Configurations in abelian categories: introduction, and **Ringel–Hall algebras** Dominic Joyce, Oxford based on math.AG/0312190, math.AG/0503029.

These slides available at www.maths.ox.ac.uk/~joyce/talks.html

1. The basic idea

Let \mathcal{A} be an abelian category. We will define configurations (σ, ι, π) in \mathcal{A} , collections of objects and morphisms in \mathcal{A} attached to a *finite poset* (I, \preceq) , satisfying axioms. They are a new tool for describing how an object in \mathcal{A} breaks up into subobjects. They are useful for studying stability conditions on \mathcal{A} .

We shall define *moduli stacks* $\mathfrak{Obj}_{\mathcal{A}}$ and $\mathfrak{M}(I, \preceq)_{\mathcal{A}}$ of objects and (I, \preceq) configurations in \mathcal{A} , and many 1*morphisms* between them.

Pushforwards and pullbacks along 1-morphisms give linear maps on *constructible* and *stack functions* $CF, SF(\mathfrak{Obj}_{\mathcal{A}})$ and $CF, SF(\mathfrak{M}(I, \preceq)_{\mathcal{A}})$. Combining these gives algebraic operations on $CF(\mathfrak{Obj}_{\mathcal{A}})$ and $SF(\mathfrak{Obj}_{\mathcal{A}})$, in particular an associative multiplication * making $CF, SF(\mathfrak{Obj}_{\mathcal{A}})$ into *infinite-dimensional algebras*.

2. Configurations

Let \mathcal{A} be an abelian category and $X \in \mathcal{A}$. A *subobject* $S \subset X$ is an equivalence class of injective $i : S \to X$. Call $0 \neq X \in \mathcal{A}$ *simple* if the only

subobjects $S \subset X$ are 0, X.

Jordan-Hölder Theorem. For \mathcal{A} of finite length and Xin \mathcal{A} , there exist subobjects $0 = A_0 \subset A_1 \subset \cdots \subset A_n = X$ with $S_k = A_k/A_{k-1}$ simple, and n, S_k unique up to order, iso.

Let S_1, \ldots, S_n be pairwise non*isomorphic*. Write $\{S_1, \ldots, S_n\}$ $= \{S^i : i \in I\}, \text{ for } I \text{ a finite}$ indexing set, |I| = n. Then for each composition series $0 = B_0 \subset B_1 \subset \cdots \subset B_n = X$ with $T_k = B_k/B_{k-1}$, there is a unique *bijection* $\phi : I \rightarrow \{1, ..., n\}$ with $S^i \cong T_{\phi(i)}$, all $i \in I$. Define a *partial order* \leq on *I* by $i \prec j$ if $\phi(i) \leq \phi(j)$ for all ϕ from composition series as above.

Call $J \subseteq I$ an *s*-set if $i \in I$, $j \in J$ and $i \preceq j \Rightarrow i \in J$.

Call $J \subseteq I$ an *f-set* if $i \in I$, $h, j \in J$ and $h \preceq i \preceq j \Rightarrow i \in J$.

There are 1-1 correspondences:

• subobjects $S \subset X \leftrightarrow s$ -sets $J \subseteq I$, where S has simple factors S^j , $j \in J$. If $S, T \leftrightarrow J, K$ then $S \subset T \Leftrightarrow J \subseteq K$.

• factors F = T/S for $S \subset T \subset X$ \leftrightarrow f-sets $J \subseteq I$, where F has simple factors S^j , $j \in J$.

• composition series $0 = B_0 \subset B_1 \subset \cdots \subset B_n = X \leftrightarrow$ bijections $\phi : I \rightarrow \{1, \ldots, n\}$ with $i \leq j \Rightarrow \phi(i) \leq \phi(j)$.

Definition. Let (I, \preceq) be a finite poset. Write $\mathcal{F}_{(I, \preceq)}$ for the set of f-sets of I. Define $\mathcal{G}_{(I, \preceq)}$ to be the subset of $(J, K) \in \mathcal{F}_{(I, \preceq)} \times \mathcal{F}_{(I, \preceq)}$ such that $J \subseteq K$, and if $j \in J$ and $k \in K$ with $k \preceq j$, then $k \in J$. Define $\mathcal{H}_{(I, \preceq)} = \{(K, K \setminus J) : (J, K) \in \mathcal{G}_{(I, \preceq)}\}.$

Define an (I, \preceq) -configuration (σ, ι, π) in an abelian category \mathcal{A} to be maps $\sigma : \mathcal{F}_{(I, \preceq)} \to \operatorname{Obj}(\mathcal{A})$, $\iota : \mathcal{G}_{(I, \preceq)} \to \operatorname{Mor}(\mathcal{A})$, and $\pi : \mathcal{H}_{(I, \preceq)} \to \operatorname{Mor}(\mathcal{A})$, where $\iota(J, K), \pi(J, K)$ are morphisms $\sigma(J) \to \sigma(K)$.

These should satisfy the conditions: (A) Let $(J, K) \in \mathcal{G}_{(I, \preceq)}$ and set $L = K \setminus J$. Then the following is exact in \mathcal{A} :

$$0 \longrightarrow \sigma(J) \xrightarrow{\iota(J,K)} \sigma(K) \xrightarrow{\pi(K,L)} \sigma(L) \longrightarrow 0.$$

(B) If
$$(J, K) \in \mathcal{G}_{(I, \preceq)}$$
 and $(K, L) \in \mathcal{G}_{(I, \preceq)}$
then $\iota(J, L) = \iota(K, L) \circ \iota(J, K)$.
(C) If $(J, K) \in \mathcal{H}_{(I, \preceq)}$ and $(K, L) \in \mathcal{H}_{(I, \preceq)}$
then $\pi(J, L) = \pi(K, L) \circ \pi(J, K)$.
(D) If $(J, K) \in \mathcal{G}_{(I, \preceq)}$ and $(K, L) \in \mathcal{H}_{(I, \preceq)}$ then
 $\pi(K, L) \circ \iota(J, K) = \iota(J \cap L, L) \circ \pi(J, J \cap L)$.

This encodes the properties of the set of subobjects $S \subset X$ when X has nonisomorphic simple factors.

Theorem 1. Let \mathcal{A} have finite length, $X \in \mathcal{A}$ have nonisomorphic simple factors $\{S^i : i \in I\}$, and \preceq be as before. Then there exists an (I, \preceq) -configuration (σ, ι, π) with $\sigma(I) = X$, unique up to isomorphism, such that if a subobject $S \subset$ X has simple factors $\{S^j : j \in J\}$, then S is represented by $\iota(J,I)$: $\sigma(J) \to X.$

Quotient configurations

Let (I, \preceq) , (K, \trianglelefteq) be finite posets, and ϕ : $I \rightarrow K$ surjective with $i \preceq j$ implies $\phi(i) \trianglelefteq \phi(j)$. Let (σ, ι, π) be an (I, \preceq) -configuration. Define the *quotient* (K, \trianglelefteq) -configuration $(\tilde{\sigma}, \tilde{\iota}, \tilde{\pi})$ to be $(\sigma \circ \phi^*, \iota \circ \phi^*, \pi \circ \phi^*)$, where $\phi^* : \mathcal{F}_{(K, \trianglelefteq)}, \mathcal{G}_{(K, \trianglelefteq)}, \mathcal{H}_{(K, \oiint)} \rightarrow \mathcal{F}_{(I, \preceq)}, \mathcal{G}_{(I, \preceq)}, \mathcal{H}_{(I, \preceq)}$ pulls back subsets of K to subsets of I.

Subconfigurations

Let J be an f-set in (I, \preceq) . Then (J, \preceq) is a poset with $\mathcal{F}_{(J, \preceq)} \subseteq \mathcal{F}_{(I, \preceq)}$, etc. Define the (J, \preceq) -subconfiguration (σ', ι', π') of (σ, ι, π) to be $(\sigma|_{\mathcal{F}_{(J, \preceq)}}, \iota|_{\mathcal{G}_{(J, \preceq)}}, \pi|_{\mathcal{H}_{(J, \preceq)}})$. We can also combine configurations by substituting one in another.

Examples. A $(\{1\}, \leq)$ -configuration is an object $\sigma(\{1\})$ in \mathcal{A} . A ({1,2}, \leqslant)-configuration (σ, ι, π) is a short exact sequence $0 \rightarrow \sigma(\{1\}) \xrightarrow{\iota} \sigma(\{1,2\}) \xrightarrow{\pi} \sigma(\{2\}) \rightarrow 0.$ Essentially this says $\sigma(\{1,2\})$ has a subobject $\sigma(\{1\}) \subset \sigma(\{1,2\})$. A ({1,2,3}, \leqslant)-configuration (σ,ι,π) is equivalent to a pair of subobjects $\sigma(\{1\}) \subset \sigma(\{1,2\}) \subset \sigma(\{1,2,3\}).$ The $(\{1,2\},\leqslant)$ -subconfiguration is the subobject $\sigma(\{1\}) \subset \sigma(\{1,2\})$. Define $\phi : \{1, 2, 3\} \to \{1, 2\}$ by $1 \mapsto 1, 2, 3 \mapsto 2$. Then the *quotient* $(\{1,2\},\leqslant)$ -configuration is the subobject $\sigma(\{1\}) \subset \sigma(\{1,2,3\})$.

3. Moduli stacks

Let \mathbb{K} be an algebraically closed field. Artin \mathbb{K} -stacks \mathfrak{F} are a very general kind of space in algebraic geometry, useful for moduli problems. They include \mathbb{K} -schemes. Write $Sch_{\mathbb{K}}$ for the 2-*category of* \mathbb{K} -*schemes*, with the *étale topology*. Then a \mathbb{K} -stack is a *sheaf of groupoids* on $Sch_{\mathbb{K}}$. For a \mathbb{K} -stack \mathfrak{F} , write $\mathfrak{F}(\mathbb{K})$ for the set of geometric points of \mathfrak{F} . Then each $x \in \mathfrak{F}(\mathbb{K})$ has a stabilizer group $Iso_{\mathbb{K}}(x)$. If \mathfrak{F} is a \mathbb{K} scheme then $Iso_{\mathbb{K}}(x) = \{1\}$ for all x.

Let \mathcal{A} be a \mathbb{K} -linear abelian category. To form moduli stacks in \mathcal{A} we need some *extra data*. Let $\mathfrak{F}_{\mathcal{A}}$ be a *sheaf of exact categories* on $\mathrm{Sch}_{\mathbb{K}}$ with $\mathfrak{F}_{\mathcal{A}}(\mathrm{Spec}\,\mathbb{K}) = \mathcal{A}$. If $U \in \mathrm{Sch}_{\mathbb{K}}$, we interpret $\mathfrak{F}_{\mathcal{A}}(U)$ as the exact category of *families of objects and morphisms* in \mathcal{A} parametrized by the *base* \mathbb{K} -*scheme* U.

If $\mathcal{A}, \mathfrak{F}_{\mathcal{A}}$ satisfy some conditions then for finite posets (I, \preceq) we define the *moduli* \mathbb{K} -stack of (I, \preceq) -configurations $\mathfrak{M}(I, \preceq)$. Here $\mathfrak{M}(I, \preceq)(U)$ is the groupoid of (I, \preceq) configs in the exact category $\mathfrak{F}_{\mathcal{A}}(U)$. Then $\mathfrak{M}(I, \preceq)(\mathbb{K})$ is the set of iso. classes $[(\sigma, \iota, \pi)]$ of (I, \preceq) -configurations (σ, ι, π) in \mathcal{A} , and $\operatorname{Iso}_{\mathbb{K}}([(\sigma, \iota, \pi)]) = \operatorname{Aut}((\sigma, \iota, \pi)).$ We also define many 1-*morphisms* between the $\mathfrak{M}(I, \preceq)$ and $\mathfrak{Obj}_{\mathcal{A}}$. E.g., if $J \subseteq I$ is an f-set, $S(I, \preceq, J) : \mathfrak{M}(I, \preceq) \to \mathfrak{M}(J, \preceq)$ takes (I, \preceq) -configs to (J, \preceq) -subconfigs, and $\sigma(J) : \mathfrak{M}(I, \preceq) \to \mathfrak{Obj}_{\mathcal{A}}$ takes (σ, ι, π) to $\sigma(J)$. These 1-morphisms often form *Cartesian squares*.

Examples. We can define $\mathcal{A}, \mathfrak{F}_{\mathcal{A}}$ satisfying the conditions, and get well-defined moduli stacks $\mathfrak{M}(I, \preceq)$, when

• $\mathcal{A} = \text{mod-}\mathbb{K}Q$, the abelian category of \mathbb{K} -representations of a (finite) quiver Q.

• $\mathcal{A} = \text{mod-}\mathbb{K}Q/I$, representations of a *quiver with relations* (Q, I).

• $\mathcal{A} = \operatorname{coh}(P)$, coherent sheaves on a projective \mathbb{K} -scheme P.

4. Recap of last seminar

Constructible functions on stacks satisfy: • To each \mathbb{K} -stack \mathfrak{F} with affine stabilizers, associate a \mathbb{Q} -algebra $CF(\mathfrak{F})$.

• Constructible $S \subseteq \mathfrak{F}(\mathbb{K})$ have characteristic functions $\delta_S \in CF(\mathfrak{F})$.

To each finite type 1-morphism φ : 𝔅 → 𝔅 associate a *pullback* algebra morphism φ^{*} : CF(𝔅) → CF(𝔅), with (ψ∘φ)^{*} = φ^{*}∘ψ^{*}.
When char 𝔣 = 0, to each representable 1-morphism φ : 𝔅 → 𝔅 associate a linear *pushforward* CF^{stk}(φ) : CF(𝔅) → CF(𝔅), with CF^{stk}(ψ∘φ) = CF^{stk}(ψ) ∘ CF^{stk}(φ).

● In a *Cartesian square* of Artin K-stacks

 $\begin{array}{c} \mathfrak{E} \xrightarrow{\eta} \mathfrak{G} \\ \downarrow \theta \\ \psi \\ \mathfrak{F} \xrightarrow{\phi} \mathfrak{H}, \end{array} \text{ the following } \begin{array}{c} \mathsf{CF}(\mathfrak{E}) \\ \uparrow \theta^* \\ \mathsf{CF}^{\mathsf{stk}}(\eta) \\ \mathsf{CF}^{\mathsf{stk}}(\phi) \\ \mathsf{CF}^{\mathsf{stk}}(\phi) \\ \mathsf{CF}^{\mathsf{stk}}(\phi) \end{array} \end{array}$

Stack functions also have these properties.

5. Ringel–Hall algebras

Let $\mathcal{A}, \mathfrak{F}_{\mathcal{A}}$ be as usual. Write $\mathfrak{Dbj}_{\mathcal{A}}$ for the moduli stack of objects in \mathcal{A} . Then there are 1-morphisms $\sigma(\{1\}), \sigma(\{2\}), \sigma(\{1,2\})$: $\mathfrak{M}(\{1,2\},\leqslant) \to \mathfrak{Dbj}_{\mathcal{A}}$ taking a $(\{1,2\},\leqslant)$ config (σ,ι,π) to $\sigma(\{1\}), \sigma(\{2\}), \sigma(\{1,2\})$. Define a multiplication \ast on CF $(\mathfrak{Dbj}_{\mathcal{A}})$ by $f \ast g = CF^{\mathsf{stk}}(\sigma(\{1,2\}))[\sigma(\{1\})^{\ast}(f) \cdot \sigma(\{2\})^{\ast}(g)].$ Similarly, on SF $(\mathfrak{Dbj}_{\mathcal{A}})$ define

 $f * g = \sigma(\{1,2\})_* [(\sigma(\{1\}) \times \sigma(\{2\}))^* (f \otimes g)].$ This is essentially the *Ringel-Hall algebra* idea. In physics terms, think of them as *algebras of BPS states*.

To prove * is *associative*, consider the commutative diagram of 1-morphisms:

$$\begin{array}{c} \mathfrak{Obj}_{\mathcal{A}} \times \mathfrak{Obj}_{\mathcal{A}} \times \mathfrak{Obj}_{\mathcal{A}} & \longrightarrow \mathfrak{Obj}_{\mathcal{A}} \times \mathfrak{Obj}_{\mathcal{A}} \\ & \stackrel{\mathsf{id} \times \sigma(2) \times \sigma(3)}{\sigma(1) \times \sigma(2) \times \mathsf{id}} & \stackrel{\mathsf{id} \times \sigma(2,3)}{\sigma(1) \times \sigma(2)} \\ \mathfrak{M}(\{1,2\},\leqslant)_{\mathcal{A}} \times \mathfrak{Obj}_{\mathcal{A}} & \stackrel{\beta}{\longrightarrow} \mathfrak{M}(\{1,2,3\},\leqslant)_{\mathcal{A}} & \stackrel{\gamma}{\longrightarrow} \mathfrak{M}(\{1,2\},\leqslant)_{\mathcal{A}} \\ & \stackrel{\sigma(1,2) \times \mathsf{id}}{\sigma(1,2) \times \mathsf{id}} & \stackrel{\gamma}{\swarrow} \mathfrak{M}(\{1,2\},\leqslant)_{\mathcal{A}} & \stackrel{\sigma(1,2)}{\longrightarrow} \mathfrak{Obj}_{\mathcal{A}}. \end{array}$$

The top right and bottom left squares are *Cartesian*, so the following commutes:

$$\begin{array}{c} \mathsf{CF}\left(\mathfrak{Dbj}_{\mathcal{A}}\times\mathfrak{Dbj}_{\mathcal{A}}\otimes\mathfrak{Dbj}_{\mathcal{A}}\right) &\cong \mathsf{CF}\left(\mathfrak{Dbj}_{\mathcal{A}}\times\mathfrak{M}(\{2,3\},\leqslant)_{\mathcal{A}}\right) \longrightarrow \mathsf{CF}\left(\mathfrak{Dbj}_{\mathcal{A}}\times\mathfrak{Dbj}_{\mathcal{A}}\right) \\ & \left| \begin{array}{c} (\mathsf{id}\times\sigma(2)\times\sigma(3))^{*} & & & \mathsf{CF}^{\mathsf{stk}}(\mathsf{id}\times\sigma(2,3)) \\ (\mathsf{id}\times\sigma(2)\times\mathsf{id})^{*} & & & & \mathsf{CF}^{\mathsf{stk}}(\mathsf{id}\times\sigma(2,3)) \\ \\ \mathsf{CF}\left(\mathfrak{M}(\{1,2\},\leqslant)_{\mathcal{A}}\times\mathfrak{Dbj}_{\mathcal{A}}\right) &\cong \mathsf{CF}\left(\mathfrak{M}(\{1,2,3\},\leqslant)_{\mathcal{A}}\right) \longrightarrow \mathsf{CF}\left(\mathfrak{M}(\{1,2\},\leqslant)_{\mathcal{A}}\right) \\ & \left| \begin{array}{c} \mathsf{CF}^{\mathsf{stk}}(\sigma(1,2)\times\mathsf{id}) & & & \\ \\ \mathsf{CF}^{\mathsf{stk}}(\sigma(1,2)\times\mathsf{id}) & & & \\ \\ \mathsf{CF}\left(\mathfrak{Dbj}_{\mathcal{A}}\times\mathfrak{Dbj}_{\mathcal{A}}\right)^{(\underline{\sigma}(1)\times\sigma(2))^{*}} & \mathsf{CF}\left(\mathfrak{M}(\{1,2\},\leqslant)_{\mathcal{A}}\right) \xrightarrow{\mathsf{CF}^{\mathsf{stk}}(\sigma(1,2))} \\ \\ \mathsf{CF}\left(\mathfrak{Dbj}_{\mathcal{A}}\times\mathfrak{Dbj}_{\mathcal{A}}\right)^{(\underline{\sigma}(1)\times\sigma(2))^{*}} & \mathsf{CF}\left(\mathfrak{M}(\{1,2\},\leqslant)_{\mathcal{A}}\right) \xrightarrow{\mathsf{CF}^{\mathsf{stk}}(\sigma(1,2))} \\ \end{array} \right) \\ \end{array}$$

Applying the two routes round the outside to $f \otimes g \otimes h$ proves (f * g) * h = f * (g * h).

We can translate work by many authors into the configurations framework to give geometric realizations of interesting algebras such as universal enveloping algebras of Kac–Moody algebras $U(\mathfrak{g})$ as algebras of constructible functions on $\mathfrak{Obj}_{\mathcal{A}}$, where \mathcal{A} is mod- $\mathbb{K}Q$ or mod- $\mathbb{K}Q/I$ for a *quiver* Q. We can also do a lot more. There are other ways to use configuration 1-morphisms to define associative multiplications on $CF(\mathfrak{M}(I, \preceq))$, and *comultiplications* to make Hopf algebras. The Drinfeld double construction has a configuration explanation, I believe. And so on.

6. Indecomposables and Lie algebras

Call $X \in \mathcal{A}$ indecomposable if $X \not\cong 0$ and $X \not\cong Y \oplus Z$ for any $Y, Z \not\cong 0$. Any $X \in \mathcal{A}$ has $X \cong X_1 \oplus \cdots \oplus X_n$ for X_a indecomposable and unique up to order, isomorphism.

Write $CF^{ind}(\mathfrak{Dbj}_{\mathcal{A}})$ for the subspace of $f \in CF(\mathfrak{Dbj}_{\mathcal{A}})$ supported on points [X] for X indecomposable. If $f,g \in CF^{ind}(\mathfrak{Dbj}_{\mathcal{A}})$ then f * g is supported on [X] with 1 or 2 indecomposable factors, and $(f * g)([X \oplus Y]) = f(X)g(Y) + f(Y)g(X)$ for indecomposable $X \ncong Y$. So [f,g] = f * g - g * f lies in $CF^{ind}(\mathfrak{Dbj}_{\mathcal{A}})$, which is a *Lie algebra*.

Stack functions supported on indecomposables are *not* closed under [,], but there is a Lie subalgebra $SF_{al}^{ind}(\mathfrak{Obj}_{\mathcal{A}})$ of stack functions supported on 'virtual indecomposables' (rather complicated!). 7. Algebra morphisms from $SF(\mathfrak{Dbj}_{\mathcal{A}})$ Recall from last seminar: let Υ be a *motivic invariant* of \mathbb{K} -varieties with values in a \mathbb{Q} -algebra Λ , $\ell = \Upsilon(\mathbb{K})$, ℓ and $\ell^k - 1$, $k \ge 1$ invertible in Λ . We extend Υ uniquely to $\Upsilon'(\mathfrak{F})$ for finite type \mathbb{K} -stacks \mathfrak{F} , such that $\Upsilon'([X/G]) = \Upsilon(X)\Upsilon(G)^{-1}$ for X a variety and G a special \mathbb{K} -group. Example: $\Upsilon(X)$ can be the *virtual Poincaré polynomial* $P_X(z)$, Λ the \mathbb{Q} -algebra of rational functions in z.

For such Υ, Λ , define a Q-linear map $\Pi_{\Lambda} : SF(\mathfrak{Obj}_{\mathcal{A}}) \to \Lambda$ by $\Pi_{\Lambda} : [(\mathfrak{R}, \rho)] \mapsto \Upsilon'(\mathfrak{R}).$ Write $K(\mathcal{A})$ for K-theory of \mathcal{A} . Suppose $\chi : K(\mathcal{A}) \times K(\mathcal{A}) \to \mathbb{Z}$ is biadditive with

dim Hom(X,Y) – dim Ext¹ $(X,Y) = \chi([X],[Y])$ for all $X,Y \in \mathcal{A}$. This holds for $\mathcal{A} =$ mod- $\mathbb{K}Q$ and $\mathcal{A} = \operatorname{coh}(P)$, P smooth curve. Write $\mathfrak{Obj}^{\alpha}_{\mathcal{A}}$ for the substack of $[X] \in \mathfrak{Obj}_{\mathcal{A}}$ in class $\alpha \in K(\mathcal{A})$. Then we prove:

Theorem. Let $f,g \in SF(\mathfrak{Obj}_{\mathcal{A}})$ be supported on $\mathfrak{Obj}^{\alpha}_{\mathcal{A}}, \mathfrak{Obj}^{\beta}_{\mathcal{A}}$ for $\alpha, \beta \in K(\mathcal{A})$. Then $\Pi_{\Lambda}(f * g) = \ell^{-\chi(\beta,\alpha)} \Pi_{\Lambda}(f) \Pi_{\Lambda}(g)$ in Λ .

Can use this identity to define an *algebra morphism* Φ^{\wedge} : SF($\mathfrak{Dbj}_{\mathcal{A}}$) $\rightarrow A(\mathcal{A}, \Lambda, \chi)$, where $A(\mathcal{A}, \Lambda, \chi)$ is the Λ -algebra with Λ -basis a^{α} , $\alpha \in K(\mathcal{A})$, and multiplication $a^{\alpha} \star a^{\beta} = \ell^{-\chi(\beta,\alpha)}a^{\alpha+\beta}$, by $\Phi^{\wedge}(f) = \sum_{\alpha \in K(\mathcal{A})} \prod_{\Lambda} (f|_{\mathfrak{Dbj}_{\mathcal{A}}})a^{\alpha}$.

Sketch proof: Can write the support of $f \otimes g$ as a finite disjoint union of substacks $\mathfrak{F}_i \subset \mathfrak{Obj}_{\mathcal{A}} \times \mathfrak{Obj}_{\mathcal{A}}$, with vector spaces H_i, E_i such that for all $([X], [Y]) \in \mathfrak{F}_i(\mathbb{K})$ we have $\operatorname{Hom}(Y, X) \cong H_i$ and $\operatorname{Ext}^1(Y, X) = E_i$. So $\dim H_i - \dim E_i = \chi(\beta, \alpha)$.

Can also arrange $\mathfrak{F}_i \cong [X_i/G_i]$ for G_i special. Then the fibre product

$$\begin{split} \mathfrak{G}_i &= \mathfrak{F}_i \times_{\mathfrak{Obj}_{\mathcal{A}} \times \mathfrak{Obj}_{\mathcal{A}}} \mathfrak{M}(\{1,2\},\leqslant)_{\mathcal{A}} \text{ is} \\ 1\text{-isomorphic to } [X_i \times E_i/G_i \ltimes H_i], \text{ since} \\ (\{1,2\},\leqslant)\text{-configurations over } ([X],[Y]) \text{ are} \\ parametrized by Ext^1(Y,X) \text{ and have} \\ \text{Hom}(Y,X) \text{ in their stabilizer group.} \\ \text{Thus } \Upsilon'(\mathfrak{F}_i) = \Upsilon(X_i)\Upsilon(G_i)^{-1} \text{ and} \\ \Upsilon'(\mathfrak{G}_i) = \Upsilon(X_i)\Upsilon(E_i)\Upsilon(G_i)^{-1}\Upsilon(H_i)^{-1}, \\ \text{and } \Upsilon(E_i) = \ell^{\dim E_i}, \Upsilon(H_i) = \ell^{\dim H_i}, \text{ so} \\ \Upsilon'(\mathfrak{G}_i) = \ell^{-\chi(\beta,\alpha)}\Upsilon'(\mathfrak{F}_i). \end{split}$$

If P is a Calabi-Yau 3-fold then for biadditive $\overline{\chi}$: $K(\operatorname{coh}(P)) \times K(\operatorname{coh}(P)) \to \mathbb{Z}$ and all $X, Y \in \operatorname{coh}(P)$ we have

 $\dim \operatorname{Hom}(X,Y) - \dim \operatorname{Ext}^1(X,Y)$

- dim Hom(Y, X) + dim Ext¹ $(Y, X) = \bar{\chi}([X], [Y])$. We can construct a *Lie algebra morphism* $\Psi^{\Omega} : SF_{al}^{ind}(\mathfrak{Dbj}_{coh}(P)) \rightarrow C(coh(P), \Omega, \frac{1}{2}\bar{\chi})$ to an explicit algebra, in a similar way. These $\Phi^{\Lambda}, \Psi^{\Omega}$ will be used next seminar to define interesting invariants 'counting' τ -semistable objects in \mathcal{A} . Writing $Obj_{ss}^{\alpha}(\tau)$ for the moduli space of τ -semistable objects in class $\alpha \in K(\mathcal{A})$, stack functions like $\bar{\delta}_{Obj}_{ss}^{\alpha}(\tau)$ satisfy identities in the algebra SF($\mathfrak{Dbj}_{\mathcal{A}}$), so Φ^{Λ} being a morphism implies *multiplicative identities* on the invariants $I^{\alpha}(\tau) = \Pi_{\Lambda}(\bar{\delta}_{Obj}_{ss}^{\alpha}(\tau))$ in Λ .