Configurations in abelian categories: introduction, and Ringel-Hall algebras
 Dominic Joyce, Oxford
 based on
 math.AG/0312190,
 math.AG/0503029.

These slides available at

 www.maths.ox.ac.uk/~joyce/talks.html1. The basic idea Let \mathcal{A} be an abelian category. We will define configurations (σ, ι, π) in \mathcal{A}, collections of objects and morphisms in \mathcal{A} attached to a finite poset (I, \preceq), satisfying axioms.
They are a new tool for describing how an object in \mathcal{A} breaks up into subobjects. They are useful for studying stability conditions on \mathcal{A}.

We shall define moduli stacks $\mathfrak{O b j}_{\mathcal{A}}$ and $\mathfrak{M}(I, \preceq)_{\mathcal{A}}$ of objects and (I, \preceq) configurations in \mathcal{A}, and many 1 morphisms between them.

Pushforwards and pullbacks along 1-morphisms give linear maps on constructible and stack functions $\mathrm{CF}, \operatorname{SF}\left(\mathfrak{O b j}_{\mathcal{A}}\right)$ and $\operatorname{CF}, \operatorname{SF}\left(\mathfrak{M}(I, \preceq)_{\mathcal{A}}\right)$. Combining these gives algebraic operations on $\operatorname{CF}\left(\mathfrak{O b j}_{\mathcal{A}}\right)$ and $\operatorname{SF}\left(\mathfrak{O b j}_{\mathcal{A}}\right)$, in particular an associative multiplication $*$ making $\operatorname{CF}, \operatorname{SF}\left(\mathfrak{O b j}_{\mathcal{A}}\right)$ into infinite-dimensional algebras.

2. Configurations

Let \mathcal{A} be an abelian category and $X \in \mathcal{A}$. A subobject
$S \subset X$ is an equivalence class of injective $i: S \rightarrow X$. Call
$0 \neq X \in \mathcal{A}$ simple if the only subobjects $S \subset X$ are 0, X. Jordan-Hölder Theorem. For \mathcal{A} of finite length and X in \mathcal{A}, there exist subobjects
$0=A_{0} \subset A_{1} \subset \cdots \subset A_{n}=X$ with $S_{k}=A_{k} / A_{k-1}$ simple, and n, S_{k} unique up to order, iso.

Let S_{1}, \ldots, S_{n} be pairwise nonisomorphic. Write $\left\{S_{1}, \ldots, S_{n}\right\}$ $=\left\{S^{i}: i \in I\right\}$, for I a finite indexing set, $|I|=n$. Then for each composition series
$0=B_{0} \subset B_{1} \subset \cdots \subset B_{n}=X$ with $T_{k}=B_{k} / B_{k-1}$, there is a unique bijection $\phi: I \rightarrow\{1, \ldots, n\}$ with $S^{i} \cong T_{\phi(i)}$, all $i \in I$. Define a partial order \preceq on I by $i \preceq j$ if $\phi(i) \leqslant \phi(j)$ for all ϕ from composition series as above.

Call $J \subseteq I$ an s-set if $i \in I, j \in J$ and $i \preceq j \Rightarrow i \in J$.
Call $J \subseteq I$ an f-set if $i \in I, h, j \in J$ and $h \preceq i \preceq j \Rightarrow i \in J$.
There are 1-1 correspondences:

- subobjects $S \subset X \leftrightarrow$ s-sets $J \subseteq I$, where S has simple factors $S^{j}, j \in J$. If $S, T \leftrightarrow J, K$ then $S \subset T \Leftrightarrow J \subseteq K$. - factors $F=T / S$ for $S \subset T \subset X$ \leftrightarrow f-sets $J \subseteq I$, where F has simple factors $S^{j}, j \in J$.
- composition series $0=B_{0} \subset B_{1} \subset$ $\cdots \subset B_{n}=X \leftrightarrow$ bijections $\phi: I \rightarrow$ $\{1, \ldots, n\}$ with $i \preceq j \Rightarrow \phi(i) \leqslant \phi(j)$.

Definition. Let (I, \preceq) be a finite poset. Write $\mathcal{F}_{(I, \preceq)}$ for the set of f-sets of I. Define $\mathcal{G}_{(I, \preceq)}$ to be the subset of $(J, K) \in \mathcal{F}_{(I, \preceq)} \times \mathcal{F}_{(I, \preceq)}$ such that $J \subseteq K$, and if $j \in J$ and $k \in K$ with $k \preceq j$, then $k \in J$. Define $\mathcal{H}_{(I, \preceq)}=\left\{(K, K \backslash J):(J, K) \in \mathcal{G}_{(I, \preceq)}\right\}$.

Define an (I, \preceq)-configuration (σ, ι, π) in an abelian category \mathcal{A} to be maps $\sigma: \mathcal{F}_{(I, \preceq)} \rightarrow \operatorname{Obj}(\mathcal{A})$, $\iota: \mathcal{G}_{(I, \preceq)} \rightarrow \operatorname{Mor}(\mathcal{A})$, and $\pi: \mathcal{H}_{(I, \preceq)} \rightarrow \operatorname{Mor}(\mathcal{A})$, where $\iota(J, K), \pi(J, K)$ are morphisms $\sigma(J) \rightarrow \sigma(K)$.
These should satisfy the conditions:
(A) Let $(J, K) \in \mathcal{G}_{(I, \preceq)}$ and set $L=K \backslash J$.

Then the following is exact in \mathcal{A} :

$$
0 \longrightarrow \sigma(J) \xrightarrow{\iota(J, K)} \sigma(K) \xrightarrow{\pi(K, L)} \sigma(L) \longrightarrow 0 .
$$

(B) If $(J, K) \in \mathcal{G}_{(I, \preceq)}$ and $(K, L) \in \mathcal{G}_{(I, \preceq)}$ then $\iota(J, L)=\iota(K, L) \circ \iota(J, K)$.
(C) If $(J, K) \in \mathcal{H}_{(I, \preceq)}$ and $(K, L) \in \mathcal{H}_{(I, \preceq)}$
then $\pi(J, L)=\pi(K, L) \circ \pi(J, K)$.
(D) If $(J, K) \in \mathcal{G}_{(I, \preceq)}$ and $(K, L) \in \mathcal{H}_{(I, \preceq)}$ then

$$
\pi(K, L) \circ \iota(J, K)=\iota(J \cap L, L) \circ \pi(J, J \cap L)
$$

This encodes the properties of the set of subobjects $S \subset X$ when X has nonisomorphic simple factors. Theorem 1. Let \mathcal{A} have finite length, $X \in \mathcal{A}$ have nonisomorphic simple factors $\left\{S^{i}: i \in I\right\}$, and \preceq be as before. Then there exists an (I, \preceq)-configuration (σ, ι, π) with $\sigma(I)=X$, unique up to isomorphism, such that if a subobject $S \subset$ X has simple factors $\left\{S^{j}: j \in J\right\}$, then S is represented by $\iota(J, I)$: $\sigma(J) \rightarrow X$.

Quotient configurations

Let $(I, \preceq),(K, \unlhd)$ be finite posets, and ϕ : $I \rightarrow K$ surjective with $i \preceq j$ implies $\phi(i) \unlhd \phi(j)$. Let (σ, ι, π) be an (I, \preceq)-configuration. Define the quotient (K, \unlhd)-configuration ($\tilde{\sigma}, \tilde{\iota}, \tilde{\pi}$) to be ($\sigma \circ \phi^{*}, \iota \circ \phi^{*}, \pi \circ \phi^{*}$), where $\phi^{*}: \mathcal{F}_{(K, \unlhd)}, \mathcal{G}_{(K, \unlhd)}, \mathcal{H}_{(K, \unlhd)} \rightarrow \mathcal{F}_{(I, \preceq)}, \mathcal{G}_{(I, \preceq)}, \mathcal{H}_{(I, \preceq)}$ pulls back subsets of K to subsets of I.

Subconfigurations

Let J be an f-set in (I, \preceq). Then (J, \preceq) is a poset with $\mathcal{F}_{(J, \preceq)} \subseteq \mathcal{F}_{(I, \preceq)}$, etc. Define the (J, \preceq)-subconfiguration ($\sigma^{\prime}, \iota^{\prime}, \pi^{\prime}$) of (σ, ι, π) to be $\left(\left.\sigma\right|_{\mathcal{F}_{(J, \preceq)}},\left.\iota\right|_{\mathcal{G}_{(J, \preceq)}},\left.\pi\right|_{\mathcal{H}_{(J, \preceq)}}\right)$. We can also combine configurations by substituting one in another.

Examples. A $(\{1\}, \leqslant)$-configuration is an object $\sigma(\{1\})$ in \mathcal{A}.
A $(\{1,2\}, \leqslant)$-configuration (σ, ι, π)
is a short exact sequence
$0 \rightarrow \sigma(\{1\}) \xrightarrow{\iota} \sigma(\{1,2\}) \xrightarrow{\pi} \sigma(\{2\}) \rightarrow 0$.
Essentially this says $\sigma(\{1,2\})$ has a subobject $\sigma(\{1\}) \subset \sigma(\{1,2\})$.
A $(\{1,2,3\}, \leqslant)$-configuration (σ, ι, π)
is equivalent to a pair of subobjects
$\sigma(\{1\}) \subset \sigma(\{1,2\}) \subset \sigma(\{1,2,3\})$.
The $(\{1,2\}, \leqslant)$-subconfiguration is the subobject $\sigma(\{1\}) \subset \sigma(\{1,2\})$.
Define $\phi:\{1,2,3\} \rightarrow\{1,2\}$ by $1 \mapsto 1,2,3 \mapsto 2$. Then the quotient $(\{1,2\}, \leqslant)$-configuration is the subobject $\sigma(\{1\}) \subset \sigma(\{1,2,3\})$.

3. Moduli stacks

Let \mathbb{K} be an algebraically closed field. Artin \mathbb{K}-stacks \mathfrak{F} are a very general kind of space in algebraic geometry, useful for moduli problems. They include \mathbb{K}-schemes.

Write $\mathrm{Sch}_{\mathbb{K}}$ for the 2-category of \mathbb{K}-schemes, with the étale topology. Then a \mathbb{K}-stack is a sheaf of groupoids on $\mathrm{Sch}_{\mathbb{K}}$.

For a \mathbb{K}-stack \mathfrak{F}, write $\mathfrak{F}(\mathbb{K})$ for the set of geometric points of \mathfrak{F}. Then each $x \in \mathfrak{F}(\mathbb{K})$ has a stabilizer group $\operatorname{Iso}_{\mathbb{K}}(x)$. If \mathfrak{F} is a \mathbb{K} scheme then $\operatorname{IsO}_{\mathbb{K}}(x)=\{1\}$ for all x.

Let \mathcal{A} be a \mathbb{K}-linear abelian category. To form moduli stacks in \mathcal{A} we need some extra data. Let $\mathfrak{F}_{\mathcal{A}}$ be a sheaf of exact categories on $\mathrm{Sch}_{\mathbb{K}}$ with $\mathfrak{F}_{\mathcal{A}}(\mathrm{Spec} \mathbb{K})=\mathcal{A}$. If $U \in \mathrm{Sch}_{\mathbb{K}}$, we interpret $\mathfrak{F}_{\mathcal{A}}(U)$ as the exact category of families of objects and morphisms in \mathcal{A} parametrized by the base \mathbb{K}-scheme U.

If $\mathcal{A}, \mathfrak{F}_{\mathcal{A}}$ satisfy some conditions then for finite posets (I, \preceq) we define the moduli \mathbb{K}-stack of (I, \preceq)-configurations $\mathfrak{M}(I, \preceq)$. Here $\mathfrak{M}(I, \preceq)(U)$ is the groupoid of (I, \preceq) configs in the exact category $\mathfrak{F}_{\mathcal{A}}(U)$. Then $\mathfrak{M}(I, \preceq)(\mathbb{K})$ is the set of iso. classes [(σ, ι, π)] of (I, \preceq)-configurations (σ, ι, π) in \mathcal{A}, and $\operatorname{Iso}_{\mathbb{K}}([(\sigma, \iota, \pi)])=\operatorname{Aut}((\sigma, \iota, \pi))$.

We also define many 1-morphisms between the $\mathfrak{M}(I, \preceq)$ and $\mathfrak{O b j}_{\mathcal{A}}$. E.g., if $J \subseteq I$ is an f-set, $S(I, \preceq, J): \mathfrak{M}(I, \preceq) \rightarrow \mathfrak{M}(J, \preceq)$ takes (I, \preceq)-configs to (J, \preceq)-subconfigs, and $\sigma(J): \mathfrak{M}(I, \preceq) \rightarrow \mathfrak{O b j}_{\mathcal{A}}$ takes (σ, ι, π) to $\sigma(J)$. These 1-morphisms often form Cartesian squares.
Examples. We can define $\mathcal{A}, \mathfrak{F}_{\mathcal{A}}$ satisfying the conditions, and get well-defined moduli stacks $\mathfrak{M}(I, \preceq)$, when

- $\mathcal{A}=\bmod -\mathbb{K} Q$, the abelian category of \mathbb{K}-representations of a (finite) quiver Q.
- $\mathcal{A}=\bmod -\mathbb{K} Q / I$, representations of a quiver with relations (Q, I).
- $\mathcal{A}=\operatorname{coh}(P)$, coherent sheaves on a projective \mathbb{K}-scheme P.

4. Recap of last seminar

Constructible functions on stacks satisfy:

- To each \mathbb{K}-stack \mathfrak{F} with affine stabilizers, associate a \mathbb{Q}-algebra $\operatorname{CF}(\mathfrak{F})$.
- Constructible $S \subseteq \mathfrak{F}(\mathbb{K})$ have characteristic functions $\delta_{S} \in \mathrm{CF}(\mathfrak{F})$.
- To each finite type 1-morphism $\phi: \mathfrak{F} \rightarrow$ \mathfrak{G} associate a pullback algebra morphism $\phi^{*}: \operatorname{CF}(\mathfrak{G}) \rightarrow \operatorname{CF}(\mathfrak{F})$, with $(\psi \circ \phi)^{*}=\phi^{*} \circ \psi^{*}$. - When char $\mathbb{K}=0$, to each representable 1-morphism $\phi: \mathfrak{F} \rightarrow \mathfrak{G}$ associate a linear pushforward $\operatorname{CF}^{\text {stk }}(\phi): \operatorname{CF}(\mathfrak{G}) \rightarrow \operatorname{CF}(\mathfrak{F})$, with $\mathrm{CF}^{\text {stk }}(\psi \circ \phi)=\mathrm{CF}^{\text {stk }}(\psi) \circ \mathrm{CF}^{\text {stk }}(\phi)$.
- In a Cartesian square of Artin \mathbb{K}-stacks

Stack functions also have these properties.

5. Ringel-Hall algebras

Let $\mathcal{A}, \mathfrak{F}_{\mathcal{A}}$ be as usual. Write $\mathfrak{O b j}_{\mathcal{A}}$ for the moduli stack of objects in \mathcal{A}. Then there are 1-morphisms $\sigma(\{1\}), \sigma(\{2\}), \sigma(\{1,2\})$: $\mathfrak{M}(\{1,2\}, \leqslant) \rightarrow \mathfrak{D b j}_{\mathcal{A}}$ taking a $(\{1,2\}, \leqslant)$ config (σ, ι, π) to $\sigma(\{1\}), \sigma(\{2\}), \sigma(\{1,2\})$. Define a multiplication * on $\operatorname{CF}\left(\mathfrak{O b j}_{\mathcal{A}}\right)$ by $f * g=\operatorname{CF}^{\text {stk }}(\boldsymbol{\sigma}(\{1,2\}))\left[\boldsymbol{\sigma}(\{1\})^{*}(f) \cdot \boldsymbol{\sigma}(\{2\})^{*}(g)\right]$. Similarly, on $\operatorname{SF}\left(\mathfrak{O b j}_{\mathcal{A}}\right)$ define

$$
f * g=\sigma(\{1,2\}) *\left[(\sigma(\{1\}) \times \sigma(\{2\}))^{*}(f \otimes g)\right] .
$$

This is essentially the Ringel-Hall algebra idea. In physics terms, think of them as algebras of BPS states.

To prove * is associative, consider the commutative diagram of 1-morphisms:

$$
\begin{aligned}
& \mathfrak{M}(\{1,2\}, \leqslant)_{\mathcal{A}} \times \mathfrak{O b j} \dot{\mathcal{A}}_{\mathcal{A}} \stackrel{\beta}{\longleftrightarrow} \mathfrak{M}(\{1,2,3\}, \leqslant)_{\mathcal{A}} \xrightarrow{\gamma} \mathfrak{M}(\{1,2\}, \leqslant)_{\mathcal{A}} \\
& \sigma(1,2) \times \mathrm{id} \quad \sigma(1) \times \sigma(2) \quad \mid \delta
\end{aligned}
$$

The top right and bottom left squares are

 Cartesian, so the following commutes:Applying the two routes round the outside to $f \otimes g \otimes h$ proves $(f * g) * h=f *(g * h)$.

We can translate work by many authors into the configurations framework to give geometric realizations of interesting algebras such as universal enveloping algebras of Kac-Moody algebras $U(\mathfrak{g})$ as algebras of constructible functions on $\mathfrak{V b j}_{\mathcal{A}}$, where \mathcal{A} is $\bmod -\mathbb{K} Q$ or $\bmod -\mathbb{K} Q / I$ for a quiver Q. We can also do a lot more. There are other ways to use configuration 1-morphisms to define associative multiplications on CF $(\mathfrak{M}(I, \preceq))$, and comultiplications to make Hopf algebras. The Drinfeld double construction has a configuration explanation, I believe. And so on.
6. Indecomposables and Lie algebras

Call $X \in \mathcal{A}$ indecomposable if $X \neq 0$ and $X \not \equiv Y \oplus Z$ for any $Y, Z \not \equiv 0$. Any $X \in \mathcal{A}$ has $X \cong X_{1} \oplus \cdots \oplus X_{n}$ for X_{a} indecomposable and unique up to order, isomorphism.
Write $\mathrm{CF}^{\text {ind }}\left(\mathfrak{O b j}_{\mathcal{A}}\right)$ for the subspace of $f \in$ $\mathrm{CF}\left(\mathfrak{V b j}_{\mathcal{A}}\right)$ supported on points $[X]$ for X indecomposable. If $f, g \in \mathcal{C F}^{\text {ind }}\left(\mathfrak{O b j}_{\mathcal{A}}\right)$ then $f * g$ is supported on [X] with 1 or 2 indecomposable factors, and $(f * g)([X \oplus Y])=$ $f(X) g(Y)+f(Y) g(X)$ for indecomposable $X \nsupseteq Y$. So $[f, g]=f * g-g * f$ lies in CF ${ }^{\text {ind }}\left(\mathfrak{O b j}_{\mathcal{A}}\right)$, which is a Lie algebra. Stack functions supported on indecomposables are not closed under [,], but there is a Lie subalgebra $\mathrm{SF}_{\mathrm{al}}^{\text {ind }}\left(\mathfrak{V b j}_{\mathcal{A}}\right)$ of stack functions supported on 'virtual indecomposables' (rather complicated!).

7. Algebra morphisms from $\operatorname{SF}\left(\mathfrak{O b j}_{\mathcal{A}}\right)$

Recall from last seminar: let γ be a motivic invariant of \mathbb{K}-varieties with values in a \mathbb{Q}-algebra $\wedge, \ell=\Upsilon(\mathbb{K}), \ell$ and $\ell^{k}-1, k \geqslant 1$ invertible in \wedge. We extend Υ uniquely to $\gamma^{\prime}(\mathfrak{F})$ for finite type \mathbb{K}-stacks \mathfrak{F}, such that $\Upsilon^{\prime}([X / G])=\Upsilon(X) \Upsilon(G)^{-1}$ for X a variety and G a special \mathbb{K}-group. Example: $\Upsilon(X)$ can be the virtual Poincaré polynomial $P_{X}(z), \wedge$ the \mathbb{Q}-algebra of rational functions in z.
For such \uparrow, \wedge, define a \mathbb{Q}-linear map
$\Pi_{\wedge}: \operatorname{SF}\left(\mathfrak{O b j}_{\mathcal{A}}\right) \rightarrow \Lambda$ by
$\Pi_{\wedge}:[(\Re, \rho)] \mapsto \Upsilon^{\prime}(\mathfrak{R})$.

Write $K(\mathcal{A})$ for K-theory of \mathcal{A}. Suppose $\chi: K(\mathcal{A}) \times K(\mathcal{A}) \rightarrow \mathbb{Z}$ is biadditive with $\operatorname{dim} \operatorname{Hom}(X, Y)-\operatorname{dim} \operatorname{Ext}^{1}(X, Y)=\chi([X],[Y])$ for all $X, Y \in \mathcal{A}$. This holds for $\mathcal{A}=$ $\bmod -\mathbb{K} Q$ and $\mathcal{A}=\operatorname{coh}(P), P$ smooth curve. Write $\mathfrak{O b j}_{\mathcal{A}}^{\alpha}$ for the substack of $[X] \in \mathfrak{O b j}_{\mathcal{A}}$ in class $\alpha \in K(\mathcal{A})$. Then we prove:
Theorem. Let $f, g \in \operatorname{SF}\left(\mathfrak{O b j}_{\mathcal{A}}\right)$ be supported on $\mathfrak{O b j}{ }_{\mathcal{A}}^{\alpha}, \mathfrak{O b j}{ }_{\mathcal{A}}^{\beta}$ for $\alpha, \beta \in K(\mathcal{A})$. Then $\Pi_{\wedge}(f * g)=\ell^{-\chi(\beta, \alpha)} \Pi_{\wedge}(f) \Pi_{\wedge}(g)$ in \wedge.

Can use this identity to define an algebra morphism $\Phi^{\wedge}: \operatorname{SF}\left(\mathfrak{O b j}_{\mathcal{A}}\right) \rightarrow A(\mathcal{A}, \wedge, \chi)$, where $A(\mathcal{A}, \wedge, \chi)$ is the Λ-algebra with Λ-basis $a^{\alpha}, \alpha \in K(\mathcal{A})$, and multiplication $a^{\alpha} \star a^{\beta}=\ell^{-\chi(\beta, \alpha)} a^{\alpha+\beta}$, by $\Phi^{\wedge}(f)=\sum_{\alpha \in K(\mathcal{A})} \Pi_{\wedge}\left(\left.f\right|_{\mathfrak{V b j}_{\mathcal{A}}^{\alpha}}\right) a^{\alpha}$.

Sketch proof: Can write the support of $f \otimes g$ as a finite disjoint union of substacks $\mathfrak{F}_{i} \subset \mathfrak{D b j}_{\mathcal{A}} \times \mathfrak{O b j}_{\mathcal{A}}$, with vector spaces H_{i}, E_{i} such that for all $([X],[Y]) \in \mathfrak{F}_{i}(\mathbb{K})$ we have $\operatorname{Hom}(Y, X) \cong H_{i}$ and $\operatorname{Ext}^{1}(Y, X)=E_{i}$. So $\operatorname{dim} H_{i}-\operatorname{dim} E_{i}=\chi(\beta, \alpha)$.
Can also arrange $\mathfrak{F}_{i} \cong\left[X_{i} / G_{i}\right]$ for G_{i} special. Then the fibre product
$\mathfrak{G}_{i}=\mathfrak{F}_{i} \times \mathfrak{V b j}_{\mathcal{A}} \times \mathfrak{V b j}_{\mathcal{A}} \operatorname{Mi}(\{1,2\}, \leqslant)_{\mathcal{A}}$ is 1-isomorphic to $\left[X_{i} \times E_{i} / G_{i} \ltimes H_{i}\right]$, since $(\{1,2\}, \leqslant)$-configurations over $([X],[Y])$ are parametrized by $\operatorname{Ext}^{1}(Y, X)$ and have $\operatorname{Hom}(Y, X)$ in their stabilizer group. Thus $\Upsilon^{\prime}\left(\mathfrak{F}_{i}\right)=\Upsilon\left(X_{i}\right) \Upsilon\left(G_{i}\right)^{-1}$ and $\Upsilon^{\prime}\left(\mathfrak{G}_{i}\right)=\Upsilon\left(X_{i}\right) \Upsilon\left(E_{i}\right) \Upsilon\left(G_{i}\right)^{-1} \Upsilon\left(H_{i}\right)^{-1}$, and $\Upsilon\left(E_{i}\right)=\ell^{\operatorname{dim} E_{i}}, \Upsilon\left(H_{i}\right)=\ell^{\operatorname{dim} H_{i}}$, so $\gamma^{\prime}\left(\mathfrak{G}_{i}\right)=\ell^{-\chi(\beta, \alpha)} \gamma^{\prime}\left(\mathfrak{F}_{i}\right)$.

If P is a Calabi-Yau 3-fold then for biadditive $\bar{\chi}: K(\operatorname{coh}(P)) \times K(\operatorname{coh}(P)) \rightarrow \mathbb{Z}$ and all $X, Y \in \operatorname{coh}(P)$ we have
$\operatorname{dim} \operatorname{Hom}(X, Y)-\operatorname{dim} \operatorname{Ext}^{1}(X, Y)$
$-\operatorname{dim} \operatorname{Hom}(Y, X)+\operatorname{dim} \operatorname{Ext}{ }^{1}(Y, X)=\bar{\chi}([X],[Y])$.
We can construct a Lie algebra morphism $\Psi^{\Omega}: \mathrm{SF}_{\mathrm{al}}^{\operatorname{ind}}\left(\mathfrak{O b j}_{\operatorname{coh}(P)}\right) \rightarrow C\left(\operatorname{coh}(P), \Omega, \frac{1}{2} \bar{\chi}\right)$ to an explicit algebra, in a similar way.
These $\Phi^{\wedge}, \Psi^{\Omega}$ will be used next seminar to define interesting invariants 'counting' τ semistable objects in \mathcal{A}. Writing $\operatorname{Obj}_{\mathrm{SS}}^{\alpha}(\tau)$ for the moduli space of τ-semistable objects in class $\alpha \in K(\mathcal{A})$, stack functions like $\bar{\delta}_{\mathrm{Obj}}^{\mathrm{ss}^{\alpha}(\tau)}$ satisfy identities in the algebra $\operatorname{SF}\left(\mathfrak{D}^{\mathfrak{b j}} \mathcal{A}\right)$, so Φ^{\wedge} being a morphism implies multiplicative identities on the invariants $I^{\alpha}(\tau)=\Pi_{\wedge}\left(\bar{\delta}_{\mathrm{Obj}_{\mathrm{SS}}^{\alpha}(\tau)}^{\alpha}\right)$ in \wedge.

