Introduction to calibrated geometry

Dominic Joyce
Oxford University
England

1. Calibrations

Let (M,g) be a Riemannian manifold. An oriented tangent k-plane V on M is an oriented vector subspace V of some tangent space T_xM to M with dim V=k. Each has a volume form vol_V defined using g.

A calibration on M is a closed k-form φ with $\varphi|_V \leqslant \mathrm{vol}_V$ for every oriented tangent k-plane V on M.

Let N be an oriented k-fold in M with dim N=k. We call N calibrated if $\varphi|_{T_xN}=\operatorname{vol}_{T_xN}$ for all $x\in N$.

If N is compact then $\operatorname{vol}(N)\geqslant [\varphi]\cdot [N]$, and if N is compact and calibrated then $\operatorname{vol}(N)=[\varphi]\cdot [N]$, where $[\varphi]\in H^k(M,\mathbb{R})$ and $[N]\in H_k(M,\mathbb{Z})$.

Thus calibrated submanifolds are volume-minimizing in their homology class, and are *minimal submanifolds*.

1.1 Calibrations on \mathbb{R}^n

Let (\mathbb{R}^n,g) be Euclidean, and φ be a constant k-form on \mathbb{R}^n with $\varphi|_V\leqslant \mathrm{vol}_V$ for all oriented k-planes V in \mathbb{R}^n .

Let \mathcal{F}_{φ} be the set of oriented k-planes V in \mathbb{R}^n with $\varphi|_V=$ vol $_V$. Then an oriented k-fold N in \mathbb{R}^n is a φ -submanifold iff $T_xN\in\mathcal{F}_{\varphi}$ for all $x\in N$.

For φ to be interesting, \mathcal{F}_{φ} must be fairly large, or there will be few φ -submanifolds.

1.2 Calibrations and special holonomy metrics

Let $G \subset O(n)$ be the holonomy group of a Riemannian metric. Then G acts on $\Lambda^k(\mathbb{R}^n)^*$. Suppose $arphi_{\mathsf{O}} \in \mathsf{\Lambda}^k(\mathbb{R}^n)^*$ is nonzero and G-invariant. Rescale φ_0 so that $\varphi_0|_V \leqslant \operatorname{vol}_V$ for all oriented k-planes $V \subset \mathbb{R}^n$, and $\varphi_0|_U = \operatorname{vol}_U$ for some U. Then $U \in \mathcal{F}_{\varphi_0}$, so by G-invariance \mathcal{F}_{arphi_0} contains the G-orbit of U. Usually \mathcal{F}_{φ_0} is 'fairly big'.

Let (M,g) be have holonomy G. Then there is constant kform arphi on M corresponding to the G-invariant k-form φ_0 . It is a *calibration* on M. At each $x \in M$ the family of oriented tangent k-planes Vwith $arphi|_V=\operatorname{vol}_V$ is \mathcal{F}_{arphi_0} , which is 'fairly big'. So we expect many φ -submanifolds N in M. Thus manifolds with special holonomy often have interesting calibrations.

1.3. Examples

• The group $U(m) \subset O(2m)$ preserves a symplectic 2-form ω_0 on \mathbb{R}^{2m} . A manifold (M,g)with holonomy $\mathsf{U}(m)$ is a Kähler m-fold, with Kähler form ω and complex structure J.For $1 \leqslant k \leqslant m$, the 2k-form $\omega^k/k!$ is a calibration on M, and its calibrated submanifolds complex k-submanifolds of (M,J).

• The group $SU(m) \subset O(2m)$ preserves a complex m-form Ω_0 on \mathbb{R}^{2m} . A manifold (M,g)with holonomy $\mathsf{SU}(m)$ is a Calabi-Yau m-fold, with complex volume form Ω . $\operatorname{Re}\Omega$ is a calibration on M, and its calibrated submanifolds are called *special Lagrangian* m-folds.

An m-fold N in M is special Lagrangian iff $\omega|_N\!\equiv\!{
m Im}\,\Omega|_N\!\equiv\!0$.

• The group $G_2 \subset O(7)$ preserves a 3-form φ_0 and a 4-form $*\varphi_0$ on \mathbb{R}^7 . A manifold (M,g) with holonomy G_2 carries a constant 3-form φ and 4-form $*\varphi$, which are both calibrations. Their calibrated submanifolds are called associative 3-folds and coassociative 4-folds. A 4-fold N in M is coassociative iff $\varphi|_N \equiv 0$.

• The group $Spin(7) \subset O(8)$ preserves a 4-form Ω_0 on \mathbb{R}^8 . A manifold (M,g) with holonomy Spin(7) carries a constant 4-form Ω , which is a calibration. Its calibrated submanifolds are called $Cayley\ 4-folds$.

2. Deformation theory

2.1. The local equations

The family of oriented 3-planes in \mathbb{R}^7 is SO(7)/SO(3)×SO(4), dimension 12. The family of associative 3-planes in \mathbb{R}^7 is $G_2/SO(4)$, dimension 8. So the associative 3-planes have codimension 4 in all 3-planes. Thus, for a 3-fold L in \mathbb{R}^7 or (M, φ, g) to be associative is 4 equations on each tangent plane T_xL .

The freedom to vary L is the sections of its normal bundle, locally 4 real functions on L. So the deformation problem for associative 3-folds is 4 equations on 4 functions, a determined problem. The deformation problem for coassociative 4-folds is 4 equations on 3 functions, overdetermined, and for Cayley 4-folds is 4 equations on 4 functions, *determined*.

2.2 Deforming compact coassociative 4-folds Theorem (McLean). Let (M, φ, g) be a G_2 -manifold, and N a compact coassociative 4-fold in $M.\,$ Then the moduli space \mathcal{M}_N of coassociative deformations of N is smooth of dimension $b_+^2(N)$. Roughly, nearby coassociative 4-folds correspond to small closed forms in $\Lambda^2_+ T^*N$, which are $H^2_+(N,\mathbb{R})$ by Hodge theory.

Here is a sketch of the proof. Let $\nu \to N$ be the *normal bun*dle of N in M, so that $TM|_N = \nu \oplus TN$ is orthogonal. Then $V \mapsto (V \cdot \varphi)|_{TN}$ defines an isomorphism $\nu \cong \Lambda^2_+ T^* N$. The exponential map $u \to M$ identifies a small tubular $neighbourhood\ T\ of\ N\ in\ M$ with a neighbourhood U of the zero section in $\Lambda^2_+ T^* N$. Let $\pi:T\to N$ be the obvious projection.

Then graphs $\Gamma(\alpha)$ of small selfdual 2-forms lpha on N are identified with submanifold in $T\subset$ M close to N. Which α correspond to *coassociative* $\Gamma(\alpha)$? Well, $\Gamma(\alpha)$ is coassociative iff $\varphi|_{\Gamma(\alpha)} \equiv 0$. This holds iff $\pi_*(\hat{\varphi}|_{\Gamma(\alpha)}) \equiv 0$, as $\pi:\Gamma(\alpha) \to N$ is a diffeomorphism. Define $P: C^{\infty}(U) \to C^{\infty}(\Lambda^3 T^*N)$ by $P(\alpha) = \pi_*(\varphi|_{\Gamma(\alpha)})$. Then \mathcal{M}_N near N is locally isomorphic to $P^{-1}(0)$ near 0.

As a function of $x \in N$ $P(\alpha)(x) = F(x, \alpha(x), \nabla \alpha(x)),$ for F smooth and nonlinear, so $P(\alpha) = 0$ is a nonlinear first-order elliptic p.d.e. Also $P(\alpha)$ is exact, as φ is closed and $[\varphi|_{\Gamma(\alpha)}] = [\varphi|_N] = 0$ in $H^3(N,\mathbb{R})$. For small α , $P(\alpha) \approx d\alpha$. Thus \mathcal{M}_N locally approximates the set of selfdual 2-forms α with $d\alpha = 0$. By Hodge theory this is $H^2_+(N,\mathbb{R})$, of dimension $b^2_+(N)$.

2.3 Deforming the G_2 -manifold

Let (M, φ, g) be a G_2 -manifold. Then a 4-fold L in M is coassociative iff $\varphi|_L\equiv 0$. This holds only if $[\varphi|_L]=0$ in $H^3(L,\mathbb{R})$. So we have:

Lemma. Let (M, φ, g) be a G_2 -manifold, and L a compact 4-fold in M. Then L is isotopic to a coassociative 4-fold N in M only if $[\varphi|_L] = 0$ in $H^3(L, \mathbb{R})$.

This is necessary and locally sufficient for (M, φ, g) to have a coassociative 4-fold in a given deformation class.

Theorem. Let (M, φ_t, g_t) : $t \in (-\epsilon, \epsilon)$ be a smooth family of G_2 -manifolds, and N_0 a compact coassociative 4-fold in (M, φ_0, g_0) . If $[\varphi_t|_{N_0}] = 0$ in $H^3(N_0, \mathbb{R})$ for all t, then N_0 extends to a smooth family of coassociative N_t in (M, φ_t, g_t) for $t \in (-\delta, \delta)$, $0 < \delta \leqslant \epsilon$.

2.4 Associative 3-folds and Cayley 4-folds

Associative 3-folds in G_2 -manifolds and Cayley 4-folds in Spin(7)-manifolds cannot be defined by the vanishing of closed forms. This gives their deformation theory a different character. Here is how the theories work.

Let N be a compact associative 3-fold or Cayley 4-fold in M. Then there are vector bundles $E, F \to N$ and a first order elliptic operator

$$D_N: C^{\infty}(E) \to C^{\infty}(F)$$
.

The kernel Ker D_N is the set of infinitesimal deformations of N. The cokernel Coker D_N is the obstruction space. The index of D_N is $\operatorname{ind}(D_N) = \operatorname{dim} \operatorname{Ker} D_N - \operatorname{dim} \operatorname{Coker} D_N$.

In the associative case $ind(D_N) = 0$, and in the Cayley case $ind(D_N) =$ $au(N) - \frac{1}{2}\chi(N) - \frac{1}{2}[N] \cdot [N],$ where au is the signature and χ the Euler characteristic. Generically Coker $D_N = 0$, and then \mathcal{M}_N is locally a manifold with dimension $ind(D_N)$. Coker $D_N \neq 0$, then \mathcal{M}_N may be singular, or have a different dimension.

Note that the coassociative and special Lagrangian cases are unusual: there are no obstructions, and the moduli space is always a manifold of given dimension, without genericity assumptions.

This is a minor mathematical miracle.