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1. Introduction

Let A be an abelian category, and ObjA the

moduli K-stack of objects in A, as in the

previous talks. We shall define a very gen-

eral notion of (weak) stability condition

(τ, T, 6) on A. When (τ, T, 6) is permis-

sible the moduli spaces Objαss,Objαst(τ) of

τ-(semi)stable objects in a class α ∈ K(A)

are constructible sets in ObjA.

We define interesting algebras Hto
τ , H̄to

τ of

constructible functions and stack functions,

generated by the characteristic function of

Objαss(τ) for α ∈ K(A), and have interest-

ing Lie subalgebras Lto
τ , L̄to

τ . These turn

out to be independent of (τ, T, 6).
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Given a motivic invariant Υ of K-varieties,

we extend it to Υ′ on constructible sets

in K-stacks, and define invariants Iα
ss(τ) =

Υ′(Objαss(τ)) which ‘count’ τ-semistable

objects in class α, and other more general

invariants ‘counting’ τ-semistable config-

urations. These satisfy additive identities.

If Exti(X, Y ) = 0 for all i > 1 and X, Y ∈ A,

or under other conditions, we prove extra

multiplicative identities on some classes of

invariants. This happens if A = mod-KQ,

or if A = coh(P ) for P a smooth curve,

or a surface with K−1
P semiample, or a

Calabi–Yau 3-fold. The identities come

from (Lie) algebra morphisms from H̄to
τ or

L̄to
τ to some explicit (Lie) algebra.
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2. (Weak) stability conditions

Let A be an abelian category, and K(A)

the quotient of the Grothendieck group

K0(A) by some fixed subgroup, such that

if X ∈ A and [X] = 0 in K(A) then X ∼= 0.

Define the positive cone in K(A):

C(A) =
{
[X] ∈ K(A) : X ∈ A, X 6∼= 0

}
.

Suppose (T, 6) is a totally ordered set, and

τ : C(A) → T a map. Call (τ, T, 6) a

stability condition on A if whenever α, β, γ

lie in C(A) with β = α + γ then either

τ(α)<τ(β)<τ(γ), or τ(α)>τ(β)>τ(γ), or

τ(α)=τ(β)=τ(γ). This definition is mod-

elled on Rudakov’s stability conditions.

Call (τ, T, 6) a weak stability condition if

τ(α)6τ(β)6τ(γ) or τ(α)>τ(β)>τ(γ).
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Call X ∈ A τ-semistable (or τ-stable) if for

all subobjects S⊂X with S 6=0, X we have

τ([S]) 6 τ([X/S]) (or τ([S]) < τ([X/S])).

If (τ, T, 6) is a weak stability condition and

A is noetherian and τ-artinian then every

X ∈ A has a unique Harder–Narasimhan

filtration 0 = A0 ⊂ A1 ⊂ · · ·An = X with

all quotients Si = Ai/Ai−1 τ-semistable

and τ([S1]) > · · · > τ([Sn]).

If (τ, T, 6) is a stability condition, every τ-

semistable X also has such a (nonunique)

filtration with Si τ-stable and τ([Si]) =

τ([X]) for all i, Si unique up to order, iso.

So τ-semistability is well-behaved for weak

stability conditions, and τ-stability is well-

behaved for stability conditions.
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Examples. (a) Let Q = (Q0, Q1, b, e) be

a quiver, A = mod-KQ and K(A) = ZQ0.

Then C(A) = NQ0 \ {0}. Choose maps

c : Q0 → Z and r : Q0 → Z+ and define the

slope µ : C(A) → R by

µ(α) =
(∑

v∈Q0
c(v)α(v)

)
/

(∑
v∈Q0

r(v)α(v)
)
.

Then (µ,R, 6) is a stability condition.

(b) Let P be a smooth projective K-scheme,

A = coh(P ) and K(A) = Knum(A) the nu-

merical Grothendieck group, a subgroup

of Heven(P,Q). Set D = {−dimP,1 −
dimP, . . . ,0}, and define δ : C(A) → D by

δ([X]) = −dim suppX. Then (δ, D, 6) is a

weak stability condition on A, and X ∈ A
is τ-semistable if X is pure. The δ Harder–

Narasimhan filtration of X in A is its

torsion filtration.
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(c) For A = coh(P ) and K(A) as in (b),

define G to be the set of monic real poly-

nomials td + ad−1td−1 + · · ·+ a0 of degree

d 6 dimP . Define a total order ‘6’ on G

by p 6 q if either deg p > deg q, or deg p =

deg q and p(t) 6 q(t) for all t À 0.

Let L be an ample line bundle on P , and

define γ : C(A) → G by γ([X]) = PX(t)/lX,

where PX(t) is the Hilbert polynomial of X

w.r.t. L, with leading coefficient lX.

Then (γ, G, 6) is a stability condition on

A, and X ∈ A is τ-(semi)stable if and only

if it is Gieseker (semi)stable. Note that

X τ-semistable implies X pure, we don’t

need purity as an extra assumption.
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Let (τ, T 6) be a weak stability condition,

and for α ∈ C(A) define Objαss,Objαst(τ)

to be the sets of [X] ∈ ObjαA(K) with X τ-

(semi)stable. Call (τ, T, 6) permissible if A
is noetherian and τ-artinian and Objαss(τ)

is constructible for all α ∈ C(A).

Examples: any weak stability condition

on mod-KQ is permissible. Gieseker sta-

bility (γ, G, 6) on coh(P ) is permissible.

For (I,¹) a poset and κ : I → K(A) a map,

define Mss,Mst(I,¹, κ, τ)A to be the sub-

sets of [(σ, ι, π)] in M(I,¹)(K) with σ({i})
τ-(semi)stable and [σ({i})] = κ(i) in K(A)

for all i ∈ I. They are constructible.
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3. Algebras of constructible functions

Recall that CF(ObjA) is an algebra, with

associative, noncommutative multiplication

∗. For permissible (τ, T, 6), let δα
ss(τ) in

CF(ObjA) and δss(I,¹, κ, τ) ∈ CF(M(I,¹)A)

be the characteristic functions of Objαss(τ)

and Mss(I,¹, κ, τ)A. Define Hpa
τ ,Hto

τ to

be the subspaces of CF(ObjA) spanned by

CFstk(σ(I))δss(I,¹, κ, τ) for all (I,¹, κ),

with ¹ a total order for Hto
τ .

Then Hto
τ ⊆ Hpa

τ are subalgebras of

CF(ObjA), and Hto
τ is generated as an

algebra by the δα
ss(τ) for α ∈ C(A).

There are also stack function versions

δ̄α
ss(τ), δ̄ss(I,¹, κ, τ), H̄pa

τ , H̄to
τ .
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Define Lpa
τ ,Lto

τ to be the intersections of

Hpa
τ ,Hto

τ with the Lie algebra CFind(ObjA)

supported on indecomposables. They are

Lie algebras. For α ∈ C(A), define

εα(τ) =
∑

α1,...,αn∈C(A):
α1+···+αn=α,
τ(αi)=τ(α), ∀i

(−1)n−1

n
·

δ
α1
ss (τ) ∗ · · · ∗ δαn

ss (τ).
(1)

This is invertible combinatorially: we have

δα
ss(τ) =

∑

α1,...,αn∈C(A):
α1+···+αn=α,
τ(αi)=τ(α), ∀i

1

n!
·

εα1(τ) ∗ · · · ∗ εαn(τ).
(2)

For [X] ∈ ObjαA(K) we have

• εα(τ)([X]) = 1 if X is τ-stable,

• εα(τ)([X]) = 0 is X is τ-unstable

or decomposable,

• εα(τ)([X]) ∈ Q if X is strictly

τ-semistable and indecomposable.
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Therefore εα(τ) ∈ CFind(ObjA), so εα(τ) ∈
Lto

τ . By (1), (2) the δα
ss(τ), ε

α(τ) gener-

ate the same subalgebra Hto
τ of CF(ObjA),

so the εα(τ) are alternative generators for

Hto
τ . It follows that Lto

τ is the Lie subalge-

bra of CFind(ObjA) generated by the εα(τ)

for α ∈ C(A), and Hto
τ
∼= U(Lto

τ ).

Similarly, we can construct a spanning set

for Lpa
τ and show Hpa

τ
∼= U(Lpa

τ ). We can

also define alternative spanning sets for

Hpa
τ in terms of τ-stable or indecompos-

able τ-semistable objects, with change of

basis formulae relating the spanning sets.

There are stack function analogues ε̄α(τ)

in SFind
al (ObjA), . . . of all this.
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4. Change of weak stability condition

Let (τ, T, 6), (τ̃ , T̃ , 6) be different weak sta-

bility conditions on A, e.g. Gieseker sta-

bility on coh(P ) w.r.t. different ample line

bundles L, L̃ on P . Then we prove a uni-

versal formula

δα
ss(τ̃) =

∑

α1,...,αn∈C(A):
α1+···+αn=α

S(α1, . . . , αn; τ, τ̃)

δ
α1
ss (τ) ∗ · · · ∗ δαn

ss (τ).
(3)

Here S(· · · ) are explicit combinatorial co-

efficients equal to 1,0 or −1, depending

on the orderings of τ(αi) and τ̃(αi). There

are problems with whether (3) has finitely

many nonzero terms. This is true if A =

mod-KQ or A = coh(P ) for dimP 6 2.
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Sketch proof: Say τ̃ dominates τ if τ(α) 6 τ(β)
implies τ̃(α) 6 τ̃(β) for α, β ∈C(A). Then for α ∈
C(A) we have

δα
ss(τ̃) =

∑

α1,...,αn∈C(A): α1+···+αn=α,
τ̃(αi)=τ̃(α) ∀i, τ(α1)>···>τ(αn)

δ
α1
ss (τ) ∗ · · · ∗ δαn

ss (τ).
(4)

To prove (4), let X ∈ A have τ Harder–Narasimhan
filtration 0 = A0 ⊂ · · · ⊂ An = X with τ-semistable
factors Si = Ai/Ai−1, and set αi = [Si] in C(A).
Then X is τ̃-semistable iff τ̃(αi) = τ̃(α) for all i,
and δ

α1
ss (τ)∗· · ·∗δαn

ss (τ) is the characteristic function
of all [X] with τ Harder–Narasimhan filtrations with
these α1, . . . , αn.
We can combinatorially invert (4) to write δα

ss(τ)
in terms of δ

αi
ss(τ̃). This gives two special cases

of (3). For the general case, we find a weak sta-
bility condition (τ̂ , T̂ , 6) dominating both (τ, T, 6)
and (τ̃ , T̃ , 6) and use (4) to write δ

β
ss(τ̂) in terms

of δ
γ
ss(τ) and its inverse to write δα

ss(τ̃) in terms of
δ
β
ss(τ̂). The argument uses associativity of ∗. The

stack function analogue also holds. ¤
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Now (3) shows δα
ss(τ̃) lies in the subalge-

bra of CF(ObjA) generated by the δ
β
ss(τ),

and vice versa. Thus Hto
τ = Hto

τ̃ . Simi-

larly, the (Lie) algebras Hpa
τ ,Hto

τ ,Lpa
τ ,Lto

τ

and H̄pa
τ , H̄to

τ , L̄pa
τ , L̄to

τ are independent of

the choice of (τ, T, 6).

Combining (1), (2) and (3) gives

εα(τ̃) =
∑

α1,...,αn∈C(A):
α1+···+αn=α

U(α1, . . . , αn; τ, τ̃)

εα1(τ) ∗ · · · ∗ εαn(τ),
(5)

for combinatorial coefficients U(· · · ) ∈ Q.

We rewrite (5) as a Lie algebra identity

εα(τ̃) = εα(τ) + Q-linear combination

of commutators of εα1(τ), . . . , εαn(τ),
(6)

where a commutator is

[εα(τ), εβ(τ)]=εα(τ) ∗ εβ(τ)−εβ(τ) ∗ εα(τ),

[εα(τ), [εβ(τ), εγ(τ)]], and so on.
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5. Invariants counting τ-semistables

Recall from first seminar: let Υ be a mo-

tivic invariant of K-varieties with values in

a Q-algebra Λ, ` = Υ(K), ` and `k−1, k > 1

invertible in Λ. We extend Υ uniquely to

Υ′(F) for finite type K-stacks F, such that

Υ′([X/G]) = Υ(X)Υ(G)−1 for X a variety

and G a special K-group.

Example: Υ(X) can be the virtual

Poincaré polynomial PX(z), Λ the

Q-algebra of rational functions in z.

For such Υ,Λ, define a Q-linear map

ΠΛ : SF(ObjA) → Λ by

ΠΛ : [(R, ρ)] 7→ Υ′(R).
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If (τ, T, 6) is a permissible weak stability

condition and α ∈ C(A), define invariants

Iα
ss(τ) = ΠΛ(δ̄α

ss(τ)) = Υ′(Objαss(τ)) and

Jα(τ)Λ = (` − 1)ΠΛ(ε̄α(τ)) in Λ. Since

ε̄α(τ) ∈ SFind
al (ObjA), can show Jα(τ)Λ lies

in a certain subalgebra Λ◦ of Λ in which

`− 1 is not invertible.

There is a Q-algebra morphism π : Λ◦ →
Ω with π(`) = 1, which projects virtual

Poincaré polynomials to Euler characteris-

tics. Set Jα(τ)Ω=π
(
Jα(τ)Λ

)
.

Interpret Iα
ss(τ), J

α(τ)Λ, Jα(τ)Ω as different

invariants ‘counting’ τ-semistables in class

α in C(A).
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From second seminar: if Exti(X, Y ) = 0

for all i > 1 and X, Y ∈ A then there is a

biadditive χ : K(A)×K(A) → Z with

dimHom(X, Y )− dimExt1(X, Y ) = χ([X], [Y ])

for all X, Y ∈ A. This holds for A =

mod-KQ and A = coh(P ), P smooth curve.

Then we construct an algebra morphism

ΦΛ : SF(ObjA) → A(A,Λ, χ) to an explicit

algebra A(A,Λ, χ). Suppose (τ, T, 6) and

(τ̃ , T̃ , 6) are permissible weak stability con-

ditions on A. Applying ΦΛ to the stack

function analogue of (3) above gives:

Iα
ss(τ̃)=

∑

α1,...,αn∈C(A):
α1+···+αn=α

S(α1, . . . , αn; τ, τ̃)·
`−

∑
16i<j6n χ(αj,αi)·

∏n
i=1 I

αi
ss(τ).

(7)
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We can also prove that (7) holds if A =

coh(P ) for P a smooth projective surface

with K−1
P semiample, even though ΦΛ is

not a morphism in this case. If τ̃ dom-

inates τ then applying ΦΛ to the stack

function analogue of (4) above yields:

Iα
ss(τ̃) =

∑

α1,...,αn∈C(A): α1+···+αn=α,
τ̃(αi)=τ̃(α) ∀i, τ(α1)>···>τ(αn)

`−
∑

16i<j6n χ(αj,αi)·
∏n

i=1 I
αi
ss(τ).

(8)

This is because we can show using Serre

duality and τ(α1) > · · · > τ(αn) that all

the relevant Ext2 groups between terms

in (4) vanish, so we reduce to the case

Exti(X, Y ) = 0 for all i > 1 and X, Y ∈ A.

We can then prove (7) from (8) in the

same way that we proved (3) from (4).
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6. Sheaves on Calabi–Yau 3-folds
Recall from second seminar: if A = coh(P ) for P
a Calabi–Yau 3-fold then for biadditive χ̄ : K(A)×
K(A)→Z and all X, Y in A we have

dimHom(X, Y )− dimExt1(X, Y )−
dimHom(Y, X) + dimExt1(Y, X) = χ̄([X], [Y ]).

(9)

We construct ΨΩ : SFind
al (ObjA) → C(A,Ω, 1

2χ̄), a
Lie algebra morphism to an explicit algebra. Let
(τ, T, 6), (τ̃ , T̃ , 6) be permissible weak stability con-
ditions on A. If α ∈ C(A) then ε̄α(τ) ∈ SFind

al (ObjA),
and ΨΩ(ε̄α(τ)) = Jα(τ)Ωcα. Applying ΨΩ to (5),
which is a Lie algebra identity as in (6), yields:

Jα(τ̃)Ω =
∑

iso. classes
of Γ, I, κ

V (Γ, I, κ, τ, τ̃)·∏

i∈I

Jκ(i)(τ)Ω·
∏

edges
i → j in Γ

χ̄(κ(i), κ(j)).
(10)

Here Γ is a connected, simply-connected digraph
with vertices I, κ : I → C(A) has

∑
i∈I κ(i) = α, and

V (· · · ) ∈ Q are explicit combinatorial coefficients,
depending on orientation of Γ only up to sign.
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Remarks: • I haven’t proved (10) has

only finitely many nonzero terms. But can

find τ = τ0, τ1, ..., τn = τ̃ with finitely many

terms going from τi−1 to τi, i = 1, . . . , n.

• (10) expresses Jα(τ̃)Ω in terms of invari-

ants Jβ(τ)Ω of the same type. This is a

special feature of the C–Y 3-fold case. In

general, we can only write Iss(I,¹, κ, τ̃) as

a linear combination of Iss(J, . , λ, τ) for

posets (J, . ) larger than (I,¹).

• The Jα(τ)Ω are not expected to be

unchanged by deformations of X, as

Donaldson–Thomas invariants are.

Conjecture: there exists an extension of

D–T invariants to the stable 6=semistable

case, which are deformation-invariant, and

transform according to (10).
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• The form of (10) as a sum over graphs Γ

emerges combinatorially in a bizarre way.

But it is natural in the mirror picture of

counting SL 3-folds, when one SL 3-fold

decays into a tree of intersecting SL

3-folds as the complex structure deforms.

Conjecture: there exist invariants count-

ing SL 3-folds in class α ∈ H3(M,Z) in

a C–Y 3-fold M , which are independent

of the Kähler class, and transform accord-

ing to (10) under deformation of complex

structure.

• The sum over Γ in (10) looks like a

sum of Feynman diagrams. I think there is

some new physics behind this, to do with

Π-stability.
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