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1. Introduction

If (M, ω) is a compact symplectic manifold,

one can define Gromov–Witten invariants

ΦA(α, β, γ) of M . It is natural to encode

these in a holomorphic generating function

S : Hev(M,C) → C called the Gromov–

Witten potential, given by a power series

with coefficients the ΦA(α, β, γ). Identi-

ties on the ΦA(α, β, γ) imply that S satis-

fies a p.d.e., the WDVV equation. This

p.d.e. can be interpreted as the flatness

of a 1-parameter family of connections de-

fined using S, which make Hev(M,C) into

a Frobenius manifold.
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This talk will tell a similar story. Given an

abelian category A satisfying some condi-

tions, we form a complex manifold Stab(A)

of slope stability conditions Z on A. In pre-

vious work I defined systems of invariants

εα(Z) ‘counting’ Z-semistable objects in A
in class α in K(A). The εα(Z) live in an

infinite-dimensional Lie algebra L.

We combine the εα(Z) into holomorphic

generating functions fα : Stab(A) → L.

The εα(Z) are locally constant in Z except

that they change discontinuously on real

hypersurfaces in Stab(A). Requiring fα

to be continuous and holomorphic deter-

mines the form of fα essentially uniquely.

Remarkably, the fα turn out to satisfy a

p.d.e., which implies the flatness of an L-

valued connection on Stab(A).
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This story should extend to triangulated

categories T such as derived categories

Db(A), with Bridgeland stability conditions.

My motivation for this is as follows. Let P

be a Calabi–Yau 3-fold, T = Db(coh(P ))

its derived category, and Stab(T ) the com-

plex manifold of Bridgeland stability con-

ditions. Then one should define invariants

Jα(Z) ∈ Q for Z ∈ Stab(T ) ‘counting’ Z-

semistable complexes in class α in K(T ),

generalizing Donaldson–Thomas invariants.

This work shows how to combine the Jα(Z)

into holomorphic generating functions fα :

Stab(T ) → C satisfying a p.d.e., which de-

fine an interesting geometric structure on

Stab(T ). I think this is some new thing in

Homological Mirror Symmetry, and I hope

String Theorists will be able to explain it.

4



2. The general set up

Let A be an abelian category, and K(A)

the quotient of the Grothendieck group

K0(A) by some fixed subgroup, such that

if X ∈ A and [X] = 0 in K(A) then X ∼= 0.

Define the positive cone in K(A):

C(A) =
{
[X] ∈ K(A) : X ∈ A, X 6∼= 0

}
.

Let c, r : K(A) → R be group homomor-

phisms with r(α) > 0 for all α ∈ C(A).

Define the slope µ : C(A) → R by µ(α) =

c(α)/r(α). Define the central charge Z ∈
Hom(K(A),C) by Z(α) = −c(α) + ir(α).

It maps C(A) to the upper half plane H =

{x+ iy : x ∈ R, y > 0} in C. Write Stab(A)

for the complex manifold of such Z.

An object X 6∼= 0 in A is called Z-semistable

if for all subobjects 0 6= S ⊂ X we have

µ([S]) 6 µ([X]).
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Then my papers I–IV provide lots of ways

of defining the following general structure:

• an associative algebra H with (generally

noncommutative) multiplication ∗.
• a splitting H =

⊕
α∈C(A)∪{0}Hα with

Hα ∗ Hβ ⊆ Hα+β and 1 ∈ H0.

• a Lie subalgebra L ⊂ H with Lie bracket

[f, g] = f ∗ g − g ∗ f .

• a splitting L =
⊕

α∈C(A)Lα with Lα ⊆ Hα

and [Lα,Lβ] ⊆ Lα+β.

• elements εα(Z) ∈ Lα for α ∈ C(A) and

Z ∈ Stab(A), such that for all α, Z, Z̃

εα(Z̃) =
∑

α1,...,αn∈C(A):
α1+···+αn=α

U(α1, . . . , αn;Z, Z̃)

εα1(Z) ∗ · · · ∗ εαn(Z),
(1)

for combinatorial coefficients U(· · · ) ∈ Q.

Here (1) is a Lie algebra identity in L.
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What this means: we form an Artin stack

ObjA of objects in A. Then for α ∈ C(A),

the moduli space Objαss(Z) of Z-semistable

objects in class α is a constructible set in

ObjA, so its characteristic function δα
ss(Z)

is a constructible function in CF(ObjA).

We can make CF(ObjA) into an algebra.

The subspace CFind(ObjA) supported on

indecomposables is a Lie subalgebra.

Roughly, we form an algebra H with Lie

subalgebra L, and an algebra morphism

Φ : CF(ObjA) → H taking CFind(ObjA) →
L. Then the εα(Z) are got by applying

Φ to modified versions of δα
ss(Z) lying in

CFind(ObjA). Equation (1) comes from

an expression for δα
ss(Z̃) in terms of the

δ
αi
ss(Z). This is all rather oversimplified.
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A motivating example.

Let P be a Calabi–Yau 3-fold, and A =

coh(P ) the coherent sheaves on P . We

can take K(A) ⊂ Hev(P,Z) using the Chern

character. There is a natural biadditive,

antisymmetric form χ : K(A)×K(A) → Z.
Define L to be the C-Lie algebra with basis

eα for α ∈ C(A) and [eα, eβ] = χ(α, β)eα+β,

and Lα = C·eα. Define H = U(L), the uni-

versal enveloping algebra of L.

For Gieseker rather than slope stability con-

ditions Z, I defined invariants Jα(Z) in Q
‘counting’ Z-semistable sheaves in class α,

similar to Donaldson–Thomas invariants.

Setting εα(Z) = Jα(Z)eα, these transform

according to (1). I expect this to extend

to Bridgeland stability on Db(coh(P )).
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3. Setting up the problem

Let A, K(A), C(A),H,L,Stab(A), εα(Z) be

as above. For α ∈ C(A), consider the

function fα : Stab(A) →Hα given by

fα(Z) =
∑

α1,...,αn∈C(A):
α1+···+αn=α

Fn(Z(α1), . . . , Z(αn))

εα1(Z) ∗ · · · ∗ εαn(Z),
(2)

for Fn : (C×)n → C, where C× = C \ {0}.
We shall find functions Fn so that fα is

continuous and holomorphic in Z, despite

the fact that the εαi(Z) change discontinu-

ously across real hypersurfaces in Stab(A),

according to (1). We also require:

(a) F1 ≡ (2πi)−1;

(b) Fn(z1, . . . , zn) ≡ Fn(λz1, . . . , λzn);

(c) |Fn(z1, . . . , zn)| = o(|zk|−1) as zk → 0;

(d)
∑

σ∈Sn Fn(zσ(1), . . . , zσ(n)) ≡ 0.

There are unique Fn satisfying all this.
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Here (d) follows from a condition on Fn

making (2) into a Lie algebra equation, so

that fα actually maps Stab(A) → Lα.

The simplest wall-crossing behaviour of the

εα(Z), encoded in (1), is that εα+β(Z)

jumps by εα(Z)∗εβ(Z)−εβ(Z)∗εα(Z) across

the hypersurface Z(β)/Z(α) ∈ (0,∞).

So, given α1, . . . , αn ∈ C(A), across the

hypersurface Z(αl+1)/Z(αl) ∈ (0,∞), the

term εα1(Z) ∗ · · · ∗ εαl−1(Z) ∗ εαl+αl+1(Z)

εαl+2(Z) ∗ · · · ∗ εαn(Z) jumps by

εα1(Z)∗ · · · ∗ εαn(Z)− εα1(Z)∗ · · · ∗ εαl−1(Z)∗
εαl+1(Z) ∗ εαl ∗ εαl+2(Z) ∗ · · · ∗ εαn(Z).

The function fα in (2) is continuous un-

der this transition if Fn(z1, . . . , zn) jumps

by Fn−1(z1, . . . , zl−1, zl + zl+1, zl+2, . . . , zn)

across the hypersurface zl+1/zl ∈ (0,∞).
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We summarize the conditions on Fn:

Proposition 1. For fα to be continuous

and holomorphic, we need Fn to be con-

tinuous and holomorphic on the set
{
(z1, . . . , zn) ∈ (C×)n :zk+1/zk /∈ (0,∞)

for all 1 6 k < n
}
.
(3)

Near a point on only one hypersurface

zl+1/zl ∈ (0,∞) in (C×)n, the function

Fn(z1, . . . , zn)−η(zl+1/zl)Fn−1(z1, . . . , zl−1,

zl + zl+1, zl+2, . . . , zn) must be continuous

and holomorphic, where η(z) = 1
2 if

Im(z) < 0, η(z) = 0 if Im(z) = 0, and

η(z) = −1
2 if Im(z) > 0.

Along intersections of two or more hyper-

surfaces zl+1/zl ∈ (0,∞) in (C×)n, the Fn

satisfy more complicated conditions.
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Here is a uniqueness result:

Theorem 2. There is at most one fam-

ily of functions Fn satisfying Proposition 1

and conditions (a)–(d) above.

The proof is by induction on n. Let Fn, F ′n
for n > 1 be two families satisfying the

conditions, and suppose by induction that

Fk ≡ F ′k for k < n. This holds for n = 2

by (a). Then we find that f = Fn − F ′n :

(C×)n → C is holomorphic. By (b) it pulls

back to the complement of some hyper-

planes in CPn−1, and by (c) it extends over

these hyperplanes. Thus f comes from a

holomorphic function on CPn−1, so f ≡ c.

Finally (d) shows c = 0, so Fn ≡ F ′n.
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4. A p.d.e. on the fα

We will now guess a p.d.e. which the fα

will satisfy. From Proposition 1 and (a)–

(d) we find that F1(z1) = (2πi)−1 and

F2(z1, z2) = (2πi)−2
(
log(z2/z1) − πi

)
on

z2/z1 /∈ (0,∞), with Im log(z2/z1) ∈ (0,2π).

Consider a situation with classes β, γ, β +

γ in C(A) which do not otherwise split

as sums of elements in C(A). Then (2)

gives fβ(Z) = (2πi)−1εβ(Z), fγ =(2πi)−1

εγ(Z) and fβ+γ(Z) = (2πi)−1εβ+γ(Z)+

(2πi)−2(log(Z(γ)/Z(β))−πi)[εβ(Z), εγ(Z)]

away from Z(γ)/Z(β) ∈ (0,∞).

These satisfy the p.d.e.

dfβ+γ(Z) =
[
fβ(Z), fγ(Z)

]
⊗(

dZ(γ)/Z(γ)− dZ(β)/Z(β)
)
.

(4)

This motivates the following:
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We now guess the fα should satisfy the

p.d.e. in L-valued 1-forms on Stab(A):

dfα(Z) = − ∑

β,γ∈C(A):α=β+γ

[fβ(Z), fγ(Z)]⊗dZ(β)

Z(β)
. (5)

This has some very nice properties:

• For (5) to hold, the r.h.s. must be closed.

But taking d of the r.h.s. and using (5)

to substitute for dfβ and dfγ, everything

cancels to give zero. Thus, (5) is its own

consistency condition!

• Set Γ(Z)=
∑

α∈C(A) fα(Z)⊗dZ(α)/Z(α).

This is an L-valued connection matrix, with

curvature RΓ = dΓ+ 1
2Γ∧Γ = 0 by (5), so

d + Γ is a flat connection.

• Define a section s : Stab(A) → L by

s(Z) =
∑

α∈C(A) fα(Z). Then (5) implies s

is constant under the flat connection d+Γ.
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Substituting (2) into (5) and rearranging,
we can show the fα satisfy (5) provided
the Fn satisfy the p.d.e.

dFn(z1, . . . , zn) =
n−1∑

k=1
Fk(z1, . . . , zk)Fn−k(zk+1, . . . , zn) ·
[
dzk+1+···+dzn

zk+1+···+zn
− dz1+···+dzk

z1+···+zk

]
(6)

in the domain (3), oversimplifying a bit.
• The 1-form [· · · ] in (6) restricts to zero
on z1+· · ·+zn = 0, so dFn|z1+···+zn=0 ≡ 0,
and Fn is constant on z1 + · · · + zn = 0.
Then (d) shows this constant is zero.
• As for (5), taking d of the r.h.s. of (6)
and substituting in (6) for dFk and dFn−k
gives 0. Therefore, if (6) holds for n < m,
then the r.h.s. of (6) is closed for n = m.
This is the basis of an inductive construc-
tion for Fn satisfying (6).
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Proposition 3. There exists a unique

family of functions Fn for n > 1, defined on

the domain (3), satisfying F1 ≡ (2πi)−1 on

(3), equation (6) and Fn|z1+···+zn=0 ≡ 0.

The proof is by induction on n. Having

constructed F1, . . . , Fm−1, the r.h.s. of (6)

is closed on (3) for n = m, by (6) for

n < m. It is the pull-back of a closed

1-form on a connected, simply-connected

region of CPm−1, so it’s exact, and is dFm

for Fm unique up to addition of a con-

stant. Requiring Fm|z1+···+zm=0 ≡ 0 fixes

the constant.

Note that (z1+· · ·+zk)
−1 in (6) causes no

singularities in Fn, since Fk|z1+···+zk=0 ≡ 0

implies (z1 + · · · + zk)
−1Fk extends holo-

morphically over z1 + · · · + zk = 0. The

same holds for (zk+1 + · · ·+ zn)−1.
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Surprisingly, we can now prove:

Theorem 4. The functions Fn on (3) in

Proposition 3 extend to functions Fn on

(C×)n satisfying Proposition 1 and (a)–

(d) above. By Theorem 2, they are the

unique functions which do this.

The main point of the proof is to show

that Fn(z1, . . . , zn) jumps by Fn−1(z1, . . . ,

zl−1, zl + zl+1, zl+2, . . . , zn) across the hy-

persurface zl+1/zl ∈ (0,∞) in (C×)n, as

in Proposition 1. Write Dl,n(z1, . . . , zn) for

the difference of the limiting values of

Fn(z1, . . . , zn) from the two sides of zl+1/zl

∈ (0,∞), so that Dl,n is a function on the

hypersurface zl+1/zl ∈ (0,∞) in (C×)n.
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Then taking the difference of (6) on both

sides of zl+1/zl ∈ (0,∞) gives

dDl,n(z1, . . . , zn) =
l−1∑

k=1
Fk(z1, . . . , zk)Dl−k,n−k(zk+1, . . . , zn) ·

[
dzk+1+···+dzn

zk+1+···+zn
− dz1+···+dzk

z1+···+zk

]
+

n−1∑

k=l+1
Dl,k(z1, . . . , zk)Fn−k(zk+1, . . . , zn) ·

[
dzk+1+···+dzn

zk+1+···+zn
− dz1+···+dzk

z1+···+zk

]
,

(7)

and also Dl,n(z1, . . . , zn)|z1+···+zn=0 ≡ 0.

Comparing this with (6), we prove by

induction that Dl,n(z1, . . . , zn) = Fn−1(z1,

. . . , zl−1, zl + zl+1, zl+2, . . . , zn), where for

the first case D1,2 we use the explicit for-

mulae for F1, F2 above.
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5. Discussion

We have now shown that two completely

different conditions on the fα lead to the

same unique family of functions Fn. That

is, requiring the fα to be holomorphic and

continuous, plus some minor conditions,

is equivalent to requiring the fα to sat-

isfy the p.d.e. (5). So (5) emerges from

nowhere, as a consequence of the fα being

holomorphic and continuous.

Actually, we have used the triangulated

category case to prove this. For the abelian

case we only need Fn to be defined on Hn,

not (C×)n, where H = {x + iy : x ∈ R,

y > 0}, and then the conditions are not

strong enough to define the Fn uniquely.
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6. The Calabi–Yau 3-fold case
In the Calabi–Yau 3-fold example above,
as fα : Stab(A) → Lα and Lα = C · eα,
we can write fα = Fαeα, for holomorphic
functions Fα : Stab(A) → C for α ∈ C(A).
Equation (5) reduces to

dFα(Z)=−∑

β,γ∈C(A):α=β+γ

χ(β, γ)Fβ(Z)F γ(Z)dZ(β)
Z(β) . (8)

For the triangulated category T case we
extend this from α, β, γ ∈ C(A) to
α, β, γ ∈ K(T ) \ {0}, with F−α ≡ Fα.
Thus, we conjecture there should be holo-
morphic functions Fα : Stab(T ) → C that
encode generalizations of Donaldson–
Thomas invariants, satisfy (8) with
K(T ) \ {0} in place of C(A), and give a
flat L-connection on Stab(T ). What is
the meaning of this in String Theory?
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