Holomorphic generating functions for invariants counting sheaves on Calabi–Yau 3-folds Dominic Joyce, Oxford based on hep-th/0607039 following on from math.AG/0312190 math.AG/0503029 math.AG/0410267 math.AG/0410268 These slides available at

www.maths.ox.ac.uk/~joyce/talks.html

1. Introduction

If (M, ω) is a compact symplectic manifold, one can define Gromov-Witten invariants $\Phi_A(\alpha,\beta,\gamma)$ of M. It is natural to encode these in a holomorphic generating function \mathcal{S} : $H^{\text{ev}}(M,\mathbb{C}) \to \mathbb{C}$ called the *Gromov*-Witten potential, given by a power series with coefficients the $\Phi_A(\alpha, \beta, \gamma)$. Identities on the $\Phi_A(\alpha, \beta, \gamma)$ imply that S satisfies a p.d.e., the WDVV equation. This p.d.e. can be interpreted as the flatness of a 1-parameter family of connections defined using S, which make $H^{ev}(M,\mathbb{C})$ into a Frobenius manifold.

This talk will tell a similar story. Given an abelian category \mathcal{A} satisfying some conditions, we form a complex manifold $\operatorname{Stab}(\mathcal{A})$ of slope stability conditions Z on \mathcal{A} . In previous work I defined systems of invariants $\epsilon^{\alpha}(Z)$ 'counting' Z-semistable objects in \mathcal{A} in class α in $K(\mathcal{A})$. The $\epsilon^{\alpha}(Z)$ live in an *infinite-dimensional Lie algebra* \mathcal{L} .

We combine the $\epsilon^{\alpha}(Z)$ into holomorphic generating functions f^{α} : $\operatorname{Stab}(\mathcal{A}) \to \mathcal{L}$. The $\epsilon^{\alpha}(Z)$ are locally constant in Z except that they change discontinuously on real hypersurfaces in $\operatorname{Stab}(\mathcal{A})$. Requiring f^{α} to be continuous and holomorphic determines the form of f^{α} essentially uniquely. Remarkably, the f^{α} turn out to satisfy a p.d.e., which implies the flatness of an \mathcal{L} valued connection on $\operatorname{Stab}(\mathcal{A})$. This story should extend to *triangulated* categories \mathcal{T} such as *derived* categories $D^b(\mathcal{A})$, with Bridgeland stability conditions. My motivation for this is as follows. Let Pbe a Calabi–Yau 3-fold, $\mathcal{T} = D^b(\operatorname{coh}(P))$ its derived category, and $\operatorname{Stab}(\mathcal{T})$ the complex manifold of Bridgeland stability conditions. Then one should define invariants $J^{\alpha}(Z) \in \mathbb{Q}$ for $Z \in \operatorname{Stab}(\mathcal{T})$ 'counting' Zsemistable complexes in class α in $K(\mathcal{T})$, generalizing Donaldson–Thomas invariants. This work shows how to combine the $J^{\alpha}(Z)$

into holomorphic generating functions f^{α} : Stab $(\mathcal{T}) \rightarrow \mathbb{C}$ satisfying a p.d.e., which define an interesting geometric structure on Stab (\mathcal{T}) . I think this is some new thing in Homological Mirror Symmetry, and I hope String Theorists will be able to explain it.

2. The general set up

Let \mathcal{A} be an abelian category, and $K(\mathcal{A})$ the quotient of the Grothendieck group $K_0(\mathcal{A})$ by some fixed subgroup, such that if $X \in \mathcal{A}$ and [X] = 0 in $K(\mathcal{A})$ then $X \cong 0$. Define the *positive cone* in $K(\mathcal{A})$:

 $C(\mathcal{A}) = \left\{ [X] \in K(\mathcal{A}) : X \in \mathcal{A}, \ X \not\cong 0 \right\}.$ Let $c, r : K(\mathcal{A}) \to \mathbb{R}$ be group homomorphisms with $r(\alpha) > 0$ for all $\alpha \in C(\mathcal{A}).$ Define the *slope* $\mu : C(\mathcal{A}) \to \mathbb{R}$ by $\mu(\alpha) = c(\alpha)/r(\alpha)$. Define the *central charge* $Z \in \text{Hom}(K(\mathcal{A}), \mathbb{C})$ by $Z(\alpha) = -c(\alpha) + ir(\alpha).$ It maps $C(\mathcal{A})$ to the upper half plane $H = \{x + iy : x \in \mathbb{R}, y > 0\}$ in \mathbb{C} . Write Stab(\mathcal{A}) for the complex manifold of such Z. An object $X \not\cong 0$ in \mathcal{A} is called Z-semistable if for all subobjects $0 \neq S \subset X$ we have $\mu([S]) \leq \mu([X]).$

5

Then my papers I–IV provide lots of ways of defining the following general structure:
an associative algebra H with (generally noncommutative) multiplication *.

• a splitting $\mathcal{H} = \bigoplus_{\alpha \in C(\mathcal{A}) \cup \{0\}} \mathcal{H}^{\alpha}$ with $\mathcal{H}^{\alpha} * \mathcal{H}^{\beta} \subseteq \mathcal{H}^{\alpha+\beta}$ and $1 \in \mathcal{H}^{0}$.

• a Lie subalgebra $\mathcal{L} \subset \mathcal{H}$ with Lie bracket [f,g] = f * g - g * f.

• a splitting $\mathcal{L} = \bigoplus_{\alpha \in C(\mathcal{A})} \mathcal{L}^{\alpha}$ with $\mathcal{L}^{\alpha} \subseteq \mathcal{H}^{\alpha}$ and $[\mathcal{L}^{\alpha}, \mathcal{L}^{\beta}] \subseteq \mathcal{L}^{\alpha+\beta}$.

• elements $\epsilon^{\alpha}(Z) \in \mathcal{L}^{\alpha}$ for $\alpha \in C(\mathcal{A})$ and $Z \in \text{Stab}(\mathcal{A})$, such that for all α, Z, \tilde{Z}

$$\epsilon^{\alpha}(\tilde{Z}) = \sum_{\substack{\alpha_1, \dots, \alpha_n \in C(\mathcal{A}):\\\alpha_1 + \dots + \alpha_n = \alpha}} U(\alpha_1, \dots, \alpha_n; Z, \tilde{Z}) \\ \epsilon^{\alpha_1}(Z) * \dots * \epsilon^{\alpha_n}(Z),$$
(1)

for combinatorial coefficients $U(\dots) \in \mathbb{Q}$. Here (1) is a *Lie algebra identity* in \mathcal{L} . What this means: we form an Artin stack $\mathfrak{Obj}_{\mathcal{A}}$ of objects in \mathcal{A} . Then for $\alpha \in C(\mathcal{A})$, the moduli space $\mathrm{Obj}_{SS}^{\alpha}(Z)$ of Z-semistable objects in class α is a constructible set in $\mathfrak{Obj}_{\mathcal{A}}$, so its characteristic function $\delta_{SS}^{\alpha}(Z)$ is a constructible function in $\mathrm{CF}(\mathfrak{Obj}_{\mathcal{A}})$.

We can make $CF(\mathfrak{Obj}_{\mathcal{A}})$ into an *algebra*. The subspace $CF^{ind}(\mathfrak{Obj}_{\mathcal{A}})$ supported on indecomposables is a *Lie subalgebra*.

Roughly, we form an algebra \mathcal{H} with Lie subalgebra \mathcal{L} , and an algebra morphism $\Phi : \operatorname{CF}(\mathfrak{Obj}_{\mathcal{A}}) \to \mathcal{H}$ taking $\operatorname{CF}^{\operatorname{ind}}(\mathfrak{Obj}_{\mathcal{A}}) \to \mathcal{L}$. Then the $\epsilon^{\alpha}(Z)$ are got by applying Φ to modified versions of $\delta^{\alpha}_{\mathrm{SS}}(Z)$ lying in $\operatorname{CF}^{\operatorname{ind}}(\mathfrak{Obj}_{\mathcal{A}})$. Equation (1) comes from an expression for $\delta^{\alpha}_{\mathrm{SS}}(\tilde{Z})$ in terms of the $\delta^{\alpha_i}_{\mathrm{SS}}(Z)$. This is all rather oversimplified.

A motivating example.

Let *P* be a Calabi–Yau 3-fold, and $\mathcal{A} = \operatorname{coh}(P)$ the coherent sheaves on *P*. We can take $K(\mathcal{A}) \subset H^{\text{ev}}(P,\mathbb{Z})$ using the Chern character. There is a natural biadditive, antisymmetric form $\chi : K(\mathcal{A}) \times K(\mathcal{A}) \to \mathbb{Z}$. Define \mathcal{L} to be the \mathbb{C} -Lie algebra with basis e^{α} for $\alpha \in C(\mathcal{A})$ and $[e^{\alpha}, e^{\beta}] = \chi(\alpha, \beta)e^{\alpha+\beta}$, and $\mathcal{L}^{\alpha} = \mathbb{C} \cdot e^{\alpha}$. Define $\mathcal{H} = U(\mathcal{L})$, the universal enveloping algebra of \mathcal{L} .

For Gieseker rather than slope stability conditions Z, I defined invariants $J^{\alpha}(Z)$ in Q 'counting' Z-semistable sheaves in class α , similar to Donaldson–Thomas invariants. Setting $\epsilon^{\alpha}(Z) = J^{\alpha}(Z)e^{\alpha}$, these transform according to (1). I expect this to extend to Bridgeland stability on $D^b(\operatorname{coh}(P))$.

3. Setting up the problem

Let $\mathcal{A}, K(\mathcal{A}), C(\mathcal{A}), \mathcal{H}, \mathcal{L}, Stab(\mathcal{A}), \epsilon^{\alpha}(Z)$ be as above. For $\alpha \in C(\mathcal{A})$, consider the function f^{α} : Stab $(\mathcal{A}) \to \mathcal{H}^{\alpha}$ given by

$$f^{\alpha}(Z) = \sum_{\substack{\alpha_1, \dots, \alpha_n \in C(\mathcal{A}): \\ \alpha_1 + \dots + \alpha_n = \alpha}} F_n(Z(\alpha_1), \dots, Z(\alpha_n))$$
(2)

for $F_n : (\mathbb{C}^{\times})^n \to \mathbb{C}$, where $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}$. We shall find functions F_n so that f^{α} is *continuous* and *holomorphic* in Z, despite the fact that the $\epsilon^{\alpha_i}(Z)$ change *discontinuously* across real hypersurfaces in Stab(\mathcal{A}), according to (1). We also require:

(a)
$$F_1 \equiv (2\pi i)^{-1}$$
;

(b)
$$F_n(z_1,\ldots,z_n) \equiv F_n(\lambda z_1,\ldots,\lambda z_n);$$

(c)
$$|F_n(z_1,...,z_n)| = o(|z_k|^{-1})$$
 as $z_k \to 0$;

(d)
$$\sum_{\sigma \in S_n} F_n(z_{\sigma(1)}, \ldots, z_{\sigma(n)}) \equiv 0.$$

There are unique F_n satisfying all this.

Here (d) follows from a condition on F_n making (2) into a Lie algebra equation, so that f^{α} actually maps $\mathsf{Stab}(\mathcal{A}) \to \mathcal{L}^{\alpha}$. The simplest wall-crossing behaviour of the $\epsilon^{\alpha}(Z)$, encoded in (1), is that $\epsilon^{\alpha+\beta}(Z)$ jumps by $\epsilon^{\alpha}(Z) * \epsilon^{\beta}(Z) - \epsilon^{\beta}(Z) * \epsilon^{\alpha}(Z)$ across the hypersurface $Z(\beta)/Z(\alpha) \in (0,\infty)$. So, given $\alpha_1, \ldots, \alpha_n \in C(\mathcal{A})$, across the hypersurface $Z(\alpha_{l+1})/Z(\alpha_l) \in (0,\infty)$, the term $\epsilon^{\alpha_1}(Z) * \cdots * \epsilon^{\alpha_{l-1}}(Z) * \epsilon^{\alpha_l + \alpha_{l+1}}(Z)$ $\epsilon^{\alpha_l+2}(Z) * \cdots * \epsilon^{\alpha_n}(Z)$ jumps by $\epsilon^{\alpha_1}(Z) * \cdots * \epsilon^{\alpha_n}(Z) - \epsilon^{\alpha_1}(Z) * \cdots * \epsilon^{\alpha_{l-1}}(Z) *$ $\epsilon^{\alpha_l+1}(Z) * \epsilon^{\alpha_l} * \epsilon^{\alpha_l+2}(Z) * \cdots * \epsilon^{\alpha_n}(Z).$ The function f^{α} in (2) is continuous under this transition if $F_n(z_1,\ldots,z_n)$ jumps by $F_{n-1}(z_1, \ldots, z_{l-1}, z_l + z_{l+1}, z_{l+2}, \ldots, z_n)$ across the hypersurface $z_{l+1}/z_l \in (0,\infty)$.

We summarize the conditions on F_n : **Proposition 1.** For f^{α} to be continuous and holomorphic, we need F_n to be continuous and holomorphic on the set

 $\{ (z_1, \dots, z_n) \in (\mathbb{C}^{\times})^n : z_{k+1}/z_k \notin (0, \infty)$ for all $1 \leq k < n \}.$ (3)

Near a point on only one hypersurface $z_{l+1}/z_l \in (0,\infty)$ in $(\mathbb{C}^{\times})^n$, the function $F_n(z_1,\ldots,z_n) - \eta(z_{l+1}/z_l)F_{n-1}(z_1,\ldots,z_{l-1}, z_l+z_{l+1}, z_{l+2},\ldots,z_n)$ must be continuous and holomorphic, where $\eta(z) = \frac{1}{2}$ if $\operatorname{Im}(z) < 0, \ \eta(z) = 0$ if $\operatorname{Im}(z) = 0$, and $\eta(z) = -\frac{1}{2}$ if $\operatorname{Im}(z) > 0$.

Along intersections of two or more hypersurfaces $z_{l+1}/z_l \in (0,\infty)$ in $(\mathbb{C}^{\times})^n$, the F_n satisfy more complicated conditions. Here is a uniqueness result:

Theorem 2. There is at most one family of functions F_n satisfying Proposition 1 and conditions (a)–(d) above.

The proof is by induction on n. Let F_n, F'_n for $n \ge 1$ be two families satisfying the conditions, and suppose by induction that $F_k \equiv F'_k$ for k < n. This holds for n = 2by (a). Then we find that $f = F_n - F'_n$: $(\mathbb{C}^{\times})^n \to \mathbb{C}$ is holomorphic. By (b) it pulls back to the complement of some hyperplanes in \mathbb{CP}^{n-1} , and by (c) it extends over these hyperplanes. Thus f comes from a holomorphic function on \mathbb{CP}^{n-1} , so $f \equiv c$. Finally (d) shows c = 0, so $F_n \equiv F'_n$.

4. A p.d.e. on the f^{α}

We will now guess a p.d.e. which the f^{α} will satisfy. From Proposition 1 and (a)– (d) we find that $F_1(z_1) = (2\pi i)^{-1}$ and $F_2(z_1, z_2) = (2\pi i)^{-2} (\log(z_2/z_1) - \pi i)$ on $z_2/z_1 \notin (0, \infty)$, with $\operatorname{Im} \log(z_2/z_1) \in (0, 2\pi)$. Consider a situation with classes $\beta, \gamma, \beta + \gamma$ in $C(\mathcal{A})$ which do not otherwise split as sums of elements in $C(\mathcal{A})$. Then (2) gives $f^{\beta}(Z) = (2\pi i)^{-1} \epsilon^{\beta}(Z), f^{\gamma} = (2\pi i)^{-1} \epsilon^{\gamma}(Z)$ and $f^{\beta+\gamma}(Z) = (2\pi i)^{-1} \epsilon^{\beta+\gamma}(Z) + (2\pi i)^{-2} (\log(Z(\gamma)/Z(\beta)) - \pi i) [\epsilon^{\beta}(Z), \epsilon^{\gamma}(Z)]$ away from $Z(\gamma)/Z(\beta) \in (0, \infty)$. These satisfy the p.d.e.

 $df^{\beta+\gamma}(Z) = [f^{\beta}(Z), f^{\gamma}(Z)] \otimes (dZ(\gamma)/Z(\gamma) - dZ(\beta)/Z(\beta)).$ (4)

This motivates the following:

We now guess the f^{α} should satisfy the p.d.e. in \mathcal{L} -valued 1-forms on Stab(\mathcal{A}):

$$df^{\alpha}(Z) = -\sum_{\beta,\gamma \in C(\mathcal{A}): \alpha = \beta + \gamma} [f^{\beta}(Z), f^{\gamma}(Z)] \otimes \frac{dZ(\beta)}{Z(\beta)}.$$
 (5)

This has some very nice properties:

• For (5) to hold, the r.h.s. must be closed. But taking d of the r.h.s. and using (5) to substitute for df^{β} and df^{γ} , everything cancels to give zero. Thus, (5) is its own consistency condition!

• Set $\Gamma(Z) = \sum_{\alpha \in C(\mathcal{A})} f^{\alpha}(Z) \otimes dZ(\alpha)/Z(\alpha)$. This is an \mathcal{L} -valued connection matrix, with curvature $R_{\Gamma} = d\Gamma + \frac{1}{2}\Gamma \wedge \Gamma = 0$ by (5), so $d + \Gamma$ is a *flat connection*.

• Define a section s: Stab $(\mathcal{A}) \to \mathcal{L}$ by $s(Z) = \sum_{\alpha \in C(\mathcal{A})} f^{\alpha}(Z)$. Then (5) implies sis constant under the flat connection $d+\Gamma$. Substituting (2) into (5) and rearranging, we can show the f^{α} satisfy (5) provided the F_n satisfy the p.d.e.

$$dF_{n}(z_{1},...,z_{n}) = \sum_{k=1}^{n-1} F_{k}(z_{1},...,z_{k})F_{n-k}(z_{k+1},...,z_{n}) \cdot (6) \\ \left[\frac{dz_{k+1}+...+dz_{n}}{z_{k+1}+...+z_{n}} - \frac{dz_{1}+...+dz_{k}}{z_{1}+...+z_{k}}\right]$$

in the domain (3), oversimplifying a bit. • The 1-form $[\cdots]$ in (6) restricts to zero on $z_1 + \cdots + z_n = 0$, so $dF_n|_{z_1 + \cdots + z_n = 0} \equiv 0$, and F_n is constant on $z_1 + \cdots + z_n = 0$. Then (d) shows this constant is zero. • As for (5), taking d of the r.h.s. of (6) and substituting in (6) for dF_k and dF_{n-k} gives 0. Therefore, if (6) holds for n < m, then the r.h.s. of (6) is closed for n = m. This is the basis of an inductive construction for F_n satisfying (6). **Proposition 3.** There exists a unique family of functions F_n for $n \ge 1$, defined on the domain (3), satisfying $F_1 \equiv (2\pi i)^{-1}$ on (3), equation (6) and $F_n|_{z_1+\dots+z_n=0} \equiv 0$.

The proof is by induction on n. Having constructed F_1, \ldots, F_{m-1} , the r.h.s. of (6) is closed on (3) for n = m, by (6) for n < m. It is the pull-back of a closed 1-form on a connected, simply-connected region of \mathbb{CP}^{m-1} , so it's exact, and is dF_m for F_m unique up to addition of a constant. Requiring $F_m|_{z_1+\cdots+z_m=0} \equiv 0$ fixes the constant.

Note that $(z_1 + \cdots + z_k)^{-1}$ in (6) causes no singularities in F_n , since $F_k|_{z_1 + \cdots + z_k = 0} \equiv 0$ implies $(z_1 + \cdots + z_k)^{-1}F_k$ extends holomorphically over $z_1 + \cdots + z_k = 0$. The same holds for $(z_{k+1} + \cdots + z_n)^{-1}$.

16

Surprisingly, we can now prove:

Theorem 4. The functions F_n on (3) in Proposition 3 extend to functions F_n on $(\mathbb{C}^{\times})^n$ satisfying Proposition 1 and (a)– (d) above. By Theorem 2, they are the unique functions which do this.

The main point of the proof is to show that $F_n(z_1, \ldots, z_n)$ jumps by $F_{n-1}(z_1, \ldots, z_{l-1}, z_l + z_{l+1}, z_{l+2}, \ldots, z_n)$ across the hypersurface $z_{l+1}/z_l \in (0, \infty)$ in $(\mathbb{C}^{\times})^n$, as in Proposition 1. Write $D_{l,n}(z_1, \ldots, z_n)$ for the difference of the limiting values of $F_n(z_1, \ldots, z_n)$ from the two sides of z_{l+1}/z_l $\in (0, \infty)$, so that $D_{l,n}$ is a function on the hypersurface $z_{l+1}/z_l \in (0, \infty)$ in $(\mathbb{C}^{\times})^n$. Then taking the difference of (6) on both sides of $z_{l+1}/z_l \in (0,\infty)$ gives

$$dD_{l,n}(z_{1},...,z_{n}) = \sum_{k=1}^{l-1} F_{k}(z_{1},...,z_{k}) D_{l-k,n-k}(z_{k+1},...,z_{n}) \cdot \left[\frac{dz_{k+1}+...+dz_{n}}{z_{k+1}+...+z_{n}} - \frac{dz_{1}+...+dz_{k}}{z_{1}+...+z_{k}} \right] + (7)$$

$$\sum_{k=l+1}^{n-1} D_{l,k}(z_{1},...,z_{k}) F_{n-k}(z_{k+1},...,z_{n}) \cdot \left[\frac{dz_{k+1}+...+dz_{n}}{z_{k+1}+...+z_{n}} - \frac{dz_{1}+...+dz_{k}}{z_{1}+...+z_{k}} \right],$$

and also $D_{l,n}(z_1, \ldots, z_n)|_{z_1+\cdots+z_n=0} \equiv 0$. Comparing this with (6), we prove by induction that $D_{l,n}(z_1, \ldots, z_n) = F_{n-1}(z_1, \ldots, z_{l-1}, z_l + z_{l+1}, z_{l+2}, \ldots, z_n)$, where for the first case $D_{1,2}$ we use the explicit formulae for F_1, F_2 above.

5. Discussion

We have now shown that two *completely different* conditions on the f^{α} lead to the same unique family of functions F_n . That is, requiring the f^{α} to be holomorphic and continuous, plus some minor conditions, is equivalent to requiring the f^{α} to satisfy the p.d.e. (5). So (5) emerges from nowhere, as a consequence of the f^{α} being holomorphic and continuous.

Actually, we have used the triangulated category case to prove this. For the abelian case we only need F_n to be defined on H^n , not $(\mathbb{C}^{\times})^n$, where $H = \{x + iy : x \in \mathbb{R}, y > 0\}$, and then the conditions are not strong enough to define the F_n uniquely.

6. The Calabi–Yau 3-fold case

In the Calabi–Yau 3-fold example above, as f^{α} : Stab $(\mathcal{A}) \rightarrow \mathcal{L}^{\alpha}$ and $\mathcal{L}^{\alpha} = \mathbb{C} \cdot e^{\alpha}$, we can write $f^{\alpha} = F^{\alpha}e^{\alpha}$, for holomorphic functions F^{α} : Stab $(\mathcal{A}) \rightarrow \mathbb{C}$ for $\alpha \in C(\mathcal{A})$. Equation (5) reduces to

$$dF^{\alpha}(Z) = -\sum_{\beta,\gamma \in C(\mathcal{A}): \alpha = \beta + \gamma} \chi(\beta,\gamma) F^{\beta}(Z) F^{\gamma}(Z) \frac{dZ(\beta)}{Z(\beta)}.$$
(8)

For the triangulated category \mathcal{T} case we extend this from $\alpha, \beta, \gamma \in C(\mathcal{A})$ to $\alpha, \beta, \gamma \in K(\mathcal{T}) \setminus \{0\}$, with $F^{-\alpha} \equiv F^{\alpha}$. Thus, we conjecture there should be holomorphic functions F^{α} : Stab $(\mathcal{T}) \to \mathbb{C}$ that encode generalizations of Donaldson– Thomas invariants, satisfy (8) with $K(\mathcal{T}) \setminus \{0\}$ in place of $C(\mathcal{A})$, and give a flat \mathcal{L} -connection on Stab (\mathcal{T}) . What is the meaning of this in String Theory?