Holomorphic generating

 functions for invariants counting sheaves on Calabi-Yau 3-foldsDominic Joyce, Oxford based on hep-th/0607039
following on from math.AG/0312190 math.AG/0503029 math.AG/0410267 math.AG/0410268

These slides available at

 www.maths.ox.ac.uk/~joyce/talks.html
1. Introduction

If (M, ω) is a compact symplectic manifold, one can define Gromov-Witten invariants $\Phi_{A}(\alpha, \beta, \gamma)$ of M. It is natural to encode these in a holomorphic generating function $\mathcal{S}: H^{\mathrm{ev}}(M, \mathbb{C}) \rightarrow \mathbb{C}$ called the GromovWitten potential, given by a power series with coefficients the $\Phi_{A}(\alpha, \beta, \gamma)$. Identities on the $\Phi_{A}(\alpha, \beta, \gamma)$ imply that \mathcal{S} satisfies a p.d.e., the WDVV equation. This p.d.e. can be interpreted as the flatness of a 1-parameter family of connections defined using \mathcal{S}, which make $H^{\mathrm{ev}}(M, \mathbb{C})$ into a Frobenius manifold.

This talk will tell a similar story. Given an abelian category \mathcal{A} satisfying some conditions, we form a complex manifold $\operatorname{Stab}(\mathcal{A})$ of slope stability conditions Z on \mathcal{A}. In previous work I defined systems of invariants $\epsilon^{\alpha}(Z)$ 'counting' Z-semistable objects in \mathcal{A} in class α in $K(\mathcal{A})$. The $\epsilon^{\alpha}(Z)$ live in an infinite-dimensional Lie algebra \mathcal{L}.
We combine the $\epsilon^{\alpha}(Z)$ into holomorphic generating functions $f^{\alpha}: \operatorname{Stab}(\mathcal{A}) \rightarrow \mathcal{L}$. The $\epsilon^{\alpha}(Z)$ are locally constant in Z except that they change discontinuously on real hypersurfaces in $\operatorname{Stab}(\mathcal{A})$. Requiring f^{α} to be continuous and holomorphic determines the form of f^{α} essentially uniquely. Remarkably, the f^{α} turn out to satisfy a p.d.e., which implies the flatness of an \mathcal{L} valued connection on $\operatorname{Stab}(\mathcal{A})$.

This story should extend to triangulated categories \mathcal{T} such as derived categories $D^{b}(\mathcal{A})$, with Bridgeland stability conditions. My motivation for this is as follows. Let P be a Calabi-Yau 3-fold, $\mathcal{T}=D^{b}(\operatorname{coh}(P))$ its derived category, and $\operatorname{Stab}(\mathcal{T})$ the complex manifold of Bridgeland stability conditions. Then one should define invariants $J^{\alpha}(Z) \in \mathbb{Q}$ for $Z \in \operatorname{Stab}(\mathcal{T})$ 'counting' Z semistable complexes in class α in $K(\mathcal{T})$, generalizing Donaldson-Thomas invariants. This work shows how to combine the $J^{\alpha}(Z)$ into holomorphic generating functions f^{α} : $\operatorname{Stab}(\mathcal{T}) \rightarrow \mathbb{C}$ satisfying a p.d.e., which define an interesting geometric structure on $\operatorname{Stab}(\mathcal{T})$. I think this is some new thing in Homological Mirror Symmetry, and I hope String Theorists will be able to explain it.

2. The general set up

Let \mathcal{A} be an abelian category, and $K(\mathcal{A})$ the quotient of the Grothendieck group $K_{0}(\mathcal{A})$ by some fixed subgroup, such that if $X \in \mathcal{A}$ and $[X]=0$ in $K(\mathcal{A})$ then $X \cong 0$. Define the positive cone in $K(\mathcal{A})$:

$$
C(\mathcal{A})=\{[X] \in K(\mathcal{A}): X \in \mathcal{A}, \quad X \nsubseteq 0\} .
$$

Let $c, r: K(\mathcal{A}) \rightarrow \mathbb{R}$ be group homomorphisms with $r(\alpha)>0$ for all $\alpha \in C(\mathcal{A})$. Define the slope $\mu: C(\mathcal{A}) \rightarrow \mathbb{R}$ by $\mu(\alpha)=$ $c(\alpha) / r(\alpha)$. Define the central charge $Z \in$ $\operatorname{Hom}(K(\mathcal{A}), \mathbb{C})$ by $Z(\alpha)=-c(\alpha)+i r(\alpha)$. It maps $C(\mathcal{A})$ to the upper half plane $H=$ $\{x+i y: x \in \mathbb{R}, y>0\}$ in \mathbb{C}. Write $\operatorname{Stab}(\mathcal{A})$ for the complex manifold of such Z.
An object $X \nsupseteq 0$ in \mathcal{A} is called Z-semistable if for all subobjects $0 \neq S \subset X$ we have $\mu([S]) \leqslant \mu([X])$.

Then my papers I-IV provide lots of ways of defining the following general structure: - an associative algebra \mathcal{H} with (generally noncommutative) multiplication $*$.

- a splitting $\mathcal{H}=\oplus_{\alpha \in C(\mathcal{A}) \cup\{0\}} \mathcal{H}^{\alpha}$ with $\mathcal{H}^{\alpha} * \mathcal{H}^{\beta} \subseteq \mathcal{H}^{\alpha+\beta}$ and $1 \in \mathcal{H}^{0}$.
- a Lie subalgebra $\mathcal{L} \subset \mathcal{H}$ with Lie bracket $[f, g]=f * g-g * f$.
- a splitting $\mathcal{L}=\oplus_{\alpha \in C(\mathcal{A})} \mathcal{L}^{\alpha}$ with $\mathcal{L}^{\alpha} \subseteq \mathcal{H}^{\alpha}$ and $\left[\mathcal{L}^{\alpha}, \mathcal{L}^{\beta}\right] \subseteq \mathcal{L}^{\alpha+\beta}$.
- elements $\epsilon^{\alpha}(Z) \in \mathcal{L}^{\alpha}$ for $\alpha \in C(\mathcal{A})$ and $Z \in \operatorname{Stab}(\mathcal{A})$, such that for all α, Z, \tilde{Z}

$$
\epsilon^{\alpha}(\tilde{Z})=\sum_{\substack{\alpha_{1}, \ldots, \alpha_{n} \in C(\mathcal{A}): \\ \alpha_{1}+\cdots+\alpha_{n}=\alpha}} U\left(\alpha_{1}, \ldots, \alpha_{n} ; Z, \tilde{Z}\right),
$$

for combinatorial coefficients $U(\cdots) \in \mathbb{Q}$. Here (1) is a Lie algebra identity in \mathcal{L}.

What this means: we form an Artin stack $\mathfrak{O b j}_{\mathcal{A}}$ of objects in \mathcal{A}. Then for $\alpha \in C(\mathcal{A})$, the moduli space $\operatorname{Obj}_{\mathrm{ss}}^{\alpha}(Z)$ of Z-semistable objects in class α is a constructible set in $\mathfrak{O b j}_{\mathcal{A}}$, so its characteristic function $\delta_{\mathrm{SS}}^{\alpha}(Z)$ is a constructible function in $\operatorname{CF}\left(\mathfrak{O b j}_{\mathcal{A}}\right)$. We can make $\operatorname{CF}\left(\mathfrak{O b j}_{\mathcal{A}}\right)$ into an algebra. The subspace $C F^{\text {ind }}\left(\mathfrak{O b j}_{\mathcal{A}}\right)$ supported on indecomposables is a Lie subalgebra.
Roughly, we form an algebra \mathcal{H} with Lie subalgebra \mathcal{L}, and an algebra morphism $\Phi: \operatorname{CF}\left(\mathfrak{O b j}_{\mathcal{A}}\right) \rightarrow \mathcal{H}$ taking $\mathrm{CF}^{\text {ind }}\left(\mathfrak{O b j}_{\mathcal{A}}\right) \rightarrow$ \mathcal{L}. Then the $\epsilon^{\alpha}(Z)$ are got by applying Φ to modified versions of $\delta_{\mathrm{SS}}^{\alpha}(Z)$ lying in $C F^{\text {ind }}\left(\mathfrak{D b j}_{\mathcal{A}}\right)$. Equation (1) comes from an expression for $\delta_{\mathrm{ss}}^{\alpha}(\tilde{Z})$ in terms of the $\delta_{\mathrm{ss}}^{\alpha_{i}}(Z)$. This is all rather oversimplified.

A motivating example.

Let P be a Calabi-Yau 3-fold, and $\mathcal{A}=$ coh (P) the coherent sheaves on P. We can take $K(\mathcal{A}) \subset H^{\mathrm{ev}}(P, \mathbb{Z})$ using the Chern character. There is a natural biadditive, antisymmetric form $\chi: K(\mathcal{A}) \times K(A) \rightarrow \mathbb{Z}$. Define \mathcal{L} to be the \mathbb{C}-Lie algebra with basis e^{α} for $\alpha \in C(\mathcal{A})$ and $\left[e^{\alpha}, e^{\beta}\right]=\chi(\alpha, \beta) e^{\alpha+\beta}$, and $\mathcal{L}^{\alpha}=\mathbb{C} \cdot e^{\alpha}$. Define $\mathcal{H}=U(\mathcal{L})$, the universal enveloping algebra of \mathcal{L}.
For Gieseker rather than slope stability conditions Z, I defined invariants $J^{\alpha}(Z)$ in \mathbb{Q} 'counting' Z-semistable sheaves in class α, similar to Donaldson-Thomas invariants. Setting $\epsilon^{\alpha}(Z)=J^{\alpha}(Z) e^{\alpha}$, these transform according to (1). I expect this to extend to Bridgeland stability on $D^{b}(\operatorname{coh}(P))$.

3. Setting up the problem

Let $\mathcal{A}, K(\mathcal{A}), C(\mathcal{A}), \mathcal{H}, \mathcal{L}, \operatorname{Stab}(\mathcal{A}), \epsilon^{\alpha}(Z)$ be as above. For $\alpha \in C(\mathcal{A})$, consider the function $f^{\alpha}: \operatorname{Stab}(\mathcal{A}) \rightarrow \mathcal{H}^{\alpha}$ given by

$$
f^{\alpha}(Z)=\sum_{\substack{\alpha_{1}, \ldots, \alpha_{n} \in C(\mathcal{A}): \\ \alpha_{1}+\cdots+\alpha_{n}=\alpha}} F_{n}\left(Z\left(\alpha_{1}\right), \ldots, Z\left(\alpha_{n}\right)\right)
$$

for $F_{n}:\left(\mathbb{C}^{\times}\right)^{n} \rightarrow \mathbb{C}$, where $\mathbb{C}^{\times}=\mathbb{C} \backslash\{0\}$.
We shall find functions F_{n} so that f^{α} is continuous and holomorphic in Z, despite the fact that the $\epsilon^{\alpha_{i}}(Z)$ change discontinuously across real hypersurfaces in $\operatorname{Stab}(\mathcal{A})$, according to (1). We also require:
(a) $F_{1} \equiv(2 \pi i)^{-1}$;
(b) $F_{n}\left(z_{1}, \ldots, z_{n}\right) \equiv F_{n}\left(\lambda z_{1}, \ldots, \lambda z_{n}\right)$;
(c) $\left|F_{n}\left(z_{1}, \ldots, z_{n}\right)\right|=o\left(\left|z_{k}\right|^{-1}\right)$ as $z_{k} \rightarrow 0$;
(d) $\Sigma_{\sigma \in S_{n}} F_{n}\left(z_{\sigma(1)}, \ldots, z_{\sigma(n)}\right) \equiv 0$.

There are unique F_{n} satisfying all this.

Here (d) follows from a condition on F_{n} making (2) into a Lie algebra equation, so that f^{α} actually maps $\operatorname{Stab}(\mathcal{A}) \rightarrow \mathcal{L}^{\alpha}$.
The simplest wall-crossing behaviour of the $\epsilon^{\alpha}(Z)$, encoded in (1), is that $\epsilon^{\alpha+\beta}(Z)$ jumps by $\epsilon^{\alpha}(Z) * \epsilon^{\beta}(Z)-\epsilon^{\beta}(Z) * \epsilon^{\alpha}(Z)$ across the hypersurface $Z(\beta) / Z(\alpha) \in(0, \infty)$. So, given $\alpha_{1}, \ldots, \alpha_{n} \in C(\mathcal{A})$, across the hypersurface $Z\left(\alpha_{l+1}\right) / Z\left(\alpha_{l}\right) \in(0, \infty)$, the $\operatorname{term} \epsilon^{\alpha_{1}}(Z) * \cdots * \epsilon^{\alpha_{l-1}}(Z) * \epsilon^{\alpha_{l}+\alpha_{l+1}}(Z)$ $\epsilon^{\alpha_{l+2}}(Z) * \cdots * \epsilon^{\alpha_{n}}(Z)$ jumps by $\epsilon^{\alpha_{1}}(Z) * \cdots * \epsilon^{\alpha_{n}}(Z)-\epsilon^{\alpha_{1}}(Z) * \cdots * \epsilon^{\alpha_{l-1}}(Z) *$ $\epsilon^{\alpha_{l+1}}(Z) * \epsilon^{\alpha_{l}} * \epsilon^{\alpha_{l+2}}(Z) * \cdots * \epsilon^{\alpha_{n}}(Z)$.
The function f^{α} in (2) is continuous under this transition if $F_{n}\left(z_{1}, \ldots, z_{n}\right)$ jumps by $F_{n-1}\left(z_{1}, \ldots, z_{l-1}, z_{l}+z_{l+1}, z_{l+2}, \ldots, z_{n}\right)$ across the hypersurface $z_{l+1} / z_{l} \in(0, \infty)$.

We summarize the conditions on F_{n} :
Proposition 1. For f^{α} to be continuous and holomorphic, we need F_{n} to be continuous and holomorphic on the set

$$
\begin{array}{r}
\left\{\left(z_{1}, \ldots, z_{n}\right) \in\left(\mathbb{C}^{\times}\right)^{n}: z_{k+1} / z_{k} \notin(0, \infty)\right. \\
 \tag{3}\\
\text { for all } 1 \leqslant k<n\} .
\end{array}
$$

Near a point on only one hypersurface $z_{l+1} / z_{l} \in(0, \infty)$ in $\left(\mathbb{C}^{\times}\right)^{n}$, the function $F_{n}\left(z_{1}, \ldots, z_{n}\right)-\eta\left(z_{l+1} / z_{l}\right) F_{n-1}\left(z_{1}, \ldots, z_{l-1}\right.$, $\left.z_{l}+z_{l+1}, z_{l+2}, \ldots, z_{n}\right)$ must be continuous and holomorphic, where $\eta(z)=\frac{1}{2}$ if $\operatorname{Im}(z)<0, \eta(z)=0$ if $\operatorname{Im}(z)=0$, and $\eta(z)=-\frac{1}{2}$ if $\operatorname{Im}(z)>0$.
Along intersections of two or more hypersurfaces $z_{l+1} / z_{l} \in(0, \infty)$ in $\left(\mathbb{C}^{\times}\right)^{n}$, the F_{n} satisfy more complicated conditions.

Here is a uniqueness result:
Theorem 2. There is at most one family of functions F_{n} satisfying Proposition 1 and conditions (a)-(d) above.
The proof is by induction on n. Let F_{n}, F_{n}^{\prime} for $n \geqslant 1$ be two families satisfying the conditions, and suppose by induction that $F_{k} \equiv F_{k}^{\prime}$ for $k<n$. This holds for $n=2$ by (a). Then we find that $f=F_{n}-F_{n}^{\prime}$: $\left(\mathbb{C}^{\times}\right)^{n} \rightarrow \mathbb{C}$ is holomorphic. By (b) it pulls back to the complement of some hyperplanes in $\mathbb{C P}^{n-1}$, and by (c) it extends over these hyperplanes. Thus f comes from a holomorphic function on $\mathbb{C P} \mathbb{P}^{n-1}$, so $f \equiv c$. Finally (d) shows $c=0$, so $F_{n} \equiv F_{n}^{\prime}$.
4. A p.d.e. on the f^{α}

We will now guess a p.d.e. which the f^{α} will satisfy. From Proposition 1 and (a)(d) we find that $F_{1}\left(z_{1}\right)=(2 \pi i)^{-1}$ and $F_{2}\left(z_{1}, z_{2}\right)=(2 \pi i)^{-2}\left(\log \left(z_{2} / z_{1}\right)-\pi i\right)$ on $z_{2} / z_{1} \notin(0, \infty)$, with $\operatorname{Im} \log \left(z_{2} / z_{1}\right) \in(0,2 \pi)$. Consider a situation with classes $\beta, \gamma, \beta+$ γ in $C(\mathcal{A})$ which do not otherwise split as sums of elements in $C(\mathcal{A})$. Then (2) gives $f^{\beta}(Z)=(2 \pi i)^{-1} \epsilon^{\beta}(Z), f^{\gamma}=(2 \pi i)^{-1}$ $\epsilon^{\gamma}(Z)$ and $f^{\beta+\gamma}(Z)=(2 \pi i)^{-1} \epsilon^{\beta+\gamma}(Z)+$ $(2 \pi i)^{-2}(\log (Z(\gamma) / Z(\beta))-\pi i)\left[\epsilon^{\beta}(Z), \epsilon^{\gamma}(Z)\right]$ away from $Z(\gamma) / Z(\beta) \in(0, \infty)$.
These satisfy the p.d.e.

$$
\begin{align*}
& \mathrm{d} f^{\beta+\gamma}(Z)=\left[f^{\beta}(Z), f^{\gamma}(Z)\right] \otimes \tag{4}\\
& (\mathrm{d} Z(\gamma) / Z(\gamma)-\mathrm{d} Z(\beta) / Z(\beta))
\end{align*}
$$

This motivates the following:

We now guess the f^{α} should satisfy the p.d.e. in \mathcal{L}-valued 1 -forms on $\operatorname{Stab}(\mathcal{A})$:
$\mathrm{d} f^{\alpha}(Z)=-\sum_{\beta, \gamma \in C(\mathcal{A}): \alpha=\beta+\gamma}\left[f^{\beta}(Z), f^{\gamma}(Z)\right] \otimes \frac{\mathrm{d} Z(\beta)}{Z(\beta)}$. (5)
This has some very nice properties:

- For (5) to hold, the r.h.s. must be closed. But taking d of the r.h.s. and using (5) to substitute for $\mathrm{d} f^{\beta}$ and $\mathrm{d} f^{\gamma}$, everything cancels to give zero. Thus, (5) is its own consistency condition!
- Set $\Gamma(Z)=\sum_{\alpha \in C(\mathcal{A})} f^{\alpha}(Z) \otimes \mathrm{d} Z(\alpha) / Z(\alpha)$. This is an \mathcal{L}-valued connection matrix, with curvature $R_{\Gamma}=\mathrm{d} \Gamma+\frac{1}{2} \Gamma \wedge \Gamma=0$ by (5), so $\mathrm{d}+\Gamma$ is a flat connection.
- Define a section $s: \operatorname{Stab}(\mathcal{A}) \rightarrow \mathcal{L}$ by $s(Z)=\sum_{\alpha \in C(\mathcal{A})} f^{\alpha}(Z)$. Then (5) implies s is constant under the flat connection $\mathrm{d}+\Gamma$.

Substituting (2) into (5) and rearranging, we can show the f^{α} satisfy (5) provided the F_{n} satisfy the p.d.e.

$$
\begin{aligned}
& \mathrm{d} F_{n}\left(z_{1}, \ldots, z_{n}\right)= \\
& \sum_{k=1}^{n-1} F_{k}\left(z_{1}, \ldots, z_{k}\right) F_{n-k}\left(z_{k+1}, \ldots, z_{n}\right) . \\
& \quad\left[\frac{\mathrm{d} z_{k+1}+\cdots+\mathrm{d} z_{n}}{z_{k+1}+\cdots+z_{n}}-\frac{\mathrm{d} z_{1}+\cdots+\mathrm{d} z_{k}}{z_{1}+\cdots+z_{k}}\right]
\end{aligned}
$$

in the domain (3), oversimplifying a bit.

- The 1-form [...] in (6) restricts to zero on $z_{1}+\cdots+z_{n}=0$, so d $\left.F_{n}\right|_{z_{1}+\cdots+z_{n}=0} \equiv 0$, and F_{n} is constant on $z_{1}+\cdots+z_{n}=0$. Then (d) shows this constant is zero.
- As for (5), taking d of the r.h.s. of (6) and substituting in (6) for $\mathrm{d} F_{k}$ and $\mathrm{d} F_{n-k}$ gives 0. Therefore, if (6) holds for $n<m$, then the r.h.s. of (6) is closed for $n=m$. This is the basis of an inductive construction for F_{n} satisfying (6).

Proposition 3. There exists a unique family of functions F_{n} for $n \geqslant 1$, defined on the domain (3), satisfying $F_{1} \equiv(2 \pi i)^{-1}$ on (3), equation (6) and $\left.F_{n}\right|_{z_{1}+\cdots+z_{n}=0} \equiv 0$. The proof is by induction on n. Having constructed F_{1}, \ldots, F_{m-1}, the r.h.s. of (6) is closed on (3) for $n=m$, by (6) for $n<m$. It is the pull-back of a closed 1-form on a connected, simply-connected region of $\mathbb{C P}^{m-1}$, so it's exact, and is $\mathrm{d} F_{m}$ for F_{m} unique up to addition of a constant. Requiring $\left.F_{m}\right|_{z_{1}+\cdots+z_{m}=0} \equiv 0$ fixes the constant.
Note that $\left(z_{1}+\cdots+z_{k}\right)^{-1}$ in (6) causes no singularities in F_{n}, since $\left.F_{k}\right|_{z_{1}+\cdots+z_{k}=0} \equiv 0$ implies $\left(z_{1}+\cdots+z_{k}\right)^{-1} F_{k}$ extends holomorphically over $z_{1}+\cdots+z_{k}=0$. The same holds for $\left(z_{k+1}+\cdots+z_{n}\right)^{-1}$.

Surprisingly, we can now prove:
Theorem 4. The functions F_{n} on (3) in Proposition 3 extend to functions F_{n} on $\left(\mathbb{C}^{\times}\right)^{n}$ satisfying Proposition 1 and (a)(d) above. By Theorem 2, they are the unique functions which do this.

The main point of the proof is to show that $F_{n}\left(z_{1}, \ldots, z_{n}\right)$ jumps by $F_{n-1}\left(z_{1}, \ldots\right.$, $\left.z_{l-1}, z_{l}+z_{l+1}, z_{l+2}, \ldots, z_{n}\right)$ across the hypersurface $z_{l+1} / z_{l} \in(0, \infty)$ in $\left(\mathbb{C}^{\times}\right)^{n}$, as in Proposition 1. Write $D_{l, n}\left(z_{1}, \ldots, z_{n}\right)$ for the difference of the limiting values of $F_{n}\left(z_{1}, \ldots, z_{n}\right)$ from the two sides of z_{l+1} / z_{l} $\in(0, \infty)$, so that $D_{l, n}$ is a function on the hypersurface $z_{l+1} / z_{l} \in(0, \infty)$ in $\left(\mathbb{C}^{\times}\right)^{n}$.

Then taking the difference of (6) on both sides of $z_{l+1} / z_{l} \in(0, \infty)$ gives
$\mathrm{d} D_{l, n}\left(z_{1}, \ldots, z_{n}\right)=$
$\sum_{k=1}^{l-1} F_{k}\left(z_{1}, \ldots, z_{k}\right) D_{l-k, n-k}\left(z_{k+1}, \ldots, z_{n}\right)$
$\left[\frac{\mathrm{d} z_{k+1}+\cdots+\mathrm{d} z_{n}}{z_{k+1}+\cdots+z_{n}}-\frac{\mathrm{d} z_{1}+\cdots+\mathrm{d} z_{k}}{z_{1}+\cdots+z_{k}}\right]+$
$\sum_{k=l+1}^{n-1} D_{l, k}\left(z_{1}, \ldots, z_{k}\right) F_{n-k}\left(z_{k+1}, \ldots, z_{n}\right)$.

$$
\left[\frac{\mathrm{d} z_{k+1}+\cdots+\mathrm{d} z_{n}}{z_{k+1}+\cdots+z_{n}}-\frac{\mathrm{d} z_{1}+\cdots+\mathrm{d} z_{k}}{z_{1}+\cdots+z_{k}}\right]
$$

and also $\left.D_{l, n}\left(z_{1}, \ldots, z_{n}\right)\right|_{z_{1}+\cdots+z_{n}=0} \equiv 0$. Comparing this with (6), we prove by induction that $D_{l, n}\left(z_{1}, \ldots, z_{n}\right)=F_{n-1}\left(z_{1}\right.$, $\left.\ldots, z_{l-1}, z_{l}+z_{l+1}, z_{l+2}, \ldots, z_{n}\right)$, where for the first case $D_{1,2}$ we use the explicit formulae for F_{1}, F_{2} above.

5. Discussion

We have now shown that two completely different conditions on the f^{α} lead to the same unique family of functions F_{n}. That is, requiring the f^{α} to be holomorphic and continuous, plus some minor conditions, is equivalent to requiring the f^{α} to satisfy the p.d.e. (5). So (5) emerges from nowhere, as a consequence of the f^{α} being holomorphic and continuous.

Actually, we have used the triangulated category case to prove this. For the abelian case we only need F_{n} to be defined on H^{n}, not $\left(\mathbb{C}^{\times}\right)^{n}$, where $H=\{x+i y: x \in \mathbb{R}$, $y>0\}$, and then the conditions are not strong enough to define the F_{n} uniquely.
6. The Calabi-Yau 3-fold case

In the Calabi-Yau 3-fold example above, as $f^{\alpha}: \operatorname{Stab}(\mathcal{A}) \rightarrow \mathcal{L}^{\alpha}$ and $\mathcal{L}^{\alpha}=\mathbb{C} \cdot e^{\alpha}$, we can write $f^{\alpha}=F^{\alpha} e^{\alpha}$, for holomorphic functions $F^{\alpha}: \operatorname{Stab}(\mathcal{A}) \rightarrow \mathbb{C}$ for $\alpha \in C(\mathcal{A})$. Equation (5) reduces to
$\mathrm{d} F^{\alpha}(Z)=-\sum_{\beta, \gamma \in C(\mathcal{A}): \alpha=\beta+\gamma} \chi(\beta, \gamma) F^{\beta}(Z) F^{\gamma}(Z) \frac{\mathrm{d} Z(\beta)}{Z(\beta)}$. (8)
For the triangulated category \mathcal{T} case we extend this from $\alpha, \beta, \gamma \in C(\mathcal{A})$ to $\alpha, \beta, \gamma \in K(\mathcal{T}) \backslash\{0\}$, with $F^{-\alpha} \equiv F^{\alpha}$.
Thus, we conjecture there should be holomorphic functions $F^{\alpha}: \operatorname{Stab}(\mathcal{T}) \rightarrow \mathbb{C}$ that encode generalizations of DonaldsonThomas invariants, satisfy (8) with $K(\mathcal{T}) \backslash\{0\}$ in place of $C(\mathcal{A})$, and give a flat \mathcal{L}-connection on $\operatorname{Stab}(\mathcal{T})$. What is the meaning of this in String Theory?

