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1. The basic idea
Let A be an abelian category.
We will define configurations
(σ, ι, π) in A, collections of
objects and morphisms in A
attached to a finite poset
(I,¹), satisfying axioms.
They are a new tool for
describing how an object in
A breaks up into subobjects.
They are useful for studying
stability conditions on A.
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We shall define moduli stacks ObjA
and M(I,¹)A of objects and (I,¹)-

configurations in A, and many 1-

morphisms between them.

Pushforwards and pullbacks along

1-morphisms give linear maps on

constructible and stack functions

CF,SF(ObjA) and CF,SF(M(I,¹)A).

Combining these gives algebraic op-

erations on CF(ObjA) and SF(ObjA),

in particular an associative multipli-

cation ∗ making CF,SF(ObjA) into

infinite-dimensional algebras.
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2. Configurations
Let A be an abelian category
and X ∈ A. A subobject
S ⊂ X is an equivalence class
of injective i : S → X. Call
0 6= X ∈ A simple if the only
subobjects S ⊂ X are 0, X.

Jordan-Hölder Theorem.
For A of finite length and X

in A, there exist subobjects
0 = A0 ⊂ A1 ⊂ · · · ⊂ An = X

with Sk=Ak/Ak−1 simple, and
n, Sk unique up to order, iso.
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Let S1, . . . , Sn be pairwise non-
isomorphic. Write {S1, . . . , Sn}
= {Si : i ∈ I}, for I a finite
indexing set, |I| = n. Then
for each composition series
0 = B0 ⊂ B1 ⊂ · · · ⊂ Bn = X

with Tk=Bk/Bk−1, there is a
unique bijection φ :I→{1,. . ., n}
with Si∼=Tφ(i), all i∈I.
Define a partial order ¹ on I

by i¹j if φ(i) 6 φ(j) for all
φ from composition series as
above.
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Call J ⊆ I an s-set if i ∈ I, j ∈ J

and i¹j ⇒ i ∈ J.

Call J ⊆ I an f-set if i ∈ I, h, j ∈ J

and h¹i¹j ⇒ i ∈ J.

There are 1-1 correspondences:

• subobjects S ⊂ X ↔ s-sets J ⊆ I,

where S has simple factors Sj, j∈J.

If S, T ↔ J, K then S⊂T ⇔ J⊆K.

• factors F = T/S for S ⊂ T ⊂ X

↔ f-sets J ⊆ I, where F has simple

factors Sj, j∈J.

• composition series 0= B0⊂B1⊂
· · · ⊂ Bn = X ↔ bijections φ : I →
{1,. . ., n} with i¹j ⇒ φ(i) 6 φ(j).
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Definition. Let (I,¹) be a finite poset. Write
F(I,¹) for the set of f-sets of I. Define G(I,¹) to
be the subset of (J, K) ∈ F(I,¹) × F(I,¹) such that
J ⊆ K, and if j ∈ J and k ∈ K with k¹j, then k ∈ J.
Define H(I,¹) = {(K, K \ J) : (J, K) ∈ G(I,¹)}.
Define an (I,¹)-configuration (σ, ι, π) in an abelian

category A to be maps σ : F(I,¹) → Obj(A),
ι : G(I,¹)→Mor(A), and π : H(I,¹)→Mor(A), where
ι(J, K), π(J, K) are morphisms σ(J)→σ(K).

These should satisfy the conditions:

(A) Let (J, K) ∈ G(I,¹) and set L = K \ J.
Then the following is exact in A:

0 // σ(J)
ι(J,K)

// σ(K)
π(K,L)

// σ(L) // 0.

(B) If (J, K) ∈ G(I,¹) and (K, L) ∈ G(I,¹)

then ι(J, L) = ι(K, L) ◦ ι(J, K).

(C) If (J, K) ∈ H(I,¹) and (K, L) ∈ H(I,¹)

then π(J, L) = π(K, L) ◦ π(J, K).

(D) If (J, K) ∈ G(I,¹) and (K, L) ∈ H(I,¹) then

π(K, L) ◦ ι(J, K) = ι(J ∩ L, L) ◦ π(J, J ∩ L).
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This encodes the properties of the

set of subobjects S ⊂ X when X

has nonisomorphic simple factors.

Theorem 1. Let A have finite

length, X ∈ A have nonisomorphic

simple factors {Si : i ∈ I}, and ¹
be as before. Then there exists

an (I,¹)-configuration (σ, ι, π) with

σ(I) = X, unique up to isomor-

phism, such that if a subobject S ⊂
X has simple factors {Sj : j ∈ J},
then S is represented by ι(J, I) :

σ(J) → X.
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Quotient configurations

Let (I,¹), (K, E) be finite posets, and φ :

I→K surjective with i¹j implies φ(i)Eφ(j).

Let (σ, ι, π) be an (I,¹)-configuration.

Define the quotient (K, E)-configuration

(σ̃, ι̃, π̃) to be (σ ◦ φ∗, ι ◦ φ∗, π ◦ φ∗), where

φ∗ : F(K,E),G(K,E),H(K,E) → F(I,¹),G(I,¹),H(I,¹)

pulls back subsets of K to subsets of I.

Subconfigurations

Let J be an f-set in (I,¹). Then (J,¹)

is a poset with F(J,¹) ⊆ F(I,¹), etc. Define

the (J,¹)-subconfiguration (σ′, ι′, π′) of

(σ, ι, π) to be (σ|F(J,¹), ι|G(J,¹), π|H(J,¹)).

We can also combine configurations by

substituting one in another.
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Examples. A ({1}, 6)-configuration

is an object σ({1}) in A.

A ({1,2}, 6)-configuration (σ, ι, π)

is a short exact sequence

0→σ({1}) ι−→σ({1,2}) π−→σ({2})→0.

Essentially this says σ({1,2}) has a

subobject σ({1}) ⊂ σ({1,2}).
A ({1,2,3}, 6)-configuration (σ, ι, π)

is equivalent to a pair of subobjects

σ({1}) ⊂ σ({1,2}) ⊂ σ({1,2,3}).
The ({1,2}, 6)-subconfiguration is the

subobject σ({1}) ⊂ σ({1,2}).
Define φ : {1,2,3} → {1,2} by

1 7→ 1, 2,3 7→ 2. Then the quotient

({1,2}, 6)-configuration is the

subobject σ({1}) ⊂ σ({1,2,3}).
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3. Moduli stacks

Let K be an algebraically closed field. Artin

K-stacks F are a very general kind of space

in algebraic geometry, useful for moduli

problems. They include K-schemes.

Write SchK for the 2-category of K-schemes,

with the étale topology. Then a K-stack

is a sheaf of groupoids on SchK.

For a K-stack F, write F(K) for the set of

geometric points of F. Then each x ∈ F(K)

has a stabilizer group IsoK(x). If F is a K-

scheme then IsoK(x) = {1} for all x.
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Let A be a K-linear abelian category. To

form moduli stacks in A we need some

extra data. Let FA be a sheaf of exact

categories on SchK with FA(SpecK) = A.

If U ∈ SchK, we interpret FA(U) as the

exact category of families of objects and

morphisms in A parametrized by the base

K-scheme U .

If A, FA satisfy some conditions then for

finite posets (I,¹) we define the moduli

K-stack of (I,¹)-configurations M(I,¹).

Here M(I,¹)(U) is the groupoid of (I,¹)-

configs in the exact category FA(U).

Then M(I,¹)(K) is the set of iso. classes

[(σ, ι, π)] of (I,¹)-configurations (σ, ι, π) in

A, and IsoK
(
[(σ, ι, π)]

)
= Aut

(
(σ, ι, π)

)
.
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We also define many 1-morphisms between

the M(I,¹) and ObjA. E.g., if J ⊆ I is

an f-set, S(I,¹, J) : M(I,¹) → M(J,¹)

takes (I,¹)-configs to (J,¹)-subconfigs,

and σ(J) : M(I,¹) → ObjA takes (σ, ι, π)

to σ(J). These 1-morphisms often form

Cartesian squares.

Examples. We can define A, FA satisfying

the conditions, and get well-defined mod-

uli stacks M(I,¹), when

• A = mod-KQ, the abelian category of

K-representations of a (finite) quiver Q.

• A = mod-KQ/I, representations of a

quiver with relations (Q, I).

• A = coh(P ), coherent sheaves on a pro-

jective K-scheme P .
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4. Recap of last seminar

Constructible functions on stacks satisfy:

• To each K-stack F with affine stabilizers,

associate a Q-algebra CF(F).

• Constructible S ⊆ F(K) have character-

istic functions δS ∈ CF(F).

• To each finite type 1-morphism φ : F →
G associate a pullback algebra morphism

φ∗ : CF(G) → CF(F), with (ψ◦φ)∗ = φ∗◦ψ∗.
• When charK = 0, to each representable

1-morphism φ : F → G associate a linear

pushforward CFstk(φ) : CF(G) → CF(F),

with CFstk(ψ ◦ φ) = CFstk(ψ) ◦CFstk(φ).

• In a Cartesian square of Artin K-stacks

E η
//

θ²²

G
ψ

²²

F
φ

// H,

the following

commutes:

CF(E)
CFstk(η)

//CF(G)

CF(F)
CFstk(φ)

//

θ∗
OO

CF(H).
ψ∗

OO

Stack functions also have these properties.
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5. Ringel–Hall algebras

Let A, FA be as usual. Write ObjA for the

moduli stack of objects in A. Then there

are 1-morphisms σ({1}), σ({2}), σ({1,2}) :

M({1,2}, 6) → ObjA taking a ({1,2}, 6)-

config (σ, ι, π) to σ({1}), σ({2}), σ({1,2}).
Define a multiplication ∗ on CF(ObjA) by

f ∗ g = CFstk
(
σ({1,2})

)[
σ({1})∗(f) · σ({2})∗(g)

]
.

Similarly, on SF(ObjA) define

f ∗ g = σ({1,2})∗
[(

σ({1})× σ({2})
)∗

(f ⊗ g)
]
.

This is essentially the Ringel–Hall algebra

idea. In physics terms, think of them as

algebras of BPS states.
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To prove ∗ is associative, consider the

commutative diagram of 1-morphisms:

ObjA×ObjA×ObjA ObjA×M({2,3}, 6)Aoo

id×σ(2)×σ(3)

//

id×σ(2,3)

ObjA×ObjA

M({1,2}, 6)A×ObjA

σ(1)×σ(2)×id

OO

σ(1,2)×id

²²

M({1,2,3}, 6)A
βoo

δ

²²

γ //

α

OO

M({1,2}, 6)A

σ(1)×σ(2)

OO

σ(1,2)

²²

ObjA×ObjA M({1,2}, 6)A
σ(1)×σ(2)

oo
σ(1,2)

// ObjA .

The top right and bottom left squares are

Cartesian, so the following commutes:

CF
(
ObjA×ObjA×ObjA

)

(σ(1)×σ(2)×id)∗
²²

//

(id×σ(2)×σ(3))∗
CF

(
ObjA×M({2,3}, 6)A

)
//

CFstk(id×σ(2,3))

α∗

²²

CF
(
ObjA×ObjA

)

(σ(1)×σ(2))∗

²²

CF
(
M({1,2}, 6)A×ObjA

)

CFstk(σ(1,2)×id)

²²

//
β∗

CF
(
M({1,2,3}, 6)A

)

CFstk(δ)

²²

//
CFstk(γ)

CF
(
M({1,2}, 6)A

)

CFstk(σ(1,2))

²²

CF
(
ObjA×ObjA

)(σ(1)×σ(2))∗ // CF
(
M({1,2}, 6)A

) CFstk(σ(1,2)) // CF
(
ObjA

)
.

Applying the two routes round the outside

to f ⊗ g ⊗ h proves (f ∗ g) ∗ h = f ∗ (g ∗ h).
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We can translate work by many authors

into the configurations framework to give

geometric realizations of interesting alge-

bras such as universal enveloping algebras

of Kac–Moody algebras U(g) as algebras

of constructible functions on ObjA, where

A is mod-KQ or mod-KQ/I for a quiver Q.

We can also do a lot more. There are

other ways to use configuration 1-morphisms

to define associative multiplications on

CF(M(I,¹)), and comultiplications to make

Hopf algebras. The Drinfeld double con-

struction has a configuration explanation,

I believe. And so on.
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6. Indecomposables and Lie algebras

Call X ∈ A indecomposable if X 6∼= 0 and

X 6∼= Y⊕Z for any Y, Z 6∼= 0. Any X ∈ A has

X ∼= X1 ⊕ · · · ⊕Xn for Xa indecomposable

and unique up to order, isomorphism.

Write CFind(ObjA) for the subspace of f ∈
CF(ObjA) supported on points [X] for X

indecomposable. If f, g ∈ CFind(ObjA) then

f ∗ g is supported on [X] with 1 or 2 inde-

composable factors, and (f ∗g)([X⊕Y ]) =

f(X)g(Y )+ f(Y )g(X) for indecomposable

X 6∼= Y . So [f, g] = f ∗ g − g ∗ f lies in

CFind(ObjA), which is a Lie algebra.

Stack functions supported on indecompos-

ables are not closed under [ , ], but there

is a Lie subalgebra SFind
al (ObjA) of stack

functions supported on ‘virtual indecom-

posables’ (rather complicated!).
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7. Algebra morphisms from SF(ObjA)

Recall from last seminar: let Υ be a mo-

tivic invariant of K-varieties with values in

a Q-algebra Λ, ` = Υ(K), ` and `k−1, k > 1

invertible in Λ. We extend Υ uniquely to

Υ′(F) for finite type K-stacks F, such that

Υ′([X/G]) = Υ(X)Υ(G)−1 for X a vari-

ety and G a special K-group. Example:

Υ(X) can be the virtual Poincaré polyno-

mial PX(z), Λ the Q-algebra of rational

functions in z.

For such Υ,Λ, define a Q-linear map

ΠΛ : SF(ObjA) → Λ by

ΠΛ : [(R, ρ)] 7→ Υ′(R).
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Write K(A) for K-theory of A. Suppose

χ : K(A)×K(A) → Z is biadditive with

dimHom(X, Y )− dimExt1(X, Y ) = χ([X], [Y ])

for all X, Y ∈ A. This holds for A =

mod-KQ and A = coh(P ), P smooth curve.

Write ObjαA for the substack of [X] ∈ ObjA
in class α ∈ K(A). Then we prove:

Theorem. Let f, g ∈ SF(ObjA) be sup-

ported on ObjαA, Obj
β
A for α, β ∈ K(A). Then

ΠΛ(f ∗ g) = `−χ(β,α)ΠΛ(f)ΠΛ(g) in Λ.

Can use this identity to define an alge-

bra morphism ΦΛ : SF(ObjA) → A(A,Λ, χ),

where A(A,Λ, χ) is the Λ-algebra with

Λ-basis aα, α ∈ K(A), and multiplication

aα ? aβ = `−χ(β,α)aα+β, by

ΦΛ(f) =
∑

α∈K(A) ΠΛ(f |ObjαA)a
α.
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Sketch proof: Can write the support of

f ⊗g as a finite disjoint union of substacks

Fi ⊂ ObjA×ObjA, with vector spaces Hi, Ei

such that for all ([X], [Y ]) ∈ Fi(K) we have

Hom(Y, X) ∼= Hi and Ext1(Y, X) = Ei. So

dimHi − dimEi = χ(β, α).

Can also arrange Fi
∼= [Xi/Gi] for Gi spe-

cial. Then the fibre product

Gi = Fi ×ObjA×ObjA M({1,2}, 6)A is

1-isomorphic to [Xi × Ei/Gi n Hi], since

({1,2}, 6)-configurations over ([X], [Y ]) are

parametrized by Ext1(Y, X) and have

Hom(Y, X) in their stabilizer group.

Thus Υ′(Fi) = Υ(Xi)Υ(Gi)
−1 and

Υ′(Gi) = Υ(Xi)Υ(Ei)Υ(Gi)
−1Υ(Hi)

−1,

and Υ(Ei) = `dimEi, Υ(Hi) = `dimHi, so

Υ′(Gi) = `−χ(β,α)Υ′(Fi).
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If P is a Calabi–Yau 3-fold then for

biadditive χ̄ : K(coh(P ))×K(coh(P ))→ Z
and all X, Y ∈ coh(P ) we have

dimHom(X, Y )− dimExt1(X, Y )

− dimHom(Y, X) + dimExt1(Y, X) = χ̄([X], [Y ]).

We can construct a Lie algebra morphism

ΨΩ : SFind
al (Objcoh(P )) → C(coh(P ),Ω, 1

2χ̄)

to an explicit algebra, in a similar way.

These ΦΛ,ΨΩ will be used next seminar to

define interesting invariants ‘counting’ τ-

semistable objects in A. Writing Objαss(τ)

for the moduli space of τ-semistable ob-

jects in class α ∈ K(A), stack functions

like δ̄Objα
ss(τ)

satisfy identities in the alge-

bra SF(ObjA), so ΦΛ being a morphism

implies multiplicative identities on the in-

variants Iα(τ) = ΠΛ(δ̄Objα
ss(τ)

) in Λ.
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