D-manifolds, a new
theory of derived
differential geometry.

Dominic Joyce, Oxford
Cambridge, April, 2010.

WOrk In progress,
chapters of a book on it
may be downloaded from

people.ox.ac.uk/~joyce/dmanifolds.html.

See also arXiv:0910.3518
and arXiv:1001.0023.

T hese slides available at
people.ox.ac.uk/~joyce/talks.html.

1



1. Introduction

Many important areas in both dif-
ferential and algebraic geometry in-
volve forming ‘moduli spaces’ M of
some geometric objects, and then
‘counting’ the points in M to get
an ‘invariant’ I(M) with interesting
properties, for example Donaldson,
Seiberg—Witten, Gromov—Witten
and Donaldson—T homas invariants.
Taking the ‘invariant’ to be a vec-
tor space, category, ..., rather than
a number, Floer homology theo-
ries, contact homology, Symplec-
tic Field Theory, and Fukaya cat-
egories also fit in this framework.
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All these ‘invariants’ theories have
some common features:

e You start with some geometrical
space X you want to study.

e You define a moduli space M of
auxiliary geometric objects F on X.
e This M is a topological space,
hopefully compact and Hausdorff,
but generally not a manifold — it
may have bad singularities.

e Nevertheless, M behaves as if it
IS @ compact, oriented manifold of
known dimension k. One defines
a virtual class [M]yir in H.(M;Q),
which ‘counts’ the points in M.

e This [M]yi is then independent
of choices in the construction, de-
formations of X etc., and contains
Interesting information.
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Methods for defining [M]y;, vary. In

good cases, with generic initial data

M is smooth. Otherwise, we prove
M has some extra geometric struc-

ture G, and use G to define [M]yi,.

e In algebraic geometry problems
M is a scheme or Deligne—Mumford

stack with obstruction theory.

e In areas of symplectic geometry
based on moduli of J-holomorphic
curves — Gromov—W.itten theory, La-
grangian Floer cohomology, Sym-

plectic Field Theory, Fukaya cate-

gories — there are two main geo-

metric structures: Kuranishi spaces
(Fukaya—Oh—Ohta—Ono) and poly-
folds (Hofer—Wysocki—Zehnder).



2. D-manifolds and d-orbifolds
I will describe a new class of geo-
metric objects I call d-manifolds —
‘derived’ smooth manifolds. Some
properties of d-manifolds:

e [hey form a strict 2-category
dMan. That is, we have objects X,
the d-manifolds, 1-morphisms f,g :
X —'Y, the smooth maps, and also
2-morphisms n : f = g.

e Smooth manifolds embed into d-
manifolds as a full (2)-subcategory.
e There are also 2-categories dManP,
dMan® of d-manifolds with bound-
ary and with corners, and orbifold
versions dOrb, dOrb”, dOrb® of these,
d-orbifolds.



e Many concepts of differential ge-
ometry extend nicely to d-manifolds:
submersions, immersions, orienta-
tions, submanifolds, transverse fi-
bre products, cotangent bundles, .. ..
e Almost any moduli space used

IN any enumerative invariant prob-

lem over R or C has a d-manifold

or d-orbifold structure, natural up

to equivalence. There are trunca-

tion functors to d-manifolds and d-

orbifolds from structures currently

used — C-schemes with obstruction

theories, Kuranishi spaces, polyfolds.
e Virtual classes/cycles/chains can

be constructed for compact oriented
d-manifolds and d-orbifolds.
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So, d-manifolds and d-orbifolds pro-
vide a unified framework for study-
INg enumerative invariants and mod-
uli spaces. They also have other
applications, and are interesting and
beautiful in their own right.
D-manifolds and d-orbifolds are
related to other classes of spaces
already studied, in particular to the
Kuranishi spaces of Fukaya—Oh—
Ohta—Ono in symplectic geometry,
and to David Spivak’s derived man-
ifolds, from Jacob Lurie's ‘derived
algebraic geometry’ programme.



2.1. Kuranishi spaces

Kuranishi spaces were defined by
Fukaya—Ono 1999 and Fukaya—Oh—
Ohta—Ono 2009 as the geometric
structure on moduli spaces M of
J-holomorphic curves in symplectic
geometry. A Kuranishi space is lo-
cally modelled on the zeroes s~1(0)
of a smooth section s of a vector
bundle E — V over an orbifold V.
The theory has a lot of problems,
and is basically incomplete.

My starting point for this project
was to find the ‘right’ definition of
Kuranishi space. I claim that this
iS: a Kuranishi space is (should re-
ally be) a d-orbifold with corners.
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2.2. Derived manifolds

Derived manifolds were defined by
David Spivak (Duke Math. J. 153,
2010), a student of Jacob Lurie. A
lot of my ideas are stolen from Spi-
vak. D-manifolds are much simpler
than derived manifolds. D-manifolds
are a 2-category, using Hartshorne-
level algebraic geometry. Derived
manifolds are an oo-category, and
use very advanced and scary tech-
nology — homotopy sheaves, Bous-
feld localization, .. ..

D-manifolds are a 2-category trun-
cation of derived manifolds. I claim
that this truncation remembers all
the geometric information of Im-
portance to symplectic geometers,
and other real people.
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2.3. Why should dMan be a
2-category?

Here are two reasons why any class
of ‘derived manifolds’ should be (at
least) a 2-category. Firstly, one prop-
erty we want of dMan is that it con-
tains manifolds Man as a subcate-
gory, and if XY, Z are manifolds
and g : X — Z, h .Y — Z are
smooth then a fibre product w =
X xg,Z’hY should exist as in dMan,
characterized by a universal prop-
erty in dMan, and should be a d-
manifold of ‘virtual dimension’

vdimw =dimX +dmY —dim Z.

Note that g,h need not be trans-
verse, and vdim W may be negative.
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Consider the case X =Y = x, the
point, Z = R, and g,h : x — O.
If dMan were an ordinary category
then as x is a terminal object, the
unique fibre product *Xxg g o* would
be x. But this has virtual dimension
O, not —1. SO dMan must be some
Kind of higher category.

Secondly, two approximations for
dMan are C-schemes X with obstruc-
tion theory, and quasi-smooth dg-
schemes. Both of these include a
‘cotangent complex’ in DPcoh(X)
concentrated in two degrees —1,0.
It seems reasonable to capture the
behaviour of such complexes in a
2-category.
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3. The definition of d-manifolds
Algebraic geometry (based on alge-
bra and polynomials) has excellent
tools for studying singular spaces —
the theory of schemes.

In contrast, conventional differen-
tial geometry (based on smooth real
functions and calculus) deals well
with nonsingular spaces — manifolds
— but poorly with singular spaces.
There is a little-known theory of
schemes in differential geometry,
(C°°-schemes, going back to Law-
vere, Dubuc, Moerdijk and Reyes,
... In synthetic differential geome-
try in the 1960s-1980s. This will be
the foundation of our d-manifolds.
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3.1. C°°-rings

Let X be a manifold, and C°°(X)

the set of smooth functions c: X —

R. Then C*(X) is an R-algebra,

by adding and multiplying smooth

functions. But there are many more
operations on C°°(X), e.g. if ¢ :

X — Rissmooth then exp(c¢) : X —

R is smooth, giving exp : C*°(X) —

C°°(X), algebraically independent of
addition and multiplication.

Let f: R" — R be smooth. Define

b, C(X)" = C°(X) by

be(cla st Cn)(CL’) :f(C]_(ZL’), c e Cn(CU)>
for all x € X. Addition comes from

fiR2 =R, f:(c1,¢2) = c1+ co,

multiplication from (¢q,c») — c1co.
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Definition. A C°°-ring is a set ¢ together
with n-fold operations & : ¢ — & for all
smooth maps f : R" - R, n > 0, satisfying
the following conditions:

Let m,n > 0, and f; : R" — R for 1 =
1,...,m and g : R™ — R be smooth func-
tions. Define h: R™ — R by

h(CIZ]_,...,ZBn) :g(f1<3317°"7xn)7°"7fm(w1°"733n))7

for (x1,...,zp) € R™. Then forall ¢cq,...,cn
iIn € we have

dy(c1,...,cp) =

g(Pp(cr,-5en)y- o, Py (e1,--50n)).
Also defining 7; : (z1,...,zn) — x; for j =
1,...,n we have &g, : (c1,...,¢cn) = ¢j.

A morphism of C'°°-rings is ¢ . € — ® with
Prog" = gody: " =D for all smooth f:
R"™ — R. Write C°°Rings for the category
of C'°°-rings.
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Then C*°(X) is a C*°-ring for any
manifold X, and from C°(X) we
can recover X up to isomorphism.
If f: X — Y is smooth then f* .
C*®(Y) — C°°(X) is a morphism
of C°°-rings. This gives a full and
faithful functor F' : Man — C°Rings®P
by F': X — C®(X), F: fw— f*.
Thus, we think of manifolds as ex-
amples of C'°°-rings, and C°°-rings
as generalizations of manifolds. But
there are many more C'°°-rings than
manifolds, e.g. CO(X) is a C*®-ring
for any topological space X.
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3.2. C°°-schemes

We can now develop the whole ma-
chinery of scheme theory in alge-
braic geometry, replacing rings or
algebras by C°°-rings throughout —
see my arXiv:1001.0023.

We obtain a category C*°Sch of (°°-
schemes X = (X,0Oyx), which are
topological space X equipped with
a sheaf of C"*“-rings O x locally mod-
elled on the spectrum of a C°°-ring.
If X is a manifold, define a (C°°-
scheme X = (X,0x) by Ox(U) =
C>°(U) for all open U C X. This
defines a full and faithful embed-
ding Man <> C°°Sch.
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We also define vector bundles, co-
herent sheaves coh(X) and quasi-
coherent sheaves qcoh(X), and the
cotangent sheaf T*X on X. Then
gcoh(X) is an abelian category.
Some differences with conventional
algebraic geometry:

e affine schemes are Hausdorff. No
need to introduce étale topology.
e partitions of unity exist subordi-
nate to any open cover of a (nice)
C°°-scheme X.

e C°°-rings such as C*°(R"™) are not
noetherian as R-algebras. Causes
problems with coherent sheaves:
coh(X) is not closed under kernels,
SO Nnot an abelian category.
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3.3. The 2-category of d-spaces

We define d-manifolds as a 2-subcategory
of a larger 2-category of d-spaces. These
are ‘derived’ versions of (/°°-schemes.
Definition. A d-space is a is a quintu-
ple X = (Xaof)(agXazXan) where X =
(X,0Ox) is a separated, second countable,
locally fair C°°-scheme, O’X IS a second
sheaf of C"*°-rings on X, and £x is a qua-
sicoherent sheaf on X, and 1x : O — Ox
IS a surjective morphism of sheaves of C°°-
rings whose kernel Zy is a sheaf of square
zero ideals in O, and jx : Ex — Ix is
a surjective morphism in gcoh(X), so we
have an exact sequence of sheaves on X:
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A 1-morphism f : X — Y is a triple f =
(f, f', ), where f = (f,fH) : X - Yis a
morphism of C*-schemes and f’: f~1(0%)
— O, f": f*(Ey) — Ex are sheaf mor-
phisms such that the following commutes:

fHEy) o f7HOy) T (Ox) -0
Lf//Yf_l(jy) lf’Y f_l(ZY) lfﬁX
gX JX OfX (D¢ OX 0.

Let f,g : X — Y be 1-morphisms with
f=r1m, F="(4d,9"). Suppose f =

g. A 2-morphism n: f = g is a morphism
Cp—1
N Qo) @p-101) Ox — €x
in gcoh(X), where QO/Y is the sheaf of

cotangent modules of Oy, such that ¢’ =

f'+axonoNxy and ¢" = f"+no f*(¢y),
for natural morphisms [lxy, ¢y .

Theorem 1. This defines a strict 2-category
dSpa. All fibre products exist in dSpa.
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We can map C*Sch into dSpa by tak-
ing a C°°-scheme X = (X,0x) to the d-
space X = (X,0x,0,idp,,0), with exact
sequence

ido

0— 92 .0y Ox—0.

This embeds C*Sch, and hence manifolds
Man, as discrete 2-subcategories of dSpa.
For transverse fibre products of manifolds,
the fibre products in Man and dSpa agree.
The use of square zero extensions in defin-
ing dSpa seems to be key in defining a
good 2-category, and in nicely truncating
Spivak’'s oco-category. I'm not sure why
this works.
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3.4. The 2-subcategory of d-manifolds
Definition. A d-space X is a d-manifold
of dimension n € Z if X may be covered by
open d-subspaces Y equivalent in dSpa to
a fibre product UxwV, where U,V , W are
manifolds without boundary and dimU +
dimV —dimW =n. We allow n < 0.
Think of a d-manifold X =(X, 0%, Ex,1x,7x)
as a ‘classical’ C°°-scheme X, with extra
‘derived’ data O%,Ex,1x,Jx.

Write dMan for the full 2-subcategory of
d-manifolds in dSpa. It is not closed under
fibre products in dSpa, but we can say:
Theorem 2. All fibre products of the form
X Xz Y with X,Y d-manifolds and Z a
manifold exist in the 2-category dMan.
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4. Properties of d-manifolds
4.1. Gluing by equivalences

A 1-morphism f: X — Y Iin dMan
IS an equivalence if there exist a 1-
morphism g:Y — X and 2-morphisms
n.:gof=1idx and ¢ : fog = idy.
Theorem3. Let X,Y be d-manifolds,
D 22U C X, 0 ##V CY open d-
submanifolds, and f : U — V an
equivalence. Suppose the topolog-
ical space Z = X Uy—y Y made by
gluing X,Y using f is Hausdorff.

T hen there exists a d-manifold Z,
unique up to equivalence, open X,Y
C Z with Z = X UY, equivalences
g: X =>Xand h:Y — Y, and a
2-morphism n : glyy = ho f.

22



Equivalence is the natural notion
of when two objects in dMan are
‘the same’. In Theorem 3, Z is a
pushout X1liq,; 7Y In dMan. Theo-
rem 3 generalizes to gluing families
of d-manifolds X, : 2 € I by equiva-
lences on double overlaps X; N X,
with (weak) conditions on triple
overlaps X; N X,;NXg.

This is very useful for proving ex-
istence of d-manifold structures on
moduli spaces.
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4.2. Virtual vector bundles
Vector bundle and cotangent bun-
dles have good 2-category general-
izations. Let X be a C°°-scheme.
Define a 2-category vqgcoh(X) of
virtual quasicoherent sheaves to have
objects morphisms ¢ : £l — £2 in
gcoh(X). If ¢ : € — &2 and o ;
Fl s F2 are objects, a 1-morphism
(f1. f2) : ¢ — 4 is morphisms f7 :
£ — FJ in qcoh(X) for j = 1,2
with ¢ofl = f20¢. If (f1, f2), (g, 9°)
are 1-morphisms ¢ — ¢, a 2-morphism
n . (flvfz) — (91792) IS @ mor-
phism 7 : £2 — F1 in gcoh(X) with
gt = fl4+nopand g = f2+yon.
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Call ¢ : € — &2 a virtual vector
bundle on X of rank k € Z if X may
be covered by open U C X such
that ¢|y : €Yy — £2|y is equiva-
lent in the 2-category vgcoh(U) to
v F1 = F2 where F1, F2 are vec-
tor bundles on U with rank F2 —
rank F1 = k. Write vvect(X) for
the full 2-subcategory of virtual vec-
tor bundles on vgcoh(X).

If X is a d-manifold, it has a natu-
ral virtual cotangent bundle T*X in
vvect(X), of rank vdim X.

If £f: X — Y is a 1-morphism in
dMan, there is a natural 1-morphism
Qe fA(T"Y) — T*X in vvect(X).
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Then fis étale (a local equivalence)
If and only if Qf IS an equivalence in
vvect(X). Similarly, f is an immer-
sion or submersion if Qf IS surjec-
tive or injective in a suitable sense.
If ¢ : E1 = £2 lies in vvect(X) we
can define a line bundle qu on X
analogous to the ‘top exterior power’
of ¢ : E1 — £2. So for a d-manifold
X, Lpr+x 1S a line bundle on X which
we think of as AMPT*x. An ori-
entation on X is an orientation on
the line bundle Lp«x. Orientations
have the properties one would ex-
pect from the manifold case.
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