Introduction to Riemannian holonomy groups and calibrated geometry

Dominic Joyce
Oxford University
England

1. Holonomy groups

Let M^n be a manifold of dimension n. Let $x \in M$. Then T_xM is the tangent space to M at x.

Let g be a Riemannian metric on M.

Let ∇ be the *Levi-Civita* connection of g.

Let R(g) be the Riemann curvature of g.

Fix $x \in M$. The holonomy group Hol(g) of g is the set of isometries of T_xM given by parallel transport using ∇ about closed loops γ in M based at x. It is a subgroup of O(n). Up to conjugation, it is independent of the basepoint x.

Berger's classification

Let M be simply-connected and q be irreducible and nonsymmetric. Then Hol(g)is one of SO(m), U(m), SU(m), Sp(m), Sp(m)Sp(1)for $m \ge 2$, or G_2 or Spin(7). We call G_2 and Spin(7)the exceptional holonomy groups. Dim(M) is 7 when Hol(g) is G_2 and 8 when Hol(g) is Spin(7).

Understanding Berger's list

The four inner product algebras are

- \mathbb{R} real numbers.
- \mathbb{C} complex numbers.
- \mathbb{H} quaternions.
- \mathbb{O} octonions,

or Cayley numbers.

Here \mathbb{C} is not ordered,

III is not commutative,

and O is not associative.

Also we have $\mathbb{C} \cong \mathbb{R}^2$, $\mathbb{H} \cong \mathbb{R}^4$

and $\mathbb{O} \cong \mathbb{R}^8$, with $\operatorname{Im} \mathbb{O} \cong \mathbb{R}^7$.

Group

Acts on

SO(m)	\mathbb{R}^m
O(m)	\mathbb{R}^m
SU(m)	\mathbb{C}^m
U(m)	\mathbb{C}^m
Sp(m)	\mathbb{H}^m
Sp(m)Sp(1)	\mathbb{H}^m
G_2	$\operatorname{Im}\mathbb{O}\cong\mathbb{R}^7$
Spin(7)	$\mathbb{O}\cong\mathbb{R}^8$

Thus there are two holonomy groups for each of $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.

2. Calibrations

Let (M,g) be a Riemannian manifold. An oriented tangent k-plane V on M is an oriented vector subspace V of some tangent space T_xM to M with dim V=k. Each has a volume form vol_V defined using g.

A calibration on M is a closed k-form φ with $\varphi|_V \leqslant \operatorname{vol}_V$ for every oriented tangent k-plane V on M.

Let N be an oriented k-fold in M with dim N=k. We call N calibrated if $\varphi|_{T_xN}=\operatorname{vol}_{T_xN}$ for all $x\in N$.

If N is compact then $\operatorname{vol}(N) \geqslant [\varphi] \cdot [N]$, and if N is compact and calibrated then $\operatorname{vol}(N) = [\varphi] \cdot [N]$, where $[\varphi] \in H^k(M, \mathbb{R})$ and $[N] \in H_k(M, \mathbb{Z})$.

Thus calibrated submanifolds are volume-minimizing in their homology class, and are *minimal submanifolds*.

Calibrations on \mathbb{R}^n

Let (\mathbb{R}^n, g) be Euclidean, and φ be a constant k-form on \mathbb{R}^n with $\varphi|_V \leqslant \operatorname{vol}_V$ for all oriented k-planes V in \mathbb{R}^n .

Let \mathcal{F}_{φ} be the set of oriented k-planes V in \mathbb{R}^n with $\varphi|_V = \operatorname{vol}_V$. Then an oriented k-fold N in \mathbb{R}^n is a φ -submanifold iff $T_xN \in \mathcal{F}_{\varphi}$ for all $x \in N$.

For φ to be interesting, \mathcal{F}_{φ} must be fairly large, or there will be few φ -submanifolds.

Calibrations and special holonomy metrics

Let $G \subset O(n)$ be the holonomy group of a Riemannian metric. Then G acts on $\Lambda^k(\mathbb{R}^n)^*$. Suppose $\varphi_0 \in \Lambda^k(\mathbb{R}^n)^*$ is nonzero and G-invariant. Rescale φ_0 so that $\varphi_0|_V \leqslant \text{vol}_V$ for all oriented k-planes $V \subset \mathbb{R}^n$, and $\varphi_0|_U = \operatorname{vol}_U$ for some U. Then $U \in \mathcal{F}_{\varphi_{\Omega}}$, so by G-invariance \mathcal{F}_{φ_0} contains the G-orbit of U. Usually \mathcal{F}_{φ_0} is 'fairly big'.

Let (M,g) be have holonomy G. Then there is constant k-form φ on M corresponding to the G-invariant k-form φ_0 . It is a *calibration* on M.

At each $x \in M$ the family of oriented tangent k-planes V with $\varphi|_V = \operatorname{vol}_V$ is \mathcal{F}_{φ_0} , which is 'fairly big'. So we expect many φ -submanifolds N in M. Thus manifolds with special holonomy often have interesting calibrations.

Here are some examples:

- complex submanifolds of Kähler manifolds (with holonomy U(m)).
- Special Lagrangian m-folds in Calabi-Yau m-folds (with holonomy SU(m), and real dimension 2m).
- associative 3-folds and coassociative 4-folds in 7-manifolds with holonomy G_2 .
- Cayley 4-folds in 8-manifolds with holonomy Spin(7).

3. Compact calibrated submanifolds

Let (M, J, g) be a Calabi-Yau m-fold with complex volume form Ω . Then Re Ω is a *cal*ibration on M. Its calibrated submanifolds are called special Lagrangian m-folds, or SL m-folds for short. What can we say about compact SL m-folds in M?

Let (M, J, g, Ω) be a Calabi–Yau m-fold and N a compact SL m-fold in M. Let \mathcal{M}_N be the moduli space of SL deformations of N. We ask:

- **1.** Is \mathcal{M}_N a manifold, and of what dimension?
- **2.** Does N persist under deformations of (J, g, Ω) ?
- **3.** Can we compactify \mathcal{M}_N by adding a 'boundary' of sin-gular SL m-folds? If so, what are the singularities like?

These questions concern the deformations of SL m-folds, obstructions to their existence, and their singularities.

Questions 1 and 2 are fairly well understood, and we shall discuss them in this lecture. Question 3 will be discussed tomorrow.

3.1 Deformations of compact SL m-folds

Robert McLean proved the following result.

Theorem. Let (M, J, g, Ω) be a Calabi-Yau m-fold, and N a compact SL m-fold in M. Then the moduli space \mathcal{M}_N of SL deformations of N is a smooth manifold of dimension $b^1(N)$, the first Betti number of N.

Here is a sketch of the proof. Let $\nu \to N$ be the normal bundle of N in M. Then J identifies $\nu \cong TN$ and g identifies $TN \cong T^*N$. So $\nu \cong T^*N$. We can identify a small tubular neighbourhood T of N in Mwith a neighbourhood of the zero section in ν , identifying ω on M with the symplectic structure on T^*N .

Let $\pi: T \to N$ be the obvious projection.

Then graphs of small 1-forms α on N are identified with submanifolds N' in $T \subset M$ close to N. Which α correspond to SI m-folds N'? Well, N' is special Lagrangian iff $\omega|_{N'} \equiv \operatorname{Im} \Omega|_{N'} \equiv 0$. Now $\pi|_{N'}: N' \to N$ is a diffeomorphism, so this holds iff $\pi_*(\omega|_{N'}) = \pi_*(\text{Im }\Omega|_{N'}) = 0.$ We regard $\pi_*(\omega|_{N'})$ and $\pi_*(\operatorname{Im} \Omega|_{N'})$ as functions of α .

Calculation shows that $\pi_*(\omega|_{N'}) = d\alpha$ and $\pi_*(\operatorname{Im}\Omega|_{N'}) = F(\alpha, \nabla \alpha),$ where F is nonlinear. Thus, \mathcal{M}_N is locally the set of small 1-forms α on N with $d\alpha \equiv 0$ and $F(\alpha, \nabla \alpha) \equiv 0$. Now $F(\alpha, \nabla \alpha) \approx d(*\alpha)$ for small α . So \mathcal{M}_N is locally approximately the set of 1-forms α with d α = $d(*\alpha) = 0$. But by Hodge theory this is the de Rham group $H^1(N,\mathbb{R})$, of dimension $b^1(N)$.

3.2 Obstructions to existence of SL m-folds

Let M be a C-Y m-fold. Then an m-fold N in M is SL iff $\omega|_N \equiv \operatorname{Im} \Omega|_N = 0$. This holds only if $[\omega|_N] = [\operatorname{Im} \Omega|_N] = 0$ in $H^*(N,\mathbb{R})$. So we have:

Lemma. Let M be a Calabi–Yau m-fold, and N a compact m-fold in M. Then N is isotopic to an SL m-fold N' in M only if $[\omega|_N] = 0$ and $[\operatorname{Im} \Omega|_N] = 0$ in $H^*(N,\mathbb{R})$.

The Lemma is a *necessary* condition for a C-Y m-fold to have an SL m-fold in a given deformation class. Locally, it is also *sufficient*.

Theorem. Let $M_t: t \in (-\epsilon, \epsilon)$ be a family of Calabi–Yau m-folds, and N_0 a compact SL m-fold of M_0 . If $[\omega_t|_{N_0}] = [\operatorname{Im} \Omega_t|_{N_0}] = 0$ in $H^*(N_0, \mathbb{R})$ for all t, then N_0 extends to a family $N_t: t \in (-\delta, \delta)$ of SL m-folds in M_t , for $0 < \delta \leqslant \epsilon$.

3.3 Coassociative 4-folds

Let (M,g) have holonomy G_2 . Then M has a constant 3-form φ and 4-form $*\varphi$.

They are calibrations, whose calibrated submanifolds are called associative 3-folds and coassociative 4-folds. A 4-fold N in M is coassociative iff $\varphi|_N\equiv 0$. Also, if N is coassociative then the normal bundle ν is isomorphic to $\Lambda^2_+T^*N$, the self-dual 2-forms.

Using this, McLean proved: **Theorem.** Let (M,g) be a 7-manifold with holonomy G_2 , and N a compact coassociative 4-fold in M. Then the moduli space \mathcal{M}_N of coassociative deformations of N is a smooth manifold of dimension $b_+^2(N)$.

Roughly, nearby coassociative 4-folds correspond to small closed forms in $\Lambda^2_+ T^*N$, which are $H^2_+(N,\mathbb{R})$ by Hodge theory.

3.4 Associative 3-folds and Cayley 4-folds

Associative 3-folds in 7-manifolds with holonomy G_2 , and Cayley 4-folds in 8-manifolds with holonomy Spin(7), cannot be defined by the vanishing of closed forms. This gives their deformation theory a different character. Here is how the theories work.

Let N be a compact associative 3-fold or Cayley 4-fold in M. Then there are vector bundles $E, F \to N$ and a first order elliptic operator

$$D_N: C^{\infty}(E) \to C^{\infty}(F)$$
.

The kernel Ker D_N is the set of infinitesimal deformations of N. The cokernel Coker D_N is the obstruction space. The index of D_N is ind(D_N) = dim Ker D_N – dim Coker D_N .

In the associative case $ind(D_N) = 0$, and in the Cayley case $ind(D_N) =$ $\tau(N) - \frac{1}{2}\chi(N) - \frac{1}{2}[N] \cdot [N],$ where au is the signature and χ the Euler characteristic. Generically Coker $D_N = 0$, and then \mathcal{M}_N is locally a manifold with dimension $\operatorname{ind}(D_N)$. Coker $D_N \neq 0$, then \mathcal{M}_N may be singular, or have a different dimension.

Note that the special Lagrangian and coassociative cases are unusual: there are no obstructions, and the moduli space is always a manifold of given dimension, without genericity assumptions.

This is a minor mathematical miracle.