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1. The basic idea

Let A be an abelian category.
We will define configurations
(o,t,7) in A, collections of
objects and morphisms in A
attached to a finite poset
(I,=), satisfying axioms.
They are a new tool for
describing how an object in
A breaks up into subobjects.
They are useful for studying
stability conditions on A.




We shall define moduli stacks Dbj 4
and M (I, <) 4 of objects and (I, <)-
configurations in A, and many 1-
morphisms between them.
Pushforwards and pullbacks along
1-morphisms give linear maps on
constructible and stack functions
CF,SF(9Dbj 4) and CF,SF(MN(I, =) 4)-
Combining these gives algebraic op-
erations on CF(9Dbj 4) and SF(Dbj 4),
In particular an associative multipli-
cation * making CF,SF(Dbj 4) into
infinite-dimensional algebras.



2. Configurations

Let A be an abelian category
and X € A. A subobject

S C X is an equivalence class
of injective 7z : S — X. Call
0 =2 X € A simple if the only
subobjects S C X are 0O, X.

Jordan-Holder T heorem.
For A of finite length and X
in A, there exist subobjects
O=AgCA;1 C---CAp =X
with Si, = A, /A;._1 simple, and
n, Sy unique up to order, iIso.
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Let Sq,...,5, be pairwise non-
isomorphic. Write {S1,...,Sn}
= {S*: i€ I}, for I a finite
indexing set, |I| = n. Then
for each composition series
O=BbgCB1C---CbBbp=X
with Tk:Bk/Bk—lr there is a
unique bijection ¢:1—{1,...,n}
with S*&T, .y, all iel.
Define a partial order < on [
by i=j if ¢(i) < ¢(j) for all
¢ from composition series as
above.



Call J C T an s-set ifr €I, € J
and 13 = 1€ J.

Call JC T an f-set ifv €I, h,7 € J
and h=i<y = 1€ J.

There are 1-1 correspondences:

e subobjects S C X « s-sets J C I,
where S has simple factors 87, jeJ.
It S\ T «— J K then SCT & JCK.
e factors F =T/S for SCT C X
— f-sets J C I, where F' has simple
factors S7, je.J.

e composition series 0= By C B1 C
.-+ C Bp =X <« bijections ¢ . I —

{1,...,n} With i=j = ¢(3) < 6(5).



Definition. Let (I,<) be a finite poset. Write
Fa~=) for the set of f-sets of I. Define G <) to
be the subset of (J,K) € F,<) X Fau,=) such that
JC K, and if 5 € J and k € K with k=<3, then k € J.
Define Hi <y = {(K,K\J): (J,K) € Gu=}.

Define an (I, X)-configuration (o, ¢, 7) in an abelian
category A to be maps o : F <)y — Obj(A),
L Gu<y—Mor(A), and 7 : H(,<)— Mor(A), where
L(J,K),n(J, K) are morphisms o(J)—o(K).

T hese should satisfy the conditions:

(A) Let (J,K) eGu<)andset L=K\ J.

Then the following is exact in A:

L(J,K) w(K,L)

o(K) o(L)—0.

0—oa(J)

(B) If (J,K) € Gu~) and (K,L) € Gy~

then «(J,L) = «(K,L) o (J, K).

(C) If (J,K) € H(<) and (K, L) € H<)
then n(J,L) = n(K,L)on(J, K).

(D) If (J,K) € G,<) and (K,L) e H <) then

m(K,L)ou(J,K) =u(JNL,L)on(J,JNL).
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This encodes the properties of the
set of subobjects § C X when X
has nonisomorphic simple factors.

Theorem 1. Let A have finite
length, X € A have nonisomorphic
simple factors {S* : i € I}, and <
be as before. Then there exists
an (I,=X)-configuration (o, ¢, ™) with
o(l)

phism, such that if a subobject S C

X, unique up to isomor-

X has simple factors {S7 : j € J},
then S is represented by o(J,1) :
o(J) — X.



Quotient configurations

Let (I,=<), (K, <) be finite posets, and ¢ :
I — K surjective with i=<j implies ¢(2) <¢(75).
Let (0,0, 7) be an (I, <X)-configuration.
Define the quotient (K,<)-configuration
(o,7,7) to be (oo g™ 1o d* 7o d*), where
¢ 1 Fk,9), Yk, Hixa) — F1,2),90,2), Hu=)
pulls back subsets of K to subsets of I.
Subconfigurations

Let J be an f-set in (I,<X). Then (J,=X)
iIs a poset with F;<) C F(r<), etc. Define
the (J, X)-subconfiguration (o', ,n") of
(o,t,7) to be (O‘|_7:(J’j),L|g(J’j),7T|H(J7j)).

We can also combine configurations by
substituting one in another.



Examples. A ({1}, <)-configuration
is an object o({1}) in A.

A ({1,2}, <)-configuration (o,¢, )
IS @ short exact sequence
0—o({1})—o({1,2}) >o({2})—0.
Essentially this says o({1,2}) has a
subobject o({1}) C 0 ({1,2}).

A ({1, 2,3}, <)-configuration (o,¢, )
IS equivalent to a pair of subobjects
oc({1}) co({1,2}) Co({1,2,3}).
The ({1,2}, <)-subconfiguration is the
subobject o({1}) C o({1,2}).

Define ¢ : {1,2,3} — {1,2} by

l1— 1, 2,3+— 2. Then the quotient
({1, 2}, <)-configuration is the
subobject o({1}) C 0 ({1,2,3}).
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3. Moduli stacks

Let K be an algebraically closed field. Artin
K-stacks § are a very general kind of space
in algebraic geometry, useful for moduli
problems. They include K-schemes.

Write Schy for the 2-category of K-schemes,
with the étale topology. Then a K-stack
IS @ sheaf of groupoids on Schy.

For a K-stack 3§, write §(K) for the set of
geometric points of §. Then each z € F(K)
has a stabilizer group Isog(x). If § is a K-

scheme then Isog(z) = {1} for all .
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Let A be a K-linear abelian category. To
form moduli stacks in A we need some
extra data. Let §4 be a sheaf of exact
categories on Schig with § 4(Speck) = A.
If U € Schg, we interpret §4(U) as the
exact category of families of objects and
morphisms in A parametrized by the base
K-scheme U.

If A,§4 satisfy some conditions then for
finite posets (I,=<) we define the moduli
K-stack of (I,=)-configurations IM(I, <).
Here M(I, <X)(U) is the groupoid of (I, <X)-
configs in the exact category §4(U).
Then M(I, <)(K) is the set of iso. classes
[(o, ¢, )] of (I, <)-configurations (o,¢, ) in
A, and ISOK([(O', L,7T)]> = Aut((a, L,ﬂ')).
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We also define many 1-morphisms between
the M(I,<) and Obj4. E.g., if J C I is
an f-set, S(I,=<X,J) : M(I,=xX) — M(J, X)
takes (I, <)-configs to (J, <X)-subconfigs,
and o(J) : M(I,=) — Obj 4 takes (o,¢,m)
to o(J). These 1-morphisms often form
Cartesian squares.

Examples. We can define A, § 4 satisfying
the conditions, and get well-defined mod-
uli stacks M1, <), when

e A = mod-K@, the abelian category of
K-representations of a (finite) quiver Q.

e A = mod-K@Q/I, representations of a
quiver with relations (Q,1).

e A = coh(P), coherent sheaves on a pro-

Jjective K-scheme P.
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4. Recap of last seminar
Constructible functions on stacks satisfy:
e [0 each K-stack § with affine stabilizers,
associate a Q-algebra CF(3).

e Constructible S C §(K) have character-
istic functions g € CF(J).

e T0O each finite type 1-morphism ¢ : § —
® associate a pullback algebra morphism
" CF(B) — CF(F), with (pog)* = ¢p*orp*.
e When charK = 0, to each representable
1-morphism ¢ : § — & associate a linear
pushforward CFStK(¢) : CF(®) — CF (%),
with CFStK(4) 0 ¢) = CFStK(y)) o CFSK(¢).
e In a Cartesian square of Artin K-stacks

GT)@ the following CF(QE)CFstk(n)CF(®)
l@ qbwl tes: TH* CFStk(¢) *T
ggnﬁ, commutes. CI:(S) CF(S{))

Stack functions also have these properties.
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5. Ringel—Hall algebras

Let A,§ 4 be as usual. Write Obj 4 for the
moduli stack of objects in A. Then there
are 1-morphismso({1}), o({2}), o({1,2}) :
M({1,2},<) — Obj 4 taking a ({1,2},<)-
config (o,t,m) to 6({1}),0({2}),0({1,2}).
Define a multiplication « on CF(Dbj 4) by
frg = CF™(a({1,2})) |c({1)*(f) - o({2)*(9)].
Similarly, on SF(Dbj 4) define

fxg=0({1,2D):[(c({1}) x c({2D)) (s @ 9)].

This is essentially the Ringel—Hall algebra
idea. In physics terms, think of them as

algebras of BPS states.
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TOo prove x IS associative, consider the
commutative diagram of 1-morphisms:
Obj 4 xObj 4 xObj 4 <—Obj uxM({2,3}, <) Obj 4 xObj4

id xo(2)xo(3) id xo(2,3)
a oc(1)xo(2)

o(1)xo(2)xid
M({1,2}, DuxObja~"M({1,2,3}, Du—L—M{1,2}, <a
o(1,2)xid

) o(1,2)

o(1,2 .
M{1,2}, Da— 72 Obj 4 -

o(l)xo(2)

Obj 4 XxObj 4

The top right and bottom left squares are
Cartesian, so the following commutes:

CF(DbijDbijDbjA) - CF (0bjaxM({2,3}, <)a) —= CF(DbjaxObj4)

(id xo(2)xo(3))* CFs*(id xo(2,3))

o (0(1)xa(2))"
B* CF™(y)

CF(M{1,2}, )axDbj4)- CF(M({1, 2,3}, <)a) — CF(M({1,2}, )

(c(1)xo(2)xid)*

CF*(o(1,2) xid)

CFst™(§) CF* (o (1,2))

CF (96)4x D84 ) 7272 R (am({1, 2}, .4) CFH(e(1,2)) CF (Dbj4).

Applying the two routes round the outside
to fRg® h proves (fxg)*h= fx(gxh).
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We can translate work by many authors
into the configurations framework to give
geometric realizations of interesting alge-
bras such as universal enveloping algebras
of Kac—Moody algebras U(g) as algebras
of constructible functions on Obj 4, where
A is mod-K@Q or mod-K@Q /I for a quiver Q.
We can also do a lot more. There are
other ways to use configuration 1-morphisms
to define associative multiplications on
CFMN(I,<)), and comultiplications to make
Hopf algebras. The Drinfeld double con-
struction has a configuration explanation,

I believe. And so on.
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6. Indecomposables and Lie algebras
Call X € A indecomposable if X 2 0 and
XZYqZforanyY,Z %= 0. Any X € A has
X=X1®---® Xy for X, indecomposable
and uniqgue up to order, isomorphism.
Write CF'NA(Obj 4) for the subspace of f €
CF(Dbj 4) supported on points [X] for X
indecomposable. If f,g € CF'N4(Obj 4) then
f * g is supported on [X] with 1 or 2 inde-
composable factors, and (f*xg)([X®Y]) =
f(X)g(Y)+ f(Y)g(X) for indecomposable
X Z2Y. So [f,g] = f*xg—g=xf lies in
CF'Nd(9Obj ), which is a Lie algebra.
Stack functions supported on indecompos-
ables are not closed under [, ], but there
is a Lie subalgebra SFINA(Dbj4) of stack
functions supported on ‘virtual indecom-
posables’ (rather complicated!).
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7. Algebra morphisms from SF(Obj 4)
Recall from last seminar: let T be a mo-
tivic invariant of K-varieties with values in
a Q-algebra A, £ ="T(K), and ¢F—1, k> 1
invertible in A. We extend T uniquely to
T/(F) for finite type K-stacks g, such that
T([X/G]) = T(X)T(G)~! for X a vari-
ety and G a special K-group. Example:
T (X) can be the virtual Poincaré polyno-
mial Px(z), N\ the Q-algebra of rational
functions in z.

For such T, A, define a Q-linear map

Ma : SF(Obj 4) — A by

Ma: [(R, p)] = TI(R).
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Write K(A) for K-theory of A. Suppose
x : K(A) x K(A) — Z is biadditive with

dimHom(X,Y) — dim Ext1(X,Y) = x([X],[Y])
for all X, Y € A. This holds for A =
mod-K@ and A = coh(P), P smooth curve.
Write Obj9 for the substack of [X] € Dbj 4
in class a« € K(A). Then we prove:

Theorem. Let f,g € SF(Obj4) be sup-

ported on Dbj?jl,Dbjﬁ fora,B3 € K(A). Then
MA(f % g) = £ XEINA(HNACG) in A,

Can use this identity to define an alge-

bra morphism ®" : SF(Dbj 4) — A(A, A, x),

where A(A,N\,x) is the A-algebra with

A-basis a%, a € K(A), and multiplication
aa *aﬁ p— E_X(ﬁaa)aa_F/B’ by

PANS) = Zaeck (a) Maflopje)a™.

20



Sketch proof: Can write the support of
f ®g as a finite disjoint union of substacks
§i C Obj 4 X Obj 4, with vector spaces H;, E;
such that for all ([X],[Y]) € §;(K) we have
Hom(Y, X) £ H, and Ext}(Y,X) = E;. So
dim H; —dim E; = x(8, a).

Can also arrange §; = [X;/G;] for G; spe-
cial. Then the fibre product

& = Ti Xopjyxob, MHL 2}, <) s
1-isomorphic to [X; x E;/G; x H;], since
({1, 2}, <)-configurations over ([ X],[Y]) are
parametrized by Extl(Y,X) and have
Hom(Y, X) in their stabilizer group.

Thus T/(3,) = T(X,)T(G,)~1 and

T(8;) = T(X)T(EHT(GH I rH)
and T(E;) = ¢dmME; v (H,) = ¢dimH; 5o
T(®;) = ¢ XBY/(F,).
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If P is a Calabi—yau 3-fold then for
biadditive x : K(coh(P))x K(coh(P)) —Z
and all X,Y € coh(P) we have
dimHom(X,Y) — dimExtl(X,Y)
—dimHom(Y, X) + dim Ext!(Y, X) = x([X], [Y]).
We can construct a Lie algebra morphism
W SFNA(Dbj o py) — C(coh(P), 2, 3%)
to an explicit algebra, in a similar way.
These ®", W*? will be used next seminar to
define interesting invariants ‘counting’ -
semistable objects in A. Writing Obj&5(7)
for the moduli space of r-semistable ob-
jects in class a € K(A), stack functions
like dopja ;) satisfy identities in the alge-
bra SF(Dbj4), so ®" being a morphism
implies multiplicative identities on the in-
variants 1%(r) = I‘I/\(éObng(T)) in A.
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