D-manifolds and derived differential geometry. Dominic Joyce, Oxford Luminy, July 2012. Based on survey paper: arXiv:1206.4207, 44 pages and preliminary version of book which may be downloaded from people.maths.ox.ac.uk/ \sim joyce/dmanifolds.html. These slides available at

people.maths.ox.ac.uk/~joyce/talks.html.

1. Introduction

I will describe a new class of geometric objects I call *d-manifolds* — 'derived' smooth manifolds. Some properties of d-manifolds:

• They form a strict 2-category dMan. That is, we have objects X, the d-manifolds, 1-morphisms f, g: $X \rightarrow Y$, the smooth maps, and also 2-morphisms $\eta : f \Rightarrow g$.

Smooth manifolds embed into d-manifolds as a full (2)-subcategory.
There are also 2-categories dMan^b of d-manifolds with boundary and dMan^c of d-manifolds with corners, and orbifold versions dOrb, dOrb^b, dOrb^c of these, d-orbifolds.

2

 Many concepts of differential geometry extend nicely to d-manifolds: submersions, immersions, orientations, submanifolds, transverse fibre products, cotangent bundles, . . . Almost any moduli space used in any enumerative invariant problem over $\mathbb R$ or $\mathbb C$ has a d-manifold or d-orbifold structure, natural up to equivalence. There are truncation functors to d-manifolds and dorbifolds from structures currently used $-\mathbb{C}$ -schemes with obstruction theories, Kuranishi spaces, polyfolds. Virtual classes/cycles/chains can be constructed for compact oriented d-manifolds and d-orbifolds.

3

So, d-manifolds and d-orbifolds provide a unified framework for studying enumerative invariants and moduli spaces. They also have other applications, and are interesting and beautiful in their own right.

D-manifolds and d-orbifolds are related to other classes of spaces already studied, in particular to the *Kuranishi spaces* of Fukaya–Oh– Ohta–Ono in symplectic geometry, and to David Spivak's *derived manifolds*, from Jacob Lurie's 'derived algebraic geometry' programme.

2. D-spaces and d-manifolds

Algebraic geometry (based on algebra and polynomials) has excellent tools for studying singular spaces – the theory of schemes.

In contrast, conventional differential geometry (based on smooth real functions and calculus) deals well with nonsingular spaces – manifolds – but poorly with singular spaces.

There is a little-known theory of schemes in differential geometry, C^{∞} -schemes, going back to Lawvere, Dubuc, Moerdijk and Reyes, ... in synthetic differential geometry in the 1960s-1980s. This will be the foundation of our d-manifolds.

2.1. C^{∞} -rings

Let X be a manifold, and $C^{\infty}(X)$ the set of smooth functions $c: X \rightarrow \mathbb{R}$. Then $C^{\infty}(X)$ is an \mathbb{R} -algebra, by adding and multiplying smooth functions. But there are many more operations on $C^{\infty}(X)$, e.g. if c: $X \rightarrow \mathbb{R}$ is smooth then $\exp(c): X \rightarrow$ \mathbb{R} is smooth, giving $\exp: C^{\infty}(X) \rightarrow$ $C^{\infty}(X)$, algebraically independent of addition and multiplication.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be smooth. Define $\Phi_f : C^{\infty}(X)^n \to C^{\infty}(X)$ by

 $\Phi_f(c_1, \ldots, c_n)(x) = f(c_1(x), \ldots, c_n(x))$ for all $x \in X$. Addition comes from $f : \mathbb{R}^2 \to \mathbb{R}, f : (c_1, c_2) \mapsto c_1 + c_2,$ multiplication from $(c_1, c_2) \mapsto c_1 c_2$. **Definition.** A C^{∞} -ring is a set \mathfrak{C} together with *n*-fold operations $\Phi_f : \mathfrak{C}^n \to \mathfrak{C}$ for all smooth maps $f : \mathbb{R}^n \to \mathbb{R}$, $n \ge 0$, satisfying the following conditions: Let $m, n \ge 0$, and $f_i : \mathbb{R}^n \to \mathbb{R}$ for i =

Let $m, n \ge 0$, and $f_i : \mathbb{R}^n \to \mathbb{R}$ for $i = 1, \ldots, m$ and $g : \mathbb{R}^m \to \mathbb{R}$ be smooth functions. Define $h : \mathbb{R}^n \to \mathbb{R}$ by

 $h(x_1, \ldots, x_n) = g(f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)),$ for $(x_1, \ldots, x_n) \in \mathbb{R}^n$. Then for all c_1, \ldots, c_n in \mathfrak{C} we have

 $\Phi_h(c_1,\ldots,c_n) = \\ \Phi_g(\Phi_{f_1}(c_1,\ldots,c_n),\ldots,\Phi_{f_m}(c_1,\ldots,c_n)).$

Also defining $\pi_j : (x_1, \ldots, x_n) \mapsto x_j$ for $j = 1, \ldots, n$ we have $\Phi_{\pi_j} : (c_1, \ldots, c_n) \mapsto c_j$. A morphism of C^{∞} -rings is $\phi : \mathfrak{C} \to \mathfrak{D}$ with $\Phi_f \circ \phi^n = \phi \circ \Phi_f : \mathfrak{C}^n \to \mathfrak{D}$ for all smooth $f : \mathbb{R}^n \to \mathbb{R}$. Write \mathbf{C}^{∞} Rings for the category of C^{∞} -rings.

Then $C^{\infty}(X)$ is a C^{∞} -ring for any manifold X, and from $C^{\infty}(X)$ we can recover X up to isomorphism. If $f : X \to Y$ is smooth then f^* : $C^{\infty}(Y) \rightarrow C^{\infty}(X)$ is a morphism of C^{∞} -rings. This gives a *full and* faithful functor $F : Man \to C^{\infty} Rings^{op}$ by $F: X \mapsto C^{\infty}(X), F: f \mapsto f^*$. Thus, we think of manifolds as examples of C^{∞} -rings, and C^{∞} -rings as generalizations of manifolds. But there are many more C^{∞} -rings than manifolds, e.g. $C^0(X)$ is a C^{∞} -ring for any topological space X.

2.2. C^{∞} -schemes

We can now develop the whole machinery of scheme theory in algebraic geometry, replacing rings or algebras by C^{∞} -rings throughout — see my arXiv:1001.0023.

We obtain a category C^{∞} Sch of C^{∞} schemes $\underline{X} = (X, \mathcal{O}_X)$, which are topological spaces X equipped with a sheaf of C^{∞} -rings \mathcal{O}_X locally modelled on the spectrum of a C^{∞} -ring. If X is a manifold, define a C^{∞} scheme $\underline{X} = (X, \mathcal{O}_X)$ by $\mathcal{O}_X(U) =$ $C^{\infty}(U)$ for all open $U \subseteq X$. This defines a full and faithful embedding Man $\hookrightarrow C^{\infty}$ Sch. We also define vector bundles, coherent sheaves $coh(\underline{X})$ and quasicoherent sheaves $qcoh(\underline{X})$, and the cotangent sheaf $T^*\underline{X}$ on \underline{X} . Then $qcoh(\underline{X})$ is an abelian category. Some differences with conventional algebraic geometry:

- affine schemes are Hausdorff. No need to introduce étale topology.
- partitions of unity exist subordinate to any open cover of a (nice) C^{∞} -scheme <u>X</u>.

• C^{∞} -rings such as $C^{\infty}(\mathbb{R}^n)$ are not noetherian as \mathbb{R} -algebras. Causes problems with coherent sheaves: $\operatorname{coh}(\underline{X})$ is not closed under kernels, so not an abelian category.

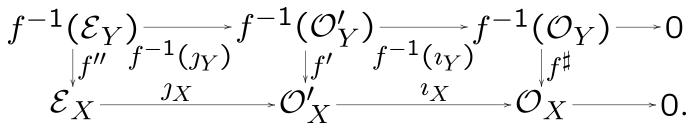
2.3. The 2-category of d-spaces

We define d-manifolds as a 2-subcategory of a larger 2-category of *d-spaces*. These are 'derived' versions of C^{∞} -schemes.

Definition. A *d-space* is a is a quintuple $X = (\underline{X}, \mathcal{O}'_X, \mathcal{E}_X, \imath_X, \jmath_X)$ where $\underline{X} = (X, \mathcal{O}_X)$ is a separated, second countable, locally fair C^{∞} -scheme, \mathcal{O}'_X is a second sheaf of C^{∞} -rings on X, and \mathcal{E}_X is a quasicoherent sheaf on \underline{X} , and $\imath_X : \mathcal{O}'_X \to \mathcal{O}_X$ is a surjective morphism of sheaves of C^{∞} -rings whose kernel \mathcal{I}_X is a sheaf of square zero ideals in \mathcal{O}'_X , and $\jmath_X : \mathcal{E}_X \to \mathcal{I}_X$ is a surjective morphism in qcoh(\underline{X}), so we have an exact sequence of sheaves on X:

 $\mathcal{E}_X \xrightarrow{\mathcal{I}_X} \mathcal{O}'_X \xrightarrow{\imath_X} \mathcal{O}_X \longrightarrow \mathbf{0}.$

A 1-morphism $f: X \to Y$ is a triple f = (f, f', f''), where $\underline{f} = (f, f^{\sharp}) : \underline{X} \to \underline{Y}$ is a morphism of C^{∞} -schemes and $f': f^{-1}(\mathcal{O}'_Y) \to \mathcal{O}'_X$, $f'': \underline{f}^*(\mathcal{E}_Y) \to \mathcal{E}_X$ are sheaf morphisms such that the following commutes:



Let $f, g : X \to Y$ be 1-morphisms with $f = (\underline{f}, f', f''), f = (\underline{g}, g', g'')$. Suppose $\underline{f} = \underline{g}$. A 2-morphism $\eta : f \Rightarrow g$ is a morphism

 $\eta: f^{-1}(\Omega_{\mathcal{O}'_{Y}}) \otimes_{f^{-1}(\mathcal{O}'_{Y})} \mathcal{O}_{X} \longrightarrow \mathcal{E}_{X}$ in qcoh(<u>X</u>), where $\Omega_{\mathcal{O}'_{Y}}$ is the sheaf of cotangent modules of \mathcal{O}'_{Y} , such that $g' = f' + j_{X} \circ \eta \circ \Pi_{XY}$ and $g'' = f'' + \eta \circ \underline{f}^{*}(\phi_{Y})$, for natural morphisms Π_{XY}, ϕ_{Y} .

Theorem 1. This defines a strict 2-category dSpa. All fibre products exist in dSpa.

We can map C^{∞} Sch into dSpa by taking a C^{∞} -scheme $\underline{X} = (X, \mathcal{O}_X)$ to the dspace $X = (\underline{X}, \mathcal{O}_X, 0, \text{id}_{\mathcal{O}_X}, 0)$, with exact sequence

$$0 \xrightarrow{\quad 0 \quad } \mathcal{O}_X \xrightarrow{id_{\mathcal{O}_X}} \mathcal{O}_X \longrightarrow 0.$$

This embeds $C^{\infty}Sch$, and hence manifolds Man, as discrete 2-subcategories of dSpa. For *transverse* fibre products of manifolds, the fibre products in Man and dSpa agree.

2.4. The 2-subcategory of d-manifolds

Definition. A d-space X is a *d-manifold* of dimension $n \in \mathbb{Z}$ if X may be covered by open d-subspaces Y equivalent in dSpa to a fibre product $U \times_W V$, where U, V, W are manifolds without boundary and dim U + dim V - dim W = n. We allow n < 0. Think of a d-manifold $X = (\underline{X}, \mathcal{O}'_X, \mathcal{E}_X, \imath_X, \jmath_X)$ as a 'classical' C^{∞} -scheme \underline{X} , with extra 'derived' data $\mathcal{O}'_X, \mathcal{E}_X, \imath_X, \jmath_X$.

Write dMan for the full 2-subcategory of d-manifolds in dSpa. It is not closed under fibre products in dSpa, but we can say: **Theorem 2.** All fibre products of the form $X \times_Z Y$ with X, Y d-manifolds and Z a manifold exist in the 2-category dMan.

2.5. Gluing by equivalences

Theorem3. Let X, Y be d-manifolds, $\emptyset \neq U \subset X, \ \emptyset \neq V \subseteq Y$ be open, and f : $U \rightarrow V$ an equivalence. Suppose $Z = X \cup_{U=V} Y$ is Hausdorff. Then there exists a d-manifold Z, unique up to equivalence in dMan, open $\hat{X}, \hat{Y} \subseteq Z$ with $Z = \hat{X} \cup \hat{Y},$ equivalences $g:X
ightarrow \hat{X}$ and h:Y
ightarrow \hat{Y} , and a 2-morphism $\eta : g|_U \Rightarrow h \circ f$. Theorem 3 extends to gluing families of d-manifolds X_i : $i \in I$ by equivalences on overlaps $X_i \cap X_j$, with (weak) conditions on overlaps $X_i \cap X_j \cap X_k$. This is very useful for proving existence of d-manifold structures on moduli spaces.

2.6. D-manifold bordism

Let Y be a manifold. Define the bordism group $B_k(Y)$ to have elements \sim -equivalence classes [X, f]of pairs (X, f), where X is a compact oriented k-manifold and f : $X \rightarrow Y$ is smooth, and $(X, f) \sim$ (X', f') if there exists a compact oriented (k+1)-manifold with boundary W and a smooth map $e: W \rightarrow$ Y with $\partial W \cong X \amalg - X'$ and $e|_{\partial W} \cong$ $f \amalg f'$. It is an abelian group, with $[X, f] + [X', f'] = [X \amalg X', f \amalg f'].$

Similarly, define the *derived bordism* group $dB_k(Y)$ to have elements \approx equivalence classes [X, f] of pairs (X, f), where X is a compact oriented d-manifold with vdim X = kand $f : X \to Y = F_{Man}^{dMan}(Y)$ is a 1-morphism in dMan, and (X,f)pprox(X', f') if there exists a compact oriented d-manifold with boundary W with vdim W = k + 1 and a 1morphism e:W
ightarrow Y in dMan^b with $\partial W \simeq X \amalg - X'$ and $e|_{\partial W} \cong f \amalg f'$. It is an abelian group, with $[X, f] + [X', f'] = [X \amalg X', f \amalg f'].$

There is a natural morphism Π_{bo}^{dbo} : $B_k(Y) \to dB_k(Y)$ mapping $[X, f] \mapsto [F_{Man}^{dMan}(X), F_{Man}^{dMan}(f)].$

Theorem 4. $\Pi_{bo}^{dbo}: B_k(Y) \rightarrow dB_k(Y)$ is an isomorphism for all k, with $dB_k(Y) = 0$ for k < 0.

This holds because every d-manifold can be perturbed to a manifold. Composing $(\Pi_{bo}^{dbo})^{-1}$ with the projection $B_k(Y) \rightarrow H_k(Y,\mathbb{Z})$ gives a morphism $\Pi_{dbo}^{hom}: dB_k(Y) \rightarrow H_k(Y,\mathbb{Z})$. We can interpret this as a *virtual class map* for compact oriented d-manifolds. Virtual classes (in homology over \mathbb{Q}) also exist for compact oriented d-orbifolds.

2.7. Why is a 2-category enough?

Usually in derived algebraic geometry, one considers an ∞ -category of objects (derived stacks, etc.). But we work in a 2-category, effectively a truncation of Spivak's ∞ -category of derived manifolds.

Here are two reasons why this truncation does not lose important information. Firstly, d-manifolds correspond to *quasi-smooth* derived schemes X, whose cotangent complex \mathbb{L}_X lies in degrees [-1,0]. So \mathbb{L}_X lies in a 2-category of complexes, not an ∞ -category. Note that f: $X \to Y$ is étale in dMan iff Ω_f : $f^*(\mathbb{L}_Y) \to \mathbb{L}_X$ is an equivalence.

Secondly, the existence of *partitions* of unity in differential geometry means that our structure sheaves $\mathcal{O}_{\mathbf{X}}$ are 'fine' or 'soft', which simplifies behaviour. Partitions of unity are also essential in gluing by equivalences in dMan, as in Theorem 3. Our '2-category style derived geometry' probably would not work very well in a conventional algebrogeometric context, rather than a differential-geometric one.