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1. Introduction

If (M,w) is a compact symplectic manifold,
one can define Gromov—Witten invariants
D 4(a, 3,v) of M. It is natural to encode
these in a holomorphic generating function
S : HY(M,C) — C called the Gromov—
Witten potential, given by a power series
with coefficients the ®4(a, 3,7v). Identi-
ties on the ® 4(«, 8,7v) imply that S satis-
fies a p.d.e., the WDVV equation. This
p.d.e. can be interpreted as the flatness
of a 1-parameter family of connections de-
fined using S, which make H®V(M,C) into
a Frobenius manifold.



T his talk will tell a similar story. Given an
abelian category A satisfying some condi-
tions, we form a complex manifold Stab(.A)
of slope stability conditions Z on A. In pre-
vious work I defined systems of invariants
e*(Z) ‘counting’ Z-semistable objects in A
in class a in K(A). The €*(Z) live in an
infinite-dimensional Lie algebra L.

We combine the ¢*(Z) into holomorphic
generating functions % . Stab(A) — L.
The €*(Z) are locally constant in Z except
that they change discontinuously on real
hypersurfaces in Stab(.A4). Requiring f¢
to be continuous and holomorphic deter-
mines the form of f% essentially uniquely.
Remarkably, the f¢ turn out to satisfy a
p.d.e., which implies the flatness of an L-
valued connection on Stab(A).



This story should extend to triangulated
categories 7 such as derived categories
Db(A), with Bridgeland stability conditions.
My motivation for this is as follows. Let P
be a Calabi—Yau 3-fold, 7 = D?(coh(P))
its derived category, and Stab(7) the com-
plex manifold of Bridgeland stability con-
ditions. Then one should define invariants
J¥Z) € Q for Z € Stab(7) ‘counting’ Z-
semistable complexes in class «a in K(7),
generalizing Donaldson—T homas invariants.
T his work shows how to combine the J¥(2)
into holomorphic generating functions <
Stab(7) — C satisfying a p.d.e., which de-
fine an interesting geometric structure on
Stab(7). I think this is some new thing in
Homological Mirror Symmetry, and I hope
String Theorists will be able to explain it.
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2. The general set up

Let A be an abelian category, and K(A)
the quotient of the Grothendieck group
Kp(A) by some fixed subgroup, such that
if X e Aand [X]=0in K(A) then X = 0.
Define the positive cone in K(A):

C(A) ={[X]e K(A) : X € A, X ¥0}.
Let ¢,r : K(A) — R be group homomor-
phisms with r»(a) > 0 for all o € C(A).
Define the slope u: C(A) — R by u(a) =
c(a)/r(a). Define the central charge Z &
Hom(K(A),C) by Z(a) = —c(a) + ir(a).
It maps C(A) to the upper half plane H =
{x+iy .z €R, y>0}in C. Write Stab(A)
for the complex manifold of such Z.

An object X Z= 0in A is called Z-semistable
if for all subobjects O = S C X we have

p(LST) < p(IXD).



Then my papers I-IV provide lots of ways
of defining the following general structure:
e an associative algebra H with (generally
noncommutative) multiplication x.

e a splitting H = &,cc(a)ufor H* with
HY s« HP C Het8 and 1 € HO.

e a Lie subalgebra L C 'H with Lie bracket
fs9l=f*xg—g=f.

e a splitting £ = Bocc(A) LY with L% C H®
and [£%, £P] C £otB,

e clements ¢*(Z) € L% for a« € C(A) and
Z € Stab(A), such that for all o, Z,Z

eoz(Z) — Z U(Oél,...,()én;Zy Z) (1)
o an€C(A): n
Oéozll-|-.?é.—|—€ozn(:34 e L(Z) - x e (Z),

for combinatorial coefficients U(---) € Q.
Here (1) is a Lie algebra identity in L.
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What this means: we form an Artin stack
Obj 4 of objects in A. Then for a € C(A),
the moduli space Objg(Z) of Z-semistable
objects in class « is a constructible set in
Obj 4, SO its characteristic function 05(2)
IS a constructible function in CF(9Dbj 4).
We can make CF(Dbj4) into an algebra.
The subspace CF'N9(Obj 4) supported on
indecomposables is a Lie subalgebra.
Roughly, we form an algebra H with Lie
subalgebra £, and an algebra morphism
® : CF(Obj 4) — H taking CF'NY(Obj 1) —
L. Then the €%(Z) are got by applying
$ to modified versions of 6&(Z) lying in
CFNd(9Obj 4). Equation (1) comes from
an expression for §&(Z) in terms of the

§sd(Z). This is all rather oversimplified.
7



A motivating example.

Let P be a Calabi—Yau 3-fold, and A =
coh(P) the coherent sheaves on P. We
can take K(A) Cc H®V(P,Z) using the Chern
character. There is a natural biadditive,
antisymmetric form x : K(A) x K(A) — Z.
Define £ to be the C-Lie algebra with basis
e® for a € C(A) and [e%, 7] = x(a, B)e* TP,
and L% = C-e%. Define H =U(L), the uni-
versal enveloping algebra of L.

For Gieseker rather than slope stability con-
ditions Z, I defined invariants J*(Z) in Q
‘counting’ Z-semistable sheaves in class «,
similar to Donaldson—Thomas invariants.
Setting e*(Z2) = J%(Z)e%, these transform
according to (1). I expect this to extend
to Bridgeland stability on Db(coh(P)).
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3. Setting up the problem

Let A, K(A),C(A),H, L,Stab(A),e*(Z) be
as above. For a € C(A), consider the
function f®:Stab(A) — H® given by

fH(z)y= > Fn(Z(a1), ..., Z(an))
aq,...,an€C(A): eal(Z) e ea“(Z), (2)

a1+Faoan=«

for Fy, : (C*)® — C, where C* =C\ {0}.
We shall find functions Fj; so that f¢ is
continuous and holomorphic in Z, despite
the fact that the ¢%i(Z) change discontinu-
ously across real hypersurfaces in Stab(A),
according to (1). We also require:

(a) Fy = (2mi)~ 1

(b) Frn(z1,...,2n) = Fn(Az1, ..., zn);

(C) ‘Fn(zla R 7Z77J>‘ — 0(|Zk|_1) as Rk — O'

(d) 2.0€Sy Fn(za(l), Ce ey ZO‘(n)) = 0.
There are unique Fj, satisfying all this.
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Here (d) follows from a condition on Fj,
making (2) into a Lie algebra equation, so
that f* actually maps Stab(A) — L.

T he simplest wall-crossing behaviour of the
e*(Z), encoded in (1), is that e*t8(2)
jumps by €2(2)xeP(2)—eP(Z)xe*(Z) across
the hypersurface Z(8)/Z(«a) € (0, 00).

So, given aq,...,an € C(A), across the
hypersurface Z(a;41)/Z(oy) € (0,00), the
term €®1(Z) x -+ % €M-1(Z) % MTU+1(Z)
eN+2(Z) x - - - x € (Z) jumps by
eX(Z)*---ke€M(Z) — €1 (L) x- -k €M-1(7) %
eMFTL(Z) * €M % MH2(Z) x - - - x (7).

The function f¢ in (2) is continuous un-
der this transition if Fp(z1,...,2n) jumps
by Fn_l(zl, vy R]—15 ?] —+ 21415 Rl4+25 - - - ,Zn)
across the hypersurface z;41/2 € (0,00).
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We summarize the conditions on Fi:
Proposition 1. For f¢ to be continuous
and holomorphic, we need F, to be con-
tinuous and holomorphic on the set

{(21,...,2n) € (C)" z41/2 ¢ (0,00)
for all 1 <k <n}.

(3)

Near a point on only one hypersurface
zi41/7 € (0,00) in (C*)", the function
Fn(21,---52n) —n(z41/20 Fn-1(21, .-, 2121,
2] + 2141, 2142, - - -, 2n) MuSt be continuous
and holomorphic, where n(z) = % if
Im(z) < 0, n(z) = 0 if Im(z) = 0, and
n(z) = —3 if Im(z) > 0.

Along intersections of two or more hyper-
surfaces z41/z € (0,00) in (C*)", the Fy
satisfy more complicated conditions.
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Here is a unigqueness result:

Theorem 2. There is at most one fam-
ily of functions F;, satisfying Proposition 1
and conditions (a)—(d) above.

The proof is by induction on n. Let Fy, F/
for n > 1 be two families satisfying the
conditions, and suppose by induction that
Fy, = F] for k < n. This holds for n = 2
by (a). Then we find that f = F,, — F) :
(C*)™ — C is holomorphic. By (b) it pulls
back to the complement of some hyper-
planes in CP"~1, and by (c) it extends over
these hyperplanes. Thus f comes from a
holomorphic function on CP"~ 1, so f =c.
Finally (d) shows ¢ =0, so F, = F}.
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4. A p.d.e. on the ¢

We will now guess a p.d.e. which the f¢
will satisfy. From Proposition 1 and (a)—
(d) we find that Fy(z1) = (27i)~1 and
F>(z1,20) = (27Ti)_2(|09(22/2’1) —7Ti) on
zo/z1 ¢ (0,00), with Imlog(z5/21) € (0, 27).
Consider a situation with classes 3,~v, 3 +
~ in C(A) which do not otherwise split
as sums of elements in C(A). Then (2)
gives f8(2) = (2mi) 1P (2), 7= (2mi) 1
e¥(Z) and fPtY(2) = (2mi) 1PV (2)+
(2mi)~2(log(Z(7)/Z(8)) — 7i)[°(Z), €7(Z)]
away from Z(~v)/Z(3) € (0, 00).

T hese satisfy the p.d.e.

dfPT1(2) = [fP(2), 1(2)|®
(dz(v)/Z2(v) —dZ(B)/Z(3)).

T his motivates the following:

(4)
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We now guess the % should satisfy the
p.d.e. in £L-valued 1-forms on Stab(A):

dZ(p3)
df¥(2) = - Y [f%(2), (2)]e |
B,AEC(A):a=F+~ Z(8)

(5)

This has some very nice properties:

e For (5) to hold, the r.h.s. must be closed.
But taking d of the r.h.s. and using (5)
to substitute for df? and df7, everything
cancels to give zero. Thus, (5) is its own
consistency condition!

e Set I’(Z):Zaec(A) fYMZ2)®dZ(a)/Z(a).
This is an L-valued connection matrix, with
curvature Rr =dlr + 3 AT =0 by (5), so
d+4 I is a flat connection.

e Define a section s: Stab(A) — £ by
S(Z) = ZQEC(A) fa(Z). Then (5) implies s
IS constant under the flat connection d+I.
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Substituting (2) into (5) and rearranging,
we can show the f¢ satisfy (5) provided
the F,, satisfy the p.d.e.

dFyn(z1,...,2n) =

n—1
> Fr(z1, . zi) P g (241, - - 2n) - (6)

k=1 [dzk_|_1-|—'"-|-d2n _ dzp+--+dzg

in the domain (3), oversimplifying a bit.
e The 1-form [---] in (6) restricts to zero
onzi+--+4+2zp =0, s0dFn|;4..q42,=0 =0,
and F, is constant on z1 +--- 4+ 2z, = O.
Then (d) shows this constant is zero.

e As for (5), taking d of the r.h.s. of (6)
and substituting in (6) for dFy and dF,,_;
gives 0. Therefore, if (6) holds for n < m,
then the r.h.s. of (6) is closed for n = m.
This is the basis of an inductive construc-
tion for Fj, satisfying (6).
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Proposition 3. There exists a unique
family of functions F,, forn > 1, defined on
the domain (3), satisfying Fy = (2mxi)~1 on
(3), equation (6) and Ful,,+...4,,=0 = 0.

The proof is by induction on n. Having
constructed Fq,...,F,,_1, the r.h.s. of (6)
is closed on (3) for n = m, by (6) for
n < m. It is the pull-back of a closed
1-form on a connected, simply-connected
region of CP™~1 so it's exact, and is dF,
for F,, unique up to addition of a con-
stant. Requiring Fm|,, 4.4 ,,=0 = 0 fixes
the constant.

Note that (z1+---+2.)" 1 in (6) causes no
singularities in Fy, since Fil, 4.4, —0=0
implies (z1 4+ --- + z) " 1F. extends holo-
morphically over z; + .-+ 2 = 0. The
same holds for (zp11+ -+ 2n) 1.
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Surprisingly, we can now prove:

Theorem 4. The functions Fy, on (3) in
Proposition 3 extend to functions Fy, on
(C*)™ satisfying Proposition 1 and (a)—
(d) above. By Theorem 2, they are the
unique functions which do this.

The main point of the proof is to show
that Fn(z1,...,2zn) jJumps by F,_1(z1,...,
2]_1,2] + 241,242, --,2n) aCross the hy-
persurface z41/z € (0,00) in (C*)", as
in Proposition 1. Write D; ,,(21,...,2n) for
the difference of the limiting values of
Fn(z1,...,2n) from the two sides of z;41/%
€ (0,00), so that D;,, is a function on the
hypersurface z;4.1/2; € (0,00) in (C*)".
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Then taking the difference of (6) on both
sides of z;41/2; € (0,00) gives

dDj (21, .,2n) =

-1
> Fr(z1, - 21) D n—k (215 - -5 20) -

n—1

> Dip(z,.. . zi) Fr_k(2k41,- -5 2n) -

k=l+1 [d2k+1‘|‘"'+d2n - le""'""dzk]
24171 T 2n 21tz |7

and also Dj ,(21,--+,2n)|s 4 42,=0 = O.
Comparing this with (6), we prove by
induction that Dl,n(zla .. .,Zn) = Fn—l(zla
ce ey 2115 %] —+ Zl415R[4+25 -+ Zn), where for
the first case Dy > we use the explicit for-
mulae for Fy, F> above.
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5. Discussion

We have now shown that two completely
different conditions on the f% lead to the
same unique family of functions Fj,. That
is, requiring the f¢ to be holomorphic and
continuous, plus some minor conditions,
IS equivalent to requiring the % to sat-
isfy the p.d.e. (5). So (5) emerges from
nowhere, as a consequence of the f¢ being
holomorphic and continuous.

Actually, we have used the triangulated
category case to prove this. For the abelian
case we only need F;, to be defined on H",
not (C*)", where H = {z 4+ iy : € R,
y > 0}, and then the conditions are not
strong enough to define the F;, uniquely.
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6. The Calabi—Yau 3-fold case

In the Calabi—Yau 3-fold example above,
as f% : Stab(A) — L£% and £ = C - e%,
we can write f@ = F%e%, for holomorphic
functions F® : Stab(A) — C for a € C(A).
Equation (5) reduces to

dF*(2) ==Y x(8, NF(2)F (). (8)
ByeC(A):a=p+

For the triangulated category 7 case we
extend this from «,8,v € C(A) to
a,B,v € K(7)\ {0}, with F7% = F“.
Thus, we conjecture there should be holo-
morphic functions F¢ : Stab(7) — C that
encode generalizations of Donaldson—
Thomas invariants, satisfy (8) with
K(7T) \ {0} in place of C(A), and give a
flat L£-connection on Stab(7). What is
the meaning of this in String Theory?
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