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1. Calibrations

Let (M, g) be a Riemannian
manifold. An oriented tan-
gent k-plane V. on M is an
oriented vector subspace V of
some tangent space T,M to
M with dimV = k. Each has
a volume form voly, defined
using g.

A calibration on M is a closed
k-form ¢ with ¢l < voly, for
every oriented tangent k-plane
V on M.



Let V be an oriented k-fold in
M withdim N = k. We call N
calibrated if o|7. y = VOl N
for all x € N.

If N is compact then vol(N) >
0] - [V], and if N is compact
and calibrated then vol(N) =
[0]-[N], where [¢] € H*(M,R)
and [N] € H.(M,Z).

T hus calibrated submanifolds
are volume-minimizing in their
homology class, and are
minimal submanifolds.



1.1 Calibrations on R"

Let (R™, g) be Euclidean, and
© be a constant k-form on R"
with ¢y < voly for all
oriented k-planes V in R".
Let F, be the set of oriented
k-planes V in R™ with ¢l =
voly,. Then an oriented k-fold
N in R"™ is a p-submanifold iff
IxN € Fp tor all x € N.

For ¢ to be interesting, F,
must be fairly large, or there
will be few p-submanifolds.
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1.2 Calibrations and

special holonomy metrics
Let G C O(n) be the holon-
omy group of a Riemannian
metric. Then G acts on AF(R™)*.
Suppose pg € A(R™)* is nonzero
and G-invariant. Rescale g
so that ¢qly < voly, for all ori-
ented k-planes V C R", and
wolyy = voly forsome U. Then
U € Fpy, SO by G-invariance
Foq CONtains the G-orbit of
U. Usually Fyy is ‘fairly big’.

4



Let (M, g) be have holonomy
(. Then there is constant k-
form ¢ on M corresponding
to the G-invariant k-form .
[t is a calibration on M.

At each x € M the family of
oriented tangent k-planes V
with |y, = voly, is Fy,, which
IS ‘fairly big’'. So we expect
many p-submanifolds N in M.
Thus manifolds with special
holonomy often have interest-
INg calibrations.



1.3. Examples

e The group U(m) C O(2m)
preserves a symplectic 2-form
wg on R2™ A manifold (M, g)
with holonomy U(m) is a
Kahler m-fold, with Kahler form
w and complex structure J.
For 1 < kK < m, the 2k-form
wk/Ek! is a calibration on M,
and its calibrated submanifolds
complex k-submanifolds

of (M, J).



e The group SU(m) C O(2m)
preserves a complex m-form
Qo on R2™. A manifold (M, g)
with holonomy SU(m) is a
Calabi—Yau m-fold, with
complex volume form S2.

Re (2 is a calibration on M,
and Its calibrated submanifolds
are called special Lagrangian

m-folds.
An m-fold N in M is special

Lagrangian iff w|y=Im Q|5 =0.
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e The group Go C O(7)
preserves a 3-form ¢g and a
4-form xpg on R’. A manifold
(M, g) with holonomy G5
carries a constant 3-form ¢
and 4-form x¢, which are both
calibrations. Their calibrated
submanifolds are called
associative 3-folds and
coassociative 4-folds.

A 4-fold N in M is
coassociative iff o]y = 0.



e The group Spin(7) C O(8)
preserves a 4-form g on RS,
A manifold (M, g) with
holonomy Spin(7) carries a
constant 4-form €2, which is
a calibration. Its calibrated
submanifolds are called
Cayley 4-folds.



2. Deformation theory

2.1. The local equations

T he family of oriented 3-planes
inR’ is SO(7)/SO(3)xS0O(4),
dimension 12. The family of
associative 3-planes in R’ is
G>/SO(4), dimension 8. So
the associative 3-planes have
codimension 4 in all 3-planes.
Thus, for a 3-fold L in R’ or
(M, p,g) to be associative is
4 equations on each tangent
plane T,.L.
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The freedom to vary L is the
sections of its normal bundle,
locally 4 real functions on L.
So the deformation problem
for associative 3-folds is

4 equations on 4 functions,
a determined problem.

The deformation problem
for coassociative 4-folds is 4
equations on 3 functions,
overdetermined, and for Cay-
ley 4-folds is 4 equations on
4 functions, determined.
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2.2 Deforming compact
coassociative 4-folds
Theorem (McLean). Let
(M, p,qg) be a Go-manifold, and
N a compact coassociative
4-fold in M. Then the mod-
uli space My of coassocia-
tive deformations of N is
smooth of dimension b3 2 (N).
Roughly, nearby coasso<:|at|ve

4-folds correspond to small
closed forms in /\+T*N which

are H_|_(N, R) by Hodge theory.
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Here is a sketch of the proof.
Let v — N be the normal bun-
dle of N in M, so that
TM|ny = v@®TN is orthogonal.
Then V — (V - )|y defines
an isomorphism v = /\?I_T*N.
The exponential map v — M
identifies a small tubular
neighbourhood T  of N in M
with a neighbourhood U of
the zero section in AZT*N.

Let 7 : T — N be the obvious
projection.

13



Then graphs I (a) of small self-
dual 2-forms o« on N are iden-
tified with submanifold in T C
M close to N. Which « corre-
spond to coassociative I («)7?
Well, ' («) is coassociative iff
g0||—(a) = 0. This holds iff
7T*<gp\|—(a)>50, as m:M(a) > N
IS a diffeomorphism. Define
P : C®(U) — C®(A3T*N)

by P(Oé) = W*(gp\l—(a)>. T hen
M near N is locally isomor-
phic to P~1(0) near 0.
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As a function of x € N
P(a)(x) = F(z,a(z), Va(z)),
for F' smooth and nonlinear,
so P(a) = 0 is a nonlinear
first-order elliptic p.d.e.
Also P(«) is exact, as ¢ is

closed and [p|r,)] =le|n]=0
in H3(N,R). For small a,

P(a)~da. Thus My locally
approximates the set of self-
dual 2-forms o with da = 0.
By Hodge theory this is

H_l_(N R), of dimension b3 (N).



2.3 Deforming the

Go>-manifold
Let (M, ¢, g) be a Go-manifold.
Then a 4-fold L in M is coas-
socCiative iff |, = 0. This
holds only if [p|;] = 0 in
H3(L,R). So we have:
Lemma. Let (M,p,g) be a
Go-manifold, and L a com-
pact 4-fold in M. Then L is
Isotopic to a coassociative 4-
fold N in M only if [p|f] =0
in H3(L,R).

16



This Is necessary and locally
sufficient for (M, ¢, g) to have
a coassociative 4-fold in a
given deformation class.
Theorem. Let (M, SOt,gt) :
t € (—e,e) be a smooth fam-
iIly of Go-manifolds, and Ng a
compact coassociative 4-fold
in (M, p0,90). If [pt|n,] = O
in H3(Ng, R) for all ¢, then Ng
extends to a smooth family of
coassociative Nt in (M, ¢, gt)
fort e (—6,6), 0 < d < e.
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2.4 Associative 3-folds
and Cayley 4-folds

Associative 3-folds in
Go>-manifolds and Cayley
4-folds in Spin(7)-manifolds
cannot be defined by the
vanishing of closed forms.
This gives their deformation
theory a different character.
Here is how the theories work.

18



Let N be a compact asso-
ciative 3-fold or Cayley 4-fold
InN M. Then there are vector
bundles E, F — N and a first
order elliptic operator

Dy : C°(FE) — C°°(F).

The kernel Ker Dy is the set
of infinitesimal deformations
of N. The cokernel Coker Dy
IS the obstruction space. The
index of DN IS md(DN) —
dim Ker D — dim Coker Dyy.
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In the associative case
ind(Dp) = 0, and in the
Cayley case ind(Dy) =

(N) — 3x(N) — 5[N] - [N],
where 7 Is the signature and
x the Euler characteristic.
Generically Coker D = 0, and
then M is locally a manifold
with dimension ind(Dy). If
Coker Da = 0O, then M may
be singular, or have a
different dimension.
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Note that the coassociative
and special Lagrangian cases
are unusual: there are no
obstructions, and the mod-
uli space is always a manifold
of given dimension, without
genericity assumptions.

This is a minor mathematical
miracle.
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