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1. Motivation

Let X, X̌ be mirror Calabi–Yau 3-

folds, coh(X) the abelian category

of coherent sheaves on X, and F(X̌)

the Fukaya category of Lagrangians

in X̌. Homological Mirror Symme-

try predicts correspondences

Db(coh(X)) ↔ Db(F(X̌))

τ-(semi)stable objects of Db(coh(X))

↔ special Lagrangian 3-folds in X̌.

Here τ is a stability condition on

coh(X) or Db(coh(X)), e.g. Gieseker

stability w.r.t. a polarization on X.
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We hope to define invariants of X

which count τ-(semi)stable coher-

ent sheaves on X, and of X̌ which

count SL 3-folds in X̌, which should

be equal under Mirror Symmetry,

and of use in String Theory. For

the moment, we work with coh(X),

as we can use algebraic geometry.

Donaldson–Thomas invariants of X

‘count’ stable coherent sheaves in

class α when stable=semistable.

They are unchanged under

deformations of X.
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Issues for this talk:

1. How to define invariants that

‘count’ τ-(semi)stable sheaves in

coh(X), X complex projective

variety, that transform nicely under

change of stability condition τ .

2. Transformation laws of these.

3. Special features when X

is a Calabi–Yau 3-fold,

with simpler transformation laws.

4. How best to ‘count’ strictly

τ-semistable sheaves on C–Y 3-folds.

4



2. A research programme

Fix X a complex projective variety,

A = coh(X), K(A) ⊂ Heven(X,Q)

the numerical Grothendieck group,

τ, τ̃ stability conditions on A.

Step 1: Use Artin stacks.

Artin C-stacks F are a very gen-

eral kind of space in complex al-

gebraic geometry. They include C-

schemes. Write F(C) for the set of

geometric points of F. Each x ∈
F(C) has a stabilizer group IsoC(x),

with IsoC(x) = {1} if F is a scheme.
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There is a natural C-stack ObjA of

objects in A = coh(X), with ObjA(C)

the set of isomorphism classes of

sheaves in coh(X). It has substacks

ObjαA of sheaves in class α ∈ K(A).

Configurations (σ, ι, π) in A are fi-

nite collections of objects and mor-

phisms in A attached to a finite

poset (I,¹), satisfying axioms.

There are C-stacks M(I,¹)A of

(I,¹)-configurations in A, with many

natural 1-morphisms between them.
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Step 2: Regard τ-(semi)stable

sheaves as constructible subsets.

A constructible set in a C-stack F

is a subset of F(C) that is a finite

union of G(C) for G a finite type

substack of F. For τ a suitable sta-

bility condition on A, e.g. Gieseker

stability, write Objαss(τ),Objαst(τ) for

the set of [E] ∈ ObjαA(C) for E a τ-

(semi)stable sheaf. Then Objαss(τ),

Objαst(τ) are constructible sets in

ObjαA and ObjA.
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Advantages of this point of view:

• Objαss(τ),Objαss(τ̃) are subsets of

the same space ObjαA(C). This makes

comparing them easier than com-

paring two different moduli schemes.

•Objαss(τ) parametrizes τ-semistable

sheaves up to isomorphism, not

S-equivalence.

• the C-stack ObjA remembers the

stabilizer groups Aut(E) of sheaves

E, which C-schemes do not. We

need this information.
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Step 3: Use the algebra of

constructible functions.

A constructible function on F is a

map f : F(C) → Q with finite image

and f−1(c) a constructible set for

0 6= c ∈ f(F(C)). Write CF(F) for

the Q-vector space of constructible f .

Write δα
ss(τ), δ

α
st(τ) ∈ CF(ObjA) for

the characteristic functions of

Objαss(τ),Objαst(τ). Can pullback φ∗,
pushforward CFstk(φ) constructible

functions along 1-morphisms φ.
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Write ExactA for the C-stack of

exact sequences

0 → E1 → E2 → E3 → 0

in A, and π1, π2, π3 : ExactA → ObjA
for the 1-morphisms projecting to

E1, E2, E3.

Define a bilinear multiplication ∗ on

CF(ObjA) by

f ∗ g = CFstk(π2)
[
π∗1(f) · π∗3(g)

]
.

This makes CF(ObjA) a Q-algebra

with identity δ[0]. The idea comes

from Ringel–Hall algebras.
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Stack functions SF(F) are a

universal generalization of CF(F)

containing more information,

and behaving the same way under

pushforwards and pullbacks. Then

SF(ObjA) is a stack algebra, with

surjective algebra morphism

SF(ObjA) → CF(ObjA).

Using stack functions we generalize

results from Euler characteristics χ

to other motivic invariants, such as

virtual Poincaré polynomials.
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Step 4: Transformation law.

We characterize when E ∈ A is

τ̃-semistable using an inclusion-

exclusion process on filtrations

0 = A0 ⊂ · · · ⊂ An = E (1)

for Si = Ai/Ai−1 τ-semistable, with

criteria on the orderings of τ(αi),

τ̃(αi), where αi = [Si] ∈ K(A).

Thus we make Objαss(τ̃) by adding

and subtracting subsets of [E] ∈
ObjA(C) with filtrations (1). The

characteristic function of this sub-

set is essentially δ
α1
ss (τ)∗ · · ·∗δαn

ss (τ).
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Thus we prove a universal formula

δα
ss(τ̃) =

∑

α1,...,αn∈C(A):
α1+···+αn=α

S(α1, . . . , αn; τ, τ̃)

δ
α1
ss (τ) ∗ · · · ∗ δαn

ss (τ),
(2)

where C(A) =
{
[E] ∈ K(A) : 0 6∼= E ∈ A

}
.

Here S(· · · ) are explicit combinatorial

coefficients equal to 1,0 or −1, depending

on the orderings of τ(αi) and τ̃(αi).

At each [E] ∈ ObjA(C) there are only finitely

many nonzero terms on r.h.s. of (2).

If dimX 6 2 there are only finitely many

nonzero functions on r.h.s. of (2), For

dimX > 3 I can prove this for τ, τ̃ ‘close’.

There is a stack function analogue of (2).

There are more complicated laws for

transformations of δst(τ̃).
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Step 5: Define ‘motivic’ invariants.

Let G be an abelian group and

F : {constructible sets in C-stacks} → G

a map which is motivic, that is,

F (S ∪ T ) = F (S) + F (T ) if S ∩ T = ∅.
Examples: Euler characteristics, virtual

Poincaré polynomials, and virtual Hodge

polynomials (can all be weighted).

Then define Iss(α; τ) = F (Objαss(τ)), and

Iss(α1, . . . , αn; τ) = F (Mss(α1, . . . , αn; τ)),

whereMss(α1, . . . , αn; τ) is the constructible

set of filtrations

0 = A0 ⊂ · · · ⊂ An = E (3)

for Si = Ai/Ai−1 τ-semistable and [Si] =

αi, in the C-stack of all filtrations (3).
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Similar reasoning as for (2) shows that

Iss(α, τ̃) =
∑

α1,...,αn∈C(A):
α1+···+αn=α

S(α1, . . . , αn; τ, τ̃)

Iss(α1, . . . , αn; τ).
(4)

We can also express Iss(α1, . . . , αn; τ̃) in

terms of Iss(β1, . . . , βm; τ) for m > n.

Here F must be motivic as the proof

involves adding and subtracting sets.

The laws for stable invariants Ist(· · · ) are

more complicated, involving posets (I,¹).

Problem: I can prove there are only

finitely many nonzero terms in (4) when

dimX 6 2. For dimX > 3 I can con-

struct a chain of stability conditions τ =

τ0, τ1, ..., τn = τ̃ with finitely many terms

transforming from τi−1 to τi for i = 1, . . . , n.

15



Step 6: Special weights on semistables

For α ∈ C(A), define

εα(τ) =
∑

α1,...,αn∈C(A):
α1+···+αn=α,
τ(αi)=τ(α), ∀i

(−1)n−1

n
·

δ
α1
ss (τ) ∗ · · · ∗ δαn

ss (τ).
(5)

This is invertible combinatorially: we have

δα
ss(τ) =

∑

α1,...,αn∈C(A):
α1+···+αn=α,
τ(αi)=τ(α), ∀i

1

n!
·

εα1(τ) ∗ · · · ∗ εαn(τ).
(6)

For [E] ∈ ObjαA(C) we have

• εα(τ)([E]) = 1 if E is τ-stable,

• εα(τ)([E]) = 0 is E is τ-unstable

or decomposable,

• εα(τ)([E]) ∈ Q if E is strictly

τ-semistable and indecomposable.
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Combining (2), (5) and (6) gives

εα(τ̃) =
∑

α1,...,αn∈C(A):
α1+···+αn=α

T (α1, . . . , αn; τ, τ̃)

εα1(τ) ∗ · · · ∗ εαn(τ),
(7)

where T (· · · ) are explicit combinatorial co-

efficients in Q. We can rewrite (7) as

εα(τ̃) = εα(τ) + Q-linear combination

of commutators of εα1(τ), . . . , εαn(τ),
(8)

where a commutator is

[εα(τ), εβ(τ)]=εα(τ) ∗ εβ(τ)−εβ(τ) ∗ εα(τ),

[εα(τ), [εβ(τ), εγ(τ)]], and so on.

Corollary. The Q-Lie subalgebra of

CF(ObjA) generated by the εα(τ) for

α ∈ C(A) is independent of τ .

There are stack function versions ε̄α(τ).
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The moral of this:

What is the best way to define invariants

that ‘count’ τ-(semi)stable sheaves?

• count only τ-stables?

• count all τ-semistables?

I suggest the ‘best’ way may be to count

τ-semistables E with weight εα(τ)([E]).

Then (8) may give the invariants extra

nice properties.

In the case stable=semistable, as for

Donaldson–Thomas invariants, εα(τ) ≡ 1

on τ-semistables, and the issue does not

arise.
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Step 7: Calabi–Yau 3-folds

Let X be a Calabi–Yau 3-fold. Serre
duality in A = coh(X) gives

dimHom(E, F )− dimExt1(E, F )

−dimHom(F, E)+dimExt1(F, E)=χ([E], [F ]),
(9)

where χ : K(A)×K(A) → Z is the

antisymmetric, biadditive Euler form.

Plan: find a way to ‘count’ sheaves so

that for fixed, indecomposable E, F the

‘number’ of extensions 0→E→G→F →0

is dimExt1(F, E)− dimHom(F, E).

Then (9) gives that the ‘number’ of

extensions of E by F minus the ‘number’

of extensions of F by E is χ([E], [F ]).
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This is possible, but very complex. The

family of extensions 0→E→G→F →0 is

parametrized by Ext1(F, E), and Hom(F, E)

is part of the C-algebra End(E → G → F ).

For A a finite-dimensional C-algebra, we

define a special weight W (A) ∈ Q. Inter-

pret W (End(E)) as the number of ‘virtual

indecomposables’ in E. Then

• W (End(E)) = 1 for E indecomposable,

• W (A⊕B) = 0 for A, B C-algebras.

For f ∈ CF(ObjA), define χW(f) ∈ Q to

be χna
(
[E] 7→ f([E]) ·W (End(E))

)
.
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For E, F indecomposable, χna of the family

of extensions 0→E→G→F →0 weighted

by W (End(E → G → F )) is dimExt1(F, E)−
dimHom(F, E). This works as

W
(
End(E → E⊕F → F )

)
=

− dimHom(F, E).

It is nearly true that for f, g in CF(ObjA)

supported on indecomposables of class α, β

we have

χW([f, g]) = χW(f) · χW(g) · χ(α, β).

Not quite true when

W (End(E → G → F )) 6= W (End(G)).
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Define invariants J(α; τ) of the C-Y 3-fold

X for α ∈ C(A), roughly by J(α; τ) =

χW(εα(τ)). Actually, must define J(α; τ)

by applying a linear map to the stack func-

tion ε̄α(τ). They transform by

J(α, τ̃) =
∑

iso. classes
of Γ, I, κ

± U(Γ, I, κ; τ, τ̃)·
∏

i∈I
J(κ(i), τ)·

∏

edges
i− j in Γ

χ(κ(i), κ(j)).
(10)

Here Γ is a connected, simply-connected

undirected graph with vertices I, κ : I →
C(A) has

∑
i∈I κ(i) = α, and U(Γ, I, κ; τ, τ̃)

in Q are explicit combinatorial coefficients.
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Remarks: • I haven’t proved (10) has

only finitely many nonzero terms. But can

find τ = τ0, τ1, ..., τn = τ̃ with finitely many

terms going from τi−1 to τi, i = 1, . . . , n.

• (10) expresses J(α; τ̃) in terms of invari-

ants J(α; τ) of the same type. This is a

special feature of the C–Y 3-fold case.

In contrast, (4) gives Iss(α, τ̃) in terms of

more complex invariants Iss(α1, . . . , αn; τ).

• The J(α; τ) are not expected to be

unchanged by deformations of X, as

Donaldson–Thomas invariants are.

Conjecture: there exists an extension of

D–T invariants to the stable 6=semistable

case, which are deformation-invariant, and

transform according to (10).
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• The form of (10) as a sum over graphs Γ

emerges combinatorially in a bizarre way.

But it is natural in the mirror picture of

counting SL 3-folds, when one SL 3-fold

decays into a tree of intersecting SL

3-folds as the complex structure deforms.

• Can explain the multiplicative identity

(10) in terms of a Lie algebra morphism

Ψ : SFind(ObjA) → C(A,Q, χ)

from a Lie algebra of stack functions sup-

ported on ‘virtual indecomposables’ to an

explicit algebra.

• The sum over Γ in (10) looks like a

sum of Feynman diagrams. I think there is

some new physics behind this, to do with

Π-stability.
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