Configurations in abelian categories: stability conditions, and invariants counting semistable objects Dominic Joyce, Oxford based on math.AG/0410267, math.AG/0410268.

These slides available at www.maths.ox.ac.uk/~joyce/talks.html

1. Introduction

Let \mathcal{A} be an abelian category, and $\mathfrak{Obj}_{\mathcal{A}}$ the moduli \mathbb{K} -stack of objects in \mathcal{A} , as in the previous talks. We shall define a very general notion of (*weak*) stability condition (τ, T, \leq) on \mathcal{A} . When (τ, T, \leq) is permissible the moduli spaces $\mathsf{Obj}_{SS}^{\alpha}, \mathsf{Obj}_{St}^{\alpha}(\tau)$ of τ -(semi)stable objects in a class $\alpha \in K(\mathcal{A})$ are constructible sets in $\mathfrak{Obj}_{\mathcal{A}}$.

We define interesting algebras $\mathcal{H}_{\tau}^{\text{to}}, \overline{\mathcal{H}}_{\tau}^{\text{to}}$ of constructible functions and stack functions, generated by the characteristic function of $Obj_{SS}^{\alpha}(\tau)$ for $\alpha \in K(\mathcal{A})$, and have interesting Lie subalgebras $\mathcal{L}_{\tau}^{\text{to}}, \overline{\mathcal{L}}_{\tau}^{\text{to}}$. These turn out to be independent of (τ, T, \leq) .

Given a *motivic invariant* Υ of \mathbb{K} -varieties. we extend it to Υ' on constructible sets in K-stacks, and define *invariants* $I_{ss}^{\alpha}(\tau) =$ $\Upsilon'(Obj_{ss}^{\alpha}(\tau))$ which 'count' τ -semistable objects in class α , and other more general invariants 'counting' τ -semistable configurations. These satisfy additive identities. If $\operatorname{Ext}^{i}(X, Y) = 0$ for all i > 1 and $X, Y \in \mathcal{A}$, or under other conditions, we prove extra *multiplicative identities* on some classes of invariants. This happens if $\mathcal{A} = \text{mod-}\mathbb{K}Q$, or if $\mathcal{A} = \operatorname{coh}(P)$ for P a smooth curve, or a surface with K_P^{-1} semiample, or a Calabi-Yau 3-fold. The identities come from (Lie) algebra morphisms from $\bar{\mathcal{H}}_{\tau}^{to}$ or

 $\bar{\mathcal{L}}_{\tau}^{\text{to}}$ to some explicit (Lie) algebra.

2. (Weak) stability conditions

Let \mathcal{A} be an abelian category, and $K(\mathcal{A})$ the quotient of the Grothendieck group $K_0(\mathcal{A})$ by some fixed subgroup, such that if $X \in \mathcal{A}$ and [X] = 0 in $K(\mathcal{A})$ then $X \cong 0$. Define the *positive cone* in $K(\mathcal{A})$: $C(\mathcal{A}) = \{ [X] \in K(\mathcal{A}) : X \in \mathcal{A}, \ X \not\cong \mathbf{0} \}.$ Suppose (T, \leq) is a totally ordered set, and $\tau : C(\mathcal{A}) \to T$ a map. Call (τ, T, \leqslant) a stability condition on \mathcal{A} if whenever α, β, γ lie in $C(\mathcal{A})$ with $\beta = \alpha + \gamma$ then either $\tau(\alpha) < \tau(\beta) < \tau(\gamma)$, or $\tau(\alpha) > \tau(\beta) > \tau(\gamma)$, or $\tau(\alpha) = \tau(\beta) = \tau(\gamma)$. This definition is modelled on Rudakov's stability conditions. Call (τ, T, \leq) a weak stability condition if

 $\tau(\alpha) \leq \tau(\beta) \leq \tau(\gamma) \text{ or } \tau(\alpha) \geq \tau(\beta) \geq \tau(\gamma).$

Call $X \in \mathcal{A} \tau$ -semistable (or τ -stable) if for all subobjects $S \subset X$ with $S \neq 0, X$ we have $\tau([S]) \leq \tau([X/S])$ (or $\tau([S]) < \tau([X/S])$). If (τ, T, \leq) is a weak stability condition and \mathcal{A} is noetherian and τ -artinian then every $X \in \mathcal{A}$ has a unique Harder–Narasimhan filtration $0 = A_0 \subset A_1 \subset \cdots A_n = X$ with all quotients $S_i = A_i/A_{i-1} \tau$ -semistable and $\tau([S_1]) > \cdots > \tau([S_n])$.

If (τ, T, \leq) is a stability condition, every τ semistable X also has such a (nonunique) filtration with S_i τ -stable and $\tau([S_i]) =$ $\tau([X])$ for all i, S_i unique up to order, iso. So τ -semistability is well-behaved for weak stability conditions, and τ -stability is wellbehaved for stability conditions.

Examples. (a) Let $Q = (Q_0, Q_1, b, e)$ be a quiver, $\mathcal{A} = \text{mod-}\mathbb{K}Q$ and $K(\mathcal{A}) = \mathbb{Z}^{Q_0}$. Then $C(\mathcal{A}) = \mathbb{N}^{Q_0} \setminus \{0\}$. Choose maps $c: Q_0 \to \mathbb{Z}$ and $r: Q_0 \to \mathbb{Z}_+$ and define the slope $\mu : C(\mathcal{A}) \to \mathbb{R}$ by $\mu(\alpha) = \left(\sum_{v \in Q_{\Omega}} c(v) \alpha(v)\right) / \left(\sum_{v \in Q_{\Omega}} r(v) \alpha(v)\right).$ Then (μ, \mathbb{R}, \leq) is a stability condition. (b) Let P be a smooth projective \mathbb{K} -scheme, $\mathcal{A} = \operatorname{coh}(P)$ and $K(\mathcal{A}) = K^{\operatorname{num}}(\mathcal{A})$ the *nu*merical Grothendieck group, a subgroup of $H^{\text{even}}(P,\mathbb{Q})$. Set $D = \{-\dim P, 1$ dim $P, \ldots, 0$, and define $\delta : C(\mathcal{A}) \to D$ by $\delta([X]) = -\dim \operatorname{supp} X$. Then (δ, D, \leq) is a weak stability condition on \mathcal{A} , and $X \in \mathcal{A}$ is τ -semistable if X is *pure*. The δ Harder– Narasimhan filtration of X in \mathcal{A} is its torsion filtration.

6

(c) For $\mathcal{A} = \operatorname{coh}(P)$ and $K(\mathcal{A})$ as in (b), define G to be the set of monic real polynomials $t^d + a_{d-1}t^{d-1} + \cdots + a_0$ of degree $d \leq \dim P$. Define a total order ' \leq ' on Gby $p \leq q$ if either deg $p > \deg q$, or deg p =deg q and $p(t) \leq q(t)$ for all $t \gg 0$.

Let *L* be an ample line bundle on *P*, and define $\gamma : C(\mathcal{A}) \to G$ by $\gamma([X]) = P_X(t)/l_X$, where $P_X(t)$ is the Hilbert polynomial of *X* w.r.t. *L*, with leading coefficient l_X .

Then (γ, G, \leq) is a stability condition on \mathcal{A} , and $X \in \mathcal{A}$ is τ -(semi)stable if and only if it is *Gieseker* (*semi*)*stable*. Note that $X \tau$ -semistable implies X pure, we don't need purity as an extra assumption.

Let $(\tau, T \leq)$ be a weak stability condition, and for $\alpha \in C(\mathcal{A})$ define $Obj_{SS}^{\alpha}, Obj_{St}^{\alpha}(\tau)$ to be the sets of $[X] \in \mathfrak{Obj}_{\mathcal{A}}^{\alpha}(\mathbb{K})$ with $X \tau$ -(semi)stable. Call (τ, T, \leq) permissible if \mathcal{A} is noetherian and τ -artinian and $Obj_{SS}^{\alpha}(\tau)$ is constructible for all $\alpha \in C(\mathcal{A})$.

Examples: any weak stability condition on mod- $\mathbb{K}Q$ is permissible. Gieseker stability (γ, G, \leqslant) on $\operatorname{coh}(P)$ is permissible. For (I, \preceq) a poset and $\kappa : I \to K(\mathcal{A})$ a map, define $\mathcal{M}_{ss}, \mathcal{M}_{st}(I, \preceq, \kappa, \tau)_{\mathcal{A}}$ to be the subsets of $[(\sigma, \iota, \pi)]$ in $\mathfrak{M}(I, \preceq)(\mathbb{K})$ with $\sigma(\{i\})$ τ -(*semi*)*stable* and $[\sigma(\{i\})] = \kappa(i)$ in $K(\mathcal{A})$ for all $i \in I$. They are constructible. 3. Algebras of constructible functions Recall that $CF(\mathfrak{Obj}_A)$ is an *algebra*, with associative, noncommutative multiplication *. For permissible (τ, T, \leq) , let $\delta^{\alpha}_{SS}(\tau)$ in $\mathsf{CF}(\mathfrak{Obj}_{\mathcal{A}})$ and $\delta_{\mathsf{SS}}(I, \preceq, \kappa, \tau) \in \mathsf{CF}(\mathfrak{M}(I, \preceq)_{\mathcal{A}})$ be the characteristic functions of $Obj_{SS}^{\alpha}(\tau)$ and $\mathcal{M}_{ss}(I, \leq, \kappa, \tau)_{\mathcal{A}}$. Define $\mathcal{H}^{pa}_{\tau}, \mathcal{H}^{to}_{\tau}$ to be the subspaces of $CF(\mathfrak{Obj}_{\mathcal{A}})$ spanned by $\mathsf{CF}^{\mathsf{stk}}(\boldsymbol{\sigma}(I))\delta_{\mathsf{ss}}(I, \preceq, \kappa, \tau)$ for all (I, \preceq, κ) , with \leq a total order for $\mathcal{H}_{\tau}^{\text{to}}$. Then $\mathcal{H}_{\tau}^{to} \subseteq \mathcal{H}_{\tau}^{pa}$ are subalgebras of $CF(\mathfrak{Obj}_{\mathcal{A}})$, and \mathcal{H}_{τ}^{to} is generated as an algebra by the $\delta_{SS}^{\alpha}(\tau)$ for $\alpha \in C(\mathcal{A})$.

There are also *stack function* versions $\bar{\delta}^{\alpha}_{ss}(\tau), \bar{\delta}_{ss}(I, \leq, \kappa, \tau), \bar{\mathcal{H}}^{pa}_{\tau}, \bar{\mathcal{H}}^{to}_{\tau}.$

9

Define $\mathcal{L}_{\tau}^{pa}, \mathcal{L}_{\tau}^{to}$ to be the intersections of $\mathcal{H}_{\tau}^{pa}, \mathcal{H}_{\tau}^{to}$ with the Lie algebra $CF^{ind}(\mathfrak{Obj}_{\mathcal{A}})$ supported on indecomposables. They are Lie algebras. For $\alpha \in C(\mathcal{A})$, define

$$\epsilon^{\alpha}(\tau) = \sum_{\substack{\alpha_1, \dots, \alpha_n \in C(\mathcal{A}): \\ \alpha_1 + \dots + \alpha_n = \alpha, \\ \tau(\alpha_i) = \tau(\alpha), \,\forall i}} \frac{(-1)^{n-1}}{n} \cdot (1)$$

This is invertible combinatorially: we have

$$\delta_{SS}^{\alpha}(\tau) = \sum_{\substack{\alpha_1, \dots, \alpha_n \in C(\mathcal{A}): \\ \alpha_1 + \dots + \alpha_n = \alpha, \\ \tau(\alpha_i) = \tau(\alpha), \,\forall i}} \frac{1}{\alpha!} \cdot \cdots \cdot \epsilon^{\alpha_n}(\tau) \cdot (2)$$

For $[X] \in \mathfrak{Obj}^{\alpha}_{\mathcal{A}}(\mathbb{K})$ we have

•
$$\epsilon^{\alpha}(\tau)([X]) = 1$$
 if X is τ -stable,

- $\epsilon^{\alpha}(\tau)([X]) = 0$ is X is τ -unstable or decomposable,
- $\epsilon^{\alpha}(\tau)([X]) \in \mathbb{Q}$ if X is strictly
- τ -semistable and indecomposable.

Therefore $\epsilon^{\alpha}(\tau) \in CF^{ind}(\mathfrak{Dbj}_{\mathcal{A}})$, so $\epsilon^{\alpha}(\tau) \in \mathcal{L}_{\tau}^{to}$. By (1), (2) the $\delta_{SS}^{\alpha}(\tau), \epsilon^{\alpha}(\tau)$ generate the same subalgebra \mathcal{H}_{τ}^{to} of $CF(\mathfrak{Dbj}_{\mathcal{A}})$, so the $\epsilon^{\alpha}(\tau)$ are alternative generators for \mathcal{H}_{τ}^{to} . It follows that \mathcal{L}_{τ}^{to} is the Lie subalgebra of $CF^{ind}(\mathfrak{Dbj}_{\mathcal{A}})$ generated by the $\epsilon^{\alpha}(\tau)$ for $\alpha \in C(\mathcal{A})$, and $\mathcal{H}_{\tau}^{to} \cong U(\mathcal{L}_{\tau}^{to})$.

Similarly, we can construct a spanning set for \mathcal{L}_{τ}^{pa} and show $\mathcal{H}_{\tau}^{pa} \cong U(\mathcal{L}_{\tau}^{pa})$. We can also define alternative spanning sets for \mathcal{H}_{τ}^{pa} in terms of τ -stable or indecomposable τ -semistable objects, with change of basis formulae relating the spanning sets. There are stack function analogues $\overline{\epsilon}^{\alpha}(\tau)$ in $SF_{al}^{ind}(\mathfrak{Obj}_{\mathcal{A}}), \ldots$ of all this. 4. Change of weak stability condition Let $(\tau, T, \leq), (\tilde{\tau}, \tilde{T}, \leq)$ be different weak stability conditions on \mathcal{A} , e.g. Gieseker stability on coh(P) w.r.t. different ample line bundles L, \tilde{L} on P. Then we prove a *uni-versal formula*

$$\delta_{SS}^{\alpha}(\tilde{\tau}) = \sum_{\substack{\alpha_1, \dots, \alpha_n \in C(\mathcal{A}):\\\alpha_1 + \dots + \alpha_n = \alpha}} S(\alpha_1, \dots, \alpha_n; \tau, \tilde{\tau}) \\ \delta_{SS}^{\alpha_1}(\tau) * \dots * \delta_{SS}^{\alpha_n}(\tau).$$
(3)

Here $S(\dots)$ are explicit combinatorial coefficients equal to 1,0 or -1, depending on the orderings of $\tau(\alpha_i)$ and $\tilde{\tau}(\alpha_i)$. There are problems with whether (3) has finitely many nonzero terms. This is true if $\mathcal{A} =$ mod- $\mathbb{K}Q$ or $\mathcal{A} = \operatorname{coh}(P)$ for dim $P \leq 2$. Sketch proof: Say $\tilde{\tau}$ dominates τ if $\tau(\alpha) \leq \tau(\beta)$ implies $\tilde{\tau}(\alpha) \leq \tilde{\tau}(\beta)$ for $\alpha, \beta \in C(\mathcal{A})$. Then for $\alpha \in C(\mathcal{A})$ we have

$$\delta_{\rm SS}^{\alpha}(\tilde{\tau}) = \sum_{\substack{\alpha_1,\dots,\alpha_n \in C(\mathcal{A}): \ \alpha_1 + \dots + \alpha_n = \alpha, \\ \tilde{\tau}(\alpha_i) = \tilde{\tau}(\alpha) \ \forall i, \ \tau(\alpha_1) > \dots > \tau(\alpha_n)}} \delta_{\rm SS}^{\alpha_1}(\tau) * \dots * \delta_{\rm SS}^{\alpha_n}(\tau).$$
(4)

To prove (4), let $X \in \mathcal{A}$ have τ Harder–Narasimhan filtration $0 = A_0 \subset \cdots \subset A_n = X$ with τ -semistable factors $S_i = A_i/A_{i-1}$, and set $\alpha_i = [S_i]$ in $C(\mathcal{A})$. Then X is $\tilde{\tau}$ -semistable iff $\tilde{\tau}(\alpha_i) = \tilde{\tau}(\alpha)$ for all i, and $\delta_{SS}^{\alpha_1}(\tau) * \cdots * \delta_{SS}^{\alpha_n}(\tau)$ is the characteristic function of all [X] with τ Harder–Narasimhan filtrations with these $\alpha_1, \ldots, \alpha_n$.

We can combinatorially invert (4) to write $\delta_{ss}^{\alpha}(\tau)$ in terms of $\delta_{ss}^{\alpha_i}(\tilde{\tau})$. This gives two special cases of (3). For the general case, we find a weak stability condition $(\hat{\tau}, \hat{T}, \leq)$ dominating both (τ, T, \leq) and $(\tilde{\tau}, \tilde{T}, \leq)$ and use (4) to write $\delta_{ss}^{\beta}(\hat{\tau})$ in terms of $\delta_{ss}^{\gamma}(\tau)$ and its inverse to write $\delta_{ss}^{\alpha}(\tilde{\tau})$ in terms of $\delta_{ss}^{\beta}(\hat{\tau})$. The argument uses associativity of *. The stack function analogue also holds. Now (3) shows $\delta_{ss}^{\alpha}(\tilde{\tau})$ lies in the subalgebra of CF($\mathfrak{Obj}_{\mathcal{A}}$) generated by the $\delta_{ss}^{\beta}(\tau)$, and vice versa. Thus $\mathcal{H}_{\tau}^{to} = \mathcal{H}_{\tilde{\tau}}^{to}$. Similarly, the (Lie) algebras $\mathcal{H}_{\tau}^{pa}, \mathcal{H}_{\tau}^{to}, \mathcal{L}_{\tau}^{pa}, \mathcal{L}_{\tau}^{to}$ and $\bar{\mathcal{H}}_{\tau}^{pa}, \bar{\mathcal{H}}_{\tau}^{to}, \bar{\mathcal{L}}_{\tau}^{pa}, \bar{\mathcal{L}}_{\tau}^{to}$ are independent of the choice of (τ, T, \leq) .

Combining (1), (2) and (3) gives

$$\epsilon^{\alpha}(\tilde{\tau}) = \sum_{\substack{\alpha_1, \dots, \alpha_n \in C(\mathcal{A}):\\\alpha_1 + \dots + \alpha_n = \alpha}} U(\alpha_1, \dots, \alpha_n; \tau, \tilde{\tau}) \\ \epsilon^{\alpha_1}(\tau) * \dots * \epsilon^{\alpha_n}(\tau),$$
(5)

for combinatorial coefficients $U(\dots) \in \mathbb{Q}$. We rewrite (5) as a *Lie algebra identity*

 $\epsilon^{\alpha}(\tilde{\tau}) = \epsilon^{\alpha}(\tau) + \mathbb{Q}$ -linear combination of commutators of $\epsilon^{\alpha_1}(\tau), \dots, \epsilon^{\alpha_n}(\tau)$, (6)

where a *commutator* is $[\epsilon^{\alpha}(\tau), \epsilon^{\beta}(\tau)] = \epsilon^{\alpha}(\tau) * \epsilon^{\beta}(\tau) - \epsilon^{\beta}(\tau) * \epsilon^{\alpha}(\tau),$ $[\epsilon^{\alpha}(\tau), [\epsilon^{\beta}(\tau), \epsilon^{\gamma}(\tau)]],$ and so on.

5. Invariants counting τ -semistables

Recall from first seminar: let Υ be a *motivic invariant* of K-varieties with values in a Q-algebra Λ , $\ell = \Upsilon(\mathbb{K})$, ℓ and $\ell^k - 1$, $k \ge 1$ invertible in Λ . We extend Υ uniquely to $\Upsilon'(\mathfrak{F})$ for finite type K-stacks \mathfrak{F} , such that $\Upsilon'([X/G]) = \Upsilon(X)\Upsilon(G)^{-1}$ for X a variety and G a special K-group.

Example: $\Upsilon(X)$ can be the *virtual Poincaré polynomial* $P_X(z)$, Λ the \mathbb{Q} -algebra of rational functions in z. For such Υ, Λ , define a \mathbb{Q} -linear map $\Pi_{\Lambda} : SF(\mathfrak{Obj}_{\mathcal{A}}) \to \Lambda$ by $\Pi_{\Lambda} : [(\mathfrak{R}, \rho)] \mapsto \Upsilon'(\mathfrak{R}).$

15

If (τ, T, \leq) is a permissible weak stability condition and $\alpha \in C(\mathcal{A})$, define *invariants* $I_{SS}^{\alpha}(\tau) = \prod_{\Lambda}(\overline{\delta}_{SS}^{\alpha}(\tau)) = \Upsilon'(Obj_{SS}^{\alpha}(\tau))$ and $J^{\alpha}(\tau)^{\Lambda} = (\ell - 1)\prod_{\Lambda}(\overline{\epsilon}^{\alpha}(\tau))$ in Λ . Since $\overline{\epsilon}^{\alpha}(\tau) \in SF_{al}^{ind}(\mathfrak{Obj}_{\mathcal{A}})$, can show $J^{\alpha}(\tau)^{\Lambda}$ lies in a certain subalgebra Λ° of Λ in which $\ell - 1$ is not invertible.

There is a Q-algebra morphism $\pi : \Lambda^{\circ} \rightarrow \Omega$ with $\pi(\ell) = 1$, which projects virtual Poincaré polynomials to Euler characteristics. Set $J^{\alpha}(\tau)^{\Omega} = \pi (J^{\alpha}(\tau)^{\Lambda})$. Interpret $I^{\alpha}_{SS}(\tau), J^{\alpha}(\tau)^{\Lambda}, J^{\alpha}(\tau)^{\Omega}$ as different invariants 'counting' τ -semistables in class α in $C(\mathcal{A})$. From second seminar: if $Ext^i(X, Y) = 0$ for all i > 1 and $X, Y \in \mathcal{A}$ then there is a biadditive $\chi : K(\mathcal{A}) \times K(\mathcal{A}) \to \mathbb{Z}$ with

dim Hom(X, Y) – dim Ext¹ $(X, Y) = \chi([X], [Y])$ for all $X, Y \in \mathcal{A}$. This holds for $\mathcal{A} =$ mod- $\mathbb{K}Q$ and $\mathcal{A} = \operatorname{coh}(P)$, P smooth curve. Then we construct an *algebra morphism* $\Phi^{\Lambda} : \operatorname{SF}(\mathfrak{Obj}_{\mathcal{A}}) \to A(\mathcal{A}, \Lambda, \chi)$ to an explicit algebra $A(\mathcal{A}, \Lambda, \chi)$. Suppose (τ, T, \leq) and $(\tilde{\tau}, \tilde{T}, \leq)$ are permissible weak stability conditions on \mathcal{A} . Applying Φ^{Λ} to the stack function analogue of (3) above gives:

$$I_{SS}^{\alpha}(\tilde{\tau}) = \sum_{\substack{\alpha_1, \dots, \alpha_n \in C(\mathcal{A}):\\\alpha_1 + \dots + \alpha_n = \alpha}} S(\alpha_1, \dots, \alpha_n; \tau, \tilde{\tau}) \cdot \ell^{-\sum_{1 \leq i < j \leq n} \chi(\alpha_j, \alpha_i)} \ell^{-\sum_{1 \leq i < j \leq n} \chi(\alpha_j, \alpha_i)} \Gamma_{i=1}^n I_{SS}^{\alpha_i}(\tau).$$
(7)

We can also prove that (7) holds if $\mathcal{A} = \operatorname{coh}(P)$ for P a smooth projective surface with K_P^{-1} semiample, even though Φ^{\wedge} is not a morphism in this case. If $\tilde{\tau}$ dominates τ then applying Φ^{\wedge} to the stack function analogue of (4) above yields:

$$I_{SS}^{\alpha}(\tilde{\tau}) = \sum_{\substack{\alpha_1, \dots, \alpha_n \in C(\mathcal{A}): \alpha_1 + \dots + \alpha_n = \alpha, \\ \tilde{\tau}(\alpha_i) = \tilde{\tau}(\alpha) \ \forall i, \ \tau(\alpha_1) > \dots > \tau(\alpha_n) \ \prod_{i=1}^n I_{SS}^{\alpha_i}(\tau).} (8)$$

This is because we can show using Serre duality and $\tau(\alpha_1) > \cdots > \tau(\alpha_n)$ that all the relevant Ext² groups between terms in (4) vanish, so we reduce to the case $\operatorname{Ext}^i(X,Y) = 0$ for all i > 1 and $X, Y \in \mathcal{A}$. We can then prove (7) from (8) in the same way that we proved (3) from (4).

6. Sheaves on Calabi–Yau 3-folds

Recall from second seminar: if $\mathcal{A} = \operatorname{coh}(P)$ for Pa *Calabi–Yau* 3-*fold* then for biadditive $\overline{\chi} : K(\mathcal{A}) \times K(\mathcal{A}) \to \mathbb{Z}$ and all X, Y in \mathcal{A} we have

dim Hom
$$(X, Y)$$
 – dim Ext¹ (X, Y) –
dim Hom (Y, X) + dim Ext¹ $(Y, X) = \overline{\chi}([X], [Y]).$ (9)

We construct Ψ^{Ω} : $SF_{al}^{ind}(\mathfrak{Dbj}_{\mathcal{A}}) \to C(\mathcal{A}, \Omega, \frac{1}{2}\overline{\chi})$, a Lie algebra morphism to an explicit algebra. Let $(\tau, T, \leq), (\tilde{\tau}, \tilde{T}, \leq)$ be permissible weak stability conditions on \mathcal{A} . If $\alpha \in C(\mathcal{A})$ then $\overline{\epsilon}^{\alpha}(\tau) \in SF_{al}^{ind}(\mathfrak{Dbj}_{\mathcal{A}})$, and $\Psi^{\Omega}(\overline{\epsilon}^{\alpha}(\tau)) = J^{\alpha}(\tau)^{\Omega}c^{\alpha}$. Applying Ψ^{Ω} to (5), which is a Lie algebra identity as in (6), yields:

$$J^{\alpha}(\tilde{\tau})^{\Omega} = \sum_{\substack{\text{iso. classes}\\\text{of }\Gamma, I, \kappa}} V(\Gamma, I, \kappa, \tau, \tilde{\tau}) \cdot \prod_{i \in I} J^{\kappa(i)}(\tau)^{\Omega} \cdot \prod_{i \in I} \bar{\chi}(\kappa(i), \kappa(j)).$$
(10)
$$\prod_{\substack{\text{edges}\\i \to j \text{ in }\Gamma}} \bar{\chi}(\kappa(i), \kappa(j)).$$

Here Γ is a connected, simply-connected digraph with vertices $I, \kappa : I \to C(\mathcal{A})$ has $\sum_{i \in I} \kappa(i) = \alpha$, and $V(\cdots) \in \mathbb{Q}$ are explicit combinatorial coefficients, depending on orientation of Γ only up to sign.

Remarks: • I haven't proved (10) has only finitely many nonzero terms. But can find $\tau = \tau_0, \tau_1, ..., \tau_n = \tilde{\tau}$ with finitely many terms going from τ_{i-1} to τ_i , $i = 1, \ldots, n$. • (10) expresses $J^{\alpha}(\tilde{\tau})^{\Omega}$ in terms of invariants $J^{\beta}(\tau)^{\Omega}$ of the same type. This is a special feature of the C-Y 3-fold case. In general, we can only write $I_{ss}(I, \leq, \kappa, \tilde{\tau})$ as a linear combination of $I_{SS}(J, \leq, \lambda, \tau)$ for posets (J, \leq) larger than (I, \preceq) . • The $J^{\alpha}(\tau)^{\Omega}$ are *not* expected to be unchanged by deformations of X, as Donaldson–Thomas invariants are. **Conjecture:** there exists an *extension* of D-T invariants to the stable \neq semistable case, which are deformation-invariant, and transform according to (10).

20

• The form of (10) as a sum over graphs Γ emerges combinatorially in a bizarre way. But it is natural in the *mirror picture* of counting SL 3-folds, when one SL 3-fold decays into a tree of intersecting SL 3-folds as the complex structure deforms. **Conjecture:** there exist invariants counting SL 3-folds in class $\alpha \in H_3(M,\mathbb{Z})$ in a C-Y 3-fold M, which are independent of the Kähler class, and transform according to (10) under deformation of complex structure.

• The sum over Γ in (10) looks like a sum of *Feynman diagrams*. I think there is some *new physics* behind this, to do with Π -stability.