

Write x(X,f) = Zcepx)c- y(f~1(c)) for
f € CF(X). Following MacPherson, for
¢ : X — Y a morphism and f € CF(X),
define the pushforward ¢«(f) € CF(Y) by
(0x(IN(W) = x(X, f - dy-1(g1)) TOr y €Y,
where 5¢_1(y) IS the characteristic function
of o~1({y}) C X. This is functorial, i.e.
(o)« = 1«0 s, because of good proper-
ties of x" on fibrations. Pushforwards do
not commute with multiplication.



If W, X,Y,Z are C-varieties and

W——5—Y commutes and is a
0 4 Y c .
X 7 artesian square,

l.e. W is a fibre product X Xy 7, Y, then
the following commutes:

CF(W) o, CF(Y)
| 6% 5 * |
CF(X) * CF(2).

All this extends to K-varieties for K an
algebraically closed field of characteristic
zero (Kennedy,. .. ), defining ¢« using Eu-
ler characteristic in compactly-supported
[-adic cohomology. But it doesn’'t work
In positive characteristic, as counterexam-
ples show (1 o0 @)« = ¥« 0 d« must fail.
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3. Extension to Artin stacks
Fix K algebraically closed of characteristic
zero. Artin K-stacks § are a very gen-
eral kind of space in algebraic geometry.
They include K-schemes. Write §(K) for
the set of geometric points of §. Each
x € §(K) has a stabilizer group Isox(x), an
algebraic K-group, with Isog(x) = {1} if §
IS @ scheme. Examples are quotient stacks
[X/G], for X a K-scheme acted on by an
algebraic K-group G.
Call S C §(K) constructibleif S = U!'—; 6;(K)
for finite type K-substacks &; C §.
Call f: 3(K) — Q constructible if f(F(K))
is finite and f~1(¢) is constructible for all
0 #ce Q. Write CF(§) for the Q-algebra

of constructible functions on §.
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For ¢ . § — & a finite type 1-morphism
and f € CF(®) define the pullback ¢*(g) =
g o ¢x, Where ¢, : F(K) — &(K). Then ¢*:
CF(®) — CF (%) is a Q-algebra morphism,
and (Yo @) = ¢ o™

Defining pushforwards is more difficult,
though: we need a good notion of Eu-
ler characteristic of constructible sets in
Artin stacks. The next theorem, using re-
sults of Kresch and Rosenlicht, is a tool for
extending results from varieties to stacks.
We say § has affine stabilizers if every

Isox(x) is an affine K-group.
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Theorem. Let § be a finite type alge-
braic K-stack with affine stabilizers. Then
§(K) = 11" §:(K), where §; is a K-substack
of § which is 1-isomorphic to a quotient
stack [X;/G;], for X; a quasiprojective K-
variety and G, an affine algebraic K-group.
Furthermore there exists a geometric quo-
tient Y; = X,;//G;, a quasiprojective K-
variety whose points are G;-orbits in X;.

Then CF(F) = @)1 CF(3;) and CF(F;) =
CF(Y;), so we reduce constructible func-
tions on stacks CF(¥) to those on varieties
CF(Y;). Define the naive Euler character-
istic x"(§) = = x(Y;). It is called naive
as it takes no account of stabilizer groups.
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Then x"@ extends to constructible sets,
and for a 1-morphism ¢ : § — & we can
define CF"9(¢) : CF(¥) — CF(®), with
CF" (o) = CF"(yp) o CF"(¢). But be-
cause fibre products of stacks involve sta-
bilizer groups, CF"4(...) do not commute
with pullbacks in Cartesian squares.
Instead, for representable ¢ define the stack
pushforward CFSt™(¢) f = CF"3(¢)(my- f),
where mgy : §(K) — Z with

mg(2) = x(Is0g (¢:(2))/$«(Is0x (2))).
Then CFSYK(y o ¢) = CFStK(w)) o CFSK(4),
and CFSYK(...) do commute with pullbacks

in Cartesian squares.
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4. Stack functions
Constructible functions on stacks satisfy:
e [0 each K-stack § with affine stabilizers,
associate a Q-algebra CF(J¥).

e Constructible S C §(K) have character-
istic functions g € CF(J).

e TO each finite type 1-morphism ¢ : § —
® associate a pullback algebra morphism
" CF(®) — CF(F), with (¢Yod)* = o™ orp™.
e TO each representable 1-morphism ¢ :
§ — & associate a linear pushforward
CFStK(¢) : CF(®) — CF(F), with

CFs™ (4 0 ) = CF™K () o CF5t™K(g).

e In a Cartesian square of Artin K-stacks

€ 58 the following CF(€) e, s CF(®)
l@ gb?’bl : T@* CFStk(qb) *T
§—"-9, commutes: CF(S) CF(f))
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Stack functions are a universal theory with
this package of properties. Fix an alge-
braically closed field K. Let § be an Artin
K-stack with affine stabilizers. Consider
pairs (PR, p), where R is finite type with
affine stabilizers and p : R — § a repre-
sentable 1-morphism. Call (%R, p), (R, p)
equivalent if there is a 1-isomorphism ¢ :
R — R with p’ o and p 2-isomorphic 1-
morphisms ‘R — §.

Write [(SR, p)] for the equivalence class of
(R, p). Define SF(F) to be the Q-vector
space generated by such [(fR, p)] with for
each closed K-substack G of R a relation

[(R, p)] = [(6, ple)] + [(R\ &, pln\)]-
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Define multiplication *-' on SF(F) by
(R, 0)] - [(8,0)] = [(R x50 6, pomw)].
For & C § a finite type K-substack with
inclusion ¢ : & — § define the characteristic
function dgxy = [(&,1)].
For ¢ : § — & of finite type define the
pullback ¢* : SF(®) — SF(¥) by
I 0)] = (R X665 7)1
For ¢ : § — & representable define the
pushforward ¢« : SF(§) — SF(&) by
« 1 [(R,p)] = [(R, 9 0p)].
These satisfy the same properties as the
constructible functions operations. When
charK=0, define 73'¥:SF () — CF(3) by
w3 (R, p)] — CF™(p)1,
Then w%tk takes '-',8g,0%, ¢+ on SF(---) to
06,0, p« On CF(---).
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5. Motivic invariants
Let YV be an invariant of quasiprojective K-
varieties X up to isomorphism. Suppose:
(i) T takes values in a commutative Q-
algebra A;
(ii) If Y C X is a closed subvariety then
T(X)=TX\Y)+T);
(i) T(X xY) =7T(X)T(Y);
(iv) Write £ = T(K). Then ¢ and ¢k —1 for
k= 1,2,... are invertible in A.
For example, virtual Hodge polynomials
Hx(s,t) for K = C and virtual Poincaré
polynomials Px(z) for all K satisfy these,
with A an algebra of rational functions of
(s,t) or z. Euler characteristics satisfy (i)-
(iii) but not (iv), since £ = x(K) = 1 and
¢k — 1 =0 is not invertible.
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We want to extend Y to Y/ on Artin stacks.
Using the Theorem in 33 we define a naive
version TM3(F) = x4 T(Y;), ignoring sta-
bilizer groups. But here is a better way.

For § 1l-isomorphic to a quotient stack
[X/G] we would like T/ (§) = T(X)T(&) L.
In general this depends on the choice of
X, G, and T(G) may not be invertible. But
for special K-groups G it is independent.

Call a K-group G special if every principal
G-bundle is Zariski locally trivial. GL(m, K)
is special. Given [X/G] with G affine, have
| X/G] = [X xg GL(m,K)/GL(m,K)] for
some m. If #: X — Y is a Zariski locally
trivial fibration of K-varieties with fibre F
then T(X) = T(Y)T(F). Part (iv) im-
plies T(G) is invertible in A for special G.
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Suppose § = [X/G] = [Y/H] for special
G,H. Define Z = X Xz Y, an algebraic
K-space, but treat it as a variety. Then
Z has a G x H action with Z/H = X and
Z/G =Y, and projections 7 — X, Z —
Y are principal H,G-bundles. As G, H are
special these are Zariski locally trivial, so
T(Z)="T(X)Y(H) = TY)YT(G). Thus
TX)T(E) L =rMTr@E) 1.

Using this we define Y/(§) for finite type
§ with affine stabilizers, with T/([X/G]) =
T(X)T(G)~ ! for G special, and YT/(§) =
T(6) + T/ (F\ &) for closed & C §, and
T'(Fx®) = T'(F)T'(&). Also define T/(S)
for constructible sets § C F(K). Then
T/(ObjZ (7)) will be invariants ‘counting’

T-semistables with nice properties.
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6. Twisting stack functions
by motivic invariants
For § a K-stack with affine stabilizers and
T,A\ as in §5, define SF(F, T,A\) to be the
A-module generated by [(fR,p)] as in §4
with relations:
(i) for & C R a closed K-substack
(R, )] = [(&, ple)] + [(R\ 6, plon )],
(ii) if U is a quasiprojective K-variety and
i - R X U — R the projection then
(R x U, pomyr)] = T(UDIR, p)].

(iii) If ® = [X/G] with G special and 7 :
X — G the projection then

(R, 0)] = TG (X, pom)].
These relations are compatible with the
definitions of ‘-’,3g,¢*, ¢«, SO all the oper-
ations on SF(---) extend to SF(---,T,A).

20



Using T/ we prove SF(SpecK, T,A) £ A.
The space SF(F, T, A\) is like A-valued con-
structible functions CF(§)®qgA, with push-
forwards ¢« defined by ‘integration’ along
the fibres of ¢ using T rather than .
But SF(---,7T,A) pushforwards satisfy
(v 0 d)x = 1« 0 ¢x, Which does not hold
for such CF(J) ®g A pushforwards.

There are other ways to make stack func-
tion spaces twisted by motivic invariants,
some of which ‘abelianize’ stabilizer groups,
interesting projections on stack function
spaces, and so on. These will be impor-
tant tools in my programme to define al-
gebras and invariants from an abelian cat-
egory with a stability condition.
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