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Abstract

In this thesis we study the desingularizations of Calabi–Yau and special Lagrangian (SL) 3-folds
with conical singularities. Let (M0, J0, ω0,Ω0) be a Calabi–Yau 3-fold with conical singularities xi
for i = 1, . . . , n modelled on Calabi–Yau cones (Vi, JVi

, ωVi
,ΩVi

). Suppose (Yi, JYi
, ωYi

,ΩYi
) is an

Asymptotically Conical (AC) Calabi–Yau 3-fold modelled on the Calabi–Yau cone (Vi, JVi
, ωVi

,

ΩVi
) for i = 1, . . . , n.

For the Calabi–Yau desingularization, we first rescale each Yi by a small t > 0 and then glue
into M0 at xi. This gives a family of nearly Calabi–Yau 3-folds Mt, and when t is sufficiently
small, we show by applying Joyce’s existence result for torsion-free G2-structures to S1 ×Mt

that the nearly Calabi–Yau structures can be deformed to genuine Calabi–Yau structures, and
hence obtaining a desingularization of M0. We first treat the case λi < −3 and proceed to the
obstructed case λi = −3 where λi denotes the rate at which the AC Calabi–Yau 3-fold Yi con-
verges to the cone Vi. The principal analytic tool we use in the obstructed case is the theory of
weighted Sobolev spaces from Lockhart and McOwen.

Our result on the case λi < −3 can be applied to desingularizing Calabi–Yau 3-orbifolds
with isolated singularities which enable us to describe what the Calabi–Yau metrics locally look
like on crepant resolutions of orbifolds. When λi = −3 our result gives a desingularization of
Calabi–Yau 3-folds with ordinary double points, which is an analytic version of Friedman’s result
giving necessary and sufficient conditions for smoothing ordinary double points. Our approach
in both cases uses the metrics on the Calabi–Yau 3-folds and is analytic, rather than the complex
structure and being complex algebraic.

For the special Lagrangian desingularizations, suppose N0 is an SL 3-fold in M0 with conical
singularities at the same points xi modelled on SL cones Ci in Vi, and suppose Li is an AC SL
3-fold in Yi modelled on an SL cone Ci. We then simultaneously desingularize M0 and N0 by
gluing in rescaled Yi and Li at each xi. The construction is achieved by applying Joyce’s analytic
result on deforming Lagrangian submanifolds to nearby special Lagrangian submanifolds. As
an application, we take two examples for M0, namely the orbifold T 6/Z3 and a quintic 3-fold.
We construct some singular SL 3-folds N0 in M0 and AC SL 3-folds Li in the corresponding
Yi, and glue them together to obtain examples of nonsingular SL 3-folds in the desingularized
Calabi–Yau 3-folds.
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Chapter 1

Introduction

This thesis is devoted to the study of a class of singular Calabi–Yau and special Lagrangian
3-folds. A Calabi–Yau manifold is a Kähler manifold (M,J, ω) with a covariant constant holo-
morphic volume form Ω satisfying ωm/m! = (−1)m(m−1)/2 (i/2)m Ω∧ Ω̄, where m is the complex
dimension of M . The canonical line bundle KM of a Calabi–Yau manifold M is always trivial,
so that the first Chern class c1(M) of M must vanish, and the vanishing of c1(M) is necessary
for having a Ricci-flat metric. To prove that it is also sufficient is difficult, and this problem was
first considered by Calabi in a more general context. He raised the famous conjecture on whether
any representative of c1(M) can be the Ricci-form of some Kähler metric. Calabi showed that if
such a Kähler metric exists, then it must be unique. Yau then provided the proof that such a
metric always exists if M is compact.

From the holonomy point of view, a Calabi–Yau manifold is precisely a Riemannian manifold
(M, g) with holonomy group Hol(g) contained in SU(m). For Calabi–Yau m-folds with holonomy
group SU(m), the Hodge numbers hp,q satisfy: h0,0 = hm,0 = 1 and hp,0 = 0 for 0 < p < m. If we
collect results on the Hodge numbers of Calabi–Yau manifolds for the case m = 3, we find that
the only independent Hodge numbers are h1,1 and h2,1, and the Euler numbers of Calabi–Yau
3-folds are then χ = 2(h1,1 − h2,1).

In the most popular version of string theory, a branch of theoretical physics, the space we
live in looks locally like a product of 4-dimensional Minkowski space and a compact Calabi–Yau
3-fold M . The Calabi–Yau condition on M is necessary because of supersymmetry. Mirror
symmetry, which had been known to both physicists and mathematicians for some time, is a
phenomenon in string theory that there are mirror pairs of Calabi–Yau 3-folds M and M̌ which
are physically equivalent. Much efforts have been put on explaining mirror symmetry in terms
of mathematical contents. One feature of a mirror pair is the interchange of Hodge numbers, i.e.
hp,q(M) = h3−p,q(M̌). This in particular means that the two non-trivial Hodge numbers h1,1

and h2,1 are interchanged between M and M̌ , i.e.

h1,1(M) = h2,1(M̌) and h2,1(M) = h1,1(M̌),

and that χ(M) = −χ(M̌). In fact, mirror symmetry is a much stronger statement than the
mere existence of mirror pairs of Calabi–Yau manifolds and the exchange of Hodge numbers.

1
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It involves an idea that, roughly speaking, there is a natural isomorphism which identifies the
complex moduli of M̌ and the complexified Kähler moduli of M , and vice versa. If such a mirror
map existed, then information on holomorphic invariants of one Calabi–Yau 3-fold M could yield
information on symplectic invariants of the mirror M̌ , and vice versa. One of the very first
examples constructed by physicists is the study of the mirror family to quintic 3-folds, see [12].
Take a one-parameter family of quintics

Mψ =

[z0, z1, z2, z3, z4] ∈ CP4 :
∑
j

z5
j − 5ψ

∏
j

zj = 0


which is a family of Calabi–Yau 3-folds with h1,1(Mψ) = 1 and h2,1(Mψ) = 101. Consider an ac-
tion of {(a0, . . . , a4) ∈ (Z5)5 :

∏
j aj = 1} ∼= (Z5)4 given by rescaling of zj by fifth roots of unity.

Dividing by the diagonal Z5 projective stabilizer we get a (Z5)3-action on Mψ. Then the mirror
of the quintic is given by crepant resolutions M̌ψ of the quotient Mψ/(Z5)3 with h1,1(M̌ψ) = 101
and h2,1(M̌ψ) = 1.

Singularities and their desingularizations are important for understanding the mirror quin-
tic. There are many different types of singularities and ways of desingularizing them. One kind
of frequently appearing singular Calabi–Yau manifolds is known as conifolds (see [11]), which
are smooth Calabi–Yau manifolds apart from a number of isolated conical singularities. Coni-
folds correspond to the points where the moduli spaces of Calabi–Yau manifolds meet. The
neighbourhood of a singular point of a conifold X can be described by a complex quadric in C4,

z2
1 + z2

2 + z2
3 + z2

4 = 0,

which is known in the mathematical literature as an ordinary double point or node. The quadric is
in fact topologically a cone over S2×S3. There are two different ways of repairing the singularities
in a conifold. The first is by deformation, where the quadric is deformed to

z2
1 + z2

2 + z2
3 + z2

4 = ε

for some nonzero ε ∈ C. The deformed conifold X̃ is a smooth manifold, each singular point
having been replaced by an S3. As this smoothing of the singularity results from changing the
polynomial, it corresponds to the desingularization arising from deforming the complex struc-
ture. Another way to remove the singularities on a conifold is by making a small resolution of X.
This yields a smooth manifold X̂ in which each singular point is replaced by an S2 ∼= CP1. The
process of varying a complex structure from a smooth Calabi–Yau manifold X̃ so that a conifold
singularity appears, and then resolving that conifold so that a new S2 ∼= CP1 appears is called a
conifold transition. Thus conifold singularities provide a transition between topologically distinct
Calabi–Yau’s X̃ and X̂.

These issues provide the primary motivation for the first half of this thesis: the study of
Calabi–Yau 3-folds with conical singularities and their desingularizations, including the smooth-
ings of Calabi–Yau 3-folds with ordinary double points. A novel feature of our approach is that
it uses the metrics on singular Calabi–Yau 3-folds and is analytic, rather than just the complex
structure, and being complex algebraic. Thus we provide new analytic proofs of results previ-
ously known in complex algebraic setting.
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Special Lagrangian (SL) submanifolds in Calabi–Yau manifolds play an important role in the
explanation of Mirror symmetry. They are examples of calibrated submanifolds, appearing in Har-
vey and Lawson [22], which generalizes the concept of volume-minimizing property of complex
submanifolds of Kähler manifolds. Let (M,J, ω,Ω) be a Calabi–Yau manifold of complex dimen-
sion m. Then Re(Ω) is a calibrated form whose calibrated submanifolds are real m-dimensional
special Lagrangian submanifolds (SL m-folds).

There has been extensive research in the mathematics literature on special Lagrangian and
other calibrated submanifolds. Moreover, a lot of SL m-folds in Cm have been constructed ex-
plicitly using various techniques. For example, Joyce [29] constructed SL m-folds by using large
symmetry groups. In particular, a large family of cohomogeneity one SL m-folds are constructed
using moment map techniques. Moreover, he constructed SL cones in Cm, providing local models
for conical singularities in SL m-folds in general Calabi–Yau m-folds. Haskins [23] focused on
dimension three and explored examples of SL cones in C3. In [42] McLean studied the deforma-
tion theory for calibrated submanifolds. In particular, he showed that local deformations of a
smooth compact SL m-fold L in a Calabi–Yau m-fold (M,J, ω,Ω) are always unobstructed and
the moduli space ML is a smooth manifold of dimension b1(L), the first Betti number of L.

Special Lagrangian submanifolds attracted much interest in connection with the SYZ con-
jecture proposed by Strominger, Yau and Zaslow [49] in 1996, which explains Mirror symmetry
between Calabi–Yau 3-folds. The precise formulation of the conjecture has not yet been worked
out. Roughly speaking, it states that given a mirror pair (M,M̌) of Calabi–Yau 3-folds there
should be SL T 3-fibrations f, f̌ degenerating over a common discriminant locus ∆ ⊂ B and such
that for each b ∈ B \∆, the fibres Fb = f−1(b) and F̌b = f̌−1(b) are nonsingular SL 3-tori T 3 in
M and M̌ which are in some sense dual to one another. Much progress has been made on it, in
particular, Joyce [30] tried a local geometric approach to the conjecture, and suggested that the
final form of the SYZ conjecture should be an asymptotic statement about 1-parameter families
of Calabi–Yau 3-folds approaching the large complex structure limit.

A part of the conjecture asserts that the mirror M̌ of a Calabi–Yau 3-fold M can be obtained
by some suitable compactification of the dual of the SL T 3-fibration on M . Therefore to find a
compactification and understand the relations with the Mirror symmetry one should understand
the singularities of the moduli space of SL m-folds.

Perhaps the simplest singularities to understand are isolated singularities modelled on SL
cones. Joyce has developed a comprehensive programme on the desingularization of SL m-folds
with conical singularities in (almost) Calabi–Yau manifolds and their deformation theory in his
recent series of papers [31]-[35]. The SL m-folds with conical singularities are desingularized
by gluing in at the singular points some nonsingular SL m-folds in Cm which are asymptotic
to SL cones at infinity. Furthermore, Joyce [28] proposed to define an invariant of Calabi–Yau
3-folds, analogous to Gromov-Witten invariants in symplectic geometry, by a weighted count
of SL homology 3-spheres in a given homology class. Understanding the singularities and the
compactifications of the moduli space of SL m-folds will also be important for this programme.

The second half of the thesis will then be devoted to the study of a simple kind of singular SL
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3-folds living in singular Calabi–Yau 3-folds with singularities at the same points. We shall simul-
taneously desingularize the singular Calabi–Yau and SL 3-folds. This can be compared with the
work by Joyce [33] where singular SL 3-folds are desingularized in nonsingular Calabi–Yau 3-folds.

A guide to the chapters

The objects of our study are Calabi–Yau and special Lagrangian 3-folds with a kind of sin-
gular points known as conical singularities. Our aim is to develop an analytic desingularization
theory for both Calabi–Yau and SL 3-folds with conical singularities. With this goal in mind, we
are concerned mostly with the following two constructions in this thesis:

(1) Desingularizing Calabi–Yau 3-folds M0 with conical singularities xi for i = 1, . . . , n mod-
elled on some Calabi–Yau cones Vi by gluing in Asymptotically Conical (AC) Calabi–Yau
3-folds Yi;

(2) Desingularizing SL 3-folds N0 (in the Calabi–Yau 3-fold M0) with conical singularities at
the same points xi modelled on SL cones Ci (in the Calabi–Yau cones Vi) by gluing in AC
SL 3-folds Li (in the AC Calabi–Yau 3-folds Yi).

This thesis is organized as follows. In Chapter 2 we describe some standard material from
Calabi–Yau manifolds, special Lagrangian geometry and give an introduction to analysis on com-
pact manifolds. We define Calabi–Yau manifolds and look at some of their properties in §2.1.3.
Section 2.1.4 gives some examples of Calabi–Yau manifolds, with emphasis on the crepant resolu-
tions of quotient singularities in Example 2.6, and the cotangent bundles of spheres in Example
2.7. Section 2.2 introduces special Lagrangian geometry, in which we begin with some basic
concepts in Symplectic geometry. The study of SL m-folds in Cm and their constructions will be
given in §2.2.3 and 2.2.4. We then study SL m-folds in Calabi–Yau m-folds in §2.2.5, including
McLean’s deformation result and a discussion on fixed point sets of antiholomorphic involutions.
Finally in §2.3, we give some necessary notations and concepts in analysis for our later chapters,
involving the Sobolev Embedding Theorem and an elliptic regularity result.

In Chapter 3 we study Calabi–Yau desingularizations mentioned in (1). A Calabi–Yau 3-fold
(M0, J0, ω0,Ω0) with conical singularities is a Calabi–Yau 3-fold with a finite number of distinct
singular points xi for i = 1, . . . , n, such that near each singular point xi, M0 looks like some
Calabi–Yau cone Vi, and all the structures J0, ω0,Ω0 on M0 converge to the cone structures
JVi , ωVi ,ΩVi with some rate ν and with all their derivatives. We shall assume the existence of
such kind of singular Calabi–Yau 3-folds throughout the thesis, in other words, we assume that
there are singular Calabi–Yau metrics on some complex manifolds with conical singularities. As-
ymptotically Conical (AC) Calabi–Yau 3-folds Yi are nonsingular Calabi–Yau 3-folds which have
a similar definition to that of Calabi–Yau 3-folds with conical singularities, so that all the struc-
tures JYi , ωYi ,ΩYi approach the cone structures JVi , ωVi ,ΩVi at infinity with some rate λi and
with all their derivatives. We then apply a homothety to each Yi, in other words, rescale Yi by a
small t > 0, and glue them into M0 at each xi. This gives a family of nearly Calabi–Yau 3-folds
Mt. The point is then to prove that for sufficiently small t > 0, the nearly Calabi–Yau structures
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on Mt can be perturbed or deformed to genuine Calabi–Yau structures. We show this step by
inducing G2-structures on the real 7-dimensional manifolds S1×Mt from the nearly Calabi–Yau
structures on Mt. The induced G2-structures have small torsion for sufficiently small t > 0, and
we then apply Joyce’s existence result [26, Thm.11.6.1] for torsion-free G2-structures to show
that the induced G2-structures can actually be deformed to have zero torsion. We can now pull
back the torsion-free G2-structures to the 6-folds Mt to obtain genuine Calabi–Yau structures.

Section 3.1 provides some background material on SU(3)- and G2-structures on real 6- and
7-folds respectively. These concepts are useful throughout the chapter. In §3.2 we define nearly
Calabi–Yau structures on some real 6-folds. We start by introducing nearly Calabi–Yau struc-
tures in §3.2.1. Then we induce G2-structures from them on 7-folds S1 ×M in §3.2.2. We go on
in §3.2.3 to prove our main result on the existence of Calabi–Yau structures on some 6-folds. As
the proof requires results from Joyce’s proof on the existence of torsion-free G2-structures, we
include them there and modify some of the conditions to fit into our situation. The analytic result
we obtain in §3.2.3 will be important to the constructions of Calabi–Yau desingularization later.
Section 3.3 studies Calabi–Yau cones Vi, Calabi–Yau 3-folds M0 with conical singularities and
AC Calabi–Yau 3-folds Yi. We give definitions and examples, and prove a Darboux type theorem
for both M0 and Yi. In §3.4, we prove our desingularization result for an easier case λi < −3.
We first construct a family of nearly Calabi–Yau 3-folds Mt by gluing Yi into M0, and then we
show that the nearly Calabi–Yau structures have “small enough torsion” when t is sufficiently
small so that our analytic result applies, thus obtaining genuine Calabi–Yau structures on Mt.
Finally in §3.4.4 we give an application of our result and provide an example of desingulariz-
ing the Calabi–Yau 3-orbifold T 6/Z3. The appropriate AC Calabi–Yau 3-folds are given by the
canonical line bundle KCP2 over CP2. The resulting desingularization we obtained is in fact the
crepant resolution, the blow-up the singular points, in which each singular point is replaced by
a copy of CP2. An application of our result gives a description of what the Calabi–Yau metric,
whose existence is proved by Yau [52], looks like on the crepant resolution of the orbifold T 6/Z3.

Chapter 4 is an extension or a generalization of Chapter 3. During the gluing process, we may
encounter a kind of cohomological obstruction to defining a 3-form Ωt on Mt which interpolates
between the 3-form Ω0 on M0 and the scaled 3-form t3ΩYi on Yi if the AC Calabi–Yau 3-fold
Yi has rate λi = −3. We then extend our desingularization theorem to the more complicated
situation when λi = −3. Allowing λi = −3 also causes analytical difficulties in the way that the
3-form Ωt will contribute an error of size which is too large for some of the hypotheses of our
desingularization theorem to hold.

In order to extend our result to the case λi = −3, we replace the 3-form Ω0 on M0 by Ω0 +χ,
where χ is a closed (2,1)-form on M0 such that ω0 ∧ χ = 0 and χ is asymptotic to some given
closed (2,1)-form ξi with order O(r−3) on Vi. The advantage of adding such a (2,1)-form χ to Ω0

is that it corresponds to a change of Calabi–Yau structure up to first order, that is, the “error”
from being a Calabi–Yau 3-form is of order O(|χ|2), and this will have the effect of squaring the
size of the original error term, which will then be small enough to apply our desingularization
result.

The machinery we use to construct such a (2,1)-form χ is the analytic theory of weighted
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Sobolev spaces on manifolds with ends developed by Lockhart and McOwen [39].

We begin in §4.1 by establishing the necessary notations. Section 4.2 studies the analytic
theory for weighted Sobolev spaces due to Lockhart and McOwen [39]. In §4.3, we construct
our desired (2,1)-form χ on M0. We then glue Yi’s into M0, constructing the nearly Calabi–
Yau structures in §4.4. Section 4.5 gives the main result on Calabi–Yau desingularization when
λi = −3 which generalizes the result in Chapter 3. Finally in §4.6 we focus on a kind of singular
Calabi–Yau 3-fold where the singularities are known as ordinary double points. We shall assume
the existence of such kind of singular Calabi–Yau manfolds for the methods developed to apply.
The desingularization of this kind of Calabi–Yau 3-folds belongs to the case λi = −3, and we
apply our main result to repair ordinary double points. We conclude by showing that our result
is in some way equivalent to Friedman’s result [16], giving necessary and sufficient conditions for
smoothing ordinary double points.

In Chapters 5 and 6, we focus on the SL desingularizations mentioned in (2). SL 3-folds
inside the above Calabi–Yau 3-folds M0, Vi and Yi are studied. An SL 3-fold N0 with conical
singularities at xi is basically a singular SL 3-fold in M0 that approaches an SL cone Ci near
each xi. The way we define N0 is to express it near xi as a graph of some exact 1-form dai on
Ci with decay rate µ > 0. To be more precise, N0 is locally the image of the graph of dai under
the embedding ΨCi

mapping from a Lagrangian neighbourhood of Ci to the Calabi–Yau cone Vi.
Next we define AC SL 3-folds Li, which are nonsingular SL 3-folds in the AC Calabi–Yau 3-folds
Yi asymptotic to SL cones Ci at infinity. Similar to the definition of N0, we define Li at infinity
to be the image of the graph of some exact 1-form dbi on Ci with rate κi under a Lagrangian
neighbourhood embedding. During the Calabi–Yau desingularization, the AC Calabi–Yau 3-folds
Yi’s are glued into M0 at xi, thus we can pick AC SL 3-folds Li in Yi, so that they can be glued
into N0 at xi. This yields a 1-parameter family of compact nonsingular 3-folds Nt in the nearly
Calabi–Yau 3-folds Mt. We construct Nt to be Lagrangian.

After deforming the nearly Calabi–Yau structures to genuine Calabi–Yau structures on Mt,
the nonsingular 3-fold Nt is still Lagrangian after applying a diffeomorphism of Mt close to the
identity. Our next step is to deform Nt to SL 3-folds N̂t for small enough t. In a recent paper
[33], Joyce proved an analytic existence result for SL m-folds, showing that under certain condi-
tions a compact nonsingular Lagrangian m-fold in a Calabi–Yau m-fold which is close to being
special Lagrangian can be deformed to a nearby SL m-fold. Our second objective, the special
Lagrangian desingularizations, can then be achieved by adapting Joyce’s result.

In order to illustrate our desingularization theorem, we include some examples of SL 3-folds
in the Calabi–Yau 3-folds we discussed before. We construct N0 in the Calabi–Yau 3-orbifold
T 6/Z3 and Li in the corresponding AC Calabi–Yau 3-fold KCP2 . In particular, we show that
an SL T 3 in T 6/Z3 with one conical singularity is desingularized by gluing in the real canonical
line bundle KRP2 in KCP2 , yielding a T 3#R3. We also construct N0 in some quintic Calabi–Yau
3-fold which contains ordinary double points, and Li in the corresponding AC Calabi–Yau 3-fold
T ∗S3. An example is given by taking N0 as the fixed point set of some antiholomorphic isometric
involution, and Li as some SO(3)-invariant R3’s or S2 × R’s or S3’s in T ∗S3.
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Section 5.1 discusses SL cones and the Lagrangian Neighbourhood Theorem on them. We give
definitions of SL m-folds with conical singularities in §5.2 and AC SL m-folds in §5.3. Finally in
§5.4, examples of AC SL m-folds are constructed in two kinds of AC Calabi–Yau m-folds. Section
§5.4.1 gives SL m-folds as fixed points of antiholomorphic isometric involution σ, Tm−1-invariant
SL m-folds, and SO(m)-invariant SL m-folds in KCP2 . In §5.4.2, we provide fixed point sets
examples in T ∗Sm, together with T 2-invariant and SO(3)-invariant examples in T ∗S3.

In Chapter 6, we desingularize SL 3-folds with conical singularities, and produce some new
SL 3-folds in crepant resolutions of T 6/Z3 and some quintics. Section 6.1 states Joyce’s SL
desingularization result. We construct a family of Lagrangian 3-folds Nt in §6.2. In order to
apply Joyce’s result, we need to have estimates of various norms of some 3-forms restricted on
Nt. We use analysis to obtain all the estimates we need in §6.3. We prove the main theorem on
desingularizing SL 3-folds with conical singularities in §6.4. In the last section, §6.5, we construct
examples by gluing different AC SL 3-folds we obtained in Chapter 5 into some SL 3-folds with
conical singularities in the Calabi–Yau 3-orbifold T 6/Z3 and in some quintic 3-folds.



Chapter 2

Background material

2.1 Calabi–Yau manifolds

In this thesis we shall approach the subject of Calabi–Yau manifolds very much from the point
of view of differential geometry, rather than algebraic geometry. Here we would like to introduce
them via Kähler geometry and holonomy groups. We begin with a very brief description of the
necessary concepts from holonomy groups and a discussion on the Calabi conjecture. Then we
go on to the definition and general properties of Calabi–Yau manifolds. Finally, we will explore
some examples of both compact and non-compact Calabi–Yau manifolds.

2.1.1 Brief review on Holonomy groups

We introduce the notion of holonomy groups in this section. For further details and discus-
sions about holonomy groups, we refer the reader to [3, Chapter 10] and [26, Chapters 2 and 3].

Let (M, g) be a Riemannian manifold of dimension n with Levi-Civita connection ∇. Given
p ∈M , define the holonomy group Holp(g) of g at p to be the group of linear automorphisms of
TpM obtained from parallel transports defined by ∇ around loops based at p. If M is connected,
the holonomy group is independent of basepoint because if we join any two points p, q ∈ M by
a piecewise smooth curve γ in M , then we have a group isomorphism Holp(g) ∼= Holq(g) given
by x 7→ Pγ ◦ x ◦P−1

γ where Pγ denotes the parallel transport map along γ. Hence we shall often
drop the subscripts p and write the holonomy group as Hol(g).

For all Riemannian metrics g, Hol(g) is a Lie subgroup of O(n). One important result about
holonomy groups is that the covariant constant (parallel) tensors on the manifold are invariant
under the holonomy group Hol(g), and conversely a tensor at a point which is invariant under
Hol(g) can be extended to a unique covariant constant tensor on the manifold. This is based on
the fact that the covariant constant tensors are invariant under parallel transport and so they are

8
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entirely determined by Hol(g). In 1955, Berger [2] gave a list of all possible subgroups of O(n)
that can be the holonomy groups of a Riemannian manifold (M, g) under certain assumptions
on M and g :

Theorem 2.1 If (M, g) is a simply-connected Riemannian manifold of dimension n, and g is
irreducible and non-symmetric, then exactly one of the following seven cases holds.

(i) Hol(g) = SO(n),

(ii) n = 2m with m ≥ 2, and Hol(g) = U(m) in SO(2m),

(iii) n = 2m with m ≥ 2, and Hol(g) = SU(m) in SO(2m),

(iv) n = 4m with m ≥ 2, and Hol(g) = Sp(m) in SO(4m),

(v) n = 4m with m ≥ 2, and Hol(g) = Sp(m) Sp(1) in SO(4m),

(vi) n = 7 and Hol(g) = G2 in SO(7), or

(vii) n = 8 and Hol(g) = Spin(7) in SO(8).

Our focus will be on type (iii) as, by the next definition, they are holonomy groups for Calabi–
Yau metrics. Note that Kähler metrics g on a complex manifold have holonomy groups Hol(g)
⊆ U(m), and this property can also be used to define Kähler metrics. Metrics g with Hol(g) ⊆
Sp(m) are called hyperkähler metrics.

2.1.2 The Calabi conjecture

Let (M,J, ω) be a compact Kähler manifold with Kähler metric g and Ricci form η. We know
that η is a real, closed (1,1)-form representing c1(M) in H2(M,R). Calabi raised the famous
conjecture about prescribing the Ricci curvature on (M,J, ω), namely, given a real, closed (1,1)-
form ϕ representing c1(M), can we find a Kähler metric h on M whose Ricci form is ϕ ? This is
known as the Calabi conjecture and it was solved by Yau [52] in 1976. We state it as the following :

Theorem 2.2 Suppose (M,J, ω) is a compact Kähler manifold with Kähler metric g. If ϕ is
a closed real (1,1)-form representing c1(M), then there exists a unique Kähler metric h, with
Kähler form ω′, on M such that [ω] = [ω′] ∈ H2(M,R), i.e. g and h are in the same Kähler
class, and the Ricci form of h is ϕ.

One of its applications is that when c1(M) = 0, it implies there exists a unique Ricci-flat
Kähler metric in each Kähler class of M . Calabi–Yau manifolds, which we shall discuss in the
next section, are Ricci-flat, thus an important consequence of the Calabi conjecture is the exis-
tence of large families of Calabi–Yau manifolds. Note that Yau’s proof of the Calabi conjecture is
based on existence theorems for solutions of non-linear partial differential equations, but it does
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not provide a way to write down the Ricci-flat metric explicitly. In the non-compact case the
situation is better in this respect. Examples are the Calabi metrics [10] and the Eguchi-Hanson
metrics [15] on the crepant resolutions of quotient singularities, and the Stenzel metrics [48] on
cotangent bundles of rank one symmetric spaces. They will play an important role in this thesis,
providing examples of a kind of Calabi–Yau manifolds known as Asymptotically Conical (AC)
Calabi–Yau manifolds.

2.1.3 Basic definitions and properties of Calabi–Yau manifolds

For some further reading on Calabi–Yau manifolds, we refer the reader to [26, Chapter 6] and
[25, Chapter 6].

Definition 2.3 A Calabi–Yau m-fold is a Kähler manifold (M,J, ω) of complex dimension m

with a covariant constant holomorphic volume form Ω satisfying

ωm/m! = (−1)m(m−1)/2 (i/2)m Ω ∧ Ω̄. (2.1)

Then we say that (J, ω,Ω) constitutes a Calabi–Yau structure onM and we shall denote a Calabi–
Yau manifold as a quadruple (M,J, ω,Ω).

We should note here that there are several inequivalent definitions of Calabi–Yau manifolds in
use in the literature. For example, one may define Calabi–Yau manifolds to be compact Kähler
manifolds with vanishing first Chern class. We will explain more on c1(M) = 0 later this section.

Clearly the holomorphic volume form Ω is unique up to a change of phase Ω 7→ eiθΩ from the
normalization formula (2.1), and the constant factor there is chosen so that the real part Re(Ω)
of Ω is a calibration on M . (We shall discuss calibrations in §2.2.2)

Another equivalent way of defining a Calabi–Yau m-fold is to require that the Riemannian
2m-fold (M, g) has holonomy group Hol(g) contained in SU(m). This can be seen using the result
about holonomy groups mentioned in §2.1.1. Suppose there is a covariant constant holomorphic
volume form Ω on M , then for each p ∈ M , the holonomy group Hol(g) must preserve Ωp on
Cm, where we identify the tangent space TpM with Cm. But the subgroup of O(2m) preserving
Ωp is SU(m), so Hol(g) must be contained in SU(m). Conversely, if we define a holomorphic
(m,0)-form θ on Cm by θ = dz1 ∧ · · · ∧ dzm , then, since it is preserved by SU(m) and thus by
Hol(g), θ can be extended to a covariant constant tensor Ω on M and Ω can be written in the
form dz1 ∧ · · · ∧ dzm at each p of M .

In complex dimension 2, the holonomy groups of Calabi–Yau manifolds are contained in
SU(2), which is isomorphic to Sp(1). Thus all Calabi–Yau 2-folds are hyperkähler and have the
whole 2-sphere S2 of integrable complex structures. By the classification theory of compact com-
plex surfaces, it turns out that all compact Calabi–Yau 2-folds are either K3 surfaces or 4-tori
T 4. Hence they are well understood, and we shall normally focus on Calabi–Yau m-folds for
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m ≥ 3.

We see that a Calabi–Yau m-fold (M,J, ω,Ω) admits a covariant constant holomorphic (m, 0)-
form Ω which is analogous to the holomorphic volume form dz1∧· · ·∧dzm on Cm. It is a section of
the canonical bundle KM =

∧m,0
T ∗M of M . Thus the canonical bundle KM admits a nowhere

vanishing holomorphic section Ω and such a section exists if and only if KM is trivial. Then the
connection on KM induced from the Kähler metric g must be flat. By the fact that the curvature
of this connection is the Ricci-form of g, we conclude that the Ricci curvature of g vanishes.
Consequently, every Calabi–Yau m-fold is Ricci-flat.

Recall from §2.1.2 that an important application of the Calabi conjecture is the construction
of compact Calabi–Yau m-folds. Here is how it works. Suppose (M,J) is a compact complex
manifold admitting Kähler metrics with c1(M) = 0, then by Yau’s proof of the Calabi conjecture,
every Kähler class on M contains a unique Ricci-flat metric g. Thus (M,J, ω) is a compact Ricci-
flat Kähler manifold, where ω is the Kähler form of g. Assume further that KM is trivial, i.e.
there exists a nowhere vanishing holomorphic section Ω on M . Then by applying the “Bochner
argument” on compact Ricci-flat Kähler manifolds, one can show that any (p, 0)-form on M is
closed if and only if it is covariant constant. It is easy to see that Ω is closed and thus is covariant
constant. Therefore, up to a change of phase, we can make (M,J, ω) into a Calabi–Yau m-fold
(M,J, ω,Ω).

Now suppose (M,J, ω,Ω) is a compact Calabi–Yau m-fold with Hol(g) = SU(m). It follows
by using general facts about compact Ricci-flat manifolds that (M,J, ω,Ω) has finite fundamental
group π1(M). Also, by using the “Bochner argument” mentioned before, one can prove that on
(M,J, ω,Ω), the (p, 0)-th Dolbeault cohomology group Hp,0

∂̄
(M) is isomorphic to the vector space

of covariant constant (p, 0)-forms on M . It can be shown that this vector space is equal to C
when p = 0 or m, and 0 otherwise. Therefore on a Calabi–Yau m-fold (M,J, ω,Ω) with Hol(g)
= SU(m), its Hodge numbers hp,q (the dimensions of the (p, q)-th Dolbeault cohomology groups)
satisfy: h0,0 = hm,0 = 1 and hp,0 = 0 for p 6= 0,m. For the case m = 3, h0,0 = h3,0 = 1 and
h1,0 = h2,0 = 0, together with the symmetry properties of a Hodge diamond, i.e. hp,q = hq,p and
hp,q = hm−p,m−q (the Serre duality, m = 3 in this case), we end up with the following :

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

2.1.4 Examples of Calabi–Yau m-folds

We collect some examples of Calabi–Yau manifolds in this section. Examples 2.4 and 2.5 are
taken from [26, §6.7], Example 2.6 from [10, p.284-5] and [26, Example 8.2.5], and Example 2.7
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from [48, §7].

Examples 2.4 In this example we consider complex hypersurfaces in CPm which are expressed
as the zero set of a homogeneous polynomial. Let X be a nonsingular hypersurface of degree d
in CPm, i.e.

X = {[z0, . . . , zm] ∈ CPm : f(z0, . . . , zm) = 0}

where f(z0, . . . , zm) is a nonzero homogeneous polynomial of degree d. One can show by the ad-
junction formula ([20, p.147]) that the canonical bundle KX is trivial, and therefore c1(X) = 0,
if and only if d = m+1. Since X is compact and Kähler, thus if the degree of X is m+1, then by
Yau’s proof of the Calabi conjecture, X admits a Ricci-flat metric. Therefore, the holomorphic
section Ω of X is covariant constant, and X can be made into a Calabi–Yau manifold. Con-
sequently, any nonsingular hypersurface of degree m + 1 in CPm is a Calabi–Yau (m − 1)-fold.
Thus we have found a simple way of constructing Calabi–Yau m-folds. For m = 2, we have cubic
curves in CP2, which are 2-tori T 2, and for m = 3, we have quartic surfaces in CP3, which are
K3 surfaces. As we are mainly interested in Calabi–Yau 3-folds in this thesis, we shall discuss
more on quintic hypersurfaces in CP4 later.

Examples 2.5 Suppose X ⊆ CPm is a complete intersection of hypersurfaces, i.e. X =
H1 ∩ · · · ∩ Hk where H1, . . . ,Hk are hypersurfaces in CPm which intersect transversely along
X, so that dimX = m− k. In a similar way to the previous example, one can show that X is a
Calabi–Yau (m − k)-fold if and only if d1 + · · · + dk = m + 1 where d1, . . . , dk are the degrees
of H1, . . . ,Hk. Now if dj = 1 for some j, then X can be regarded as the intersection of k − 1
hypersurfaces in CPm−1 omitting Hj , so we can assume dj ≥ 2 for all j. This construction yields
a finite number of topologically distinct Calabi–Yau m-folds for each m.

Examples 2.6 (Crepant resolutions of quotient singularities)

We now want to consider the crepant resolution X of some quotient singularities Cm/G,
where G is a finite subgroup of SU(m) acting freely on Cm \ {0} (some references are given by
Joyce [26, §6.4-§6.6] and Roan [45]). A quotient singularity Cm/G is a singular complex manifold
obtained by taking the quotient of Cm by the G-action, where G is a nontrivial finite subgroup
of GL(m, C). For each p ∈ Cm, G · p represents a G-orbit of p in Cm and it is a singular point
in Cm/G if the stabilizer Stab(p) = {γ ∈ G : γ · p = p} of p is nontrivial. Hence 0 is always
a singular point of Cm/G and it will be the unique singular point if G acts freely on Cm \ {0}.
Also, geometric structures can be “pushed down” from Cm to the nonsingular part of Cm/G if
and only if they are G-invariant.

Now suppose G is a finite subgroup of SU(m) acting freely on Cm \{0}. Let X be a nonsingu-
lar complex manifold. Then adopting an analytic definition, rather than an algebraic one, (X,π)
is called a resolution of Cm/G if π : X → Cm/G is a proper holomorphic map which is surjective
and is a biholomorphism between X \π−1(0) and Cm/G\{0}. Often π−1(0) will be a compact
submanifold of X, or a finite union of submanifolds. Thus we can repair the singularities through
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the process of resolution by replacing each singular point by a submanifold. One technique to
construct a resolution is to apply a blow-up. A resolution (X,π) of Cm/G with c1(X) = 0 is called
a crepant resolution. Crepant resolutions of Cm/G for m = 2, 3 exist for every finite subgroup of
SU(m) (see for instance Roan [45, Thm. 1] for m = 3) and are well understood. In particular,
they are unique for m = 2.

On a crepant resolution (X,π) of Cm/G where G is some finite subgroup of SU(m) acting
freely on Cm \ {0}, one can define an Asymptotically Locally Euclidean (ALE) Kähler metric on
it, making it an ALE Kähler manifold (for an introduction to ALE metrics, see [26, §8.1-§8.2]).
Recall that one of the applications of the Calabi conjecture is the existence of a unique Ricci-flat
Kähler metric in each Kähler class on a compact Kähler manifold whose first Chern class van-
ishes. Joyce [27, Thm. 3.3] proved a result analogous to this for ALE Kähler manifolds (X,π),
asserting that in each Kähler class of ALE Kähler metrics on X there exists a unique Ricci-flat
ALE Kähler metric g satisfying certain asymptotic conditions. Moreover, he showed ([27, Thm.
3.4]) that such a Ricci-flat ALE Kähler metric g has holonomy SU(m).

An explicit example of a Ricci-flat ALE Kähler manifold asymptotic to Cm/Zm for m ≥ 3 is
given by Calabi [10, p. 284-5]. Let ζ = e2πi/m be the m-th root of unity, and define an action
generated by ζ on Cm by

ζk · (z1, . . . , zm) = (ζk z1, . . . , ζk zm)

for 0 ≤ k ≤ m− 1. The group Zm = {1, ζ, . . . , ζm−1} is a subgroup of SU(m), as ζm = 1, and it
acts freely on Cm\{0}. Then the quotient Cm/Zm has a resolution of singularities (X,π) given by
a blow-up of Cm/Zm at 0. In fact, X is the total space of the canonical bundle over CPm−1 with
π−1(0) ∼= CPm−1 and it is a crepant resolution of Cm/Zm. Now define f : Cm/Zm \ {0} −→ R
by

f = m
√
r2m + 1 +

1
m

m−1∑
j=0

ζj log
(

m
√
r2m + 1− ζj

)
, (2.1)

where r is the radius function on Cm/Zm. Then f is a well-defined, smooth real function on
Cm/Zm \ {0}, so it defines a Kähler metric g on X \π−1(0) which has f as the Kähler potential.
Calabi [10] shows that g can be extended to all of X and is a Ricci-flat metric with Hol(g) =
SU(m). Moreover, from the explicit form of f , we see that f = r2 +O(r2−2m) for large r, which
implies that g is an ALE Kähler metric on X. It follows that with Calabi’s metric, the crepant
resolution X of Cm/Zm, or equivalently the total space KCPm−1 of the canonical line bundle over
CPm−1, is a Calabi–Yau m-fold asymptotic to Cm/Zm.

Examples 2.7 (Cotangent bundles of spheres)

In [48], Stenzel constructed complete, Ricci-flat Kähler metrics on the cotangent bundle T ∗Sm

of the sphere Sm, and more generally on the “complexification” of compact rank one globally
symmetric spaces, making them into Calabi–Yau m-folds. His approach was to use the large
symmetry group of these manifolds to reduce the problem to solving an ordinary differential
equations. For the case m = 2, Stenzel’s metric coincides with the Eguchi-Hanson metric [15].
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The Calabi–Yau 3-fold T ∗S3, which is known in the physics literature as the deformed conifold,
is of particular interest to us.

Let us realize the cotangent bundle T ∗Sm as follows:

T ∗Sm =
{
(v, ξ) ∈ Rm+1 × Rm+1 : |v| = 1, 〈v, ξ〉 = 0

}
.

According to [50], we can map the cotangent bundle T ∗Sm diffeomorphically to the affine quadric

Q1 =
{

(z1, . . . , zm+1) ∈ Cm+1 :
m+1∑
j=1

z2
j = 1

}
via the identification T ∗Sm −→ Q1 given by

(v, ξ) 7−→ v cosh|ξ| + i
ξ

|ξ|
sinh|ξ|

so that the standard symplectic form on Cm+1 restricted to Q1 is identified with the canonical
symplectic form on T ∗Sm.

We now briefly describe the Kähler potential of the Stenzel metric on Q1 [48, §7], and thus
on T ∗Sm using the above identification. Let (z1, . . . , zm+1) be coordinates on Cm+1, and r2 =
|z1|2 + · · ·+ |zm+1|2. Then Stenzel’s Ricci-flat metric on Q1 is given by

gQ1 =
m+1∑
j,k=1

∂2

∂zj∂z̄k
f(r2) dzj dz̄k

where f is a smooth real function of r2 satisfying the differential equation

d

dw

(( df
dw

)m) = mc(sinhw)m−1,

where w = cosh−1 (r2) and c is some positive constant. We shall come back to this again and
focus on m = 3 in Chapter 4 when we study the desingularization of Calabi–Yau 3-folds with
ordinary double points.

2.2 Special Lagrangian geometry

We begin in §2.2.1 with some background from Symplectic geometry. The standard Darboux
Theorem and the Lagrangian Neighbourhood Theorem will be discussed. Section 2.2.2 provides
an introduction to calibrated geometry. In §2.2.3 and 2.2.4 we discuss special Lagrangian geome-
try in Cm and construct some explicit examples. Finally, §2.2.5 is devoted to the study of special
Lagrangian submanifolds in Calabi–Yau manifolds, and we will give a result on deformations of
compact special Lagrangian submanifolds.
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2.2.1 Some basic concepts in Symplectic geometry

We shall recall some elementary definitions and results in symplectic geometry. A basic ref-
erence is McDuff and Salamon [41].

Let M be a smooth manifold of even dimension 2m. A symplectic structure on M is a
closed nondegenerate 2-form ω. Endowed with the symplectic structure ω, the smooth manifold
M is a symplectic manifold, and we shall write it as (M,ω). If (M,ω) and (M̃, ω̃) are symplec-
tic manifolds, a diffeomorphism F : M −→ M̃ satisfying F ∗ω̃ = ω is called a symplectomorphism.

An important example of a symplectic manifold is the cotangent bundle of any smooth n-
dimensional manifold L, which carries a canonical symplectic structure ωcan that we now describe.
Recall that the standard coordinates of (p, α) ∈ T ∗L are defined to be (x1, . . . , xn, y1, . . . , yn),
where (x1, . . . , xn) denotes the coordinate representation of p, and (y1, . . . , yn) denotes the cotan-
gent coordinate representation of α on the fibre T ∗pL so that α =

∑n
j=1 yjdxj . The symplectic

form is then given by ωcan = −dα =
∑n
j=1 dxj ∧ dyj .

The nondegeneracy condition on the 2-form ω means that there is a canonical isomorphism
between the tangent and cotangent bundle via TM −→ T ∗M : X 7−→ ι(X)ω. A smooth vector
field X on M is said to be symplectic if ι(X)ω is a closed 1-form.

Recall that given a smooth vector field X on a compact manifold M , for any p ∈M , one can
generate a family of diffeomorphisms ψt, the flow of X, by

d

dt
ψt(p) = X|ψt(p), ψ0(p) = p.

Using Cartan’s formula and the fact that ω is a closed 2-form on the symplectic manifold (M,ω),
we see that the vector field X is symplectic if and only if LXω = 0, i.e. ω is invariant under the
flow of X, or equivalently, ψt is a symplectomorphism for each t.

The next theorem, known as Darboux’s Theorem [41, Thm. 3.15], is one of the most funda-
mental results in the theory of symplectic structures. Basically it states that every symplectic
manifold (M,ω) is locally symplectomorphic to the standard symplectic form (R2m, ω̂). In other
words, the prototype of a local piece of a 2m-dimensional symplectic manifold is (R2m, ω̂).

Theorem 2.8 (Darboux’s Theorem) Let (M,ω) be a 2m-dimensional symplectic manifold.
For any p ∈ M , there exist local coordinates (x1, . . . , xm, y1, . . . , ym) centered at p in which
ω =

∑m
j=1 dxj ∧ dyj.

Any coordinates with this property are called Darboux coordinates or canonical coordinates.

A submanifold L in (M,ω) is called Lagrangian if ω|L = 0 and dimL = m. The real m-
dimensional space {(x1, . . . , xm, 0, . . . , 0) : xj ∈ R} ∼= Rm is certainly a Lagrangian submanifold
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of Cm. There is a natural way of manufacturing Lagrangian submanifolds in Cm. Suppose f is
a smooth real function on Rm, then the graph of df ,{(

x1, . . . , xm,
∂f

∂x1
, . . . ,

∂f

∂xm

)
: xj ∈ R

}
,

is Lagrangian. More generally, if α is a smooth 1-form on a smooth manifold L, and if Γ(α)
denotes the graph of α in the cotangent bundle T ∗L with its canonical symplectic structure ωcan,
one can show that ωcan|Γ(α) = −π∗(dα), where π : Γ(α) −→ L is the natural projection, and
therefore the graph Γ(α) of α in T ∗L is Lagrangian if and only if α is closed. By taking α = 0,
we see that the zero section of T ∗L is a Lagrangian submanifold.

Next we discuss the Lagrangian Neighbourhood Theorem [41, Thm. 3.33], which shows that
any compact Lagrangian submanifold L is locally symplectomorphic to the zero section in T ∗L.

Theorem 2.9 Let (M,ω) be a symplectic manifold and L ⊂M a compact Lagrangian subman-
ifold. Then there exists an open tubular neighbourhood U of the zero section in T ∗L, and an
embedding Ψ : U −→M such that

Ψ∗(ω) = ωcan, Ψ|L = Id,

where ωcan is the canonical symplectic form on T ∗L.

The proof is based on the fact that the normal bundle ν(L) of L in M is isomorphic to the
cotangent bundle T ∗L. Indeed, as ω(u, v) = g(u, Jv) for any u, v ∈ TM , where J is an almost
complex structure and g the Hermitian metric on M , and as ω|L = 0, it suggests that J induces
an isomorphism between TL and ν(L). Together with the isomorphism between T ∗L and TL

provided by the metric g, we thus obtain ν(L) ∼= T ∗L.

Now we try to look at the Lagrangian submanifolds that are “close” to L in M . Suppose L̃
is a submanifold that is C1-close to L in M . Then we may consider it as the image of the graph
of a small section of ν(L) under the exponential map. The argument before suggests that L̃ can
also be considered as the image Ψ(Γ(α)) of the graph Γ(α) of a C1-small 1-form α on L. If L̃ is
also a Lagrangian submanifold in M , then

0 = Ψ∗(ω|L̃) = ωcan|Γ(α) = −π∗(dα).

Therefore we have established a 1-1 correspondence between Lagrangian submanifolds L̃ close to
L in M and small closed 1-forms on L.

In the final part of this section, we discuss moment maps for actions of Lie groups on a
symplectic manifold. These maps are an important tool for studying Lagrangian and special
Lagrangian submanifolds.

Let G be a compact Lie group with Lie algebra g. An action of a Lie group G on a manifold
M is a smooth group homomorphism

ψ : G −→ Diff (M)
g 7−→ ψg,
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where Diff (M) is the group of diffeomorphisms of M . Let (M,ω) be a symplectic manifold, and
G a compact Lie group with an action ψ : G −→ Diff (M). The action ψ is symplectic if ψg is
a symplectomorphism for every g ∈ G, in other words, ψ ∈ Symp (M,ω), where Symp (M,ω) is
the group of symplectomorphisms of (M,ω).

The symplectic action of G on (M,ω) induces a linear map from the Lie algebra g of G to
the space of vector fields:

φ : g −→ C∞(TM)

x 7−→ φ(x) =
d

dt
ψexp(tx)

∣∣∣
t=0

,

where exp : g −→ G is the exponential map. (For instance, when G = S1, we identify g with R,
and the exponential map exp : R −→ S1 becomes θ 7−→ e2πiθ.) Recall that the flow of a vector
field is a symplectomorphism if and only if the vector field is symplectic. It follows that φ(x) is
symplectic for every x ∈ g, and so the 1-form ι(φ(x))ω is closed for each x.

Let G be a compact Lie group with a symplectic action ψ : G −→ Symp (M,ω), and g the
Lie algebra of G with dual vector space g∗.

Definition 2.10 A moment map for the G-action on (M,ω) is a smooth map µ : M → g∗

satisfying

(i) ι(φ(x))ω = 〈x, dµ〉 for any x ∈ g, where 〈·, ·〉 denotes the pairing between g and its dual
g∗,

(ii) µ is equivariant with respect to the G-action ψg on M and the coadjoint G-action Ad∗ on
g∗, i.e. the following diagram commutes for all g ∈ G:

M
µ−−−−→ g∗

ψg

y yAd∗g

M −−−−→
µ

g∗

Note that µ is determined up to an additive constant by (i). A first example is given by
the angular momentum in R3, in which G = SO(3) acts diagonally on R6 = R3 × R3 with its
standard symplectic structure (see for instance [41, p.165]). This case is indeed the origin of the
term moment map.

Define the centre Z(g∗) to be the subspace of g∗ fixed by the coadjoint G-action, i.e.

Z(g∗) = {c ∈ g∗ : Ad∗g (c) = c for all g ∈ G}.

Using the equivariance µ(ψg(p)) = Ad∗g (µ(p)) from the definition, one can easily see that the
level set µ−1(c) in M is G-invariant if and only if c ∈ Z(g∗).

Now consider M = Cm with the standard symplectic form ω̂, and the group U(m) n Cm

acting on Cm by : z 7→ Az + b for A ∈ U(m) and b ∈ Cm. It is the group of automorphisms of
Cm that preserves ĝ, ω̂ and so it takes Lagrangian m-folds to Lagrangian m-folds. Suppose G
is a connected Lie subgroup of U(m) n Cm with Lie algebra g. Then G preserves the symplectic
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form ω̂ and hence the G-action is symplectic. We state here a useful result [29, Prop. 4.2] that
relates G-invariant Lagrangian m-folds and level sets of the moment map of G:

Proposition 2.11 Let G be a connected Lie subgroup of U(m) n Cm with Lie algebra g and L
a connected G-invariant Lagrangian m-fold in Cm, then G admits a moment map µ : Cm → g∗,
and L ⊆ µ−1(c) for some c ∈ Z(g∗).

Here is why the moment map µ is constant on L. Since L is invariant under the G-action,
the vector fields φ(x) ∈ C∞(TCm) are tangent to L for all x ∈ g. Let v be a vector tangent to
L. As L is Lagrangian, ω̂|L = 0, we have 0 = ω̂(φ(x), v) = 〈x, dµ(v)〉 for any x ∈ g. Thus the
differential of the moment map dµ is zero on L, and the result follows. Consequently, G-invariant
Lagrangian m-folds in Cm lie in level sets of the moment map µ of G.

Later in §2.2.4, we shall apply the technique of moment maps to construct special Lagrangian
submanifolds in Cm and in Calabi–Yau manifolds.

2.2.2 Brief review on calibrated geometries

The concept of calibrated geometry was first introduced by Harvey and Lawson [22] in 1982.
Calibrated submanifolds, in particular special Lagrangian submanifolds, are believed to play an
important role in mirror symmetry, and hence they have recently received a lot of attention. The
simplest examples of calibrated submanifolds are complex submanifolds of Kähler manifolds.
This suggests that complex submanifolds can be placed in the more general context of calibrated
submanifolds.

Let (M, g) be a Riemannian manifold, and ϕ a closed k-form on M . ϕ is called a calibration if
for each oriented tangent k-plane V in TxM , ϕ|V ≤ vol(V ) for all x ∈M . Here vol(V ) denotes the
volume form on V induced by the Riemannian metric g. An oriented k-dimensional submanifold
N is a calibrated submanifold if ϕ|TxN = vol(TxN) for all x ∈ N , i.e. ϕ restricts to the volume
form of the induced metric on N . It follows from Stokes’ theorem that any compact calibrated
submanifold N has least volume in its homology class. Indeed, if N ′ is another compact oriented
k-dimensional submanifold of M , with [N ′] = [N ] ∈ Hk(M,R), then

Vol(N) =
∫
x∈N

vol(TxN) =
∫
x∈N

ϕ|TxN =
∫
x∈N ′

ϕ|TxN ′ ≤
∫
x∈N ′

vol(TxN ′) = Vol(N ′).

Classical examples of calibrated submanifolds are given by complex submanifolds of Kähler
manifolds. Suppose (M,J, g) is a Kähler manifold and ω is the Kähler form of g. Set ϕk = 1

k! ω
k

for some 1 ≤ k ≤ m = dimC M . Since ω is closed on M , so ϕk is a closed 2k-form. Further-
more, by Wirtinger’s Inequality, ϕk|V ≤ vol(V ) for any oriented tangent real 2k-plane V , with
equality if and only if V is the tangent complex k-plane. As a result, ϕk is a calibration and if
N is any oriented real 2k-dimensional submanifold of M calibrated by ϕk, then it is a complex
k-dimensional submanifold. It follows that compact complex submanifolds of a Kähler manifold
are volume-minimizing in their homology class.
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Another class of examples of calibrated geometries given by Harvey and Lawson [22] is that
of special Lagrangian geometry. The flat version of the geometry exists on Cm and gives a dis-
tinguished class of minimal real m-dimensional submanifolds of Cm. These submanifolds can
also be defined in a wider class of complex manifolds - Calabi–Yau manifolds. The calibration
is given by Re (eiθΩ) where Ω is the holomorphic (m, 0)-form on the Calabi–Yau manifold, and
these special Lagrangian calibrations are one of the main objects of the thesis. Note that there is
a S1 family of these calibrations on each Calabi–Yau manifold, and since Calabi–Yau manifolds
are Kähler, they possess the Kähler calibration as well.

There are also two natural classes of calibrated submanifolds in G2-manifolds. A G2-manifold
M is 7-manifold equipped with a torsion-free G2-structure (ϕ, g) where ϕ is a closed 3-form and
g its induced metric. More discussion on G2-structures will be given in §3.1. Associative 3-folds
and coassociative 4-folds in M are 3- and 4-submanifolds with calibrations given by ϕ and ∗ϕ
respectively. Here ∗ is the Hodge star of the metric g.

2.2.3 Special Lagrangian submanifolds in Cm

We start by defining special Lagrangian submanifolds in the flat complex Euclidean space
Cm. Take standard complex coordinates z1 = x1 + iy1, . . . , zm = xm + iym on Cm. Let ĝ be
the Euclidean metric, ω̂ the Kähler form of ĝ and Ω̂ = dz1 ∧ · · · ∧ dzm the volume form on Cm.
The real part of Ω̂, Re(Ω̂), and the imaginary part, Im(Ω̂), are closed real m-forms. Harvey and
Lawson [22, III. 1] showed that Re(Ω̂) is indeed a calibration, thus we can define :

Definition 2.12 Let L be an oriented real m-dimensional submanifold in Cm. L is called a
special Lagrangian submanifold (SL m-fold) of Cm if it is calibrated by Re(Ω̂) and we call Re(Ω̂)
the special Lagrangian calibration. More generally, we say L is an SL m-fold with phase eiθ for
θ ∈ [0, 2π) if it is calibrated by Re(e−iθ Ω̂).

We will usually work with θ = 0, i.e. SL m-folds with phase 1, and when we discuss SL
m-folds without specifying a phase, it means that we are talking about SL m-folds with phase 1.

Note that every special Lagrangian submanifold L in Cm is non-compact. For if L is com-
pact, then by Stokes’ theorem, we know that

∫
L
η = 0 for any exact m-form η on L. Now Ω̂

is a real closed m-form on Cm which can be written as d(z1 dz2 ∧ · · · ∧ dzm). Thus Ω̂ is exact
and Re(Ω̂)|L is an exact m-form on L and so

∫
L

Re(Ω̂)|L = 0. But L is calibrated by Re(Ω̂),
giving

∫
L

Re(Ω̂)|L =
∫
L

vol(L) = Vol(L) 6= 0, which is a contradiction. Thus compact special
Lagrangian submanifolds only exist in general Calabi–Yau manifolds.

Define the special Lagrangian m-planes to be those oriented real m-planes in Cm calibrated
by Re(Ω̂) and denote the set of all special Lagrangian m-planes by SLag. Now consider a real
vector subspace U = {(x1, . . . , xm, 0, . . . , 0) : xj ∈ R} ⊂ R2m equipped with the standard
orientation. The SU(m)-orbit of U in the Grassmannian Gr(Rm,R2m) is the set {V = A · U :
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A ∈ SU(m)}. Clearly, SU(m) acts transitively on it. Also, the stabilizer Stab(U) of U is SO(m).
Thus the SU(m)-orbit of U has the structure of a homogeneous manifold which is isomorphic to
SU(m)/SO(m) and has real dimension 1

2 (m2 +m− 2). Note that U is calibrated by Re(Ω̂) and
since SU(m) preserves g0 and Ω̂, so A · U is also calibrated by Re(Ω̂) for all A ∈ SU(m). On
the other hand, any oriented real m-plane V ∈ Cm calibrated by Re(Ω̂), i.e. V ∈ SLag, is of the
form V = A · U for some A ∈ SU(m). As a result, we have the following identifications :

SLag ∼= SU(m)-orbit of U in Gr(Rm,R2m) ∼= SU(m)/SO(m).

Observe that the Kähler form ω̂ and the imaginary part Im(Ω̂) of Ω̂ restrict to zero on U . By
the fact that SU(m) preserves ω̂ and Ω̂ and acts transitively on SLag, we have ω̂|V = Im(Ω̂)|V
= 0 for all V ∈ SLag. Consequently, if L is an SL m-fold in Cm, then ω̂|L = Im(Ω̂)|L = 0. It
turns out that the vanishing of these two real forms gives a necessary and sufficient condition for
a submanifold in Cm being special Lagrangian [22, III. Cor. 1.11], and can be regarded as an
alternative characterization of the special Lagrangian condition:

Proposition 2.13 Let L be a real m-dimensional submanifold of Cm. Then L admits an ori-
entation making it into a special Lagrangian submanifold of Cm if and only if ω̂|L = Im(Ω̂)|L = 0.

We shall use this as the definition of SL m-folds most of the time. Recall from §2.2.1 that
a real m-dimensional submanifold L of a real 2m-dimensional symplectic manifold (M,ω) is La-
grangian if ω restricts to zero on L. Thus by Proposition 2.13, special Lagrangian submanifolds
are Lagrangian submanifolds in Cm satisfying an extra condition Im(Ω̂)|L = 0. The next result
shows that special Lagrangian submanifolds with some phase eiθ are minimal Lagrangian sub-
manifolds [22, Prop. 2.17]:

Proposition 2.14 A connected Lagrangian submanifold L in Cm is minimal (mean curvature
H = 0) if and only if L is special Lagrangian with phase eiθ for some θ ∈ [0, 2π).

In the case m = 1, one can see that U ∼= R is the only special Lagrangian plane in C, so this
case is trivial. For m = 2, we know that C2 carries three distinct complex structures I, J and K
satisfying I2 = J2 = K2 = −Id and K = IJ . It turns out that, by using Proposition 2.13 for
instance, a real surface L in C2 is special Lagrangian with respect to one complex structure if and
only if it is holomorphic with respect to another one of these complex structures. Thus special
Lagrangian geometry is equivalent to complex geometry in this case, and is well understood.

Examples 2.15 (Special Lagrangian Graphs) We have seen that if f : Rm −→ R is a
smooth function, then the graph Γ(df) of the 1-form df is a Lagrangian submanifold of Cm. We
shall discuss here the additional condition for Γ(df) to be special Lagrangian.

Denote by Hess(f) the Hessian matrix of f , namely the m×m matrix

Hess(f) =
(

∂2f

∂xi ∂xj

)
1≤i,j≤m

.
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The tangent space to Γ(df) at the point (x1, . . . , xm,
∂f
∂x1

, . . . , ∂f
∂xm

) is the image of Rm under the
linear map Id + iHess(f)(x1, . . . , xm). Hence the graph Γ(df) is special Lagrangian if and only
if

Im (detC (Id + iHess(f))) = 0 on Cm.

For m = 1, the differential equation is f ′′(x) = 0, and so y = f ′(x) = constant, which just says
the horizontal real lines are special Lagrangian. For m = 2, the equation becomes ∂2f

∂x2 + ∂2f
∂y2 = 0,

and hence Γ(df) is a special Lagrangian 2-fold if and only if f is harmonic. Note that the con-
dition is linear. This is, however, no longer the case starting from dimension 3. The function f

has to satisfy the above nonlinear second order elliptic partial differential equation for m ≥ 3.
When m = 3, the condition is ∆f = det Hess(f), where ∆ is the Laplacian on R3. Observe that
the first order term in this partial differential equation is ∆f , so the linearization of this equa-
tion is ∆f = 0. This should be compared with McLean’s Theorem (Theorem 2.24 below) on the
deformation theory of compact special Lagrangian submanifolds in general Calabi–Yau manifolds.

2.2.4 Constructions of SL m-folds in Cm

In this section we describe some ways of constructing SL m-folds in Cm. These yield many
explicit examples, including some singular SL m-folds, for later chapters where we will consider
these examples in Calabi–Yau m-folds.

(i) Construction by moment maps

We shall give here a construction of SL m-folds as level sets of m moment maps for some
G-action on Cm. With the discussion in §2.2.1, we assume that G is a connected Lie subgroup
of U(m) n Cm, so that the G-action is symplectic. Proposition 2.11 shows that G-invariant La-
grangian m-folds in Cm lie in the level sets of the moment map of G. If we instead consider the
group SU(m) n Cm, which is the group of automorphisms of Cm preserving the structures ĝ, ω̂
and Ω̂, we get the result for SL m-folds, that is, G-invariant SL m-folds contained in the level
set of the moment map of G. But so far we have only been using the Kähler form ω̂ and the
moment map associated to it. As SL m-folds are characterized by the vanishing of the two forms
ω̂ and Im(Ω̂), one may ask whether there is an analogue of moment maps associated to ω̂, i.e. a
kind of “generalized moment map” associated to Im(Ω̂) such that these maps are constants on
SL m-folds. First we need the following lemma:

Lemma 2.16 Let G be a connected Lie subgroup of SU(m) n Cm with Lie algebra g. Define a
natural product λk :

∧k
g→

∧k−1
g by

λk(x1 ∧ · · · ∧ xk) :=
∑

1≤i<j≤k

(−1)i+j−1 [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xk

where [ , ] denotes the Lie bracket on g and x1, . . . , xk are elements in g. Let φ : g −→ C∞(TCm)
be the natural action of g on Cm by vector fields, and it induces a linear map

∧k
g −→

C∞(
∧k

TCm). Then for any x1, . . . , xk ∈ g,

d
(
ι (φ(x1) ∧ · · · ∧ φ(xk) ) Im(Ω̂)

)
= ι
(
φ(λk(x1 ∧ · · · ∧ xk))

)
Im(Ω̂).
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We can show this by induction on k, and the proof can be found in [13, Lem. 4.3]. Now
suppose 0 6= ξ ∈

∧m−1
g. If λm−1(ξ) = 0, then by Lemma 2.16, we have

d( ι(φ(ξ))Im(Ω̂)) = ι(φ(λm−1(ξ)))Im(Ω̂) = 0.

Thus ι(φ(ξ))Im(Ω̂) is a closed 1-form on Cm, which is therefore equal to dη for some smooth
function η : Cm → R. If L is any connected G-invariant SL m-fold in Cm, then for each p ∈ L,
φ(ξ)|p ∈

∧m−1
TpL and so dη|TpL = 0, as Im(Ω̂)|TpL = 0. Hence η is constant on L. Conse-

quently, the function η suits our requirement and can then be viewed as a “generalized moment
map” associated to Im(Ω̂).

For any connected Lie group G, if ξ ∈
∧k

g is invariant under the induced Ad(G)-action on∧k
g, i.e. the Lie derivative Lvξ of ξ vanishes for any v ∈ g, then λk(ξ) = 0. This is because if we

set Dξ(v) = Lvξ, then Dξ gives a linear map from g to
∧k

g, and so is an element of g∗ ⊗
∧k

g.
Now one can show that λk(ξ) = π(Dξ) where π : g∗ ⊗

∧k
g→

∧k−1
g is a contraction map that

contracts g∗ with the first factor in
∧k

g, and hence Lvξ = 0 for any v ∈ g implies λk(ξ) = 0.

Suppose that dimG = m − 1 and that there is an element ξ ∈
∧m−1

g which is invariant
under the induced Ad(G)-action on

∧m−1
g. As the consequence of Lemma 4.3, the “generalized

moment map” η exists and L must lie in the level set of η and hence it lies in the level set of m
functions :

{z ∈ Cm : µ(z) = c , η(z) = c′}

for some c ∈ Z(g∗) and c′ ∈ R.

Now we describe a method of constructing SL m-folds using moment map techniques:

Proposition 2.17 Let G be a connected (m−1)-dimensional Lie subgroup of SU(m) n Cm with
Lie algebra g. Suppose 0 6= ξ ∈

∧m−1
g is invariant under Ad(G). Identify the dual g∗ of the

Lie algebra with Rm−1. Suppose G admits a moment map µ = (µ1, . . . , µm−1) and let η be the
“generalized moment map” of G. For each c = (c1, . . . , cm) ∈ Rm with (c1, . . . , cm−1) ∈ Z(g∗),
define

Lc = {z ∈ Cm : µ1(z) = c1 , . . . , µm−1(z) = cm−1 , η(z) = cm}.

Then Lc is an SL m-fold in Cm wherever it is nonsingular.

The proof can be found in [13, Prop. 4.4]. Goldstein [19] proved a similar result where he
considered non-compact Calabi–Yau manifolds with a Hamiltonian structure-preserving torus
action. He showed if M is a non-compact Calabi–Yau m-fold with H1(M) = 0, and suppose
there is a Hamiltonian structure-preserving (m− 1)-torus action on M , then for a generic point
(c1, . . . , cm) ∈ Rm, the level set {µ ≡ (c1, . . . , cm−1), η ≡ cm} is an SL m-fold in M .

Examples 2.18 This example is given by Harvey and Lawson [22, III.3.A]. Let G be the
subgroup Tm−1 = {(eiθ1 , . . . , eiθm−1) : θj ∈ R} acting on Cm by :

(eiθ1 , . . . , eiθm−1) · (z1, . . . , zm) = (eiθ1z1, . . . , eiθm−1zm−1, e
−i(θ1+···+θm−1)zm).
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Then G lies in SU(m). The moment map for this G-action is µ = (µ1, . . . , µm−1) where
µj(z1, . . . , zm) = |zj |2 − |zm|2. Since G is abelian, the coadjoint action of G is trivial and
hence Z(g∗) = g∗ = Rm−1. Moreover, λm−1 is a zero map and so the “generalized moment map”
η exists. One can show that η is some constant multiple of z1 · · · zm + (−1)mz̄1 · · · z̄m and so we
can take η(z1, . . . , zm) = Re(z1 · · · zm) if m is even and Im(z1 · · · zm) if m is odd. Then for each
c = (c1, . . . , cm) ∈ Rm, define

Lc := {(z1, . . . , zm) ∈ Cm : |zj |2 − |zm|2 = cj for j = 1, . . . ,m− 1, and

Re(z1 · · · zm) = cm if m is even, Im(z1 · · · zm) = cm if m is odd}.

By Proposition 2.17, Lc is an SL m-fold in Cm wherever it is nonsingular. One can show that
if cm 6= 0, then Lc is nonsingular and diffeomorphic to Tm−1 × R. When cm = 0, it may be
nonsingular or have various kinds of singularity, depending on the values of c1, . . . , cm−1. We are
particularly interested in SL 3-folds, so let us take m = 3. Then Lc has an isolated singular point
at the origin if c = (0, 0, 0), and is topologically the union of two copies of T 1×C intersecting at
T 1 (where the singularities are located) if c = (r, 0, 0), (0, r, 0) or (−r,−r, 0) for r > 0. All other
Lc’s are nonsingular and diffeomorphic to T 2 × R.

Examples 2.19 This example is taken from Marshall [40] which gives an application of Propo-
sition 2.17 to a non-abelian Lie group G that is a subgroup of SU(4) isomorphic to SU(2), and
it acts on C4 by the usual matrix multiplication. One can take a basis for the Lie algebra g of G
to be the matrices:

e1 =

0
BBB@

3i 0 0 0

0 i 0 0

0 0 −i 0

0 0 0 −3i

1
CCCA , e2 =

0
BBB@

0
√

3 0 0

−
√

3 0 2 0

0 −2 0
√

3

0 0 −
√

3 0

1
CCCA , e3 =

0
BBB@

0 i
√

3 0 0

i
√

3 0 2i 0

0 2i 0 i
√

3

0 0 i
√

3 0

1
CCCA .

We have the following relations :

[e1, e2] = 2e3, [e2, e3] = 2e1 [e3, e1] = 2e2.

Take ξ = e1 ∧ e2 ∧ e3 ∈
∧3

g, then ξ is Ad(G)-invariant and so λ3(ξ) = 0. The moment map for
this G-action is given by µ = (µ1, µ2, µ3) where

µ1(z1, z2, z3, z4) =
√

3 Re(z1z̄2 + z3z̄4) + 2Re(z2z̄3),

µ2(z1, z2, z3, z4) =
√

3 Im(z1z̄2 + z3z̄4) + 2Im(z2z̄3),

µ3(z1, z2, z3, z4) = 3|z1|2 + |z2|2 − |z3|2 − 3|z4|2

and the generalized moment map η is given by

η(z1, z2, z3, z4) = Im
(
2
√

3(z1z2
3 + z3

2z4)− 9z1z2z3z4 +
9
2
z2
1z

2
4 −

3
2
z2
2z

2
3

)
.

Since Z(g∗) = Z(su(2)∗) = {0}, then for each c ∈ R,

Lc = {(z1, z2, z3, z4) ∈ C4 : µ ≡ 0, η ≡ c}

is a G-invariant SL 4-fold in C4.
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(ii) Cohomogeneity one examples

We will discuss a kind of G-invariant SL m-fold L with cohomogeneity one, i.e. the G-orbits
are of codimension one in L, and construct examples of cohomogeneity one SL m-folds in Cm.
This technique of using a large symmetry group can reduce the problem of solving partial differ-
ential equations to ordinary differential equations.

Suppose G is a connected Lie subgroup of SU(m) n Cm with Lie algebra g and moment map
µ : Cm −→ g∗. Let O be a G-orbit in Cm with dimO = m − 1 and O ⊆ µ−1(c) for some
c ∈ Z(g∗). Joyce [29, Thm. 4.5] showed that there exists a locally unique, G-invariant SL
m-fold L in Cm containing O. Also, L ⊆ µ−1(c) and L is locally diffeomorphic to (−ε, ε) × O
for some ε > 0. His construction is to solve an ordinary differential equation in a 1-parameter
family of (m− 1)-dimensional G-orbits in Cm. The strategy of constructing cohomogeneity one
G-invariant SL m-folds in Cm is to first choose a suitable Lie subgroup G in SU(m) n Cm with
moment map µ, and then work out the types of G-orbit O in µ−1(c) for c ∈ Z(g∗), and see if
any have dimension m− 1. We can then construct L by solving a first-order ordinary differential
equation in (m− 1)-dimensional G-orbits. Details can be found in [29, Thm. 3.3 & 4.5].

Here is another example taken from Harvey and Lawson [22, III.3.B]:

Examples 2.20 Let G be the subgroup SO(3) of SU(3). Then its Lie algebra g = so(3) consists
of skew-symmetric 3 × 3 real matrices. One can show that the moment map µ of G is

µ(z1, z2, z3) = (Im(z1z̄2), Im(z2z̄3), Im(z3z̄1)).

Now, since Z(g∗) = {0}, we have to find G-orbits in µ−1(0). It can be shown that µ−1(0) is equal
to {(λx1, λx2, λx3) : λ ∈ C, x1, x2, x3 ∈ R}. Then we normalize x1, x2, x3 so that x2

1+x2
2+x2

3 = 1.
Hence the G-orbits in µ−1(0) are of the form Oλ = {(λx1, λx2, λx3) : xj ∈ R, x2

1 + x2
2 + x2

3 = 1}
for each λ ∈ C. Then dimOλ = 2 for λ 6= 0, which is of the type cohomogeneity one. Now
we set up a first order ordinary differential equation on G-orbits Oλ. Let P be the unit sphere
S2 = {(x1, x2, x3) ∈ R3 : x2

1+x
2
2+x

2
3 = 1}. Define φt : P → C3 by φt(x1, x2, x3) = (λx1, λx2, λx3)

where λ = λ(t) ∈ C. Then calculation shows that the ordinary differential equation is given by

dλ

dt
= λ̄2.

One can see that since d(λ3)/dt = 3(λ2) dλ/dt = 3|λ|4, so it is real, and d(Im(λ3))/dt = 0.
Consequently, for each c ∈ R,

Lc := {(λx1, λx2, λx3) : xj ∈ R, x2
1 + x2

2 + x2
3 = 1, λ ∈ C, Im(λ3) = c }

is an SL 3-fold in C3. When c = 0, it is a union of three copies of R3 intersecting at 0, and when
c 6= 0, it is nonsingular and is diffeomorphic to three disjoint unions of S2 × R.

This example can be generalized to higher dimensional cases. For G = SO(m) in SU(m), and
for each c ∈ R, then

Lc := {(λx1, . . . , λxm) : xj ∈ R, x2
1 + · · ·+ x2

m = 1, λ ∈ C, Im(λm) = c }
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is an SL m-fold in Cm. When c = 0, it is a union of m copies of Rm intersecting at 0, and when
c 6= 0 and m is even (resp. odd), it is nonsingular and is diffeomorphic to m/2 (resp. m) disjoint
unions of Sm−1×R. It is not hard to see that if we restrict arg(λ) to the range (0, π/m), we get
one copy of such Sm−1 × R, converging to Rm ∪ eiπ/mRm. This illustrates the following result
on SL cones and Asymptotically Conical (AC) SL m-folds in Cm, proved by Haskins [23, Thm.
A] and Joyce [29, Thm. 6.4]:

Theorem 2.21 Let C be a closed SL cone in Cm with isolated singular point 0, and write
Σ = {z ∈ C : |z| = 1}. For each c > 0, define

Lc = {λz : z ∈ Σ, λ ∈ C, Im(λm) = c, arg(λ) ∈ (0, π/m) }

= {(c sin(mθ))−1/meiθz : z ∈ Σ, θ ∈ (0, π/m) }.

Then Lc is an immersed AC SL m-fold in Cm diffeomorphic to Σ × R, and asymptotic to C ∪
eiπ/mC.

Roughly speaking, a SL cone C is an SL m-fold in Cm invariant under dilations, and an AC
SL m-fold L in Cm is a nonsingular SL m-fold which converges to some SL cone C at infinity.
We will discuss these submanifolds in detail later in Chapter 5. Note that for sufficiently small
θ, we have (c sin(mθ))−1/m sin θ ≈ (mc)−1r1−m where r is given by (c sin(mθ))−1/m from the
theorem, and we see that one end of Lc is approaching the cone Rm with “rate” 1 − m when
r →∞. We shall define precisely what we mean by “rate” in Chapter 5. The same happens on
the other end as well. Thus Theorem 2.21 associates to any SL cone C a 1-parameter family of
AC SL m-folds Lc, asymptotic to the union of two SL cones C ∪ eiπ/mC with rate 1 −m. We
recover Example 2.20 if we take C = Rm and Σ = Sm−1.

2.2.5 SL m-folds in Calabi–Yau m-folds

We now extend the notion of special Lagrangian submanifolds from Cm to Calabi–Yau man-
ifolds. In order to define SL m-folds, one needs an analogue of the constant holomorphic (m, 0)-
form dz1 ∧ · · · ∧ dzm on Cm. Recall that there is such a constant holomorphic (m, 0)-form on a
Calabi–Yau m-fold, therefore the concept of special Lagrangian geometry can be generalized to
the Calabi–Yau setting. Now suppose (M,J, ω,Ω) is a Calabi–Yau m-fold. The normalization
condition assures that at each point, ω and Ω can be written as the standard Kähler form ω̂

and holomorphic volume form Ω̂ on Cm. Then Re(Ω), and also Re(eiθΩ) for θ ∈ [0, 2π), are
calibrations and we can define SL m-folds in Calabi–Yau m-folds in a similar way:

Definition 2.22 Let (M,J, ω,Ω) be a Calabi–Yau m-fold and L an oriented real m-dimensional
submanifold in M . L is a special Lagrangian submanifold (SL m-fold) with phase eiθ if it is cal-
ibrated by Re(e−iθΩ).
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Thus each Calabi–Yau m-fold naturally comes with an S1-family of special Lagrangian sub-
manifolds. By Proposition 2.13, we can also take the following alternative definition of SLm-folds:

Proposition 2.23 Let (M,J, ω,Ω) be a Calabi–Yau m-fold and L a real m-dimensional sub-
manifold in M . Then L admits an orientation making it into an SL m-fold with phase eiθ in M
if and only if ω|L = Im(e−iθΩ)|L = 0.

Suppose L is a compact SL m-fold in (M,J, ω,Ω) with phase eiθ, then

[Ω] · [L] =
∫
L

Ω = eiθ
∫
L

e−iθΩ = eiθ
∫
L

Re(e−iθΩ) + ieiθ
∫
L

Im(e−iθΩ) = eiθVol(L),

where [Ω] ∈ Hm(M,C) and [L] ∈ Hm(M,Z). Here we used the fact that Re(e−iθΩ) is a cali-
bration and Im(e−iθΩ) vanishes on L. Thus we see that the homology class [L] determines the
phase eiθ of L. If we only study SL m-folds in a fixed homology class in M , we can rescale the
phase Ω 7→ eiθΩ, so that we can always suppose L has phase 1.

In [42], McLean studied the deformation theory for calibrated submanifolds. In particular,
he proved the following result for SL m-folds in Calabi–Yau m-folds [42, Thm 3.6]:

Theorem 2.24 Let L be a compact SL m-fold in a Calabi–Yau m-fold (M,J, ω,Ω). Then the
moduli space ML of special Lagrangian deformations of L is a smooth manifold of dimension
b1(L), the first Betti number of L.

Thus if L is a compact SL m-fold with H1(L,R) = 0, for example, if L is a homology m-
sphere for m ≥ 2, then ML has dimension 0, and so L admits no nontrivial special Lagrangian
deformations in M .

Here we briefly sketch the proof of Theorem 2.24. Let U be an open tubular neighbourhood
of L in T ∗L, and Ψ : U −→ M the Lagrangian neighbourhood embedding of Theorem 2.9 with
Ψ∗(ω) = ωcan and Ψ|L = Id. Suppose L̃ is a submanifold of M which is C1-close to L in M , and
write C∞(U) = {α ∈ C∞(T ∗N) : Γ(α) ⊂ U}. The argument after Theorem 2.9 shows that L̃ can
be written as the image Ψ(Γ(α)) of the graph Γ(α) of some C1-small 1-form α ∈ C∞(U). More-
over, L̃ = Ψ(Γ(α)) is Lagrangian if and only if dα = 0, as we have discussed. Let π : U −→ L be
the natural projection. Then one can show that L̃ = Ψ(Γ(α)) is an SL m-fold in M if and only
if dα = 0 and π∗(Ψ∗(Im(Ω))|Γ(α)) = 0.

Since π∗(Ψ∗(Im(Ω))|Γ(α)) is an m-form on L, it is a multiple of the volume form dV of the
induced metric g|L on L. Define a function F : C∞(U) −→ C∞(L) by π∗(Ψ∗(Im(Ω))|Γ(α)) =
F (α) dV . Then L̃ is special Lagrangian if and only if dα = 0 = F (α). Calculation shows
(see Prop. 2.10 in [32]) that the linearization dF |0(α) of F is given by d∗α, where ∗ is the
Hodge star of g|L. Therefore the first order special Lagrangian deformations correspond to
closed and coclosed 1-forms, or equivalently, harmonic 1-forms on L. Consider a function G

mapping α 7−→ (dα, F (α) dV ) between appropriate Banach spaces of differential forms, then one
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can show that G actually maps to some Banach spaces of exact 2-forms and exact m-forms,
and can rewrite the problem such that the linearization of G is surjective. Hence the Banach
space Implicit Function Theorem implies that G−1(0, 0) is a manifold with tangent space at 0
isomorphic to the vector space of harmonic 1-forms, and elliptic regularity shows that 1-forms in
G−1(0, 0) are smooth.

As a result, the local moduli space has the same dimension as the de Rham cohomology
groups H1(L) and Hm−1(L) (by Poincaré duality). Note that the product H1(L) × Hm−1(L)
has a natural symplectic structure that makes it into a symplectic manifold. Using this observa-
tion, Hitchin [24] proved that the local moduli space ML of the SL m-fold L can be immersed
in the symplectic manifold H1(L)×Hm−1(L) as a Lagrangian submanifold.

There is a natural way of manufacturing SL m-folds in some Calabi–Yau m-folds (M,J, ω,Ω)
endowed with a real structure, which is an antiholomorphic isometric involution σ : M −→ M

on M satisfying σ2 = Id, σ∗(J) = −J, σ∗(g) = g, σ∗(ω) = −ω and σ∗(Ω) = Ω̄. This involution
generalizes the concept of the usual complex conjugation in Cm. The following result shows
that the fixed point set of σ on M is a real m-dimensional submanifold, and is indeed special
Lagrangian (cf. [26, §11.9 Method 2]):

Proposition 2.25 Suppose (M,J, ω,Ω) is a Calabi–Yau m-fold possessing an antiholomorphic
isometric involution σ : M −→M , then the fixed point set L of σ is an SL m-fold of M .

Proof. Choose any holomorphic chart (Uα, ϕα) on M , then the pullback ϕ∗ασ of σ is a real
structure on Cm, whose fixed point set is diffeomorphic to Rm. Hence the fixed point set L of
σ on each chart Uα is diffeomorphic to Rm, and is therefore a real m-fold. To see L is special
Lagrangian, note that for each point p ∈ L, σ(p) = p and (σ∗)p : TpM −→ TpM with (σ∗)2p =
Id. Decompose the real 2m-dimensional vector space TpM into the (+1)-eigenspace U and (−1)-
eigenspace V . Clearly, U is just the tangent space TpL of L at p. It follows that

−ω(u, v) = σ∗ω(u, v) = ω((σ∗)p u, (σ∗)p v) = ω(u, v)

for any u, v ∈ TpL, thus ω|L = 0. Similarly Im(Ω) restricts to zero on L, and thus L is special
Lagrangian. 2

We shall see some examples of SL m-folds constructed by this method in Chapter 5.

2.3 Analysis on compact manifolds

In this section we are going to provide basic material on analysis on compact manifolds. Some
good references are given by Aubin [1, Chapters 2,3], Besse [3, Appendix] and Joyce [26, Chapter
1].
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We shall refer to spaces Lp, Lpk, C
k and Ck,α as the Banach spaces defined in [26, §1.2]. Let

(M, g) be a Riemannian m-fold. It is usual to consider these Banach spaces as vector spaces of
functions on M . Here we will consider vector spaces of sections of vector bundles over M , in
particular the bundles ΛrT ∗M of r-forms for 0 ≤ r ≤ m. Let E → M be a vector bundle over
M with a fibre metric and a compatible connection ∇E .

Definition 2.26 Let (M, g) be a Riemannian m-fold. Denote by dV the volume form of the
Riemannian metric g. For p ≥ 1, we define the Lebesgue space Lp(E) to be the set of sections ξ
of E over M that are locally integrable and such that the norm

‖ξ‖Lp =
(∫

M

|ξ|pdV
)1/p

is finite. For k ≥ 0, we define the Sobolev space Lpk(E) to be the set of sections ξ of E over M
that are k times weakly differentiable and for which the norm

‖ξ‖Lp
k

=

 k∑
j=0

∫
M

|∇jEξ|
pdV

1/p

is finite. Then Lpk(E) is a Banach space for each p ≥ 1, and in addition, L2
k(E) is a Hilbert space.

Next we introduce the Ck spaces and the Hölder spaces Ck,α.

Definition 2.27 Let (M, g) be a Riemannian m-fold. For k ≥ 0, we define Ck(E) to be the
space of sections ξ of E over M with k continuous derivatives such that the norm

‖ξ‖Ck =
k∑
j=0

supM |∇
j
Eξ|

is finite. Let d(x, y) be the distance computed w.r.t. g and let α ∈ (0, 1). A section η of E over
M is Hölder continuous with exponent α if

[η]α = sup
x6=y∈M

d(x,y)<δ(g)

|ηx − ηy|
d(x, y)α

is finite. Here δ(g) is the injectivity radius of the metric g. The quantity |ηx − ηy| can be
understood by using the identification between the fibres over x and y obtained from parallel
translation along a geodesic from x to y of length d(x, y). Then the Hölder space Ck,α(E) is the
set of ξ ∈ Ck(E) such that ∇kEξ is Hölder continuous with exponent α and the norm

‖ξ‖Ck,α = ‖ξ‖Ck + [∇kEξ]α

is finite.

The relationships between these Lpk and Ck,α spaces can be seen from the Sobolev Embedding
theorem on Riemannian manifolds. The proof can be found in [1, Chapter 2].

Theorem 2.28 (Sobolev Embedding Theorem) Let (M, g) be a compact Riemannian m-
fold. Suppose k ≥ l ≥ 0 are integers, p, q ≥ 1 and α ∈ (0, 1). Then
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(a) If 1
p ≤

1
q + k−l

m , then Lpk(E) ↪→ Lql (E) is a continuous inclusion.

(b) If 1
p ≤

k−l−α
m , then Lpk(E) ↪→ Cl,α(E) is a continuous inclusion.

We shall need a “weighted” version of the Sobolev Embedding Theorem in Chapter 4 to deal
with some kinds of noncompact manifolds.

Next we discuss elliptic operators on a compact Riemannian m-fold (M, g). For an intro-
duction, see [3, Appendix D-G] and [26, §1.3]. Let E,F → M be vector bundles over M , and
let P : C∞(E) −→ C∞(F ) be a smooth, linear differential operator of order l ≥ 1. In index
notation, denote by Ai1...il the leading coefficients, i.e. the coefficients of the highest order deriv-
ative, of P . Then for any 1-form θ ∈ T ∗M , Ai1...ilθi1 . . . θil takes values in E∗ ⊗ F , i.e. a linear
map from E to F . Define σθ(P ) = Ai1...ilθi1 . . . θil for any 1-form θ. Let σ(P ) be the map
σ(P ) : T ∗M ×E −→ F which assigns each (θ, ξ) to the value σθ(P )(ξ). Then σ(P ) is called the
principal symbol of P , and we say P is an elliptic operator if for each nonzero θ ∈ T ∗M , the
linear map σθ(P ) is invertible.

Now consider P acts by P : Lpk+l(E) −→ Lpk(F ) and P : Ck+l,α(E) −→ Ck,α(F ). On a
compact Riemannian m-fold (M, g), for p ≥ 1 and k ≥ 0, we have the smooth, linear elliptic,
self-adjoint operator

d+ d∗ : Lpk+1

(⊕m
j=0 ΛjT ∗M

)
−→ Lpk

(⊕m
j=0 ΛjT ∗M

)
of order 1, and the Laplacian

∆ = dd∗ + d∗d = (d+ d∗)2 : Lpk+2

(⊕m
j=0 ΛjT ∗M

)
−→ Lpk

(⊕m
j=0 ΛjT ∗M

)
,

which is a linear elliptic, self-adjoint operator of order 2. Similar definitions hold for Hölder
spaces.

Elliptic operators are important in analysis on compact manifolds, as they have the following
nice regularity property:

Theorem 2.29 Let (M, g) be a compact Riemannian m-fold, E,F −→ M be vector bundles
over M , and P a smooth, linear elliptic operator of order l ≥ 1. Let p ≥ 1 and k ≥ 0 be an
integer. Suppose ξ ∈ L1(E) and η ∈ L1(F ) with Pξ = η holds weakly. If η ∈ Lpk(F ), then
ξ ∈ Lpk+l(E), and

‖ξ‖Lp
k+l
≤ C

(
‖η‖Lp

k
+ ‖ξ‖L1

)
,

for some C > 0 independent of ξ, η.

For a proof, see Morrey [43, Thm. 6.4.8]. The analogous result holds for Hölder spaces, that is,
if η ∈ Ck,α(F ), then ξ ∈ Ck+l,α(E), and

‖ξ‖Ck+l,α ≤ C
(
‖η‖Ck,α + ‖ξ‖C0

)
,

for some C > 0 independent of ξ, η. These estimates are called the Lp estimates and Schauder
estimates respectively. One of the reasons for introducing the more complicated Sobolev and



Chapter 2. Background material 30

Hölder spaces is that the Cl spaces do not have this kind of regularity property. If ξ ∈ L1(E)
with Pξ = 0, then by Theorem 2.29 we have ξ ∈ Lpk(E) for all k ≥ 0, which implies ξ ∈ C∞(E).
As a result, the kernel KerP of P is independent of p and k, and is a subspace of C∞(E). In
fact, it is also of finite dimensions ([26, Thm. 1.5.1]).

If one restricts ξ so that it is L2-orthogonal to KerP , then we obtain ([26, Prop. 1.5.2]):

Proposition 2.30 Let (M, g) be a compact Riemannian m-fold, E,F −→M be vector bundles
over M , and P a smooth, linear elliptic operator of order l ≥ 1. Let p ≥ 1 and k ≥ 0 be an
integer. If ξ ∈ Lpk+l(E) and ξ⊥KerP , then there is a constant D > 0, independent of ξ, such
that

‖ξ‖Lp
k+l
≤ D‖Pξ‖Lp

k
.

Similarly, if α ∈ (0, 1) and k ≥ 0 is an integer, and if ξ ∈ Ck+l,α(E) and ξ⊥KerP , then there
is a constant D > 0, independent of ξ, such that

‖ξ‖Ck+l,α ≤ D‖Pξ‖Ck,α .

We shall finish this section by giving an existence result for the equation Pξ = η. Recall that
if X,Y are finite-dimensional inner product spaces and P : X −→ Y is a linear map, one can
solve the equation Px = y if and only if y⊥KerP ∗, where P ∗ is the dual of the linear map, and
we have the orthogonal decomposition Y = P (X) ⊕ KerP ∗. We will see in the next theorem
that the same criteria is needed for linear elliptic operators, and hence the existence theory for
a linear elliptic operator on a compact manifold is very similar to the finite-dimensional case.
Suppose P : C∞(E) −→ C∞(F ) is a smooth, linear elliptic operator of order l ≥ 1, then the
formal adjoint P ∗ : C∞(F ) −→ C∞(E) of P is the unique linear elliptic operator of order l with
〈Pξ, η〉L2(F ) = 〈ξ, P ∗η〉L2(E) whenever ξ ∈ C∞(E), η ∈ C∞(F ).

Theorem 2.31 Let (M, g) be a compact Riemannian m-fold, E,F −→ M be vector bundles
over M , and P a smooth, linear elliptic operator of order l ≥ 1. Let k ≥ 0 be an integer, p ≥ 1
and α ∈ (0, 1). Then the maps P : Lpk+l(E) −→ Lpk(F ) and P : Ck+l,α(E) −→ Ck,α(F ) have
closed images. If η ∈ Lpk(F ), then there is a solution ξ ∈ Lpk+l(E) of Pξ = η if and only if
η⊥KerP ∗. Similarly, if η ∈ Ck,α(F ), then there is a solution ξ ∈ Ck+l,α(E) of Pξ = η if and
only if η⊥KerP ∗. In both cases, the solution ξ is unique if ξ⊥KerP .

The proof can be found in [26, Thm. 1.5.3]. Thus we have from Theorem 2.31 the L2-
orthogonal decompositions:

Lpk(F ) = P (Lpk+l(E))⊕KerP ∗ and Ck,α(F ) = P (Ck+l,α(E))⊕KerP ∗.
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Desingularizations of Calabi–Yau

3-folds with conical singularities

In this chapter we study Calabi–Yau 3-folds M0 with conical singularities at a finite number
of points x1, . . . , xn modelled on Calabi–Yau cones V1, . . . , Vn. Throughout this thesis we shall
assume the existence of such kind of manifolds M0, or in order words, we shall assume that there
exist singular Calabi–Yau metrics on some compact complex manifolds with conical singularities.
We then construct desingularizations of M0, obtaining a 1-parameter family of compact, non-
singular Calabi–Yau 3-folds which has M0 as the limit. We shall achieve this by first choosing
Asymptotically Conical Calabi–Yau 3-folds Yi, for i = 1, . . . , n, where Yi converges to the Calabi–
Yau cone Vi at infinity, and then gluing Yi into M0 at xi after applying a homothety. We thus
obtain a 1-parameter family of nearly Calabi–Yau 3-folds Mt depending on a small real variable
t. For sufficiently small t > 0, we show that the nearly Calabi–Yau structures on Mt can be de-
formed to genuine Calabi–Yau structures, and therefore obtaining the desingularizations of M0.
Our result can be applied to resolving orbifold singularities and hence provides a quantitative
description of the Calabi–Yau metrics on the crepant resolutions.

We begin in §3.1 by giving some background material for this chapter. Section 3.2 introduces
nearly Calabi–Yau structures on 6-dimensional manifolds and the induced G2-structures on 7-
dimensional manifolds. We also prove the existence result for genuine Calabi–Yau structures,
using Joyce’s existence result for torsion-free G2-structures [26, Thm. 11.6.1] with some modifi-
cations. Then we define in §3.3 the main objects of this chapter, namely the Calabi–Yau cones,
Calabi–Yau m-folds with conical singularities and Asymptotically Conical Calabi–Yau m-folds,
and provide some examples. Finally we show in §3.4 the construction of the desingularization
in the simplest case where there are no obstructions. We shall then give an application of our
result in §3.4.4 which involves desingularizing Calabi–Yau 3-orbifolds with isolated singularities.
Note that in the orbifold case, the existence of singular Calabi–Yau metrics is known. We can
then describe what the Calabi–Yau metrics on the crepant resolution of the orbifold locally look
like. Our approach in this chapter is analytic and metrics on singular Calabi–Yau 3-folds are
considered, rather than just their complex structures. In this way, we provide an analytic way
to study results previously known in algebraic geometry.

31
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3.1 Background material on SU(3)- and G2-structures

In this section we provide some background on Calabi–Yau 3-folds, SU(3)-structures on 6-folds
and G2-structures on 7-folds. They will play an essential role in our construction of desingular-
izations of compact Calabi–Yau 3-folds with conical singularities. Let us begin with studying
Calabi–Yau 3-folds. Some useful introductory references on Calabi–Yau manifolds are [21] and
[26, Chapter 6].

Definition 3.1 A Calabi–Yau 3-fold is a Kähler manifold (M,J, g) of complex dimension 3
with a covariant constant holomorphic volume form Ω such that it satisfies ω3 = 3i

4 Ω∧ Ω̄ where
ω is the Kähler form of g. We say that (J, ω,Ω) constitutes a Calabi–Yau structure on M and
write a Calabi–Yau manifold as a quadruple (M,J, ω,Ω).

Thus for each x ∈ M , there is an isomorphism between TxM and C3 that identifies gx, ωx
and Ωx with the flat metric g0, the real 2-form ω0 and the complex 3-form Ω0 on C3 given by

g0 = |dz1|2 + |dz2|2 + |dz3|2, ω0 =
i

2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + dz3 ∧ dz̄3)

and Ω0 = dz1 ∧ dz2 ∧ dz3,

where (z1, z2, z3) are coordinates on C3. Calabi–Yau manifolds are automatically Ricci-flat, and
one can use Yau’s solution of the Calabi conjecture ([52] and [26, Chapter 5]) to show the ex-
istence of families of Calabi–Yau manifolds. Another equivalent way of defining a Calabi–Yau
3-fold is to require that the Riemannian 6-fold (M, g) has holonomy group Hol(g) contained in
SU(3). One can then show that M admits a holomorphic volume form satisfying the normaliza-
tion formula.

We shall now consider SU(3)-structures on 6-folds and G2-structures on 7-folds and relate
them to Calabi–Yau structures. An SU(3)-structure on a real 6-fold M is a principal subbundle
of the frame bundle of M , with fibre SU(3). Each SU(3)-structure gives rise to an almost complex
structure J , a real 2-form ω and a complex 3-form Ω with the properties that

1. ω is of type (1,1) w.r.t. J and is positive,

2. Ω is of type (3,0) w.r.t. J and is nonvanishing, and

3. ω3 = 3i
4 Ω ∧ Ω̄.

We will refer to (J, ω,Ω) as an SU(3)-structure. If in addition dω = 0 and dΩ = 0, then J

is integrable and Ω is a holomorphic (3,0)-form, and the closedness of ω implies the associated
Hermitian metric g is Kähler. Thus dω and dΩ can be thought of as the torsion of the SU(3)-
structure, and when they both vanish the SU(3)-structure is torsion-free. Note that property
(3) implies that the holomorphic (3,0)-form Ω has constant length, so it is covariant constant.
Therefore we have
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Proposition 3.2 Let M be a real 6-fold and (J, ω,Ω) an SU(3)-structure on M . Let g be the
Hermitian metric with Hermitian form ω. Then the following are equivalent:

(i) dω = 0 and dΩ = 0 on M ,

(ii) (J, ω,Ω) is torsion-free,

(iii) (J, ω,Ω) gives a Calabi–Yau structure on M , and

(iv) Hol(g) ⊆ SU(3).

Now we discuss G2-structures in 7-folds. The books by Salamon [46, §11-§12] and Joyce [26,
Chapter 10] are good introductions to G2. In the theory of Riemannian holonomy groups, one
of the exceptional cases in Berger’s classification [2] is given by G2 in 7 dimensions. Bryant
and Salamon [8] found explicit, complete metrics with holonomy G2 on noncompact manifolds,
and Joyce [26] constructed examples of compact 7-folds with holonomy G2. The exceptional Lie
group G2 is the subgroup of GL(7,R) preserving the 3-form

ϕ0 = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ dx4 ∧ dx5 + dx1 ∧ dx6 ∧ dx7 + dx2 ∧ dx4 ∧ dx6

− dx2 ∧ dx5 ∧ dx7 − dx3 ∧ dx4 ∧ dx7 − dx3 ∧ dx5 ∧ dx6

on R7 with coordinates (x1, . . . , x7). This group also preserves the metric

g0 = dx2
1 + · · ·+ dx2

7,

the 4-form

∗ϕ0 = dx4 ∧ dx5 ∧ dx6 ∧ dx7 + dx2 ∧ dx3 ∧ dx6 ∧ dx7 + dx2 ∧ dx3 ∧ dx4 ∧ dx5

+ dx1 ∧ dx3 ∧ dx5 ∧ dx7 − dx1 ∧ dx3 ∧ dx4 ∧ dx6 − dx1 ∧ dx2 ∧ dx5 ∧ dx6

− dx1 ∧ dx2 ∧ dx4 ∧ dx7,

and the orientation on R7. Let X be an oriented 7-fold. We say that a 3-form ϕ (a 4-form ψ)
on X is positive if for each p ∈ X, there exists an oriented isomorphism between TpX and R7

identifying ϕ and the 3-form ϕ0 (the 4-form ∗ϕ0).

A G2-structure on a 7-fold X is a principal subbundle of the oriented frame bundle of X,
with fibre G2. Thus there is a 1-1 correspondence between positive 3-forms and G2-structures
on X. Moreover, to any positive 3-form on X one can associate a unique positive 4-form ∗ϕ
and metric g, such that ϕ, ∗ϕ and g are identified with ϕ0, ∗ϕ0 and g0 under an isomorphism
between TpX and R7, for each p ∈M . We shall refer to (ϕ, g) as a G2-structure. Suppose (ϕ, g)
is a G2-structure on X, and ∇ is the Levi-Civita connection of g. We call ∇ϕ the torsion of the
G2-structure (ϕ, g), and if ∇ϕ = 0, then the G2-structure is torsion-free. Here is a result from
[26, Prop. 10.1.3]:

Proposition 3.3 Let X be a real 7-fold and (ϕ, g) a G2-structure on X. Then the following
are equivalent:

(i) (ϕ, g) is torsion-free,
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(ii) ∇ϕ = 0 on X, where ∇ is the Levi-Civita connection of g,

(iii) dϕ = d∗ϕ = 0 on X, and

(iv) Hol(g) ⊆ G2, and ϕ is the induced 3-form.

Now if (M,J, ω,Ω) is a Calabi–Yau 3-fold with the Calabi–Yau metric gM , then by Proposition
3.2, (J, ω,Ω) gives a torsion-free SU(3)-structure on M , and Hol(gM ) ⊆ SU(3). By considering
SU(3) as a subgroup of G2, the 7-fold S1×M has a torsion-free G2-structure, which is constructed
by the following result [26, Prop. 11.1.2]:

Proposition 3.4 Suppose (J, ω,Ω) is a torsion-free SU(3)-structure on a 6-fold M . Let s be
a coordinate on S1. Define a metric g and a 3-form ϕ on S1 ×M by

g = ds2 + gM and ϕ = ds ∧ ω + Re(Ω).

Then (ϕ, g) is a torsion-free G2-structure on S1 ×M , and

∗ϕ =
1
2
ω ∧ ω − ds ∧ Im(Ω).

3.2 Nearly Calabi–Yau structures

This section introduces the notion of a nearly Calabi–Yau structure on an oriented 6-fold M .
We begin in §3.2.1 by giving the definition of a nearly Calabi–Yau structure (ω,Ω) on M , and
showing that if M admits a genuine Calabi–Yau structure, then any real closed 2-form ω and
complex closed 3-form Ω on M which are sufficiently close to the genuine Calabi–Yau structure
gives a nearly Calabi–Yau structure. Section 3.2.2 constructs G2-structures on the 7-fold S1×M .
Finally, we give the main result of the section, the existence of genuine Calabi–Yau structures on
M , in §3.2.3. It is based on the existence result for torsion-free G2-structures on compact 7-folds
by Joyce [26, Thm. 11.6.1].

3.2.1 Introduction to nearly Calabi–Yau structures

Let M be an oriented 6-fold. A nearly Calabi–Yau structure on M consists of a real closed
2-form ω, and a complex closed 3-form Ω on M . Basically, the idea of a nearly Calabi–Yau
structure (ω,Ω) is that it corresponds to an SU(3)-structure with “small torsion”, and hence ap-
proximates a genuine Calabi–Yau structure, which is equivalent to a torsion-free SU(3)-structure.
So let us start with generating an SU(3)-structure on M from (ω,Ω).

First we write Ω = θ1 + iθ2, so θ1 and θ2 are both real closed 3-forms. Suppose θ1 has
stabilizer SL(3, C) ⊂ GL+(6, R) at each p ∈ M , then the orbit of θ1 in

∧3
T ∗pM under the ac-

tion of GL+(6, R) is GL+(6, R)/SL(3, C). For each p ∈ M , define
∧3

+ T
∗
pM to be the subset of
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3-forms θ ∈
∧3

T ∗pM for which there exists an oriented isomorphism between TpM and R6 ∼= C3

identifying θ and the 3-form Re(dz1 ∧ dz2 ∧ dz3) where (z1, z2, z3) are coordinates on C3. Then∧3
+ T

∗
pM
∼= GL+(6, R)/SL(3, C), as Re(dz1 ∧ dz2 ∧ dz3) has stabilizer SL(3, C). Then θ1|p lies in∧3

+ T
∗
pM for each p ∈M . It is easy to see that dim

∧3
+ T

∗
pM = dim GL+(6, R)/SL(3, C) = dim∧3

T ∗pM = 20, so
∧3

+ T
∗
pM is an open subset of

∧3
T ∗pM for each p ∈M . Therefore any 3-form

on M which is sufficiently close to a 3-form in
∧3

+ T
∗
pM still lies in

∧3
+ T

∗
pM , or equivalently, has

stabilizer SL(3, C) at each point on M .

The oriented frame bundle F+ of M is the bundle over M whose fibre at p ∈M is the set of
oriented isomorphisms between TpM and R6. Let P be the subset of F+ consisting of oriented
isomorphisms between TpM and R6 which identify θ1 at p and Re(dz1 ∧ dz2 ∧ dz3). It is well-
defined as we have assumed that θ1|p ∈

∧3
+ T

∗
pM . Thus θ1 defines a principal subbundle P of the

oriented frame bundle F+, with fibre SL(3, C), that is, an SL(3, C)-structure on M . As SL(3, C)
acts on R6 ∼= C3 preserving the complex structure J0 on C3, we obtain a unique almost complex
structure J ′ on M .

Note that the forms ω, Ω are not necessarily of type (1,1) and (3,0) with respect to J ′ re-
spectively. We then denote by ω(1,1) the (1,1)-component of ω with respect to J ′ and define
a 3-form θ′2 on M by θ′2(u, v, w) := θ1(J ′ u, v, w) for all u, v, w ∈ TM , or in index notation,
(θ′2)abc = (J ′)da (θ1)dbc. Suppose that ω(1,1) is a positive (1,1)-form, that is, ω(1,1)(v, J ′v) > 0 for
any nonzero v ∈ TM . Write Ω′ = θ1 + iθ′2, then Ω′ is a (3,0)-form with respect to J ′. In general,
θ′2 will not be a closed 3-form, unless J ′ is integrable.

We want (J ′, ω(1,1),Ω′) to be an SU(3)-structure, but the problem with this is the usual
normalization formula defining a Calabi–Yau manifold may not hold for ω(1,1) and Ω′, that is,
(ω(1,1))3 6= 3i

4 Ω′ ∧ Ω̄′ (= 3
2 θ1 ∧ θ

′
2) in general. We then define a smooth function f : M → (0,∞)

by

(ω(1,1))3 = f · 3
2
θ1 ∧ θ′2. (3.1)

Consequently, if we rescale ω(1,1) by setting ω′ = f−
1
3 ω(1,1), we have ω′3 = 3

2 θ1 ∧ θ
′
2. Given that

ω(1,1), and hence ω′, is positive, then one can determine a Hermitian metric gM on M from ω′

and J ′ by gM (u, v) = ω′(u, J ′v) for all u, v ∈ TM .

Now we are ready to give the definition of a nearly Calabi–Yau structure on M :

Definition 3.5 LetM be an oriented 6-fold, and let ω be a real closed 2-form, and Ω = θ1+iθ2
a complex closed 3-form on M . Let ε0 ∈ (0, 1] be a fixed small constant, to be chosen later in
Lemma 3.7. Then (ω,Ω) constitutes a nearly Calabi–Yau structure on M if

(i) the real closed 3-form θ1 has stabilizer SL(3, C) at each point of M , or equivalently, it lies
in
∧3

+ T
∗
pM for each p ∈M .

Then we can associate a unique almost complex structure J ′ and a unique real 3-form θ′2
such that Ω′ = θ1 + iθ′2 is a (3,0)-form with respect to J ′.

(ii) the (1,1)-component ω(1,1) of ω with respect to J ′ is positive.
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Then we can associate a Hermitian metric gM on M from ω′ and J ′, where ω′ = f−
1
3 ω(1,1)

is the rescaled (1,1)-part of ω and f is defined by (3.1).

(iii) the following inequalities hold for some ε with 0 < ε ≤ ε0:

|θ2 − θ′2|gM
< ε , (3.2)

|ω(2,0)|gM
< ε , and (3.3)∣∣∣∣ω3 − 3

2
θ1 ∧ θ2

∣∣∣∣
gM

< ε (3.4)

where the norms | · |gM
are measured by the metric gM .

If (ω,Ω) is a nearly Calabi–Yau structure on M , one can show that the function f defined in
(3.1) satisfies

|f − 1| < C0ε, (3.5)

for some constant C0 > 0, i.e. f is approximately equal to 1 for sufficiently small ε, as we would
expect.

The next result shows that if M admits a genuine Calabi–Yau structure, then any real closed
2-form ω and complex closed 3-form Ω on M which are sufficiently close to the genuine Calabi–
Yau structure gives a nearly Calabi–Yau structure.

Proposition 3.6 There exist constants ε1, C, C ′ > 0 such that whenever 0 < ε ≤ ε1, the fol-
lowing is true.

Let M be an oriented 6-fold. Suppose (J̃ , ω̃, Ω̃) is a Calabi–Yau structure with Calabi–Yau
metric g̃, ω a real closed 2-form, and Ω = θ1 + iθ2 a complex closed 3-form on M , satisfying

|ω̃ − ω|g̃ < ε and |Ω̃− Ω|g̃ < ε, (3.6)

then (ω,Ω) is a nearly Calabi–Yau structure on M with metric gM satisfying

|g̃ − gM |g̃ < Cε and |g̃−1 − g−1
M |g̃ < C ′ε, (3.7)

Proof. From (3.6) we have |Re(Ω̃)− θ1|g̃ < ε, which means that if we choose ε1 to be sufficiently
small, then θ1 has stabilizer SL(3,C) since the stabilizer condition is an open condition as we
mentioned before. So we can associate a unique almost complex structure J ′, with |J̃−J ′|g̃ < C1ε

for some constant C1 > 0, and a unique real 3-form θ′2 such that Ω′ = θ1 + iθ′2 is a (3,0)-form
with respect to J ′.

One can deduce from (3.6) and |J̃ − J ′|g̃ < C1ε that |ω̃ − ω(1,1)|g̃ < C2ε for some C2 > 0.
Make ε1 smaller if necessary, then ω(1,1) is a positive (1,1)-form with respect to J ′ since the
positivity is also an open condition. Then we can define a metric gM by gM (u, v) = ω′(u, J ′v)
for all u, v ∈ TM , where ω′ = f−

1
3 ω(1,1) and f is defined by (3.1). Now we show that f is close

to 1. In fact,
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|(f − 1)ω′3|g̃ = |(ω(1,1))3 − ω′3|g̃

≤ |(ω(1,1))3 − ω̃3|g̃ +
∣∣∣∣ω̃3 − 3

2
Re(Ω̃) ∧ Im(Ω̃)

∣∣∣∣
g̃

+
∣∣∣∣32Re(Ω̃) ∧ Im(Ω̃)− 3

2
θ1 ∧ θ′2

∣∣∣∣
g̃

.

(3.8)

Since |ω̃−ω(1,1)|g̃ < C2ε, the first term of right hand side of (3.8) is of size O(ε). The second term
vanishes as (ω̃, Ω̃) is a Calabi–Yau structure. From |Re(Ω̃) − θ1|g̃ < ε, and |J̃ − J ′|g̃ < C1ε, we
have |Im(Ω̃)− θ′2|g̃ < C3ε for some C3 > 0 and hence the third term also has size O(ε). Summing
up, we have f − 1 is of size O(ε).

Using the fact that |ω̃−ω(1,1)|g̃ < C2ε and |f−1| = O(ε) we can show |ω̃−ω′|g̃ < C4ε for some
C4 > 0. Together with |J̃ − J ′|g̃ < C1ε, we obtain first part of (3.7), that is, |g̃ − gM |g̃ < Cε for
some C > 0. If ε is small enough such that Cε < 1

2 , then one can deduce that |g̃−1− g−1
M |g̃ < C ′ε

for some C ′ > 0. This implies that g̃ and gM are uniformly equivalent metrics, and hence norms
of any tensor on M taken with respect to g̃ and with respect to gM differ by a bounded factor.

It remains to check (3.2)-(3.4) of Definition 3.5. But it is not hard to get bounds for (3.2)-(3.4)
in terms of ε with respect to the metric g̃, and so by making ε smaller and using the equivalence
of the metrics, we obtain (3.2)-(3.4). 2

3.2.2 G2-structures on S1 ×M

Let (ω,Ω) be a nearly Calabi–Yau structure on M . From §3.2.1 we know that (J ′, ω′,Ω′) gives
an SU(3)-structure with metric gM on M . In this section, we would like to discuss G2-structures
on the 7-fold S1×M , which is essential for the main result in next section. Let s be a coordinate
on S1. Now define a 3-form ϕ′ and a metric g′ on S1 ×M by

ϕ′ = ds ∧ ω′ + θ1 and g′ = ds2 + gM . (3.9)

It turns out that (ϕ′, g′) defines a G2-structure (with torsion) on S1×M . The associated 4-form
∗g′ϕ′ on S1 ×M is then given by

∗g′ϕ′ =
1
2
ω′ ∧ ω′ − ds ∧ θ′2. (3.10)

Also, we can construct another 3-form ϕ and 4-form χ on S1 ×M by

ϕ = ds ∧ ω + θ1 and χ =
1
2
ω ∧ ω − ds ∧ θ2. (3.11)

The next lemma shows that the forms in (3.11) are close to the G2-forms ϕ′ and ∗g′ϕ′ if we
take ε0 in the definition of nearly Calabi–Yau manifolds to be sufficiently small.

Lemma 3.7 There exist constants C1, C2, C3 and C4 > 0 such that if ε0 in Definition 3.5 is
chosen sufficiently small, then the following is true.
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Let (ϕ′, g′) be the G2-structure given by (3.9), ∗g′ϕ′ the associated 4-form given by (3.10), ϕ
the 3-form and χ the 4-form given by (3.11) on S1 ×M . Then

|ϕ− ϕ′|g′ < C1ε (3.12)

where ε ∈ (0, ε0] is the small constant in (iii) of Definition 3.5. Hence ϕ is also a positive 3-form
on S1 ×M , and it defines another G2-structure (ϕ, g). Moreover, the associated metric g and
the 4-form ∗gϕ satisfy

|g − g′|g′ < C2ε, |g−1 − g′−1|g′ < C3 ε and (3.13)

|∗gϕ− χ|g′ < C4 ε. (3.14)

Proof. From (3.9) and (3.11), we have |ϕ−ϕ′|g′ = |ds∧ (ω−ω′)|g′ = |ω−ω′|gM
< C1 ε for some

constant C1 > 0, where we used (3.3) and (3.5). Now we choose ε0 in Definition 3.5 such that
C1 ε0 is small enough and ϕ is a positive 3-form on S1 ×M . Then we can associate a metric g
from ϕ. Using the fact that such associations are continuous we have |g − g′|g′ < C2 ε for some
C2 > 0. Also, by using the same argument as in Proposition 3.6, we obtain |g−1 − g′−1|g′ < C3 ε

for some C3 > 0, which shows (3.13). For (3.14), we have

|∗gϕ− χ|g′ ≤ |∗gϕ− ∗g′ϕ′|g′ + |∗g′ϕ′ − χ|g′

≤ |(∗g − ∗g′)ϕ|g′ + |∗g′ (ϕ− ϕ′)|g′ + |∗g′ϕ′ − χ|g′ . (3.15)

The first term of right hand side has the same size as |g− g′|g′ , which is bounded in (3.13). The
second term is just |ϕ− ϕ′|g′ since ∗g′ is an isometry with respect to g′, and so it is bounded in
(3.12). For the last term, we have

|∗g′ϕ′ − χ|g′ =
∣∣∣∣12 (ω′ ∧ ω′ − ω ∧ ω)− ds ∧ (θ′2 − θ2)

∣∣∣∣
g′

from (3.10) and (3.11). Using |ω − ω′|gM
< C1 ε and (3.2), we can show that this term has size

O(ε). Summing up together, we get |∗gϕ− χ|g′ < C4 ε for some constant C4 > 0. 2

3.2.3 An existence result for Calabi–Yau structures on M

In the last part of this section we present our main result which shows that when ε0 is suffi-
ciently small, the nearly Calabi–Yau structure on M can be deformed to a genuine Calabi–Yau
structure. The proof is based on an existence result for torsion-free G2-structures given by Joyce
[26, Thm. 11.6.1], which shows using analysis that any G2-structure on a compact 7-fold with
sufficiently small torsion can be deformed to a nearby torsion-free G2-structure. We shall adopt
a slightly modified version of this result, which improves the bounds of various norms to fit into
our situation.

Our problem is clearly a 6-dimensional one, but we jump into 7-dimensions to consider G2-
structures. Apparently this seems to complicate the problem, but there is an advantage that we
already have the analytic existence theorem from Joyce, which is the key result that makes the
entire thing work. Another advantage is that while the Calabi–Yau structure involves J, ω,Ω,
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the G2-structure is packaged in a single 3-form ϕ such that small perturbations of ϕ still give a
G2-structure. This makes the proofs simpler in 7-dimensions.

We refer to the spaces Lq, Lqk, C
k and Ck,α as the Banach spaces defined in Chapter 2. Let

us begin by stating Joyce’s result, with improvements to powers of t:

Theorem 3.8 Let κ > 0 and D1, D2, D3 > 0 be constants. Then there exist constants ε ∈ (0, 1]
and K > 0 such that whenever 0 < t ≤ ε, the following is true.

Let X be compact 7-fold, and (ϕ, g) a G2-structure on X with dϕ = 0. Suppose ψ is a smooth
3-form on X with d∗ψ = d∗ϕ, and

(i) ‖ψ‖L2 ≤ D1t
7
2+κ, ‖ψ‖C0 ≤ D1t

κ and ‖d∗ψ‖L14 ≤ D1t
− 1

2+κ,

(ii) the injectivity radius δ(g) satisfies δ(g) ≥ D2t, and

(iii) the Riemann curvature R(g) satisfies ‖R(g)‖C0 ≤ D3t
−2.

Then there exists a smooth, torsion-free G2-structure (ϕ̃, g̃) on X such that ‖ϕ̃ − ϕ‖C0 ≤ Ktκ

and [ϕ̃] = [ϕ] in H3(X,R).

The proof of it depends upon the following two results. We state them here and then we will
improve the powers of t so that Theorem 3.8 can be modified to fit into our situation for the
7-fold S1 ×M .

Theorem 3.9 Let D2, D3, t > 0 be constants, and suppose (X, g) is a complete Riemannian 7-
fold, whose injectivity radius δ(g) and Riemann curvature R(g) satisfy δ(g) ≥ D2t and ‖R(g)‖C0 ≤
D3t

−2. Then there exist K1,K2 > 0 depending only on D2 and D3, such that if χ ∈ L14
1 (Λ3T ∗X)∩

L2(Λ3T ∗X) then

‖∇χ‖L14 ≤ K1 (‖dχ‖L14 + ‖d∗χ‖L14 + t−4‖χ‖L2)

and ‖χ‖C0 ≤ K2 (t
1
2 ‖∇χ‖L14 + t−

7
2 ‖χ‖L2).

The second result is:

Theorem 3.10 Let κ > 0 and D1,K1,K2 > 0 be constants. Then there exist constants
ε ∈ (0, 1], K3 and K > 0 such that whenever 0 < t ≤ ε, the following is true.

Let X be a compact 7-fold, and (ϕ, g) a G2-structure on X with dϕ = 0. Suppose ψ is a
smooth 3-form on X with d∗ψ = d∗ϕ, and

(i) ‖ψ‖L2 ≤ D1t
7
2+κ, ‖ψ‖C0 ≤ D1t

κ and ‖d∗ψ‖L14 ≤ D1t
− 1

2+κ,

(ii) if χ ∈ L14
1 (Λ3T ∗X) then ‖∇χ‖L14 ≤ K1 (‖dχ‖L14 + ‖d∗χ‖L14 + t−4‖χ‖L2),

(iii) if χ ∈ L14
1 (Λ3T ∗X) then ‖χ‖C0 ≤ K2 (t

1
2 ‖∇χ‖L14 + t−

7
2 ‖χ‖L2).
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Let ε1 be as in Definition 10.3.3, and F as in Proposition 10.3.5 of Joyce [26]. Denote by π1

the orthogonal projection from Λ3T ∗X to the 1-dimensional component of the decomposition into
irreducible representation of G2. Then there exist sequences {ηj}∞j=0 in L14

2 (Λ2T ∗X) and {fj}∞j=0

in L14
1 (X) with η0 = f0 = 0, satisfying the equations

(dd∗ + d∗d)ηj = d∗ψ + d∗(fj−1ψ) + ∗ dF (dηj−1) and fjϕ =
7
3
π1(dηj)

for each j > 0, and the inequalities

(a) ‖dηj‖L2 ≤ 2D1t
7
2+κ, (d) ‖dηj − dηj−1‖L2 ≤ 2D12−jt

7
2+κ,

(b) ‖∇dηj‖L14 ≤ K3t
− 1

2+κ, (e) ‖∇(dηj − dηj−1)‖L14 ≤ K32−jt−
1
2+κ,

(c) ‖dηj‖C0 ≤ Ktκ ≤ ε1 and (f) ‖dηj − dηj−1‖C0 ≤ K2−jtκ.

We shall first modify Theorem 3.9 by considering the 6-dimensional version of those analytic
estimates. In Theorem 3.9, the first inequality is derived from an elliptic regularity estimate for
the operator d+d∗ on 3-forms on X. The second inequality follows from the Sobolev Embedding
Theorem, which states that Lqk embeds in Cl,α if 1

q ≤
k−l−α
n where n is the dimension of the

underlying Riemannian manifold. For the 7-dimensional case, we have L14
1 embeds in C0,1/2

which then embeds in C0, whereas in 6 dimensions, we have L12
1 embeds in C0,1/2. We can use

this to show

Theorem 3.11 Let D2, D3, t > 0 be constants, and suppose (M, g) is a complete Riemannian
6-fold, whose injectivity radius δ(g) and Riemann curvature R(g) satisfy δ(g) ≥ D2t and ‖R(g)‖C0 ≤
D3t

−2. Then there exist K1,K2 > 0 depending only on D2 and D3, such that if χ ∈ L12
1 (Λ3T ∗M)∩

L2(Λ3T ∗M) then

‖∇χ‖L12 ≤ K1 (‖dχ‖L12 + ‖d∗χ‖L12 + t−
7
2 ‖χ‖L2)

and ‖χ‖C0 ≤ K2 (t
1
2 ‖∇χ‖L12 + t−3‖χ‖L2).

The proof of it is similar to [26, Thm. G1, p.298]. We can first prove the case for t = 1,
and the case for general t > 0 follows by conformal rescaling: apply the t = 1 case to the metric
t−2g. The factors of t compensate for powers of t which the norms scaled by in replacing g by t−2g.

By considering S1-invariant forms and S1-invariant G2-structures on the 7-fold S1 ×M , we
can use the Sobolev Embedding Theorem in 6 dimensions, rather than in 7 dimensions. This has
an advantage that the powers of t and the inequalities are calculated in 6 dimensions, though
the norms are computed on the 7-fold S1 ×M . Note that the length of S1 is fixed, i.e. inde-
pendent of t while the metric on M is rescaled by t. Here is the modified version of Theorem 3.10:

Theorem 3.12 Let κ > 0 and D1,K1,K2 > 0 be constants. Then there exist constants
ε ∈ (0, 1], K3 and K > 0 such that whenever 0 < t ≤ ε, the following is true.

Let M be a compact 6-fold, and (ϕ, g) an S1-invariant G2-structure on S1 ×M with dϕ = 0.
Suppose ψ is an S1-invariant smooth 3-form on the 7-fold S1 ×M with d∗ψ = d∗ϕ, and
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(i) ‖ψ‖L2 ≤ D1t
3+κ, ‖ψ‖C0 ≤ D1t

κ and ‖d∗ψ‖L12 ≤ D1t
− 1

2+κ,

(ii) if χ ∈ L12
1 (Λ3T ∗(S1 ×M)) is S1-invariant, then ‖∇χ‖L12 ≤ K1 (‖dχ‖L12 + ‖d∗χ‖L12 +

t−
7
2 ‖χ‖L2),

(iii) if χ ∈ L12
1 (Λ3T ∗(S1 ×M)) is S1-invariant, then ‖χ‖C0 ≤ K2 (t

1
2 ‖∇χ‖L12 + t−3‖χ‖L2).

With the same notations as in Theorem 3.10, there exist sequences {ηj}∞j=0 in L12
2 (Λ2T ∗(S1×M))

and {fj}∞j=0 in L12
1 (S1 ×M) with ηj , fj being all S1-invariant and η0 = f0 = 0, satisfying the

equations

(dd∗ + d∗d)ηj = d∗ψ + d∗(fj−1ψ) + ∗ dF (dηj−1) and fjϕ =
7
3
π1(dηj)

for each j > 0, and the inequalities

(a) ‖dηj‖L2 ≤ 2D1t
3+κ, (d) ‖dηj − dηj−1‖L2 ≤ 2D12−jt3+κ,

(b) ‖∇dηj‖L12 ≤ K3t
− 1

2+κ, (e) ‖∇(dηj − dηj−1)‖L12 ≤ K32−jt−
1
2+κ,

(c) ‖dηj‖C0 ≤ Ktκ ≤ ε1 and (f) ‖dηj − dηj−1‖C0 ≤ K2−jtκ.

Here ∇ and ‖ · ‖ are computed using g on S1 ×M .

Thus Theorem 3.12 is essentially an S1-invariant version of Theorem 3.10. We are now ready
to state the modified version of Theorem 3.8, to be used to obtain our main result.

Theorem 3.13 Let κ > 0 and D1, D2, D3 > 0 be constants. Then there exist constants
ε ∈ (0, 1] and K > 0 such that whenever 0 < t ≤ ε, the following is true.

Let M be a compact 6-fold, and (ϕ, g) an S1-invariant G2-structure on S1 ×M with dϕ = 0.
Suppose ψ is an S1-invariant smooth 3-form on S1 ×M with d∗ψ = d∗ϕ, and

(i) ‖ψ‖L2 ≤ D1t
3+κ, ‖ψ‖C0 ≤ D1t

κ and ‖d∗ψ‖L12 ≤ D1t
− 1

2+κ,

(ii) the injectivity radius δ(g) satisfies δ(g) ≥ D2t, and

(iii) the Riemann curvature R(g) satisfies ‖R(g)‖C0 ≤ D3t
−2.

Then there exists a smooth, torsion-free S1-invariant G2-structure (ϕ̃, g̃) on S1 ×M such that
‖ϕ̃− ϕ‖C0 ≤ Ktκ and [ϕ̃] = [ϕ] in H3(S1 ×M,R).

Theorem 3.13 follows from Theorems 3.11 and 3.12 as on [26, p.296-297]. Note that since all
the data ηj , fj , etc. in Joyce’s proof are S1-invariant, so the limit of sequence is still S1-invariant
as it is unique, and hence the limiting G2-structure obtained is also S1-invariant.

In the remaining part of this section, we shall derive an existence result for genuine Calabi–
Yau structures. Our strategy is the following. We start with the nearly Calabi–Yau structure
(ω,Ω) on M , then from §3.2.2 one can induce a G2-structure (ϕ, g) on S1 ×M . It can then be
shown in the following theorem that, under appropriate hypotheses on the nearly Calabi–Yau
structure (ω,Ω), the induced G2-structure satisfies all the conditions in Theorem 3.13, and there-
fore can be deformed to have zero torsion. Finally, we pull back this torsion-free G2-structure to
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obtain a genuine Calabi–Yau structure on M .

Theorem 3.14 Let κ > 0 and E1, E2, E3, E4 > 0 be constants. Then there exist constants
ε ∈ (0, 1] and K > 0 such that whenever 0 < t ≤ ε, the following is true.

Let M be a compact 6-fold, and (ω,Ω) a nearly Calabi–Yau structure on M . Let ω′, gM and
θ′2 be as in §3.2.1. Suppose

(i) ‖ω − ω′‖L2 ≤ E1t
3+κ, ‖ω − ω′‖C0 ≤ E1t

κ, ‖θ2 − θ′2‖L2 ≤ E1t
3+κ,

and ‖θ2 − θ′2‖C0 ≤ E1t
κ,

(ii) ‖∇(ω − ω′)‖L12 ≤ E1t
− 1

2+κ, ‖∇ω‖L12 ≤ E1t
− 1

2+κ,

and ‖∇θ1‖L12 ≤ E1t
− 1

2+κ,

(iii) ‖∇(ω − ω′)‖C0 ≤ E2t
κ−1, and ‖∇2(ω − ω′)‖C0 ≤ E2t

κ−2,

(iv) the injectivity radius δ(gM ) satisfies δ(gM ) ≥ E3t, and

(v) the Riemann curvature R(gM ) satisfies ‖R(gM )‖C0 ≤ E4t
−2.

Then there exists a Calabi–Yau structure (J̃ , ω̃, Ω̃) on M such that ‖ω̃ − ω‖C0 ≤ Ktκ and
‖Ω̃ − Ω‖C0 ≤ Ktκ. Moreover, if H1(M,R) = 0, then the cohomology classes satisfy [Re(Ω)]
= [Re(Ω̃)] ∈ H3(M,R) and [ω] = c [ω̃] ∈ H2(M,R) for some c > 0. Here the connection ∇ and
all norms are computed with respect to gM .

Proof. Let ϕ be the 3-form on S1 ×M given by (3.11). Then Lemma 3.7 shows that (ϕ, g) is a
G2-structure on S1×M , with dϕ = 0 as dω = dθ1 = 0. Define a 3-form ψ = ϕ−∗gχ on S1×M ,
where χ is the 4-form given by (3.11). Then d∗ψ = d∗ϕ − d∗(∗gχ) = d∗ϕ + ∗gdχ = d∗ϕ, since
d∗∗g = − ∗g d on 3-forms and dχ = 0. Now

|ψ|g = |∗gψ|g = |∗gϕ− χ|g ≤ C |∗gϕ− χ|g′

where C > 0 is some constant relating norms w.r.t. the uniformly equivalent metrics g and
g′ = ds2+gM . From (3.15), one can show that |∗gϕ−χ|g′ ≤ C1(|ω−ω′|2gM

+|ω−ω′|gM
+|θ2−θ′2|gM

)
for some C1 > 0, and hence

|ψ|g ≤ C2 ( |ω − ω′|2gM
+ |ω − ω′|gM

+ |θ2 − θ′2|gM
)

for some C2 > 0. Consequently, we have

‖ψ‖C0 ≤ C2 ( ‖ω − ω′‖2C0 + ‖ω − ω′‖C0 + ‖θ2 − θ′2‖C0), and

‖ψ‖L2 ≤ C3 ( ‖ω − ω′‖C0 · ‖ω − ω′‖L2 + ‖ω − ω′‖L2 + ‖θ2 − θ′2‖L2)

for some C3 > 0, which then imply

‖ψ‖C0 ≤ C4t
κ and ‖ψ‖L2 ≤ C4t

3+κ for some C4 > 0, (3.16)
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where we have used condition (i) and t ≤ ε ≤ 1. This verifies the first two inequalities of (i)
in Theorem 3.13, and we now proceed to the last one. Denote by ∇g and ∇g′ the connections
computed using g and g′ respectively. Since d∗ψ = d∗ϕ, we get

|d∗ψ|g = |d∗ϕ|g ≤ |∇gϕ|g ≤ C |∇gϕ|g′ . (3.17)

Denote by A the difference of the two torsion-free connections ∇g and ∇g′ . Thus A transforms
as a tensor and it satisfies Akij = Akji. We need the following proposition to obtain the bound for
|d∗ψ|g.

Proposition 3.15 In the situation above, we have

|∇g
′
ϕ|g′ ≤ |∇ω|gM

+ |∇θ1|gM
, (3.18)

|∇g
′
ϕ′|g′ ≤ |∇(ω − ω′)|gM

+ |∇ω|gM
+ |∇θ1|gM

, (3.19)

|A|g′ ≤
3
2
|g−1|g′ · |∇g

′
g|g′ , (3.20)

and |∇g
′
g|g′ ≤ B1 |∇g

′
(ϕ− ϕ′)|g′ +B2 |ϕ− ϕ′|g′ ·

(
|∇g

′
ϕ|g′ + |∇g

′
ϕ′|g′

)
(3.21)

for some B1, B2 > 0 depending on a small upper bound for |ϕ− ϕ′|g′ .

Proof. For the first one, note that

|∇g
′
ϕ|g′ = |∇g

′
(ds ∧ ω + θ1)|g′

≤ |∇g
′
ds|g′ · |ω|g′ + |ds|g′ · |∇g

′
ω|g′ + |∇g

′
θ1|g′ .

Since ds is a constant 1-form with length 1 w.r.t. the metric g′, equation (3.18) follows. The
second inequality follows easily from the first one. For (3.20), we have from the definition of the
tensor A,

Akij = Γkij − Γ
′k
ij

where Γkij and Γ
′k
ij are the Christoffel symbols of the Levi-Civita connections ∇g and ∇g′ respec-

tively. Consider now the term ∇g′g, and expressing it in index notation,

∇g
′

a gbc = ∂agbc − Γ
′d
abgdc − Γ

′d
acgbd.

Then

Γkij =
1
2
gkl
(
∂igjl + ∂jgil − ∂lgij

)
=

1
2
gkl
[(
∇g

′

i gjl + Γ
′m
ij gml + Γ

′m
il gjm

)
+
(
∇g

′

j gil + Γ
′m
ji gml + Γ

′m
jl gim

)
−
(
∇g

′

l gij + Γ
′m
li gmj + Γ

′m
lj gim

)]
=

1
2
gkl
(
∇g

′

i gjl +∇
g′

j gil −∇
g′

l gij + 2 Γ
′m
ij gml

)
by the fact that ∇g′ is torsion-free. Hence,

Akij = Γkij − Γ
′k
ij

=
1
2
gkl
(
∇g

′

i gjl +∇
g′

j gil −∇
g′

l gij
)
,
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which gives rise to (3.20).

To verify the last inequality, first let F be the smooth function that maps each positive 3-form
to its associated metric. Then F (ϕ) = g and F (ϕ′) = g′. As F (ϕ) depends pointwise on ϕ, we
can write F (ϕ)(x) = F (x, ϕ(x)) for all x ∈ S1×M and ϕ(x) in the vector space

∧3
T ∗x (S1×M).

We may then take partial derivative in the ϕ(x) direction without using a connection, and write
∂ for the partial derivative in this direction. Now,

|∇g
′
g|g′ = |∇g

′
(g − g′)|g′

= |∇g
′
(F (ϕ)− F (ϕ′))|g′

=
∣∣∣ ∫ 1

0

d

dr
∇g

′(
F (x, ϕ′(x) + r(ϕ(x)− ϕ′(x)))

)
dr
∣∣∣
g′

=
∣∣∣ ∫ 1

0

∇g
′( d
dr
F (x, ϕ′(x) + r(ϕ(x)− ϕ′(x)))

)
dr
∣∣∣
g′

=
∣∣∣ ∫ 1

0

∇g
′(
∂F (x, ϕ′(x) + r(ϕ(x)− ϕ′(x))) · (ϕ(x)− ϕ′(x))

)
dr
∣∣∣
g′

=
∣∣∣ ∫ 1

0

[
(∇g

′
∂F )(x, ϕ′(x) + r(ϕ(x)− ϕ′(x))) + ∂2F (x, ϕ′(x) + r(ϕ(x)− ϕ′(x)))

· ∇g
′
(ϕ′(x) + r(ϕ(x)− ϕ′(x)))

]
· (ϕ(x)− ϕ′(x)) + ∂F (x, ϕ′(x) + r(ϕ(x)− ϕ′(x)))

· ∇g
′
(ϕ(x)− ϕ′(x)) dr

∣∣∣
g′
.

It can be shown, by using the fact that continuous functions are bounded over compact spaces,
that for any φ which is close enough to ϕ′, we have

|∂F (x, φ(x))|g′ ≤ B1 and |∂2F (x, φ(x))|g′ ≤ 2B2

for some constants B1, B2 > 0, and as this is a calculation at a point, B1, B2 are constants depend
only on a small upper bound for |ϕ− ϕ′|g′ . Moreover, if we choose geodesic normal coordinates
at x, then the Christoffel symbols Γ

′k
ij of ∇g′ vanish at x, so ∇g′ reduces to the usual partial

differentiation at x and it follows that

∇g
′
∂F (x, ϕ′(x) + r(ϕ(x)− ϕ′(x))) = 0

since F , and hence ∂F is invariant under translation along the directions of coordinate vectors.
Consequently,

|∇g
′
g|g′ ≤ B1|∇g

′
(ϕ(x)− ϕ′(x))|g′

+ 2B2 |ϕ(x)− ϕ′(x)|g′ ·
∫ 1

0

|∇g
′
(ϕ′(x) + r(ϕ(x)− ϕ′(x)))|g′ dr

≤ B1|∇g
′
(ϕ(x)− ϕ′(x))|g′ +B2 |ϕ(x)− ϕ′(x)|g′ ·

(
|∇g

′
ϕ|g′ + |∇g

′
ϕ′|g′

)
and this finishes the proof of Proposition 3.15. 2
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Applying the above estimates to (3.17) shows that

|d∗ψ|g ≤ C|∇gϕ|g′

≤ C|∇g
′
ϕ|g′ + C|A|g′ · |ϕ|g′

≤ C|∇ω|gM
+ C|∇θ1|gM

+
3
2
C |g−1|g′ · |∇g

′
g|g′ · |ϕ|g′ by (3.18) and (3.20)

≤ C|∇ω|gM
+ C|∇θ1|gM

+ C5

(
B1 |∇g

′
(ϕ− ϕ′)|g′ +B2 |ϕ− ϕ′|g′ · (|∇g

′
ϕ|g′ + |∇g

′
ϕ′|g′)

)
by (3.21) and the fact that g−1 and ϕ are bounded by some constants w.r.t. g′

≤ C|∇ω|gM
+ C|∇θ1|gM

+ C6|∇(ω − ω′)|gM
+ C7|ω − ω′|gM

· (|∇(ω − ω′)|gM
+ 2|∇ω|gM

+ 2|∇θ1|gM
) by (3.19),

where C5, C6, C7 > 0 are some constants. From the second inequality of (i), we have ‖ω−ω′‖C0 ≤
E1t

κ ≤ E1 as t ≤ ε ≤ 1. Combining with condition (ii) shows that

‖d∗ψ‖L12 ≤ C‖∇ω‖L12 + C‖∇θ1‖L12 + C6‖∇(ω − ω′)‖L12

+ C7‖ω − ω′‖C0 · (‖∇(ω − ω′)‖L12 + 2‖∇ω‖L12 + 2‖∇θ1‖L12)

≤ (CE1 + CE1 + C6E1 + C7E1 (E1 + 2E1 + 2E1))t−
1
2+κ.

Thus, together with (3.16), we have verified condition (i) of Theorem 3.13.

Given (iv) and (v), the injectivity radius and the Riemann curvature of g′ = ds2 + gM satisfy
δ(g′) ≥ min(µt, π) = µt for small t, and ‖R(g′)‖C0 ≤ νt−2 for some µ, ν > 0. This is equivalent
to saying that δ(t−2g′) ≥ µ and ‖R(t−2g′)‖C0 ≤ ν. To verify (ii) and (iii) of Theorem 3.13, it is
enough to show that the metrics t−2g and t−2g′ are C2-close w.r.t. t−2g′, since this would imply
δ(t−2g) ≥ µ̃ and ‖R(t−2g)‖C0 ≤ ν̃ for some µ̃, ν̃ > 0, which is what we need. But the second in-
equality of condition (i) and condition (iii) in the hypotheses ensure that ‖g−g′‖C0 , t‖∇(g−g′)‖C0

and t2‖∇2(g − g′)‖C0 are all of size O(tκ), where the connection ∇ and all norms are computed
using g′. It follows that ‖t−2g − t−2g′‖C0 , ‖∇(t−2g − t−2g′)‖C0 and ‖∇2(t−2g − t−2g′)‖C0 are
all of the same size O(tκ), where the connection ∇ and all norms are computed with respect to
t−2g′ this time. Hence t−2g is C2-close to t−2g′ w.r.t. t−2g′.

Therefore Theorem 3.13 gives a torsion-free G2-structure (ϕ̃, g̃) on S1 ×M . It remains to
construct a Calabi–Yau structure on M from (ϕ̃, g̃). Denote ∂

∂s by the Killing vector w.r.t. g

such that ι
(
∂
∂s

)
ds = 1. Then ∂

∂s is also a Killing vector w.r.t. g̃ since (ϕ̃, g̃) is S1-invariant.
Using the fact that Killing vectors on a torsion-free compact G2-manifold are covariant constant
(this can be shown by applying Lemma 10.2.5 of [26] and the Bochner argument on the 2-form
ι(v)ϕ̃ where v is a Killing vector), we have ∇g̃ ∂∂s = 0, and hence

∣∣ ∂
∂s

∣∣
g̃

equals to some constant

c. Define a 1-form ds̃ on S1 ×M by (ds̃)a = 1
c g̃ab

(
∂
∂s

)b. Then ds̃ is closed, of unit length w.r.t.
g̃, and ι

(
∂
∂s

)
ds̃ = c, and we may write ds̃ = c ds + α′ for some closed 1-form α′ on S1 ×M

with ι
(
∂
∂s

)
α′ = 0. The 1-form α′ is thus the pullback of some closed 1-form α on M via the

projection map π : S1 ×M −→M , i.e. α′ = π∗(α). Since by assumption H1(M,R) = 0, α, and
hence α′, is exact. Therefore we have [ds̃] = c [ds].

Using the fact that ∂
∂s is a Killing vector and ϕ̃ is a closed 3-form, we have

d
(
ι
( ∂
∂s

)
ϕ̃
)

= L ∂
∂s
ϕ̃ = 0,
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so ι
(
∂
∂s

)
ϕ̃, and similarly ι

(
∂
∂s

)
(∗g̃ϕ̃) are both S1-invariant closed forms on S1 ×M . Then we

can define a closed 2-form ω̃ and closed 3-forms θ̃1 and θ̃2 on M by

ω̃x =
1
c

(
ι
( ∂
∂s

)
ϕ̃
)

(s,x)

∣∣∣
TxM

, (θ̃1)x = ϕ̃(s,x) − (ds̃ ∧ ω̃)(s,x)|TxM ,

and (θ̃2)x = −1
c

(
ι
( ∂
∂s

) (
∗g̃ ϕ̃

))
(s,x)

∣∣∣
TxM

for each x ∈ M and any s ∈ S1. Identify T(s,x)(S1 ×M) with R7 ∼= R ⊕ C3 such that TxM is
identified with C3, (ϕ̃, g̃) with the flat G2-structure (ϕ0, g0), 1

c (
∂
∂s ) with ∂

∂x1
, and ds̃ with dx1

where x1 is the coordinate on R. Then calculation shows that at each x ∈ M , (J̃ , ω̃, Ω̃) can be
identified with the standard Calabi–Yau structure (J0, ω0,Ω0) on C3, where Ω̃ = θ̃1 + iθ̃2, and J̃
is the associated complex structure. It follows that (J̃ , ω̃, Ω̃) gives a Calabi–Yau structure on M
with ϕ̃ = ds̃ ∧ ω̃ + θ̃1 and ∗g̃ϕ̃ = 1

2 ω̃ ∧ ω̃ − ds̃ ∧ θ̃2 on S1 ×M .

It is not hard to show ‖ω̃−ω‖C0 ≤ Ktκ and, by makingK larger if necessary, ‖Ω̃−Ω‖C0 ≤ Ktκ

provided that ‖ϕ̃ − ϕ‖C0 ≤ Ktκ, which is a consequence from Theorem 3.13. Moreover, as
[ϕ̃] = [ϕ] and [ds̃] = c [ds], it follows that [ω] = c [ω̃] and [θ̃1] = [θ1]. This completes the proof of
Theorem 3.14. 2

Remarks

1. In general we can’t guarantee [Im(Ω̃)] = [Im(Ω)] since, roughly speaking, [Im(Ω̃)] is locally
determined by [Re(Ω̃)], whereas [Im(Ω)] is free to change slightly, as long as the inequality
(3.2) is satisfied. Hence [Im(Ω)] is independent of [Re(Ω)] and it follows that [Im(Ω̃)] can’t
possibly be determined by [Im(Ω)].

2. If H1(M,R) 6= 0, then α′ may not be exact, and we have to modify the cohomological
formula for [Re(Ω̃)] to

[Re(Ω̃)] = [Re(Ω)]− [α] ∪ [ω̃].

3. There is an alternative way of obtaining the Calabi–Yau structure on M from the holonomy
point of view. Since (ϕ̃, g̃) is torsion-free, Hol(g̃) ⊆ G2. Moreover, Hol(g̃) fixes the vector
∂
∂s as ∇g̃ ∂∂s = 0. It turns out that Hol(g̃) actually lies in SU(3) and hence the torsion-free
G2-structure (ϕ̃, g̃) must come from a Calabi–Yau structure on M .



Chapter 3. Desing. of CY 3-folds with conical singularities 47

3.3 Calabi–Yau cones, Calabi–Yau manifolds with conical

singularities and Asymptotically Conical Calabi–Yau

manifolds

In this section we define Calabi–Yau cones, Calabi–Yau manifolds with conical singularities
and Asymptotically Conical Calabi–Yau manifolds. We will give some examples and provide
results analogous to the usual Darboux Theorem on symplectic manifolds for the Calabi–Yau
manifolds with conical singularities and Asymptotically Conical Calabi–Yau manifolds. The
conical singularities in Calabi–Yau 3-folds will be desingularized in section 3.4 by using the ex-
istence result obtained in section 3.2.

3.3.1 Preliminaries on Calabi–Yau cones

We will give our definition of Calabi–Yau cones and provide several examples in this section.
Let us first consider the Cm case. Write Cm as S2m−1 × (0,∞) ∪ {0}, a cone over the (2m− 1)-
dimensional sphere. Let r be a coordinate on (0,∞). Then the standard metric ĝ, Kähler form
ω̂ and holomorphic volume form Ω̂ on Cm can be written as

ĝ = r2ĝ|S2m−1 + dr2, ω̂ = r2ω̂|S2m−1 + rdr ∧ α

and Ω̂ = rmΩ̂|S2m−1 + rm−1dr ∧ β,

where α is a real 1-form and β a complex (m− 1)-form on S2m−1. Hence they scale as

ĝ|S2m−1×{r} = r2ĝ|S2m−1 , ω̂|S2m−1×{r} = r2ω̂|S2m−1

and Ω̂|S2m−1×{r} = rmΩ̂|S2m−1 .

Motivated by this standard case, we give our definition of a Calabi–Yau cone:

Definition 3.16 Let Γ be a compact (2m − 1)-dimensional smooth manifold, and let V =
{0}∪V ′ where V ′ = Γ× (0,∞). Write points on V ′ as (γ, r). V is called a Calabi–Yau cone if V ′

is a Calabi–Yau m-fold with a Calabi–Yau structure (JV , ωV ,ΩV ) and its associated Calabi–Yau
metric gV satisfying

gV = r2gV |Γ×{1} + dr2, ωV = r2ωV |Γ×{1} + rdr ∧ α
(3.22)

and ΩV = rmΩV |Γ×{1} + rm−1dr ∧ β.

Here we identify Γ with Γ× {1}, and α is a real 1-form and β a complex (m− 1)-form on Γ.

We remark here that in Sasaki-Einstein geometry, a Riemannian manifold (M, g) of dimension
(2m− 1) is Sasaki-Einstein if and only if the cone over M with metric r2g + dr2 is Calabi–Yau,
i.e. a Calabi–Yau cone. Thus in our case, V is a Calabi–Yau cone is equivalent to Γ being
Sasaki-Einstein. There has been considerable interest recently in Sasaki-Einstein geometry due
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to a new construction of an infinite family of explicit Sasaki-Einstein metrics on five dimensions,
particularly on S2×S3 [18]. Much work has been done by Boyer and Galicki on Sasaki-Einstein
and 3-Sasakian geometry, see for examples [5] and [6].

Let X be the radial vector field on V such that X(γ,r) = 1
2r

∂
∂r for any (γ, r) ∈ Γ × (0,∞).

Then r2α = 2ι(X)ωV and rmβ = 2ι(X)ΩV . Moreover,

LXωV = d(ι(X)ωV ) as dωV = 0

=
1
2
d(r2α)

=
1
2
r2dα+ rdr ∧ α.

It can be shown that dα = 2ωV |Γ by using dωV = 0 and the formula for ωV in (3.22). Therefore
we have LXωV = ωV . The flow of X thus expands the Kähler form ωV exponentially and X is
then a Liouville vector field, which is a kind of vector field satisfying LXω = ω on a symplectic
manifold (M,ω). In a similar way, we can show LXΩV = m

2 ΩV and LXgV = gV . It follows
that LXJV = 0, and hence X is a holomorphic vector field. In particular, the 1-form α defines
a contact form on Γ, which makes Γ a contact (2m− 1)-fold.

The tangent space T(γ,r)V decomposes as T(γ,r)V = TγΓ⊕ < X(γ,r) >R for any (γ, r) ∈
Γ× (0,∞). Note that Z := JVX is a vector field on Γ, and it is complete as Γ is compact. Now
ι(Z)ωV is a 1-form such that ι(X)(ι(Z)ωV ) = gV (X,X) = 1

4r
2 and ι(Z)ωV

∣∣
Γ×{r} = 0, hence we

can write ι(Z)ωV = 1
2rdr. It follows that

LZωV = d(ι(Z)ωV ) = d(rdr) = 0.

For the holomorphic volume form, we use the fact that if Ω is a holomorphic (m, 0)-form and v

a holomorphic vector field, then LJvΩ = iLvΩ where J is the complex structure. Now Z = JVX

is a holomorphic vector field, this gives LZΩV = imΩV .

Now we define a complex dilation on the Calabi–Yau cone V . The flow of Z generates the
diffeomorphism exp(θZ) on Γ for each θ ∈ R. Thus for each θ ∈ R and t > 0, we can define a
complex dilation ψ on V which is given by ψ(0) = 0 and ψ(γ, r) = (exp(θZ)(γ), tr).

Lemma 3.17 Let ψ : V −→ V be the complex dilation defined above. Then ψ∗(gV ) = t2gV ,
ψ∗(ωV ) = t2ωV and ψ∗(ΩV ) = tmeimθ ΩV .

Proof. It follows from LZωV = 0 that exp(θZ)∗(ωV ) = ωV and hence ψ∗(ωV ) = t2ωV by the
scaling of t. The formula for the metric gV follows similarly. For the holomorphic (m, 0)-form
ΩV , observe that

d

dθ
exp(θZ)∗(ΩV )

∣∣
θ=0

= LZΩV = imΩV ,

and this means exp(θZ)∗(ΩV ) = eimθ ΩV . Thus together with the scaling of t, we have ψ∗(ΩV ) =
tmeimθ ΩV . 2
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In the situation of our standard example Cm, the complex dilation is given by complex mul-
tiplication ψ : Cm −→ Cm sending z to ψz, where ψ = teiθ ∈ C. It is easy to see the above
properties for the standard structures ĝ, ω̂ and Ω̂.

Examples 3.18 A trivial example is given by Cm, a cone on S2m−1. Some nontrivial examples
can be constructed as follows: Let G be a finite subgroup of SU(m) acting freely on Cm \ {0},
then the quotient singularity Cm/G is a Calabi–Yau cone. An example of this type is given by
the Zm-action described in Example 2.6: define an action generated by ζ on Cm by

ζk · (z1, . . . , zm) = (ζk z1, . . . , ζk zm)

where ζ = e2πi/m and 0 ≤ k ≤ m− 1. Note that ζm = 1, so Zm = {1, ζ, . . . , ζm−1} is a subgroup
of SU(m) and acts freely on Cm \{0}. Then Cm/Zm is a Calabi–Yau cone.

Examples 3.19 Consider the cone V defined by the quadric
∑m+1
j=1 z2

j = 0 on Cm+1. As
we have mentioned in Chapter 1, the singularity at the origin is known as an ordinary double
point, or a node. It can be shown that the link Γ of V is an Sm−1-bundle over Sm. We are
particularly interested in the case m = 3. Then Γ has the topology of S2 × S3, and hence
V is topologically a cone on S2 × S3 since any S2-bundle over S3 is trivial. Candelas and
Ossa [11] constructed a Calabi–Yau metric on V , thus making it a Calabi–Yau cone. Under the
correspondence between Sasaki-Einstein metrics on the link and Calabi–Yau metrics on the cone,
the existence of a homogeneous Sasaki-Einstein metrics on S2 × S3 even dates back to the work
of Tanno [51]. One can also describe V as follows. Consider the blow-up C̃4 of C4 at origin. It
introduces an exceptional divisor CP3, and the blow-up Ṽ of the cone V inside C̃4 meets this
CP3 at S ∼= CP1 × CP1. The exceptional divisor CP3 corresponds to the zero section of the line
bundle L given by C̃4 −→ CP3, and so its normal bundle is isomorphic to L. Hence the normal
bundle O(−1,−1) over CP1 × CP1 is isomorphic to the line bundle Ṽ −→ S. This gives us the
following isomorphisms:

V \ {0} ∼= Ṽ \ S ∼= O(−1,−1) \ (CP1 × CP1).

Examples 3.20 Suppose S is Kähler-Einstein with positive scalar curvature, Calabi [10,
p.284-5] constructed a 1-parameter family of Calabi–Yau metrics gt for t ≥ 0 on the canoni-
cal line bundle KS . When t > 0, gt is a nonsingular complete metric on KS and when t = 0, g0
degenerates on S and thus gives a cone metric on KS \S, which then makes KS \S a Calabi–Yau
cone with S “collapsed” to the vertex of the cone.

(i) One of the standard examples of Kähler-Einstein manifolds with positive scalar curvature
is given by the complex surface S ∼= CP1 × CP1. Calabi’s construction thus applies to it
and yields a Calabi–Yau metric on KS = O(−2,−2) −→ S. Note that O(−1,−1) is a
double cover of O(−2,−2) away from the zero section S, so we have the following relation
between the cone KS \ S and the cone V described in Example 3.19:

KS \ S ∼= (V \ {0})/Z2.
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(ii) Boyer, Galicki and Kollár [7] constructed Kähler-Einstein metrics on some compact orb-
ifolds, particularly on orbifolds of the form given by the quotient (L \ {0})/C∗, where
L = {(z1, . . . , zm) ∈ Cm :

∑m
j=1 z

aj

j = 0} for some positive integers aj satisfying cer-
tain conditions. The set L is a hypersurface in Cm, and C∗ acts naturally on Cm by
λ : (z1, . . . , zm) 7→ (λa1z1, . . . , λ

amzm). It follows from Calabi’s construction, in the cate-
gory of orbifolds, that L \ {0} is a Calabi–Yau cone.

3.3.2 Calabi–Yau m-folds with conical singularities

We define Calabi–Yau m-folds with conical singularities in this section. As we have discussed
before, we shall always assume the existence of Calabi–Yau metrics on such kind of singular
manifolds in this thesis. A class of Calabi–Yau m-folds with conical singularities are given by
orbifolds, in which case the existence of such singular Calabi–Yau metrics is known (see [26,
Thm. 6.5.6]). We shall see an example in §3.4.4. After the definition of Calabi–Yau m-folds
with conical singularities, we show that there exist coordinate systems that can trivialize the
symplectic forms of Calabi–Yau m-folds with conical singularities.

Definition 3.21 Let (M0, J0, ω0,Ω0) be a singular Calabi–Yau m-fold with isolated singu-
larities x1, . . . , xn ∈ M0, and no other singularities. We say that M0 is a Calabi–Yau m-fold
with conical singularities xi for i = 1, . . . , n with rate ν > 0 modelled on Calabi–Yau cones
(Vi, JVi , ωVi ,ΩVi) if there exist a small ε > 0, a small open neighbourhood Si of xi in M0, and a
diffeomorphism Φi : Γi × (0, ε) −→ Si \ {xi} for each i such that

|∇k(Φ∗i (ω0)− ωVi)|gVi
= O(rν−k), and (3.23)

|∇k(Φ∗i (Ω0)− ΩVi)|gVi
= O(rν−k) as r → 0 and for all k ≥ 0. (3.24)

Here Γi is the link of Vi, and ∇, | · |gVi
are computed using the cone metric gVi

.

Note that the asymptotic conditions on g0 and J0 follow from those on ω0 and Ω0, namely,

|∇k(Φ∗i (g0)− gVi
)|gVi

= O(rν−k), and (3.25)

|∇k(Φ∗i (J0)− JVi
)|gVi

= O(rν−k) as r → 0 and for all k ≥ 0, (3.26)

and so it is enough to just assume asymptotic conditions on ω0 and Ω0.

We will usually assume that M0 is compact. The point of the definition is that M0 is locally
modelled on Γi× (0, ε) near xi, and as r → 0, all the structures g0, J0, ω0 and Ω0 on M0 converge
to the cone structures gVi , JVi , ωVi and ΩVi with rate ν and with all their derivatives.

Two diffeomorphisms, or two coordinate systems, Φi and Φ′i are equivalent if and only if the
following relation holds:

|∇k(Φi − Φ′i)|gVi
= O(rν+1−k) as r → 0 and for all k ≥ 0.
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Here we interpret the difference between Φi and Φ′i using local coordinates on the image Si\{xi}.
Thus if Φi and Φ′i are equivalent, we have

|∇k(Φ∗i (ω0)− ωVi)|gVi
≤ |∇k(Φ∗i (ω0)− (Φ′i)

∗(ω0))|gVi
+ |∇k((Φ′i)∗(ω0)− ωVi

)|gVi

= O(rν−k) + |∇k((Φ′i)∗(ω0)− ωVi
)|gVi

and we see that Φi satisfies (3.23) (and similarly (3.24)) if and only if Φ′i does.

The 2-forms Φ∗i (ω0) and ωVi
are closed on Γi × (0, ε) and so Φ∗i (ω0)− ωVi

represents a coho-
mology class in H2(Γi× (0, ε),R) ∼= H2(Γi,R). Similarly, Φ∗i (Ω0)−ΩVi

represents a cohomology
class in Hm(Γi × (0, ε),C) ∼= Hm(Γi,C). It turns out that in the conical singularity case, these
two classes [Φ∗i (ω0)− ωVi

] and [Φ∗i (Ω0)− ΩVi
] are automatically zero:

Lemma 3.22 Let (M0, J0, ω0,Ω0) be a compact Calabi–Yau m-fold with conical singularities
xi for i = 1, . . . , n with rate ν > 0 modelled on Calabi–Yau cones (Vi, JVi , ωVi ,ΩVi). Then
[Φ∗i (ω0)− ωVi ] = 0 in H2(Γi,R) and [Φ∗i (Ω0)− ΩVi ] = 0 in Hm(Γi,C).

Proof. Suppose Σi is a 2-cycle in Γi for i = 1, . . . , n. Then∫
Σi×{r}

(
Φ∗i (ω0)− ωVi

)
= vol(Σi) ·O(rν) by (3.23)

= O(rν+2)

Hence ν > 0 implies the above integral approaches 0 as r → 0. Then

[Φ∗i (ω0)− ωVi ] · [Σi] = 0

for any 2-cycle Σi, and hence [Φ∗i (ω0)− ωVi
] = 0 ∈ H2(Γi × (0, ε),R) ∼= H2(Γi,R). The case for

[Φ∗i (Ω0)− ΩVi ] follows similarly by considering m-cycles in Γi. 2

One may ask whether the symplectic form ω0 on Si near xi in M0 can actually be symplec-
tomorphic to the cone form ωVi

near the origin, rather than just having an asymptotic relation
in (3.23). Theorem 3.24 below shows that this is indeed the case for Calabi–Yau m-folds with
conical singularities, and can be regarded as an analogue of the usual Darboux theorem on sym-
plectic manifolds. Before that, we need the following lemma:

Lemma 3.23 Let Xt,i be a smooth family of vector fields on Γi × (0, ε) for t ∈ [0, 1] and
i = 1, . . . , n with |Xt,i|gVi

= O(rδ) for some δ > 1. Then there exist an ε′ ∈ (0, ε) and a family
of smooth maps ψt,i : Γi × (0, ε′) −→ Γi × (0, ε) such that ψt,i is a diffeomorphism with its image
and satisfies

d

dt
ψt,i(γ, r) = Xt,i|ψt,i(γ,r) ∈ Tψt,i(γ,r)(Γi × (0, ε′)), ψ0,i(γ, r) = (γ, r)

for all (γ, r) ∈ Γi × (0, ε′) and all t ∈ [0, 1], i = 1, . . . , n.
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This may be proved using the method of [41, p. 93-95]. Roughly speaking, the condition that
|Xt,i|gVi

= O(rδ) for some δ > 1 prevents the r-coordinate of ψt,i(γ, r) from going to 0 or ε for
small r and for any t ∈ [0, 1], and therefore ψt,i(γ, r) exists for all t ∈ [0, 1].

Theorem 3.24 Let (M0, J0, ω0,Ω0) be a compact Calabi–Yau m-fold with conical singularities
xi for i = 1, . . . , n with rate ν > 0 modelled on Calabi–Yau cones (Vi, JVi

, ωVi
,ΩVi

). Then there
exist an ε′ > 0, an open neighbourhood S′i of xi and a diffeomorphism Φ′i : Γi×(0, ε′) −→ S′i\{xi}
for each i such that (Φ′i)

∗(ω0) = ωVi and |∇k((Φ′i)∗(Ω0)− ΩVi)|gVi
= O(rν−k) for all k ≥ 0.

Proof. By the definition of a Calabi–Yau m-fold with conical singularities, there is an ε > 0 and a
diffeomorphism Φi : Γi×(0, ε) −→ Si \{xi} for each i such that |∇k(Φ∗i (ω0)−ωVi)|gVi

= O(rν−k)
as r → 0 and for all k ≥ 0. Write ωi = Φ∗i (ω0). Thus we have two symplectic forms, namely the
cone form ωVi

and the asymptotic cone form ωi on Γi × (0, ε). Following Moser’s proof of the
usual Darboux Theorem [41, p.93], we construct a 1-parameter family of closed 2-forms

ωt,i = ωVi
+ t(ωi − ωVi

) for t ∈ [0, 1] (3.27)

on Γi × (0, ε). Make ε smaller if necessary so that ωt,i is symplectic for all t ∈ [0, 1]. Then

d

dt
ωt,i = ωi − ωVi . (3.28)

By Lemma 3.22, [ωi−ωVi
] = 0 in H2(Γi,R) and hence ωi−ωVi

is exact. Suppose ηi = ωi−ωVi
,

and write ηi as ηi0(γ, r) + ηi1(γ, r)∧ dr, where ηi0(γ, r) ∈ Λ2T ∗γΓi and ηi1(γ, r) ∈ Λ1T ∗γΓi. Then ηi

is an exact 2-form such that
d

dt
ωt,i = ηi.

Now we want to choose a 1-form σi such that ηi = dσi. Define

σi(γ, r) = −
∫ r

0

ηi1(γ, s)ds. (3.29)

By the fact that |ηi|gVi
= |ωi − ωVi

|gVi
= O(rν) as r → 0, we have |ηi0|gVi

= O(rν) = |ηi1|gVi

as r → 0. For each fixed r, ηi1(γ, r) is a 1-form on Γi ∼= Γi × {1}, and so |ηi1(γ, r)|gVi
|Γi×{1}

=
r|η1,i(γ, r)|gVi

= O(rν+1). Then σi is well-defined since ηi1 is of size O(rν+1) w.r.t. the fixed
metric gVi |Γi×{1} where ν + 1 > −1 as ν > 0. It follows by integration that σi(γ, r) is of size
O(rν+2) w.r.t. the fixed metric gVi |Γi×{1} and of size O(rν+1) w.r.t. the cone metric gVi .

Since dηi = 0, we have dΓi
ηi0 = 0 and

∂ηi0
∂r

+ dΓi
ηi1 = 0, (3.30)

where dΓi
denotes the exterior differentiation in the γ direction. Therefore,

dσi(γ, r) = −
∫ r

0

dΓi(η
i
1(γ, s))ds− dr ∧

∂

∂r

(∫ r

0

ηi1(γ, s)ds
)

=
∫ r

0

∂ηi0
∂s

(γ, s)ds− dr ∧ ηi1(γ, r) by (3.30).
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Applying the argument before, the 2-form ηi0 is of size O(rν+2) w.r.t. the fixed metric gVi |Γi×{1}.
Thus |ηi0(γ, s)|gVi

|Γi×{1}
→ 0 as s → 0. This gives dσi(γ, r) = ηi0(γ, r) + ηi1(γ, r) ∧ dr = ηi(γ, r).

Therefore, we obtain a 1-form σi on Γi × (0, ε) such that

d

dt
ωt,i = dσi.

Now from the definition of σi(γ, r), it can be shown that

|∇kσi(γ, r)|gVi
|Γi×{1}

≤ k |∇k−1ηi1(γ, r)|gVi
|Γi×{1}

+
∫ r

0

|∇kηi1(γ, s)|gVi
|Γi×{1}

ds.

Moreover, the (0, k + 1)-tensor ∇kηi1 satisfies

|∇kηi1(γ, s)|gVi
|Γi×{1}

= sk+1 |∇kηi1(γ, s)|gVi
= sk+1O(sν−k) = O(sν+1)

as |ηi1(γ, s)|gVi
= O(sν). Thus the integral in the right hand side of the above inequality converges.

Note that we have the same condition for σi(γ, r) and its k-th derivative ∇kσi(γ, r) to be well-
defined, namely ν+1 > −1, which holds automatically in our case where ν > 0. We then deduce
that |∇kσi(γ, r)|gVi

|Γi×{1}
= O(rν+2) and hence

|∇kσi(γ, r)|gVi
= O(rν−k+1) as r → 0 and for all k ≥ 0. (3.31)

Now define a family of vector fields Xt,i via

σi + ι(Xt,i)ωt,i = 0.

Then we have

|∇kXt,i|gVi
= O(rν−k+1) as r → 0 and for all k ≥ 0. (3.32)

Lemma 3.23 thus yields a family of diffeomorphisms ψt,i on Vi such that ψ∗t,i(ω
t,i) = ω0,i. In

particular, we have constructed ψ1,i : Γi × (0, ε′) −→ Γi × (0, ε) for some ε′ ∈ (0, ε) which is a
diffeomorphism with its image satisfying

ψ∗1,i(ω) = ψ∗1,i(ω
1,i) = ω0,i = ωVi

.

Write Φ′i = Φi ◦ ψ1,i and S′i = Φi ◦ ψ1,i(Γi × (0, ε′)), then Φ′i : Γi × (0, ε′) −→ S′i \ {xi} is a
diffeomorphism such that

(Φ′i)
∗(ω0) = ψ∗1,i(Φ

∗
i (ω0)) = ψ∗1,i(ω

i) = ωVi
,

as required.

From (3.32) we have |∇kψt,i|gVi
= O(rν−k+1) for all k ≥ 0 since, roughly speaking, ψt,i =

Id +
∫ t
0
Xs,ids to the first order. It doesn’t exactly make sense as ψt,i and Id map to different

points on Vi. But we could express them in terms of local coordinates (x1, . . . , x2m−1, r) on
Γi × (0, ε′). Let ψjt,i(x1, . . . , x2m−1, r) be the j-th component function of ψt,i for j = 1, . . . , 2m.
Then ∂k(ψjt,i(x1, . . . , x2m−1, r) − xj) = O(rν−k+1) for j = 1, . . . , 2m − 1 and for all k ≥ 0, and
∂k(ψ2m

t,i (x1, . . . , x2m−1, r) − r) = O(rν−k+1) for all k ≥ 0 where ∂ denotes the usual partial
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differentiation at the point (x1, . . . , x2m−1, r). It follows that ∂k(ψt,i−Id)(x1, . . . , x2m−1, r) =
O(rν−k+1) for all k ≥ 0. Consequently we have

|∂k(ψt,i − Id)∗(Φ∗i (Ω0))|gVi
= O(rν−k)

at the point (x1, . . . , x2m−1, r). As a result, we have at each point on Γi × (0, ε′)∣∣∇k((Φ′i)∗(Ω0)− ΩVi
)
∣∣
gVi

=
∣∣∇k(ψ∗1,i(Φ∗i (Ω0))− ΩVi

)
∣∣
gVi

≤
∣∣∂k(ψ∗1(Φ∗i (Ω0))− Φ∗i (Ω0))

∣∣
gVi

+
∣∣∂k(Φ∗i (Ω0)− ΩVi

)
∣∣
gVi

= O(rν−k) +O(rν−k) = O(rν−k)

for all k ≥ 0. This completes the proof. 2

3.3.3 Asymptotically Conical Calabi–Yau m-folds

In the last part we study Asymptotically Conical (AC) Calabi–Yau m-folds. We shall provide
some examples and give an analogue of Theorem 3.24 for AC Calabi–Yau m-folds.

Definition 3.25 Let (V, JV , ωV ,ΩV ) be a Calabi–Yau cone of complex dimension m with link
Γ. Let (Y, JY , ωY ,ΩY ) be a complete, nonsingular Calabi–Yau m-fold. Then Y is an Asymptoti-
cally Conical (AC) Calabi–Yau m-fold with rate λ < 0 modelled on (V, JV , ωV ,ΩV ) if there exist
a compact subset K ⊂ Y , and a diffeomorphism Υ : Γ× (R,∞) −→ Y \K for some R > 0 such
that

|∇k(Υ∗(ωY )− ωV )|gV
= O(rλ−k), and (3.33)

|∇k(Υ∗(ΩY )− ΩV )|gV
= O(rλ−k) as r →∞ and for all k ≥ 0. (3.34)

Here ∇ and | · | are computed using the cone metric gV .

Similar asymptotic conditions on gY and JY can be deduced from (3.33) and (3.34). The
coordinates Υ and Υ′ are equivalent if and only if |∇k(Υ − Υ′)|gV

= O(rλ+1−k) as r → ∞ and
for all k ≥ 0.

Remark If Y is an AC Calabi–Yau m-fold which is not a Cm, then Y can only have one
end, or equivalently, the link Γ is connected. One can show this by using the Cheeger-Gromoll
splitting theorem (see for example [3, §6.G]). Suppose Y has more than one end. As Y is complete
and Ricci-flat, Cheeger-Gromoll splitting theorem tells us that we can always split off a line so
that Y is isometric to a product N×C, where C carries the Euclidean metric. Now, either N is a
flat Cm−1, in which case Y = Cm, or N has nonzero curvature at some p ∈ N , in which case the
curvature of N ×C is of order O(1) as we go to infinity in {p}×C. But then this contradicts the
AC condition which requires the curvature to decay at O(r−2). Therefore Y cannot have more
than one end, and so from now on, we shall always take the link Γ to be a compact, connected
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(2m − 1 )-dimensional Sasaki-Einstein manifold.

Unlike the conical singularity case, [Υ∗(ωY ) − ωV ] and [Υ∗(ΩY ) − ΩV ] need not be zero co-
homology classes. Here are some conditions:

Lemma 3.26 Let (Y, JY , ωY ,ΩY ) be an AC Calabi–Yau m-fold with rate λ < 0 modelled on
Calabi–Yau cones (V, JV , ωV ,ΩV ). If λ < −2 or H2(Γ,R) = 0, then [Υ∗(ωY ) − ωV ] = 0. If
λ < −m or Hm(Γ,C) = 0, then [Υ∗(ΩY )− ΩV ] = 0.

The proof of it is similar to that of Lemma 3.22, except we now have O(rλ+2) for the integral
of the difference of symplectic forms and O(rλ+m) for the holomorphic (m, 0)-forms. Hence if
λ < −2, the integral approaches 0 as r → ∞, which implies [Υ∗(ωY ) − ωV ] = 0. The same
argument applies to the holomorphic (m, 0)-forms.

We shall normally consider the case λ < −2, so that Υ∗(ωY ) − ωV is always exact. More-
over, when λ < −2, the proof for the analogue of Darboux Theorem works similarly to that
for the conical singularities case. It is not clear whether the theorem holds for λ ≥ −2 and
[Υ∗(ωY )− ωV ] = 0 or not.

Theorem 3.27 Let (Y, JY , ωY ,ΩY ) be an AC Calabi–Yau m-fold with rate λ < −2 mod-
elled on Calabi–Yau cones (V, JV , ωV ,ΩV ). Then there exist a R′ > 0 and a diffeomorphism
Υ′ : Γ× (R′,∞) −→ Y \K such that (Υ′)∗(ωY ) = ωV and |∇k((Υ′)∗(ΩY )− ΩV )|gV

= O(rλ−k)
for all k ≥ 0.

One can prove it in the same way as the proof of Theorem 3.24. The condition on the rate
λ is essential for this proof to work. Since |η1|gV

= O(rλ), we need λ < −2 to construct the
1-form σ. Moreover, in proving Theorem 3.24, we encountered the norm of η0(γ, r) w.r.t. the
fixed metric: |η0(γ, r)|gV |Γ×{1} = r2|η0(γ, r)|gV

, which is equal to O(rλ+2) in this case. Therefore
we need λ < −2 in order to have η0 → 0 as r →∞.

Examples 3.28 Let G be a finite subgroup of SU(m) acting freely on Cm \ {0}, and (X,π)
a crepant resolution of the Calabi–Yau cone V = Cm/G given in Example 3.18. Then in each
Kähler class of ALE Kähler metrics on X there is a unique ALE Ricci-flat Kähler metric (see
Joyce [26], Chapter 8) and X is then an AC Calabi–Yau m-fold asymptotic to the cone Cm/G.
In this case, it follows from [26, Thm. 8.2.3] that the rate λ is −2m.

If we take G = Zm acting on Cm as in Example 3.18, then a crepant resolution is given by
the blow-up of Cm/Zm at 0, which is also the total space of the canonical line bundle KCPm−1

over CPm−1. An explicit ALE Ricci-flat Kähler metric is given in [10, p.284-5] and also in [26,
Example 8.2.5]. We have seen this in Example 2.6.

Examples 3.29 Consider the Calabi–Yau cone V = {z2
1 + z2

2 + z2
3 + z2

4 = 0} described in
Example 3.19. As we have discussed in Chapter 1, manifolds with such kind of singular points are
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known as conifolds, and there are two different ways of repairing the singularities, corresponding
to two kinds of AC Calabi–Yau manifolds. The first one is called the small resolution of V , given
by

Ṽ =
{
((z1, . . . , z4), [w1, w2]) ∈ C4 × CP1 : z1w2 = z4w1, z3w2 = z2w1

}
.

It is essentially isomorphic to the normal bundle O(−1) ⊕ O(−1) over CP1 with fibre C2, and
is also isomorphic to V away from the origin where it is replaced by the whole CP1. Note that
one can obtain a second small resolution by swapping z3 and z4 in Ṽ . Candelas and de la Ossa
[11, p.258] constructed Calabi–Yau metrics on Ṽ , and it is an AC Calabi–Yau 3-fold with rate −2.

The other is known as the deformation or smoothing, where V is deformed to Qε = {z2
1 +

z2
2 + z2

3 + z2
4 = ε} with ε a nonzero constant. This has the effect of replacing the node by an S3.

We have seen this in Example 2.7, in which we mentioned that the cotangent bundle T ∗S3 of S3

can be identified with Q1, or Qε, and there is a symplectomorphism which identifies the stan-
dard symplectic form on C4 restricted to Qε and the canonical symplectic form on the cotangent
bundle T ∗S3 of S3. More importantly, Stenzel [48, p.161] constructed a Calabi–Yau metric on
Qε whose Kähler potential has to satisfy a certain ordinary differential equation. Thus Qε, or
equivalently T ∗S3, is an AC Calabi–Yau 3-fold (with rate λ = −3). More details will be given
in §4.6 of Chapter 4.

Examples 3.30 Calabi [10, p.284-5] constructed a 1-parameter family of AC Calabi–Yau
metrics on the canonical bundle KS of any Kähler-Einstein (m − 1)-fold S with positive scalar
curvature, so that KS is an AC Calabi–Yau m-fold modelled on the Calabi–Yau cone KS \ S
with rate λ = −2m.

For the case in Example 3.20 (i), the O(−2,−2)-bundle is AC Calabi–Yau asymptotic to the
cone O(−2,−2) \ (CP1 × CP1) with rate −6.

Note that if we take S = CPm−1, then we recover the case in Example 3.28 with G = Zm.

3.4 Calabi–Yau desingularizations

This section studies desingularizations of a compact Calabi–Yau 3-fold M0 with conical sin-
gularities using an AC Calabi–Yau 3-fold Yi with rate λi for i = 1, . . . , n. We shall only treat
the simplest case here, in which λi < −3 so that Υ∗

t,i(t
3ΩYi

)− ΩVi
is exact by Lemma 3.26. We

explicitly construct a 1-parameter family of diffeomorphic, nonsingular compact 6-folds Mt for
small t in §3.4.1. Then in §3.4.2 we construct a real closed 2-form ωt and a complex closed 3-form
Ωt on Mt and show that they give nearly Calabi–Yau structures on Mt for small enough t. Sec-
tion 3.4.3 contains the main result of this chapter, in which we show that the nearly Calabi–Yau
structure (ωt,Ωt) on Mt can be deformed to a genuine Calabi–Yau structure (ω̃t, Ω̃t) for small
t by applying Theorem 3.14. Finally in §3.4.4, we apply our result to some examples studied
before. We shall also discuss the case when λi = −3.
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3.4.1 Construction of Mt

Let (M0, J0, ω0,Ω0) be a compact Calabi–Yau 3-fold with conical singularities xi with rate ν
modelled on Calabi–Yau cones (Vi, JVi

, ωVi
,ΩVi

) for i = 1, . . . , n. By Theorem 3.24, there exists
an ε > 0, a small open neighbourhood Si of xi in M0 and a diffeomorphism Φi : Γi × (0, ε) −→
Si \ {xi} for each i such that Φ∗i (ω0) = ωVi .

Let (Yi, JYi
, ωYi

,ΩYi
) be an AC Calabi–Yau 3-fold with rate λi < −3 modelled on the same

Calabi–Yau cone Vi. Theorem 3.27 shows that there is a diffeomorphism Υi : Γi × (R,∞) −→
Yi \Ki for some R > 0 such that

Υ∗
i (ωYi

) = ωVi
and |∇k(Υ∗

i (ΩYi
)− ΩVi

)|gVi
= O(rλi−k)

as r →∞ for all k ≥ 0. We then apply a homothety to Yi such that

(Yi, JYi
, ωYi

,ΩYi
) 7−→ (Yi, JYi

, t2ωYi
, t3ΩYi

).

Then (Yi, JYi , t
2ωYi , t

3ΩYi) is also an AC Calabi–Yau 3-fold, with the diffeomorphism Υt,i :
Γi × (tR,∞) −→ Yi \Ki given by

Υt,i(γ, r) = Υi(γ, t−1r).

Our goal is to desingularize (M0, J0, ω0,Ω0) by gluing (Yi, JYi , t
2ωYi , t

3ΩYi) in at xi to produce
a family of compact nonsingular Calabi–Yau 3-folds.

Fix α ∈ (0, 1) and let t > 0 be small enough that tR < tα < 2tα < ε. Define

Pt,i = Ki ∪Υt,i(Γi × (tR, 2tα)) ⊂ Yi and

Qt = M0 \
n⋃
i=1

Φi(Γi × (0, tα)) ⊂M0

The diffeomorphism Φi ◦ Υ−1
t,i identifies Υt,i(Γi × (tα, 2tα)) ⊂ Pt,i and Φi(Γi × (tα, 2tα)) ⊂ Qt,

and we define the intersection Pt,i∩Qt to be the region Υt,i(Γi× (tα, 2tα)) ∼= Φi(Γi× (tα, 2tα)) ∼=
Γi× (tα, 2tα). Define Mt to be the quotient space of the union (

⋃n
i=1 Pt,i)∪Qt under the equiva-

lence relation identifying the two annuli Υt,i(Γi×(tα, 2tα)) and Φi(Γi×(tα, 2tα)) for i = 1, . . . , n.
Then Mt is a smooth nonsingular compact 6-fold for each t.

3.4.2 Nearly Calabi–Yau structures (ωt, Ωt): the case λi < −3

In this section we construct on Mt a real closed 2-form ωt and a complex closed 3-form Ωt,
and show they together give nearly Calabi–Yau structures on Mt for small enough t. Define

ωt =

 ω0 on Qt,

t2ωYi
on Pt,i for i = 1, . . . , n.
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This is well-defined as Φ∗i (ω0) = ωVi = Υ∗
t,i(t

2ωYi) on each intersection Pt,i ∩ Qt by Theorem
3.24 and 3.27. Thus ωt gives a symplectic form on Mt.

Let F : R −→ [0, 1] be a smooth, increasing function with F (s) = 0 for s ≤ 1 and F (s) = 1
for s ≥ 2. Then for r ∈ (tR, ε), F (t−αr) = 0 for tR < r ≤ tα and F (t−αr) = 1 for 2tα ≤ r < ε.
We now define a complex 3-form on Mt. From (3.24), we have |Φ∗i (Ω0) − ΩVi |gVi

= O(rν). As
ν > 0, it follows that Φ∗i (Ω0)− ΩVi is exact, and we can write

Φ∗i (Ω0) = ΩVi + dAi (3.35)

for some complex 2-form Ai(γ, r) on Γi × (0, ε) satisfying

|∇kAi(γ, r)|gVi
= O(rν+1−k) as r → 0 for all k ≥ 0. (3.36)

The case k = 0 follows by defining Ai by integration as in Theorem 3.24. Similarly, as we have
assumed λi < −3 to simplify the problem, the 3-form Υ∗

i (ΩYi
)−ΩVi

is exact by Lemma 3.26 and
we can write

Υ∗
i (ΩYi

) = ΩVi
+ dBi

for some complex 2-form Bi(γ, r) on Γi × (R,∞) satisfying

|∇kBi(γ, r)|gVi
= O(rλi+1−k) as r →∞ and for all k ≥ 0.

Then we apply a homothety to Yi and rescale the forms to get Bi(γ, t−1r) on Γi × (tR,∞) such
that

Υ∗
t,i(t

3ΩYi
) = ΩVi

+ t3dBi(γ, t−1r) (3.37)

and

|∇kBi(γ, t−1r)|gVi
= O(t−λi−3rλi+1−k) for r > tR and for all k ≥ 0. (3.38)

Define a smooth, complex closed 3-form Ωt on Mt by

Ωt =


Ω0 on Qt \

[
(
⋃n
i=1 Pt,i) ∩Qt

]
,

ΩVi
+ d
[
F (t−αr)Ai(γ, r) + t3(1− F (t−αr))Bi(γ, t−1r)

]
on Pt,i ∩Qt, for i = 1, . . . , n,

t3ΩYi on Pt,i \ (Pt,i ∩Qt) for i = 1, . . . , n.

(3.39)

Note that when 2tα ≤ r < ε we have F (t−αr) = 1 so that Ωt = Φ∗i (Ω0) by (3.35), and when
tR < r ≤ tα we have F (t−αr) = 0, so that Ωt = Υ∗

t,i(t
3ΩYi

) by (3.37). Therefore, Ωt interpolates
between Φ∗i (Ω0) near r = ε and Υ∗

t,i(t
3ΩYi

) near r = tR.

Recall that if we get a real closed 2-form ω and a complex 3-form Ω which are sufficiently close
to the Kähler form ω̃ and the holomorphic volume form Ω̃ of a Calabi–Yau structure respectively,
then Proposition 3.6 tells us that (ω,Ω) gives a nearly Calabi–Yau structure on the manifold.
Making use of this idea, we have

Proposition 3.31 Let Mt, ωt and Ωt be defined as above. Then (ωt,Ωt) gives a nearly Calabi–
Yau structure on Mt for sufficiently small t.
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Proof. We only have to prove the statement on each Pt,i ∩Qt, as (Mt, ωt,Ωt) is Calabi–Yau on
Pt,i \ (Pt,i ∩Qt) and on Qt \

[
(
⋃n
i=1 Pt,i) ∩Qt, and hence is nearly Calabi-Yau. We prove it by

applying Proposition 3.6, that is, we show on each Pt,i ∩Qt that (ωt,Ωt) is sufficiently close to
the genuine Calabi–Yau structure (ωVi

,ΩVi
) coming from the Calabi–Yau cone Vi for small t. We

choose to compare with (ωVi
,ΩVi

) rather than either of the Calabi–Yau structures (ω0,Ω0) and
(t2ωYi , t

3ΩYi) on Pt,i ∩ Qt since we have already got bounds on norms for various forms w.r.t.
the cone metric gVi . Now ωt = ωVi on Pt,i ∩Qt, while

Ωt − ΩVi = d
[
F (t−αr)Ai(γ, r) + t3(1− F (t−αr))Bi(γ, t−1r)

]
on Pt,i ∩Qt

by (3.39). Calculation shows that

|(Ωt − ΩVi
)(γ, r)|gVi

= O(t−λi(1−α)) +O(tαν) for r ∈ (tα, 2tα), (3.40)

and hence |Ωt − ΩVi
|gVi
≤ C0t

γ where C0 > 0 is some constant and γ = min(−λi(1 − α), αν).
Hence Proposition 3.6 applies with ε = C0t

γ if t is small enough such that C0t
γ ≤ ε1, and so

(ωt,Ωt) gives a nearly Calabi–Yau structure on Pt,i ∩Qt. This completes the proof. 2

Therefore we can associate an almost complex structure Jt and a real 3-form θ′2,t such that
Ω′t := Re(Ωt) + iθ′2,t is a (3,0)-form w.r.t. Jt. Moreover, we have the 2-form ω′t, which is the
rescaled (1,1)-part of ωt w.r.t. Jt, and the associated metric gt on Mt. Following similar argu-
ments to Proposition 3.6, we conclude that |gt−gVi

|gVi
= O(t−λi(1−α))+O(tαν) = |g−1

t −g−1
V |gVi

.

3.4.3 The main result

We are now ready to prove our first main result in this thesis: the desingularization of com-
pact Calabi–Yau 3-folds M0 with conical singularities in the simplest case λi < −3, assuming the
existence of singular Calabi–Yau metrics on them. We prove it using Theorem 3.14, the analytic
existence result for genuine Calabi–Yau structures.

Theorem 3.32 Suppose (M0, J0, ω0,Ω0) is a compact Calabi–Yau 3-fold with conical singu-
larities xi with rate ν > 0 modelled on Calabi–Yau cones (Vi, JVi

, ωVi
,ΩVi

) for i = 1, . . . , n. Let
(Yi, JYi , ωYi ,ΩYi) be an AC Calabi–Yau 3-fold with rate λi < −3 modelled on the same Calabi–
Yau cone Vi. Define a family (Mt, ωt,Ωt) of nonsingular compact nearly Calabi–Yau 3-folds, with
the associated metrics gt as in §3.4.1 and §3.4.2.

Then Mt admits a Calabi–Yau structure (J̃t, ω̃t, Ω̃t) such that ‖ω̃t − ωt‖C0 ≤ Ktκ and
‖Ω̃t − Ωt‖C0 ≤ Ktκ for some κ,K > 0 and for sufficiently small t. The cohomology classes
satisfy [Re(Ωt)] = [Re(Ω̃t)] ∈ H3(Mt,R) and [ωt] = ct [ω̃t] ∈ H2(Mt,R) for some ct > 0. Here
all norms are computed with respect to gt.

Proof. First we estimate the norms of ωt − ω′t and Im(Ωt) − θ′2,t = Im(Ωt) − Im(Ω′t) on each
Pt,i∩Qt, as in part (i) of Theorem 3.14. Since ω′t depends on Re(Ωt) and ωt (= ωVi on Pt,i∩Qt)
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on Re(ΩVi), it follows that

|ωt − ω′t|gt ≤ C1|ωt − ω′t|gVi
≤ C2|Re(Ωt)− Re(ΩVi)|gVi

≤ C2|Ωt − ΩVi |gVi

= O(t−λi(1−α)) +O(tαν)

for some constants C1, C2 > 0 and hence

‖ωt − ω′t‖C0 = O(t−λi(1−α)) +O(tαν). (3.41)

From the fact that vol(Pt,i ∩Qt) = O(t6α), we have

‖ωt − ω′t‖L2 = O(t6α/2) · ‖ωt − ω′t‖C0 = O(t3α−λi(1−α)) +O(t3α+αν). (3.42)

Furthermore,

|Im(Ωt)− Im(Ω′t)|gt ≤ C3 |Im(Ωt)− Im(Ω′t)|gVi

≤ C3 |Im(Ωt)− Im(ΩVi)|gVi
+ C3 |Im(ΩVi)− Im(Ω′t)|gVi

≤ C3 |Ωt − ΩVi |gVi
+ C4 |Re(ΩVi)− Re(Ωt)|gVi

= O(t−λi(1−α)) +O(tαν)

for some constants C3, C4 > 0, as Im(ΩVi) is determined by Re(ΩVi) and Im(Ωt)′ by Re(Ωt).
Therefore,

‖Im(Ωt)− Im(Ω′t)‖C0 = O(t−λi(1−α)) +O(tαν) (3.43)

and

‖Im(Ωt)− Im(Ω′t)‖L2 = O(t3α−λi(1−α)) +O(t3α+αν). (3.44)

It can be deduced from (3.39) and (3.40) that |∇gt(Ωt−ΩVi
)|gt

= O(t−λi(1−α)−α)+O(tαν−α)
and |(∇gt)2(Ωt − ΩVi

)|gt
= O(t−λi(1−α)−2α) +O(tαν−2α), which imply the equalities

‖∇gt(ωt − ω′t)‖C0 = O(t−λi(1−α)−α) +O(tαν−α) (3.45)

and

‖(∇gt)2(ωt − ω′t)‖C0 = O(t−λi(1−α)−2α) +O(tαν−2α). (3.46)

Then the L12-norm satisfies

‖∇gt(ωt − ω′t)‖L12 = O(t6α/12) · ‖∇gt(ωt − ω′t)‖C0

= O(t−
α
2−λi(1−α)) +O(t−

α
2 +αν). (3.47)

Finally, we estimate the L12-norms of ∇gtωt and ∇gtRe(Ωt). Note that

|∇gtωt|gt
≤ C5 |(∇gt −∇gVi )ωt |gVi

+ C5 |∇gViωt|gVi
= C5 |(∇gt −∇gVi )ωt |gVi

for some constant C5 > 0, as ωt = ωVi
on Pt,i ∩Qt and ∇gViωVi

= 0. Then

|∇gtωt|gt
≤ C5 |(∇gt −∇gVi )|gVi

· |ωt|gVi

≤ 3
2
C5 |g−1

t |gVi
· |∇gVi gt|gVi

· |ωt|gVi
by (3.20)

= C6|∇gVi (gt − gVi
)|gVi

as ∇gVi gVi
= 0.
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Here C6 is an upper bound for 3
2 C5 |g−1

t |gVi
· |ωt|gVi

which is independent of t. It follows that

|∇gtωt|gt
= O(t−λi(1−α)−α) +O(tαν−α),

and consequently

‖∇gtωt‖L12 = O(t−
α
2−λi(1−α)) +O(t−

α
2 +αν). (3.48)

A similar argument shows

‖∇gtRe(Ωt)‖L12 = O(t−
α
2−λi(1−α)) +O(t−

α
2 +αν). (3.49)

Now for parts (i) to (iii) of Theorem 3.14 to hold, we need:

−λi(1− α) ≥ κ, αν ≥ κ from (3.41) and (3.43),

3α− λi(1− α) ≥ 3 + κ, 3α+ αν ≥ 3 + κ from (3.42) and (3.44),

−α2 − λi(1− α) ≥ − 1
2 + κ, −α2 + αν ≥ −1

2 + κ from (3.47), (3.48) and (3.49),

−λi(1− α)− α ≥ κ− 1, αν − α ≥ κ− 1 from (3.45),

−λi(1− α)− 2α ≥ κ− 2, αν − 2α ≥ κ− 2 from (3.46).

Observe that the second set of inequalities imply all the others, as α ≤ 1. Therefore, calcu-
lations using these two inequalities show that there exist solutions α ∈ (0, 1) and κ > 0 for any
ν > 0 and λi < −3. For example, we could take

α =
1
2

(
6 + ν

3 + ν

)
∈ (0, 1) and κ = min

(
(1− α)(−3− λ1), . . . , (1− α)(−3− λn),

ν

2

)
> 0.

For parts (iv) and (v) of Theorem 3.14, note that under the homothety gYi
7→ t2gYi

on the
AC Calabi–Yau 3-fold Yi we have δ(t2gYi) = t δ(gYi) and ‖R(t2gYi)‖C0 = t−2‖R(gYi)‖C0 . More-
over, the dominant contributions to δ(gt) and ‖R(gt)‖C0 for small t come from δ(t2gYi) and
‖R(t2gYi

)‖C0 which are proportional to t and t−2. Thus there exist constants E3, E4 > 0 such
that (iv), (v) of Theorem 3.14 hold for sufficiently small t. Hence by Theorem 3.14, Mt admits a
Calabi–Yau structure (J̃t, ω̃t, Ω̃t) such that ‖ω̃t−ωt‖C0 ≤ Ktκ and ‖Ω̃t−Ωt‖C0 ≤ Ktκ for some
κ,K > 0 and for sufficiently small t.

Finally, the cohomology condition in Theorem 3.14 holds automatically here. This can be
seen by applying the following lemma:

Lemma 3.33 Let (Y, JY , ωY ,ΩY ) be an AC Calabi–Yau m-fold with rate λ < 0 modelled on
a Calabi–Yau cone (V, JV , ωV ,ΩV ) with link Γ. Then Y has holonomy {1}, or Gn Sp(m/2) for
some finite group G and m even, or SU(m).

Remark A related argument in the ALE case is given by Joyce [26, Thm. 8.2.4] in which he
shows that Hol(gY ) = SU(m) when Y is the crepant resolution of the Calabi–Yau cone Cm/G
for a finite subgroup G of SU(m) acting freely on Cm \ {0}.

Proof of Lemma 3.33. First of all, we show that the universal cover Ỹ of Y is also AC, and
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then we exclude the reducible holonomy groups of Ỹ except {1} and use Berger’s holonomy clas-
sification on Ỹ to show the lemma. We have the compact subset K ⊂ Y , and a diffeomorphism
Υ : Γ × (R,∞) −→ Y \ K. Since Γ is a compact manifold with positive curvature Einstein
metric, its fundamental group π1(Γ) is finite (see [3, cor. 6.67]). Denote by π the covering map
π : Ỹ −→ Y , and K̃ the preimage π−1(K) in Ỹ . Then Ỹ \ K̃ is some number (possibly infinite)
of copies of Γ′ × (R,∞), where Γ′ is some connected cover of Γ. But Γ′ must be a finite cover of
Γ, say a k-fold cover, as Γ has finite fundamental group, so it is compact, and Γ′ × (R,∞) is an
AC end. The remark after Definition 3.25 now shows that Ỹ can have only one end, so Ỹ is AC
asymptotic to Γ′ × (R,∞), and is a finite k-fold cover of Y .

Now the universal cover Ỹ is AC. If the holonomy of Ỹ is reducible, then either it is {1} in
which case Ỹ is a Cm, or Ỹ is isometric to a product. We claim that in this case Ỹ can be writen
as Ỹ ∼= W × X where W has nontrivial holonomy and X is noncompact. To see this, since Ỹ
is not a Cm, so one of W and X has nontrivial holonomy, and since Ỹ is noncompact, so one
of W and X is noncompact. By considering the cases (a) W = Ck for some 1 ≤ k ≤ m − 1;
(b) W has nontrivial holonomy and is compact; (c) W has nontrivial holonomy and is noncom-
pact, and same for X, it is not hard to see that, swapping W and X if necessary, the claim is true.

We now take w ∈ W with nonzero curvature Rw, which is possible as W has nontrivial
holonomy. Consider {w} ×X in Ỹ , then the curvature of of W ×X is of order O(1) as we go to
infinity in {w}×X since X is noncompact, but this contradicts the AC condition of Ỹ which re-
quires the curvature to decay at O(r−2). Therefore we have excluded reducible holonomy groups
for Ỹ except {1}, and hence by Berger’s classification, the possibilities for holonomy of Ỹ are
SU(m), Sp(m/2) and {1}. Then the holonomy of our AC Calabi–Yau m-fold Y is either SU(m),
G n Sp(m/2) for G a quotient group of the finite covering group of π : Ỹ −→ Y , or {1}. This
completes the proof of Lemma 3.33. 2

Now, back to the proof of Theorem 3.32, Hol(gYi
) lies inside the holonomy group Hol(gt), as

gt equals gYi
on appropriate region of Mt. Thus Lemma 3.33 implies that Hol(gt) = SU(3) as

well. Since g̃t converges to gt as t → 0, and since holonomy groups are semicontinuous under
limits, i.e. Hol

(
lim
t→0

gt

)
⊆ lim

t→0
Hol(gt), therefore Hol(g̃t) must be the whole SU(3). The first

cohomology group H1(Mt,R) therefore vanishes for each sufficiently small t, and the theorem
now follows from Theorem 3.14. 2

3.4.4 Conclusions
We conclude by applying the above result to some examples given in §3.3. First consider the

situation in Example 3.28 and take m = 3. Then the crepant resolution X of the Calabi–Yau
cone C3/G is an AC Calabi–Yau 3-fold with rate −6. Thus Theorem 3.32 applies and we can
desingularize any compact Calabi–Yau 3-fold M0 with conical singularities modelled on C3/G, or
equivalently, any Calabi–Yau 3-orbifold with isolated singularities, by the gluing process. Note
that in general we have to assume the existence of singular Calabi–Yau metrics on manifolds
with conical singularities, but in the orbifold case, there is a result asserting the existence of
Calabi–Yau metrics: if M is a compact Kähler orbifold with c1(M) = 0, then there is a unique
Ricci-flat Kähler metric in each Kähler class on M (see for instance [26, Thm. 6.5.6]).
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If we take G = Z3, a standard example of compact Calabi–Yau 3-orbifold with isolated
singularities is given in [26, Example 6.6.3]. Define a lattice Λ in C3 by

Λ = Z3 ⊕ ζZ3 = {(a1 + b1ζ, a2 + b2ζ, a3 + b3ζ) : aj , bj ∈ Z}

where ζ = − 1
2 + i

√
3

2 = e2πi/3 denotes the cube root of unity. Let T 6 be the quotient C3/Λ, with
a flat Calabi–Yau structure (J, ω,Ω). Write points on T 6 as (z1, z2, z3) + Λ for (z1, z2, z3) ∈ C3.
We can also regard T 6 as the product of three T 2’s where each T 2 is the quotient C/(Z⊕ ζZ).

Define an action generated by ζ on T 6 by

ζ : (z1, z2, z3) + Λ 7−→ (ζz1, ζz2, ζz3) + Λ.

This ζ-action is well-defined, as ζ ·Λ = Λ. The group Z3 = {1, ζ, ζ2} is a finite group of automor-
phisms of T 6, preserving the flat Calabi–Yau structure on it. Thus the toroidal orbifold T 6/Z3 is
a Calabi–Yau 3-orbifold, which can also be expressed as C3/A, where A is the group generated
rotations by ζ and translations in Λ. Write points on T 6/Z3 as Z3 · (z1, z2, z3) + Λ.

In each T 2 there are three fixed points of ζ located at 0, 1
2 + i

2
√

3
, i√

3
. The element ζ2 = ζ−1

clearly has the same fixed points. Altogether the orbifold T 6/Z3 has then 27 isolated singularities.
Note that 1

2 + i
2
√

3
= 2i√

3
− ζ, so we write the 27 fixed points on T 6 as{

(c1, c2, c3) + Λ : c1, c2, c3 ∈
{
0,

i√
3
,

2i√
3

}}
.

Now these singular points are locally modelled on the Calabi–Yau cone C3/Z3, thus making the
orbifold T 6/Z3 a Calabi–Yau 3-fold with conical singularities. Applying Theorem 3.32, we can
desingularize T 6/Z3 by gluing in AC Calabi–Yau 3-folds KCP2 (with rate −6) at the singular
points, obtaining a Calabi–Yau desingularization of T 6/Z3.

Now the Schlessinger Rigidity Theorem [47] states that if G is a finite subgroup of GL(m,C)
and the singularities of Cm/G are all of codimension at least three, then Cm/G is rigid, i.e. it
admits no nontrivial deformations. It can then be shown by using this rigidity theorem that if we
desingularize a Calabi–Yau 3-orbifold with isolated singularities modelled on C3/Z3 by gluing,
we shall obtain a crepant resolution of the original orbifold.

On the crepant resolution the existence of Calabi–Yau metrics is guaranteed by Yau’s solution
to the Calabi conjecture [52]. However, it does not provide a way to write down the Calabi–Yau
metrics explicitly, and so in general we do not know much about what the Calabi–Yau metrics
are like. But in the orbifold case, our result tells a bit more by giving a quantitative description
of these Calabi–Yau metrics, showing that these metrics locally look like the metrics obtained by
gluing the orbifold metrics and the ALE metrics on the crepant resolution of C3/G.

Our result can also be applied to desingularize compact Calabi–Yau 3-folds with conical
singularities modelled on the Calabi–Yau cone O(−2,−2) \ (CP1 × CP1) by gluing in the AC
Calabi–Yau 3-fold O(−2,−2)-bundle with rate −6. Thus we could resolve a kind of singularity
which is not of orbifold type.
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Theorem 3.32 deals with the simplest case λi < −3, and we shall extend it in Chapter 4 by
including the case λi = −3, so that the result can be applicable to a larger class of AC Calabi–Yau
3-folds.



Chapter 4

Desingularizations of Calabi–Yau

3-folds with conical singularities:

The obstructed case

In the last chapter we have developed an analytic tool to desingularize Calabi–Yau 3-folds
with conical singularities. There we used AC Calabi–Yau 3-folds Yi with rate λi < −3, and hence
[Υ∗
t,i(t

3ΩYi)−ΩVi ] = 0 by Lemma 3.26. This chapter extends Theorem 3.32 to a more complicated
situation, in which we relax the assumption λi < −3 to allow λi = −3 and [Υ∗

t,i(t
3ΩYi)−ΩVi ] 6= 0

in H3(Γi,C). But the cohomology class [Φ∗(Ω0)−ΩVi
] is always zero by Lemma 3.22, so there are

cohomological obstructions to defining the closed 3-form Ωt which interpolates between Φ∗(Ω0)
and Υ∗

t (t
3ΩYi

). Thus allowing λi = −3 introduces global problems to our gluing method. More-
over, since we have now |Υ∗

t (t
3ΩYi

) − ΩVi
|gVi

= O(r−3), our definition of Ωt will contribute
O(t3(1−α)) +O(tαν) to the error, which is too large for parts (i)-(iii) of Theorem 3.14 to hold.

The method we use here is to replace the holomorphic (3,0)-form Ω0 on M0 by Ω0 + t3χ,
where χ is some closed and coclosed (2,1)-form with appropriate asymptotic behaviour, and
[Φ∗i (χ)] = [Υ∗

t,i(t
3ΩY )] on H3(Γi,C). We shall show in the following that such χ exists and it

cancels out theO(t−3r3) terms such that Theorem 3.14 can handle the size of the error introduced.

As mentioned in the last chapter, we shall restrict ourselves to the case λi < −2 so that
Υ∗(ωYi

) − ωVi
is always exact. Here we only make the improvement from λi < −3 to λ ≤ −3

since the case λ ∈ (−3,−2) will introduce extra terms which contribute errors that we cannot
cope with in our estimates later. This seems not a big step forward. However, there are some
examples of AC Calabi–Yau 3-folds with rate −3 and [Υ∗

t,i(t
3ΩYi

)− ΩVi
] 6= 0, so that our result

can be applicable to a larger class of AC Calabi–Yau 3-folds.

We begin in §4.1 by setting up notations and giving a brief account of why a (2,1)-form is
needed for our construction. Section 4.2 provides a detailed discussion on the analytic theory of
Weighted Sobolev spaces due to Lockhart and McOwen [39]. In §4.3, we apply materials in §4.2
to construct our desired (2,1)-form on M0. We then glue Yi’s into M0, constructing the nearly

65
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Calabi–Yau structures in §4.4, as in Chapter 3. Section 4.5 gives the main result on Calabi–Yau
desingularization when λi = −3 which generalizes the result in Chapter 3.

In contrast to Chapter 3, where the desingularization result is local, there are global topolog-
ical conditions for the desingularization to be possible, which can relate different singular points.

In the last section we focus on some singular Calabi–Yau 3-folds where the singularities are
known as the ordinary double points. Unlike the orbifold case we discussed in last chapter, we
shall assume the existence of singular Calabi–Yau metrics on compact complex 3-folds with or-
dinary double points, as we do not currently know any existence result of Calabi–Yau metrics on
such kind of manifolds. The desingularization of Calabi–Yau 3-folds with ordinary double points
belongs to the case λi = −3, as the AC Calabi–Yau 3-folds Qε have rate −3. After construct-
ing a nice coordinate system on Qε, we apply our main result to repair ordinary double points.
We conclude by showing that our result is in some way equivalent to Friedman’s result [16] on
smoothing ordinary double points, hence providing another analytic proof of a known result in
algebraic geometry.

4.1 The geometric set-up

We shall consider the following situation. Let (M0, J0, ω0,Ω0) be a compact Calabi–Yau
3-fold with finitely many conical singularities at x1, . . . , xn with same rate ν > 0 modelled on
Calabi–Yau cones V1, . . . , Vn. Write M ′

0 = M0 \ {x1, . . . , xn}. For simplicity we suppose M ′
0 is

connected. Denote by Γ1, . . . ,Γn the links of V1, . . . , Vn. As was discussed in the remark after
Definition 3.25, we take Γ1, . . . ,Γn to be connected. For i = 1, . . . , n and some small ε > 0, there
should exist an open neighbourhood Si of xi such that the closures S̄1, . . . , S̄n are disjoint in M0.
By Theorem 3.24, there should exist a diffeomorphism Φi : Γi × (0, ε) −→ Si \ {xi} such that

Φ∗i (ω0) = ωVi and |∇k(Φ∗i (Ω0)− ΩVi)|gVi
= O(rν−k) (4.1)

for i = 1, . . . , n and all k ≥ 0.

Let (Yi, JYi , ωYi , ΩYi) be AC Calabi–Yau 3-folds with rates λi = −3 modelled on the same
cones Vi. Then there should exist a compact subset Ki ⊂ Yi and, by Theorem 3.27, a diffeomor-
phism Υi : Γi × (R,∞) −→ Yi \Ki for some R > 0 such that

Υ∗
i (ωYi

) = ωVi
and |∇k(Υ∗

i (ΩYi
)− ΩVi

)|gVi
= O(rλi−k)

for i = 1, . . . , n and all k ≥ 0. Suppose there is a closed homogeneous (2,1)-form ξi of order −3
on Vi with ωVi

∧ ξi = 0, and a diffeomorphism Υi such that

Υ∗
i (ωYi) = ωVi and |∇k(Υ∗

i (ΩYi)− ΩVi − ξi)|gVi
= O(rλ

′
i−k) (4.2)

for i = 1, . . . , n, λ′i < −3 and all k ≥ 0. We shall see the meaning of a homogeneous k-form
of order α in the beginning of §4.2.2. The point of this condition is to give a nice coordinate
system on Yi so that (ωYi

,ΩYi
) can be written as (ωVi

,ΩVi
+ ξi + O(rλ

′
i)) on Vi. Note that
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the term O(rλ
′
i) for λ′i < −3 is an exact 3-form as it decays faster than O(r−3), so we have

[ξi] = [Υ∗
i (ΩYi

) − ΩVi
] ∈ H3(Γi,C), and

⊕n
i=1 [ξi] ∈

⊕n
i=1 H

3(Γi,C). We shall assume the
existence of such a ξi throughout the chapter, and will justify this when we apply our result to
desingularize Calabi–Yau 3-folds with ordinary double points in the last section.

We would like to construct a closed (2,1)-form χ with the properties that ω0 ∧ χ = 0 and
|Φ∗i (χ)− ξi|gVi

= O(r−3+δ) for some small δ > 0. The reason for using such a (2,1)-form is that
the change of the Calabi–Yau structure (ω0,Ω0) 7−→ (ω0,Ω0 +χ) is a deformation of Calabi–Yau
structures to first order. Here is a way to see this: Suppose (J, ω,Ω) is a Calabi–Yau structure
and (J ′, ω,Ω′) is a nearby Calabi–Yau structure with the same Kähler form ω. From the fact
that the tangent space of the set of (3,0)-forms w.r.t. some complex structures is the space of
(3,0)-forms and (2,1)-forms, we have Ω′ = Ω+ (3,0)-piece + (2,1)-piece to first order. We can
just write Ω′ = Ω+χ for a (2,1)-form χ if there is no rescaling of Ω involved. Since (J, ω,Ω) and
(J ′, ω,Ω′) are Calabi–Yau structures, so ω ∧ Ω = 0 and ω ∧ Ω′ = 0. Then ω ∧ (Ω + χ) = 0, and
it follows that ω ∧ χ = 0, which is why we want the (2,1)-form χ to satisfy ω0 ∧ χ = 0.

The advantage of adding a trace-free (2,1)-form χ to Ω0 is that it introduces a torsion to
(ω0,Ω0 +χ) of order O(|χ|2), rather than O(|χ|). It will turn out in §4.5 that the effect of having
the term O(|χ|2) will change a O(t3r−3) term to a O(t6r−6) term which will be a small enough
error to apply our result.

Observe from (4.2) that (JVi
, ωVi

,ΩVi
) and (JYi

, ωYi
,ΩYi

) are two Calabi–Yau structures
“close” to each other for large r, with Υ∗

i (ωYi) = ωVi and Υ∗
i (ΩYi) = ΩVi + ξi + O(rλ

′
i). The

argument before then shows that (ωVi ,ΩVi) 7−→ (ωVi ,ΩVi + ξi) is a change of Calabi–Yau struc-
tures to first order, which implies that ξi is of type (3,0) and (2,1) with ωVi

∧ ξi = 0. Thus (4.2)
is consistent with what we have assumed on ξi.

To construct the (2,1)-form χ we have to do some analysis on M ′
0, which takes up sections

§4.2 and §4.3. We will be first showing that there exists a closed complex 3-form χ′ on M ′
0 with

the prescribed asymptotic behaviour under the condition that
⊕n

i=1 [ξi] lies in a certain subspace
of
⊕n

i=1 H
3(Γi,C). We then project χ′ to its “trace-free” (2,1)-component (see §4.3) to obtain

our desired χ.
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4.2 Analysis on Calabi–Yau 3-folds with conical singulari-

ties

The principal analytical tool we shall be using to construct the (2,1)-form χ is the theory of
weighted Sobolev spaces on manifolds with ends due to Lockhart and McOwen [39], particularly
the Fredholm properties of the linear elliptic operators d+d∗ and dd∗+d∗d on differential forms
on the noncompact Calabi–Yau 3-fold M ′

0.

It is known that on compact manifolds, elliptic operators such as d+ d∗ and dd∗ + d∗d have
good regularity properties and they are Fredholm maps between appropriate Sobolev spaces,
which are therefore useful tools in problems involving elliptic operators on compact manifolds.
Now as M ′

0 is noncompact, the Sobolev spaces do not have such kind of properties, and it suggests
that these spaces are not good choices of Banach spaces for studying elliptic operators on M ′

0.
Instead, it turns out to be helpful to introduce the concept of weighted Sobolev spaces.

4.2.1 Weighted Sobolev spaces

As the central object in this chapter is a Calabi–Yau manifold, it is enough for us to consider
even dimensional manifolds in the following sections.

Definition 4.1 Let (M, g) be a compact Riemannian 2m-fold with finitely many conical singu-
larities at x1, . . . , xn. That is, there are Riemannian cones Vi ∼= Γi× (0,∞)∪{0} for i = 1, . . . , n
with Γi (identified with Γi × {1}) compact, small open neighbourhoods Si of xi in M , and
diffeomorphisms Φi : Γi × (0, ε) −→ Si \ {xi} such that

|∇k(Φ∗i (g)− gVi)|gVi
= O(rν−k) as r → 0 and for all k ≥ 0

for some rate ν > 0 for all i, where r is a coordinate on (0, ε), gVi = r2gVi |Γi×{1} + dr2 is the
cone metric on Vi and ∇ is the Levi-Civita connection of gVi .

Write M ′ = M \ {x1, . . . , xn}. Define a radius function ρ on M ′ to be a smooth function
ρ : M ′ −→ (0, 1] such that Φ∗i (ρ) = r on Γi × (0, 1

2 ε) for i = 1, . . . , n and ρ ≡ 1 on M \
⋃n
i=1 Si.

Essentially it measures the distance to the singular points. Radius functions always exist.

For β ∈ R, the function ρβ is well-defined and smooth on M ′, and equals to ρ(y)β for
y ∈ Si \{xi}, i = 1, . . . , n, and 1 for y ∈M \

⋃n
i=1 Si. Note that in our case, we will only consider

the same power β of ρ for each i.

Now we are going to define the weighted Sobolev spaces of complex k-forms on M ′. Let
ΛkCT

∗M ′ be the vector bundle of complex k-forms on M ′, equipped with the metric g and the
Levi-Civita connection ∇. For p ≥ 1, l ≥ 0 and β ∈ R, we define the weighted Sobolev space
Lpl,β(Λ

k
CT

∗M ′) to be the set of complex k-forms η on M ′ that are locally integrable and l times
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weakly differentiable, and for which the norm

‖η‖Lp
l,β

=

 l∑
j=0

∫
M ′
|ρ−β+j∇jη|p ρ−2mdV

1/p

(4.3)

is finite. Then Lpl,β(Λ
k
CT

∗M ′) is a Banach space, and L2
l,β(Λ

k
CT

∗M ′) a Hilbert space. Note that
the norm is defined in a way similar to the usual Sobolev norm, with an addition of a weight
ρ−βp+jp−2m. The idea of this is an element η in Lpl,β(Λ

k
CT

∗M ′) is a Lpl k-form on M ′ which
decays at most like ρβ near xi as ρ→ 0, and thus the index β ∈ R can be interpreted as an order
of growth. Moreover, ∇jη decays at most like ρβ−j near xi for j = 1, . . . , l. As a vector space
of forms, Lpl,β(Λ

k
CT

∗M ′) is independent of choice of radius function ρ, and all choices of ρ give
equivalent norms.

It is often important to know for which rate β the Lp0,β-norm equals the standard Lp-norm of
forms on M . Note that from (4.3), the rate we need is β = −2m/p, and therefore

Lp0,−2m/p(Λ
k
CT

∗M ′) = Lp(ΛkCT
∗M ′). (4.4)

We shall need the analogue of the Sobolev Embedding Theorem (Theorem 2.28) for weighted
Sobolev spaces, which is adapted from [39, Lem. 7.2]:

Theorem 4.2 (Weighted Sobolev Embedding Theorem) In the situation above, suppose
l ≥ n ≥ 0 are integers, p, q > 1 and β, γ ∈ R. If 1

p ≤
1
q + l−n

2m and either

(i) p ≤ q with β ≥ γ, or

(ii) q < p with β > γ,

then
Lpl,β(Λ

k
CT

∗M ′) ↪→ Lqn,γ(Λ
k
CT

∗M ′)

is a continuous inclusion.

We can also define weighted Sobolev spaces on AC Riemannian 2m-folds in a sense analogous
to Definition 4.1. However, we shall only treat it very briefly here since our main focus will be on
the case for conical singularities and we shall only need the analysis for AC Calabi–Yau 3-folds
in Theorem 6.10 later.

Let (Y, g) be a complete, nonsingular Riemannian 2m-fold. Then Y is Asymptotically Conical
(AC) with rate λ < 0 if there is a Riemannian cone V ∼= Γ× (0,∞)∪{0} of dimension 2m with Γ
compact and connected, a compact subsetK ⊂ Y , and a diffeomorphism Υ : Γ×(R,∞) −→ Y \K
for some R > 0 such that

|∇k(Υ∗(g)− gV )|gV
= O(rλ−k) as r →∞ and for all k ≥ 0,

where r is the coordinate on (R,∞), gV = r2gV |Γ×{1} + dr2 is the cone metric on V and ∇
is the Levi-Civita connection of gV . Define a radius function ρ on Y to be a smooth function
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ρ : Y −→ [R,∞) such that ρ ≡ R on K and Υ∗(ρ) = r on Γ× (2R,∞). Let ΛkCT
∗Y be the vector

bundle of complex k-forms on Y , equipped with the metric g and the Levi-Civita connection ∇.
For p ≥ 1, l ≥ 0 and β ∈ R, we define the weighted Sobolev space Lpl,β(Λ

k
CT

∗Y ) to be the set
of complex k-forms η on Y that are locally integrable and l times weakly differentiable, and for
which the norm

‖η‖Lp
l,β

=

 l∑
j=0

∫
Y

|ρ−β+j∇jη|p ρ−2mdV

1/p

is finite. Then Lpl,β(Λ
k
CT

∗Y ) is a Banach space, and L2
l,β(Λ

k
CT

∗Y ) a Hilbert space.

Generally speaking, the theory of weighted Sobolev spaces on AC manifolds is very similar
to that on manifolds with conical singularities, except that for some cases like the embedding
theorems, we have to reverse the directions of the inequalites involving the rates, e.g. we need
β ≤ γ, β < γ for the AC version of Theorem 4.2.

4.2.2 d + d∗ and dd∗ + d∗d on manifolds with conical singularities

Next we discuss the analysis of the elliptic operators d+ d∗ and dd∗ + d∗d on manifolds with
conical singularities. In the situation of §4.2.1, suppose M is a compact complex manifold of real
dimension 2m with conical singularities, we are interested in studying the maps

(d+ d∗)pl+1,β : Lpl+1,β(Λ
∗
CT

∗M ′) −→ Lpl,β−1(Λ
∗
CT

∗M ′) and

∆p
l+2,β = (dd∗ + d∗d)pl+2,β : Lpl+2,β(Λ

∗
CT

∗M ′) −→ Lpl,β−2(Λ
∗
CT

∗M ′).

for p > 1, l ≥ 0 and β ∈ R. Here we denote by Λ∗CT
∗M ′ the direct sum of spaces ΛkCT

∗M ′ for
k = 0, . . . , 2m.

To begin with, we shall study the operators

d+ d∗Vi
: C∞(Λ∗C T

∗V ′i ) −→ C∞(Λ∗C T
∗V ′i ) and

∆Vi
= dd∗Vi

+ d∗Vi
d : C∞(Λ∗C T

∗V ′i ) −→ C∞(Λ∗C T
∗V ′i )

on the Riemannian cone V ′i for each i.

For α ∈ R, k = 0, . . . , 2m and i = 1, . . . , n, we say that a k-form ηik on the Riemannian cone
Vi is homogeneous of order α if

ηik = rα+kγik + rα+k−1dr ∧ δik−1

for some k-form γik and (k− 1)-form δik−1 on Γi. We set γi2m = 0 and δi−1 = 0 for all i. It follows
that

|ηik|gVi
= O(rα)

since
|γik|gVi

= O(r−k) and |δik−1|gVi
= O(r−k+1).
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We remark here that this definition is different from the usual sense of a k-form being homoge-
neous of degree p (meaning that the Lie derivative by r ∂∂r is multiplication by p). A k-form being
homogeneous of order α in our sense is in fact homogeneous of degree α + k in the usual sense.
Write ηi =

∑2m
k=0 η

i
k ∈ C∞(Λ∗CT

∗V ′i ). Then ηi lies in the kernel Ker(d + d∗Vi
) of the operator

d+d∗Vi
if and only if dηik+d∗Vi

ηik+2 = 0 for k = 0, . . . , 2m. On the other hand, ηi lies in Ker(∆Vi
)

if and only if ∆Viη
i
k = 0 for k = 0, . . . , 2m, as ∆Vi takes k-forms to k-forms for k = 0, . . . , 2m.

We now give a more explicit description of the kernels of these two operators for homogeneous
forms of order α:

Proposition 4.3 Let ηik = rα+kγik+r
α+k−1dr∧δik−1 be a homogeneous k-form of order α on the

Riemannian cone V ′i = Γi × (0,∞) for k = 0, . . . , 2m, i = 1, . . . , n, and for γik ∈ C∞(ΛkC T
∗Γi)

and δik−1 ∈ C∞(Λk−1
C T ∗Γi). Write ηi =

∑2m
k=0 η

i
k ∈ C∞(Λ∗CT

∗V ′i ). Then

(i) (d+ d∗Vi
)ηi = 0 if and only if

dγik + d∗Γi
γik+2 = (α− k + 2m− 2)δik+1, and

(4.5)
dδik−1 + d∗Γi

δik+1 = (α+ k)γik for k = 0, . . . , 2m.

(ii) ∆Vi η
i = 0 if and only if

∆Γi
γik = (α+ k)(α− k + 2m− 2)γik + 2dδik−1, and

(4.6)
∆Γi

δik−1 = (α− k + 2m)(α+ k − 2)δik−1 + 2d∗Γi
γik

for k = 0, . . . , 2m.

Here d∗Γi
and ∆Γi = dd∗Γi

+ d∗Γi
d are computed using the metric gVi |Γi×{1}.

Proof. Direct computation shows:

dηik = (α+ k)rα+k−1dr ∧ γik + rα+kdγik − rα+k−1dr ∧ dδik−1 (4.7)

∗Vi
dηik = (α+ k)r2m+α−k−2 ∗Γi

γik + (−1)k+1r2m+α−k−3dr ∧ ∗Γi
dγik

− r2m+α−k−2 ∗Γi
dδik−1

d∗Vi
dηik = (α+ k)r2m+α−k−2d ∗Γi

γik

+ (α+ k)(2m+ α− k − 2)r2m+α−k−3dr ∧ ∗Γi
γik

+ (−1)k r2m+α−k−3dr ∧ d ∗Γi
dγik − r2m+α−k−2d ∗Γi

dδik−1

− (2m+ α− k − 2)r2m+α−k−3dr ∧ ∗Γi
dδik−1

∗Vi
d∗Vi

dηik = (−1)2m−k(α+ k)rα+k−3dr ∧ ∗Γi
d ∗Γi

γik

+ (−1)k(2m−1−k)(α+ k)(2m+ α− k − 2)rα+k−2γik

+ (−1)krα+k−2 ∗Γi
d ∗Γi

dγik

+ (−1)2m−1−krα+k−3dr ∧ ∗Γi
d ∗Γi

dδik−1

− (−1)k(2m−1−k)(2m+ α− k − 2)rα+k−2dδik−1.
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Hence with d∗Γi
= (−1)k ∗Γi d∗Γi on k-forms and d∗Vi

= − ∗Vi d∗Vi (since dimR Γi = 2m− 1 and
dimR Vi = 2m)

d∗Vi
dηik =− (α+ k)rα+k−3dr ∧ d∗Γi

γik

− (α+ k)(2m+ α− k − 2)rα+k−2γik + rα+k−2d∗Γi
dγik

+ rα+k−3dr ∧ d∗Γi
dδik−1 + (2m+ α− k − 2)rα+k−2dδik−1. (4.8)

Analogously

∗Vi
ηik = (−1)kr2m+α−k−1dr ∧ ∗Γi

γik + r2m+α−k ∗Γi
δik−1

d∗Vi η
i
k = (−1)k+1r2m+α−k−1dr ∧ d ∗Γi γ

i
k

+ (2m+ α− k)r2m+α−k−1dr ∧ ∗Γiδ
i
k−1 + r2m+α−kd ∗Γi δ

i
k−1

∗Vi
d∗Vi

ηik = (−1)k+1rα+k−2 ∗Γi
d ∗Γi

γik

+ (−1)(k−1)(2m−k)(2m+ α− k)rα+k−2δik−1

+ (−1)2m−k+1rα+k−3dr ∧ ∗Γi
d ∗Γi

δik−1.

Thus

d∗Vi
ηik = rα+k−2d∗Γi

γik − (2m+ α− k)rα+k−2δik−1

− rα+k−3dr ∧ d∗Γi
δik−1, (4.9)

and hence

dd∗Vi
ηik = (α+ k − 2)rα+k−3dr ∧ d∗Γi

γik + rα+k−2dd∗Γi
γik

− (2m+ α− k)(α+ k − 2)rα+k−3dr ∧ δik−1

− (2m+ α− k)rα+k−2dδik−1 + rα+k−3dr ∧ dd∗Γi
δik−1. (4.10)

Now replace k by k + 2 in (4.9). Together with (4.7), these yield (i) of the proposition as
(d + d∗Vi

)ηi = 0 if and only if dηik + d∗Vi
ηik+2 = 0 for k = 0, . . . , 2m. Equations (4.8) and (4.10)

yield

∆Vi η
i
k = d∗Vi

dηik + dd∗Vi
ηik

= rα+k−2
(
∆Γiγ

i
k − (α+ k)(2m+ α− k − 2)γik − 2dδik−1

)
+ rα+k−3dr ∧

(
∆Γiδ

i
k−1 − (2m+ α− k)(α+ k − 2)δik−1 − 2d∗Γi

γik
)
. (4.11)

Hence (ii) follows from (4.11), as ∆Vi
ηi = 0 if and only if ∆Vi

ηik = 0 for k = 0, . . . , 2m. 2

Recall that an operator between Banach spaces is Fredholm if it has finite-dimensional kernel
and cokernel. Write

ΛevenC T ∗M ′ =
⊕m

j=0 Λ2j
C T

∗M ′ and ΛoddC T ∗M ′ =
⊕m−1

j=0 Λ2j+1
C T ∗M ′.

We are going to study the operators

(d+ d∗)pl+1,β : Lpl+1,β(Λ
even
C T ∗M ′) −→ Lpl,β−1(Λ

odd
C T ∗M ′)
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and
∆p
l+2,β : Lpl+2,β(Λ

even
C T ∗M ′) −→ Lpl,β−2(Λ

even
C T ∗M ′)

for p > 1, l ≥ 0 and β ∈ R, and give a result which shows that they are Fredholm under certain
conditions on β.

The corresponding operators on the cone Vi are:

d+ d∗Vi
: C∞(ΛevenC T ∗V ′i ) −→ C∞(ΛoddC T ∗V ′i ) and

∆Vi : C∞(ΛevenC T ∗V ′i ) −→ C∞(ΛevenC T ∗V ′i ).

Note that the kernel of d+d∗Vi
on all forms splits into kernels on even forms and odd forms. Thus

for ηi =
∑m
j=0 η

i
2j ∈ C∞(ΛevenC T ∗V ′i ), (4.5) still holds for even k. It is easy to see that (4.6) is

also true when ηi =
∑m
j=0 η

i
2j and k = 2j, as the kernel of ∆Vi

on all forms splits into kernels on
each k-form.

Before stating the result, we define:

Definition 4.4 In the situation of §4.2.1 and §4.2.2, define

Dd+d∗Vi
= {α ∈ R : there exist ηi2j for j = 0, . . . ,m, not all zero, such that

(4.5) holds for k = 2j}, (4.12)

and for k = 0, . . . , 2m, define

D∆k
Vi

= {α ∈ R : there exist a nonzero ηik such that (4.6) holds}, (4.13)

where we denote by ∆k
Vi

the Laplacian of k-forms on Vi.

We shall sometimes refer to these sets as the exceptional sets of the corresponding operators.
Effectively Dd+d∗Vi

is the set of α ∈ R for which there exist homogeneous 2j-forms ηi2j , for
j = 0, . . . ,m not all zero, of order α on V ′i satisfying dηi2j + d∗Vi

ηi2j+2 = 0. On the other hand,
D∆k

Vi

is the set of α ∈ R for which there exists a nonzero homogeneous harmonic k-form ηik of
order α on V ′i . By the property that the kernel of the Laplacian ∆Vi

on even forms is graded
into the kernels of ∆k

Vi
for even k, we have

D∆Vi
=

m⋃
j=0

D∆2j
Vi

.

Then Lockhart and McOwen show [39, Thm. 1.1]:

Theorem 4.5 In the situation above, Dd+d∗Vi
and D∆Vi

are discrete subsets of R. Moreover,
for p > 1, l ≥ 0 and β ∈ R, the map

(d+ d∗)pl+1,β : Lpl+1,β(Λ
even
C T ∗M ′) −→ Lpl,β−1(Λ

odd
C T ∗M ′)

is Fredholm if and only if β ∈ R \ Dd+d∗Vi
for i = 1, . . . , n. Similarly the map

∆p
l+2,β : Lpl+2,β(Λ

even
C T ∗M ′) −→ Lpl,β−2(Λ

even
C T ∗M ′)

is Fredholm if and only if β ∈ R \ D∆Vi
for i = 1, . . . , n.
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We shall require an elliptic regularity result for weighted Sobolev spaces analogous to Theo-
rem 2.29, which is taken from Lockhart [38, Thm. 3.7]:

Theorem 4.6 In the situation above, suppose p > 1, l ≥ 0 and β ∈ R. If η ∈ Lp0,β(ΛevenC T ∗M ′)
lies in Lp1 locally, and ξ ∈ Lpl,β−1(Λ

odd
C T ∗M ′) with (d+d∗)pl+1,βη = ξ, then η ∈ Lpl+1,β(Λ

even
C T ∗M ′)

and ‖η‖Lp
l+1,β

≤ C (‖η‖Lp
0,β

+ ‖ξ‖Lp
l,β−1

) for some C > 0 independent of η and ξ.

An analogous result also holds for ∆p
l+2,β . We shall now look at how the kernels of the two

operators depend on p, l and β. As β ∈ R\Dd+d∗Vi
for i = 1, . . . , n, (d+d∗)pl+1,β is Fredholm, and

Ker((d+ d∗)pl+1,β) is finite-dimensional. Let η ∈ Ker((d+ d∗)pl+1,β), then η ∈ Lpl+1,β(Λ
even
C T ∗M ′)

and (d + d∗)η = 0. By using Theorem 4.6 with ξ = 0, we have η ∈ Ker((d + d∗)pl+1,β) for all
l ≥ 0.

Lockhart and McOwen show [39, Lem. 7.3] that the kernel Ker((d+ d∗)pl+1,β) is independent
of p > 1 for n = 1, where n is the number of singular points of M0. The case for n > 1 is
generalized in [39, §8]. Moreover, they show [39, Lem. 7.1] that if [β, β + ε] ⊂ R \ Dd+d∗Vi

, then
Ker((d+ d∗)pl+1,β) = Ker((d+ d∗)pl+1,β+ε). This proves:

Theorem 4.7 For β ∈ R \ Dd+d∗Vi
for i = 1, . . . , n, the kernel Ker((d + d∗)pl+1,β) is indepen-

dent of p > 1, and l ≥ 0, and is invariant under small changes of β, i.e. Ker((d + d∗)pl+1,β)
= Ker((d+d∗)pl+1,β+ε) for [β, β+ε] ⊂ R\Dd+d∗Vi

. An analogous result also holds for Ker(∆p
l+2,β).

Now let p, q > 1 with 1
p + 1

q = 1 and β ∈ R, define a map

〈 , 〉 : Lp0,β(Λ
k
CT

∗M ′)× Lq0,−β−2m(Λ2m−k
C T ∗M ′) −→ R

for all k = 0, . . . , 2m by

〈η, ξ〉 =
∫
M ′

η ∧ ξ.

Then (4.3) gives ηρ−β−2m/p ∈ Lp(ΛkCT
∗M ′), and by using 1

p + 1
q = 1, we have ξρβ+2m/p ∈

Lq(Λ2m−k
C T ∗M ′). Here Lp and Lq denotes the usual Lebesgue spaces. It can then be deduced,

by applying the Hölder’s inequality, that 〈 , 〉 is well-defined and continuous, and defines a pairing
between Lp0,β(Λ

k
CT

∗M ′) and Lq0,−β−2m(Λ2m−k
C T ∗M ′) so that they are dual Banach spaces.

Note that this pairing between certain weighted Sobolev spaces of complex k and (2m− k)-
forms induces pairings between weighted Sobolev spaces of even forms and between weighted
Sobolev spaces of odd forms, thus we have maps

Lp0,β(Λ
even
C T ∗M ′)× Lq0,−β−2m(ΛevenC T ∗M ′) −→ R

and
Lp0,β(Λ

odd
C T ∗M ′)× Lq0,−β−2m(ΛoddC T ∗M ′) −→ R.

These maps will also be written as 〈 , 〉.
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Following similar arguments as in [31, Lem. 2.13], it can be shown that if p, q > 1 with 1
p+ 1

q =
1, k, l ≥ 0 and β ∈ R, then for all η ∈ Lpk+1,β(Λ

even
C T ∗M ′) and ξ ∈ Lql+1,−β−2m+1(Λ

odd
C T ∗M ′),

integration by parts is valid, so that we have

〈 (d+ d∗)η, ξ 〉 = 〈 η, (d+ d∗)ξ 〉 .

Note that the left side is the pairing between odd forms whereas the right side is that between
even forms, as the operator

(d+ d∗)ql+1,−β−2m+1 : Lql+1,−β−2m+1(Λ
odd
C T ∗M ′) −→ Lql,−β−2m(ΛevenC T ∗M ′)

on the right side is the adjoint, or the dual operator, of

(d+ d∗)pk+1,β : Lpk+1,β(Λ
even
C T ∗M ′) −→ Lpk,β−1(Λ

odd
C T ∗M ′).

From now on, we shall denote by d+ d∗ev and d+ d∗od the operator d+ d∗ on even and odd forms
on M ′ respectively, and by (d + d∗Vi

)ev and (d + d∗Vi
)od the operator d + d∗Vi

on even and odd
forms on V ′i respectively.

Likewise, for all η ∈ Lpk+2,β(Λ
even
C T ∗M ′) and ξ ∈ Lql+2,−β−2m+2(Λ

even
C T ∗M ′), integration by

parts is valid and we have
〈∆η, ξ 〉 = 〈 η,∆ξ 〉 .

Using the idea of the proof of [31, Thm. 2.14], we can now describe the cokernels of the
operators (d+ d∗ev)

p
k+1,β and ∆p

k+2,β :

Theorem 4.8 In the situation above, let p, q > 1 with 1
p + 1

q = 1 and k, l ≥ 0, we have

(i) For all β ∈ R \ D(d+d∗Vi
)ev

for i = 1, . . . , n, η ∈ Lpk,β−1(Λ
odd
C T ∗M ′) lies in the image of

(d + d∗ev)
p
k+1,β if and only if 〈 η, ξ 〉 = 0 for all ξ ∈ Ker((d + d∗od)

q
l+1,−β−2m+1). Hence we

have the isomorphism

Coker((d+ d∗ev)
p
k+1,β) ∼= Ker((d+ d∗od)

q
l+1,−β−2m+1)

∗. (4.14)

(ii) For all β ∈ R\D∆Vi
for i = 1, . . . , n, η ∈ Lpk,β−2(Λ

even
C T ∗M ′) lies in the image of ∆p

k+2,β if
and only if 〈 η, ξ〉 = 0 for all ξ ∈ Ker((d+d∗)ql+2,−β−2m+2). Hence we have the isomorphism

Coker(∆p
k+2,β) ∼= Ker(∆q

l+2,−β−2m+2)
∗. (4.15)

The index ind(A) of a Fredholm operator A is defined by ind(A) = dim Ker(A) − dim
Coker(A). When β ∈ R \ D(d+d∗Vi

)ev
for all i, we see from (4.14) that

ind((d+ d∗ev)
p
k+1,β) = dim Ker((d+ d∗ev)

p
k+1,β)− dim Ker((d+ d∗od)

q
l+1,−β−2m+1), (4.16)

and when β ∈ R \ D∆Vi
for all i, (4.15) gives

ind(∆p
k+2,β) = dim Ker(∆p

k+2,β)− dim Ker(∆q
l+2,−β−2m+2). (4.17)
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Definition 4.9 Let α ∈ D(d+d∗Vi
)ev

. Define di1(α) to be the dimension of the vector space of
solutions of (d+ d∗Vi

)ev(µi) = 0 of the form

µi(γ, r) =
t∑

s=0

m∑
j=0

(log r)sηi2j,s (4.18)

where ηi2j,s = rα+2jγi2j,s + rα+2j−1dr ∧ δi2j−1,s is a homogeneous 2j-form of order α on the
Riemannian cone V ′i = Γi × (0,∞) for i = 1, . . . , n, s = 0, . . . , t and for γi2j,s ∈ C∞(Λ2j

C T ∗Γi)
and δi2j−1,s ∈ C∞(Λ2j−1

C T ∗Γi). Thus µi(γ, r) is a polynomial in log r of degree t with coefficients
in C∞(ΛevenC T ∗Γi)⊕ C∞(ΛoddC T ∗Γi).

We can also define di2(α) for ∆Vi
in a similar way. But we will not need this quantity, so we

shall not discuss it in details.

Lockhart and McOwen show [39, Thm. 1.2] that:

Theorem 4.10 In the situation above, let p > 1, k ≥ 0, and β1, β2 ∈ R \ D(d+d∗Vi
)ev

for i =
1, . . . , n with β1 ≤ β2. Then

ind((d+ d∗ev)
p
k+1,β1

)− ind((d+ d∗ev)
p
k+1,β2

) =
n∑
i=1

∑
α∈D(d+d∗

Vi
)ev

∩(β1,β2)

di1(α). (4.19)

4.2.3 d+d∗ and dd∗+d∗d on Calabi–Yau 3-folds with conical singularities

Now we restrict to the situation when M = M0 is a Calabi–Yau 3-fold with isolated conical
singularities at x1, . . . , xn modelled on Calabi–Yau cones V1, . . . , Vn. We have m = 3 in this case.
Also,

ΛevenC T ∗M ′
0 = Λ0

CT
∗M ′

0 ⊕ Λ2
CT

∗M ′
0 ⊕ Λ4

CT
∗M ′

0 ⊕ Λ6
CT

∗M ′
0

and ΛoddC T ∗M ′
0 = Λ1

CT
∗M ′

0 ⊕ Λ3
CT

∗M ′
0 ⊕ Λ5

CT
∗M ′

0.

We see from (4.4) that for k = 0, . . . , 6,

Lp0,−6/p(Λ
k
CT

∗M ′
0) = Lp(ΛkCT

∗M ′
0)

and in particular,

L2
0,−3(Λ

k
CT

∗M ′
0) = L2(ΛkCT

∗M ′
0). (4.20)

First of all we study the kernels of the operators

(d+ d∗ev)
p
k+2,β : Lpk+2,β(Λ

even
C T ∗M ′

0) −→ Lpk+1,β−1(Λ
odd
C T ∗M ′

0)

and
∆p
k+2,β : Lpk+2,β(Λ

even
C T ∗M ′

0) −→ Lpk,β−2(Λ
even
C T ∗M ′

0).
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Lemma 4.11 For p > 1, k ≥ 0 and β ∈ R, we have

Ker((d+ d∗ev)
p
k+2,β) ⊆ Ker(∆p

k+2,β),

and equality holds if β ≥ −2.

Proof. The inclusion follows from the fact that ∆ = dd∗ + d∗d = (d+ d∗)2 on any space of twice
differentiable forms. Suppose now β ≥ −2 and χ = χ0 + χ2 + χ4 + χ6 ∈ Ker(∆p

k+2,β). Then, as
Ker(∆p

k+2,β) is graded, χ2j ∈ Ker(∆p
k+2,β) for j = 0, . . . , 3. Since the kernel Ker(∆p

k+2,β) is inde-
pendent of p > 1 by Theorem 4.7, we have χ2j ∈ Ker(∆2

k+2,β). Thus χ2j lies in L2
k+2,β(Λ

2j
C T

∗M ′
0),

and hence dχ2j ∈ L2
k+1,β−1(Λ

2j+1
C T ∗M ′

0) and d∗χ2j ∈ L2
k+1,β−1(Λ

2j−1
C T ∗M ′

0). Now using the
Weighted Sobolev Embedding Theorem (Theorem 4.2 (i)), we have

dχ2j , d
∗χ2j ∈ L2

k+1,β−1 ↪→ L2
0,−3 = L2

for β ≥ −2. Consequently, integration by parts gives

‖dχ2j‖2L2 + ‖d∗χ2j‖2L2 = 〈dχ2j , dχ2j〉L2 + 〈d∗χ2j , d
∗χ2j〉L2 = 〈χ2j ,∆χ2j〉L2 = 0,

which implies dχ2j = d∗χ2j = 0. It follows that χ2j and hence χ lies in Ker((d+ d∗ev)
p
k+2,β). 2

Lemma 4.11 is certainly true when we restrict to k-forms, that is, for p > 1, l ≥ 0 and β ∈ R,
we have

Ker ((d+ d∗)pl+2,β |Λk
C
) ⊆ Ker (∆p

l+2,β |Λk
C
),

and equality holds for β ≥ −2.

Proposition 4.12 (i) There are no nonzero homogeneous harmonic functions (and 6-forms)
of order α on V ′i for i = 1, . . . , n and α ∈ (−4, 0). Hence we have

D∆0
Vi
∩ (−4, 0) = D∆6

Vi
∩ (−4, 0) = ∅. (4.21)

(ii) There are no nonzero homogeneous harmonic 1-forms (and 5-forms) of order α on V ′i for
i = 1, . . . , n and α ∈ (−3,−1). Hence we have

D∆1
Vi
∩ (−3,−1) = D∆5

Vi
∩ (−3,−1) = ∅. (4.22)

Proof. We shall apply Proposition 4.3 to deduce this result. Suppose ηi0 = rαγi0 is a nonzero
homogeneous harmonic function of order α ∈ (−4, 0). Then (4.6) gives

∆Γi
γi0 = α(α+ 4)γi0

for 0 6= γi0 ∈ C∞(Γi), which means α(α+ 4) is an eigenvalue of ∆Γi
. As α ∈ (−4, 0) this contra-

dicts the fact that eigenvalues of ∆Γi
are nonnegative.

For (ii), we suppose that ηi1 = rα+1γi1 + rαdr∧ δi0 is a nonzero homogeneous harmonic 1-form
of order α ∈ (−3,−1). Thus γi1 and δi0 are not both zero. Again, (4.6) gives

∆Γi
γi1 = (α+ 1)(α+ 3)γi1 + 2dδi0, and (4.23)

∆Γi
δi0 = (α+ 5)(α− 1)δi0 + 2d∗Γi

γi1. (4.24)
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Apply d to both sides of (4.23), we get

∆Γi
dγi1 = (α+ 1)(α+ 3)dγi1.

Since α ∈ (−3,−1), (α+ 1)(α+ 3) is always negative, and hence dγi1 = 0. Now (4.23) becomes

dd∗Γi
γi1 = (α+ 1)(α+ 3)γi1 + 2dδi0. (4.25)

Apply d to both sides of (4.24), then

∆Γi
dδi0 = (α+ 5)(α− 1)dδi0 + 2dd∗Γi

γi1,

and by (4.25) it becomes

∆Γidδ
i
0 − (α+ 5)(α− 1)dδi0 = 2(α+ 1)(α+ 3)γi1 + 4dδi0.

It follows that

γi1 = d

(
∆Γiδ

i
0 − ((α+ 5)(α− 1) + 4)δi0

2(α+ 1)(α+ 3)

)
,

thus γi1 is an exact 1-form, and we define f i = ∆Γi
δi
0−((α+5)(α−1)+4)δi

0
2(α+1)(α+3) . It is well-defined as

α ∈ (−3,−1). Now (4.23) becomes

∆Γidf
i = (α+ 1)(α+ 3)df i + 2dδi0.

Integrating this we obtain

∆Γi
f i = (α+ 1)(α+ 3)(f i + c) + 2δi0, (4.26)

where c is an arbitrary constant. Also, (4.24) becomes

∆Γi
δi0 = (α+ 5)(α− 1)δi0 + 2∆Γi

f i. (4.27)

We now claim that there exist A, λ ∈ R such that

∆Γi
(f i + c+ λδi0) = A(f i + c+ λδi0) (4.28)

holds. Indeed, (4.26) and (4.27) give

∆Γi
(f i + c+ λδi0)

= (α+ 1)(α+ 3)(f i + c) + 2δi0 + λ(α+ 5)(α− 1)δi0 + 2λ∆Γi
f i

= (α+ 1)(α+ 3)(1 + 2λ)(f i + c) + (2 + 4λ+ λ(α+ 5)(α− 1))δi0.

Setting A = (α + 1)(α + 3)(1 + 2λ) and Aλ = 2 +4λ +λ(α + 5)(α − 1), we obtain a quadratic
equation upon A:

A2 + (6− 2(α+ 2)2)A+ (α− 1)(α+ 1)(α+ 3)(α+ 5) = 0.

Solving it we get A = (α+ 1)(α+ 5) or (α− 1)(α+ 3), which respectively gives λ = 1
α+3 or −1

α+1 .
Hence for α ∈ (−3,−1), A is always negative whereas λ is always positive.

We have shown there exist A < 0 and λ > 0 such that (4.28) holds for α ∈ (−3,−1), which
then implies f i + c+ λδi0 = 0. Putting f i = −λδi0 − c into (4.27), we get

(1 + 2λ)∆Γi
δi0 = (α+ 5)(α− 1)δi0.
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Since λ > 0, (α+ 5)(α− 1)/(1 + 2λ) is negative and so δi0 = 0. But then γi1 = df i = 0, which is
a contradiction. This completes the proof. 2

Now Theorem 4.7 and Proposition 4.12 prove that Ker (∆p
k+2,β |Λ0

C
) and Ker (∆p

k+2,β |Λ6
C
) are

independent of β for β ∈ (−4, 0), whereas Ker (∆p
k+2,β |Λ1

C
) and Ker (∆p

k+2,β |Λ5
C
) are independent

of β for β ∈ (−3,−1). Together with Lemma 4.11, we obtain

Proposition 4.13 For p > 1, k ≥ 0 and β ∈ R, we have:

(i) If χ ∈ Ker (∆p
k+2,β |Λ0

C
) or Ker (∆p

k+2,β |Λ6
C
) and β > −4, then χ is covariant constant.

(ii) If χ ∈ Ker (∆p
k+2,β |Λ1

C
) or Ker (∆p

k+2,β |Λ5
C
) and β > −3, then χ is closed and coclosed.

In our main construction of the 3-form χ on M ′
0, we will come across the kernel Ker ((d +

d∗ev)
q
l+2,−2−δ) of d + d∗ev for some small δ > 0. The reason is basically that we need to solve an

equation involving the elliptic operator d+ d∗od with rate −3 + δ, which means we need to study
its cokernel and hence the kernel of d+ d∗ev at rate −2− δ by Theorem 4.8.

Observe from Proposition 4.3 that if b2(Γi) > 0, then there exist nonzero homogeneous even
forms of order −2 in the kernel of (d + d∗Vi

)ev (by taking ηi0 = ηi4 = ηi6 = 0 and ηi2 = γi2 for
some nonzero closed and coclosed 2-form γi2 on Γi), so −2 ∈ D(d+d∗Vi

)ev
. Now choose δ > 0 small

enough such that D(d+d∗Vi
)ev
∩ [−2 − δ,−2 + δ] ⊆ {−2} for i = 1, . . . , n. Here we include the

case when D(d+d∗Vi
)ev
∩ [−2− δ,−2 + δ] = ∅ for some i, so that the situation when b2(Γi) = 0 is

allowed. By the fact that (d + d∗ev)
q
l+2,β and (d + d∗od)

p
k+2,−β−5 are dual operators for p, q > 1

with 1
p + 1

q = 1, k, l ≥ 0 and β ∈ R, they are Fredholm for the same rate β, and hence we have

D(d+d∗Vi
)od

= {−β − 5 : β ∈ D(d+d∗Vi
)ev
}.

It follows that D(d+d∗Vi
)od

is the reflection of D(d+d∗Vi
)ev

at −5/2. Furthermore, we have

D(d+d∗Vi
)ev
∩ [−2− δ,−2 + δ] ⊆ {−2} ⇐⇒ D(d+d∗Vi

)od
∩ [−3− δ,−3 + δ] ⊆ {−3}

for i = 1, . . . , n, and if b2(Γi) = b3(Γi) > 0 for some i, then −2 ∈ D(d+d∗Vi
)ev

, or equivalently,
−3 ∈ D(d+d∗Vi

)od
. We shall see later that the other direction is also true.

In [39, §5], Lockhart and McOwen show that the kernels of some elliptic operators on manifolds
with conical singularities have asymptotic expansions in terms of homogeneous solutions. More
precisely, suppose A is a certain kind of elliptic operator on a manifold with a conical singularity
with rate ν and DA denotes its exceptional set. If β1, β2 ∈ R \ DA with β1 ≤ β2, then any
u ∈ Ker (Apk,β1

) can be written as

t∑
s=0

N∑
j=1

(logr)suj,s +O(rmin(m+ν,β2))

on the asymptotic ends, where uj,s denotes the homogeneous solution of order αj ∈ (β1, β2) for
j = 1, . . . , N and m is the minimum of αj .
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In our case, we have chosen δ > 0 so that D(d+d∗Vi
)ev
∩ [−2−δ,−2+δ] ⊆ {−2} for i = 1, . . . , n.

We also choose δ such that 0 < δ < ν, where ν is the rate of the conical singularities of
M ′

0. This implies that any χ in the kernel Ker ((d + d∗ev)
q
l+2,−2−δ) of d + d∗ev can be written

as Φ∗i (χ) = µi + O(r−2+δ), where µi(γ, r) is of the form (4.18) for α = −2, on Γi × (0, ε) for
i = 1, . . . , n. We are going to show that µi(γ, r) is actually of degree 0, i.e. t = 0, and therefore

Φ∗i (χ) = ηi +O(r−2+δ)

where ηi = ηi0 + ηi2 + ηi4 + ηi6 ∈ C∞(ΛevenC T ∗V ′i ) of order −2. Let us first describe the kernel of
(d+ d∗Vi

)ev for homogeneous even forms of order −2.

Lemma 4.14 Let Ki be the vector space of solutions of (d + d∗Vi
)ev(ηi) = 0 for homogeneous

forms ηi = ηi0 + ηi2 + ηi4 + ηi6 ∈ C∞(ΛevenC T ∗V ′i ) of order −2. Then

Ki = {γi2 + rdr ∧ δi3 ∈ C∞(Λ2
CT

∗V ′i ⊕ Λ4
CT

∗V ′i ) : dγi2 = d∗Γi
γi2 = 0 and

dδi3 = d∗Γi
δi3 = 0}.

Proof. Putting α = −2 and m = 3 in (4.5), it becomes

dγi0 + d∗Γi
γi2 = 2δi1, dγi2 + d∗Γi

γi4 = 0, dγi4 = −2δi5,

d∗Γi
δi1 = −2γi0, dδi1 + d∗Γi

δi3 = 0, dδi3 + d∗Γi
δi5 = 2γi4. (4.29)

Since dA and d∗Γi
B are mutually orthogonal, the middle two equations imply

dγi2 = d∗Γi
γi4 = dδi1 = d∗Γi

δi3 = 0.

As −2 ∈ (−4, 0), by (i) of Proposition 4.12, we have ηi0 = ηi6 = 0, and hence γi0 = δi5 = 0. Now
δi1 is coexact from the first equation of (4.29) and dδi1 = 0, we have

2
〈
δi1, δ

i
1

〉
L2 =

〈
δi1, d

∗
Γi
γi2
〉
L2 =

〈
dδi1, γ

i
2

〉
L2 = 0.

Thus δi1 = 0, and hence d∗Γi
γi2 = 0. Similarly we have γi4 = 0, so that dδi3 = 0. The result follows.

2

Observe that the kernel Ki splits into two components which correspond, after some calcula-
tion, respectively to the kernel of d+d∗Vi

for homogeneous 2-forms and the kernel for homogeneous
4-forms of order −2. Using the fact that Γi is compact, we have

Corollary 4.15 The map
Ki −→ H2(Γi,C)⊕H3(Γi,C)

given by γi2 + rdr ∧ δi3 7→ ([γi2], [δ
i
3]) is an isomorphism, and hence dimKi = 2 b2(Γi).

If −2 ∈ D(d+d∗Vi
)ev

, then Ki 6= 0, and so b2(Γi) = b3(Γi) > 0. Thus we have shown that for
i = 1, . . . , n,

−2 ∈ D(d+d∗Vi
)ev
⇐⇒ −3 ∈ D(d+d∗Vi

)od
⇐⇒ b2(Γi) = b3(Γi) > 0.
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Proposition 4.16 Suppose µi(γ, r) is a solution of (d+d∗Vi
)ev(µi) = 0 of the form (4.18). Then

for α = −2, µi(γ, r) is of degree t = 0.

Proof. In our case µi(γ, r) can be written as

µi(γ, r) =
t∑

s=0

(log r)s(ηi0,s + ηi2,s + ηi4,s + ηi6,s).

Comparing the leading coefficient we then deduce from Lemma 4.14 that γi0,t = γi4,t = δi1,t =
δi5,t = 0, and γi2,t + rdr ∧ δi3,t ∈ Ki, so that dγi2,t = d∗Γi

γi2,t = 0 and dδi3,t = d∗Γi
δi3,t = 0. Now

(d+ d∗Vi
)ev(µi) = 0 gives

t∑
s=0

d
(
(log r)sηi2j,s

)
+ d∗

(
(log r)sηi2j+2,s

)
= 0

for j = 0, 1, 2. Lets focus on the equation for j = 1, which is equivalent to

t∑
s=0

(log r)s−1
(
r−1sdr ∧ γi2,s + (log r)dγi2,s − r−1(log r)dr ∧ dδi1,s

+ (log r)d∗Γi
γi4,s − sδi3,s − r−1(log r)dr ∧ d∗Γi

δi3,s
)

= 0,

Suppose t ≥ 1, then comparing coefficients of (log r)t−1 gives

t γi2,t = dδi1,t−1 + d∗Γi
δi3,t−1, t δi3,t = dγi2,t−1 + d∗Γi

γi4,t−1. (4.30)

Since γi2,t and δi3,t are both closed and coclosed, and hence harmonic, it then follows from the
orthogonality of the Hodge decomposition on compact manifolds that γi2,t = δi3,t = 0. This con-
tradicts the fact that µi(γ, r) is a polynomial of degree t with leading coefficient γi2,t + rdr ∧ δi3,t.
This completes the proof. 2

We can now say something about the change of index of d + d∗ev at rate −2. Recall that
the quantity di1(α) in Definition 4.9 is the dimension of the vector space of solutions of (d +
d∗Vi

)ev(µi) = 0 of the form (4.18). Then Corollary 4.15 and Proposition 4.16 imply

di1(−2) = dim Ki = 2b2(Γi)

and it follows from (4.19) that we have

Corollary 4.17 Suppose p > 1, k ≥ 0 and 0 < δ < ν with D(d+d∗Vi
)ev
∩ [−2− δ,−2 + δ] ⊆ {−2}

for i = 1, . . . , n. Then

ind((d+ d∗ev)
p
k+2,−2−δ)− ind((d+ d∗ev)

p
k+2,−2+δ) = 2

n∑
i=1

b2(Γi). (4.31)

Before presenting the main theorem (Theorem 4.19) in this section, we need the following
result, Proposition 4.18, which can be deduced from Lockhart’s example [38, Example (0.15) &
(0.16)]. For later purpose, we also include the result for the AC case.
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Proposition 4.18 (i) Let (M0, J0, ω0,Ω0) be a compact Calabi–Yau 3-fold with finitely many
conical singularities x1, . . . , xn with rate ν > 0 modelled on Calabi–Yau cones V1, . . . , Vn. Then
the vector space of closed and coclosed k-forms in L2(ΛkCT

∗M ′
0) is isomorphic under the map

η 7→ [η] with Hk(M ′
0,C) for k < 3, and with the image of Hk

cs(M
′
0,C) in Hk(M ′

0,C) for k = 3.

(ii) Let (Y, JY , ωY ,ΩY ) be an AC Calabi–Yau 3-fold with rate λ < 0 modelled on a Calabi–Yau
cone V . Then the vector space of closed and coclosed k-forms in L2(ΛkCT

∗Y ) is isomorphic under
the map η 7→ [η] with Hk(Y,C) for k > 3, and with the image of Hk

cs(Y,C) in Hk(Y,C) for k = 3.

Proof. Part (i) follows from Lockhart’s Example (0.16) in [38]. From our definition, we have
Φ∗i (g0) = gVi + O(rν), which can be written as Φ∗i (g0) = e−2z(gVi |Γi×{1} + dz2) + O(e−zν) for
z = −log r. Then g0 is admissible in Lockhart’s sense [38, §2], ρ := −z is decreasing and satisfies
the inequality ρ < −[(1 + δ)/2] log z on Γi × [1,∞) for some δ > 0. Taking our

⋃n
i=1 Si \ {xi} to

be Lockhart’s M∞, our M0 \
⋃n
i=1 Si to be his M0 and our

∐n
i=1 Γi to be his ∂M0, these fit into

the situation in Lockhart’s Example (0.16), and the result follows by taking his n to be 6.

For the AC case, the proof follows from Lockhart’s Example (0.15), and is similar to the
argument in the conical singularities case except that we take z = log r and ρ = z, so that ρ is
an increasing function of z this time, which is the reason for the inequality of k being reversed
in the AC case. 2

Theorem 4.19 Suppose p > 1, k ≥ 0 and 0 < δ < ν with D(d+d∗Vi
)ev
∩ [−2− δ,−2 + δ] ⊆ {−2}

for i = 1, . . . , n. If χ lies in the kernel Ker ((d+ d∗ev)
p
k+2,−2−δ) of d+ d∗ev, then we have

Φ∗i (χ) = γi2 + rdr ∧ δi3 +O(r−2+δ) on Γi × (0, ε),

where γi2 + rdr ∧ δi3 ∈ Ki. Furthermore, the kernel Ker ((d+ d∗ev)
p
k+2,−2−δ) is graded so that it is

a direct sum of vector spaces of closed and coclosed 0-forms, 2-forms, 4-forms and 6-forms.

Proof. Applying [39, §5] and the argument just before Lemma 4.14, we have Φ∗i (χ) = µi +
O(r−2+δ). The first part of the proposition then follows from Lemma 4.14 and Proposition
4.16. Write χ = χ0 + χ2 + χ4 + χ6 ∈ Ker ((d + d∗ev)

p
k+2,−2−δ). Then Φ∗i (χ0) = O(r−2+δ),

Φ∗i (χ2) = γi2 + O(r−2+δ), Φ∗i (χ4) = rdr ∧ δi3 + O(r−2+δ) and Φ∗i (χ6) = O(r−2+δ). Moreover, χ
satisfies

dχ0 + d∗χ2 = 0, dχ2 + d∗χ4 = 0 and dχ4 + d∗χ6 = 0. (4.32)

Now dχ2 is a 3-form which is exact, and hence closed, and is coclosed by the second equation
above. Also, Φ∗i (dχ2) = dγi2 +O(r−3+δ) = O(r−3+δ). Since D(d+d∗Vi

)ev
∩ [−2− δ,−2 + δ] ⊆ {−2}

for i = 1, . . . , n, we have −2 − δ ∈ R \ D(d+d∗Vi
)ev

. As discussed earlier, this implies that
−3 + δ ∈ R \ D(d+d∗Vi

)od
. Using Theorem 4.7 we have dχ2 ∈ Ker ((d+ d∗od)

2
k+2,−3+δ|Λ3

C
).

Now from Proposition 4.18, the vector space of closed and coclosed 3-forms in L2(Λ3
CT

∗M ′
0)

is isomorphic to the image of H3
cs(M

′
0,C) in H3(M ′

0,C). By (4.20), the vector space of closed and
coclosed 3-forms in L2(Λ3

CT
∗M ′

0) is just Ker ((d + d∗od)
2
k+2,−3|Λ3

C
). This implies that we have an
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injective map from Ker ((d + d∗od)
2
k+2,−3|Λ3

C
) to H3(M ′

0,C). Together with the natural inclusion
from Ker ((d+ d∗od)

2
k+2,−3+δ|Λ3

C
) to Ker ((d+ d∗od)

2
k+2,−3|Λ3

C
), the 3-form dχ2 being exact implies

that dχ2 = 0. This gives d∗χ4 = 0 as well.

Observe that χ ∈ Ker ((d + d∗ev)
p
k+2,−2−δ) ⊆ Ker (∆p

k+2,−2−δ), and since Ker (∆p
k+2,−2−δ) is

graded, we have χ0, χ6 ∈ Ker (∆p
k+2,−2−δ). Using (i) of Proposition 4.13, both χ0 and χ6 are

constants. It follows that dχ0 = 0 and d∗χ6 = 0, and hence d∗χ2 = dχ4 = 0 from (4.32). This
proves the theorem. 2

We would like to finish this section by studying some algebraic topology on the compact
Calabi–Yau 3-fold M0 with conical singularities. Consider M ′

0 as the interior of a compact
manifold M̄ ′

0 with boundary ∂M̄ ′
0 the disjoint union

∐n
i=1 Γi. We have the usual de Rham coho-

mology groups Hk(M ′
0,C) and Hk(Γi,C), and the compactly-supported de Rham cohomology

groups Hk
cs(M

′
0,C). Let bk(M ′

0), b
k(Γi) and bkcs(M

′
0) be the corresponding Betti numbers. Note

that by Poincaré duality we have Hk
cs(M

′
0,C) ∼= H6−k(M ′

0,C)∗ and Hk(Γi,C) ∼= H5−k(Γi,C)∗,
which give bkcs(M

′
0) = b6−k(M ′

0) and bk(Γi) = b5−k(Γi). We are going to build a long exact
sequence of cohomology groups Hk(M ′

0,C), Hk(Γi,C) and Hk
cs(M

′
0,C). Clearly, we have the

natural maps
φk : Hk

cs(M
′
0,C) −→ Hk(M ′

0,C)

given by φk([χ]) = [χ]. For r ∈ (0, ε), let ιir : Γi −→ Γi × (0, ε) be the inclusion γ 7→ (γ, r). Thus
the maps Φi ◦ ιir : Γi −→ Si \{xi} give embeddings from Γi to M ′

0, and they induce the pull-back
maps

ρk : Hk(M ′
0,C) −→

⊕n
i=1H

k(Γi,C)

defined by ρk([χ]) =
⊕n

i=1[(Φi ◦ ιir)∗χ]. Finally, let F be a smooth function on M ′
0 such that

F = 1 on Φi
(
Γi × (0, 1

2ε)
)

for all i = 1, . . . , n and F = 0 on M ′
0 \
⋃n
i=1 Si. Then we can define

the boundary maps
∂k :

⊕n
i=1H

k(Γi,C) −→ Hk+1
cs (M ′

0,C)

by ∂k(
⊕n

i=1[χi]) = [d(Fπ∗1χ1 + · · · + Fπ∗nχn)], where πi : Γi × (0, ε) −→ Γi is the projection
map. Using the natural long exact sequence for relative homology and the Poincaré duality
isomorphisms, we obtain the following long exact sequence:

· · ·→ Hk
cs(M

′
0,C)

φk−→ Hk(M ′
0,C)

ρk−→
⊕n

i=1H
k(Γi,C) ∂k−→ Hk+1

cs (M ′
0,C)→· · · (4.33)

for k = 0, . . . , 6. For simplicity we suppose that M ′
0 has no compact connected components so

that H0
cs(M

′
0,C) = H6(M ′

0,C) = 0.

Consider now the dual vector spaces
⊕n

i=1H
2(Γi,C) and

⊕n
i=1H

3(Γi,C), and the pull back
maps ρ2 : H2(M ′

0,C) −→
⊕n

i=1H
2(Γi,C) and ρ3 : H3(M ′

0,C) −→
⊕n

i=1 H3(Γi,C). The
following result shows the subspaces ρ2(H2(M ′

0,C)) in
⊕n

i=1H
2(Γi,C) and ρ3(H3(M ′

0,C)) in⊕n
i=1H

3(Γi,C) are annihilators of each other:

Proposition 4.20 Let [α] ∈ H2(M ′
0,C) and [β] ∈ H3(M ′

0,C). If ρ2([α]) =
⊕n

i=1[αi] and
ρ3([β]) =

⊕n
i=1[βi], then

(
⊕n

i=1[αi]) ∪ (
⊕n

i=1[βi]) = 0,
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where ∪ :
⊕n

i=1H
2(Γi,C)×

⊕n
i=1H

3(Γi,C) −→ C denotes the cup product. Moreover,

dim ρ2(H2(M ′
0,C)) + dim ρ3(H3(M ′

0,C)) =
n∑
i=1

b2(Γi).

Hence ρ2(H2(M ′
0,C)) and ρ3(H3(M ′

0,C)) are annihilators of each other, and in particular, if⊕n
i=1[βi] lies in

⊕n
i=1H

3(Γi,C), then⊕n
i=1[βi] ∈ ρ3(H3(M ′

0,C))⇐⇒ (
⊕n

i=1[αi]) ∪ (
⊕n

i=1[βi]) = 0

for all
⊕n

i=1[αi] ∈ ρ2(H2(M ′
0,C)).

Proof.

⊕n
i=1[αi] ∪

⊕n
i=1[βi] =

n∑
i=1

[αi] ∪ [βi]

=
n∑
i=1

∫
Γi

αi ∧ βi

=
∫
∂M̄ ′

0

α ∧ β since
⊕n

i=1[αi] and
⊕n

i=1[βi] lie in the

image of ρ2 and ρ3 respectively.

=
∫
M̄ ′

0

d(α ∧ β) by Stokes’ Theorem

= 0 as both α and β are closed.

Note that ρ2(H2(M ′
0,C))∼= Ker ∂2 by exactness of (4.33), and ρ3(H3(M ′

0,C))∼= ∂2(
⊕n

i=1H
2(Γi,C))

as H3
cs(M

′
0,C) ∼= H3(M ′

0,C)∗ and
⊕n

i=1H
2(Γi,C) ∼=

⊕n
i=1H

3(Γi,C)∗ by Poincaré duality. It
follows that

dim ρ2(H2(M ′
0,C)) + dim ρ3(H3(M ′

0,C))

= dim Ker ∂2 + dim ∂2(
⊕n

i=1H
2(Γi,C))

= dim
⊕n

i=1H
2(Γi,C)

=
n∑
i=1

b2(Γi).

This completes the proof. 2

4.3 Construction of χ

As was mentioned in §4.1, what we need for our desingularization is a closed (2,1)-form χ

with ω0 ∧χ = 0 and prescribed asymptotic behaviour Φ∗i (χ) = ξi +O(r−3+δ) on each Γi× (0, ε).

Obviously
⊕n

i=1[ξi] ∈
⊕n

i=1H
3(Γi,C) lies in ρ3(H3(M ′

0,C)) is a necessary condition for such
a 3-form χ to exist. It is because if χ exists, then dχ = 0 and [χ] is well-defined in H3(M ′

0,C).
The asymptotic condition Φ∗i (χ) = ξi + O(r−3+δ) would imply ρ3([χ]) =

⊕n
i=1[ξi], and hence
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⊕n
i=1[ξi] lies in the image of ρ3.

In this section we prove that this is also a sufficient condition for the existence of such a
complex 3-form χ on M ′

0. We shall apply the theory in §4.2 and show that the image of ρ2

in
⊕n

i=1H
2(Γi,C) causes obstruction to solving a certain elliptic equation. The existence of

χ is equivalent to the existence of solution to this elliptic equation. Thus if
⊕n

i=1[ξi] lies in
ρ3(H3(M ′

0,C)), then Proposition 4.20 tells us that it annihilates the image of ρ2 and so the
elliptic equation is indeed unobstructed, which means we can solve for χ.

Let us first fix our attention on the complex 3-forms Λ3
CT

∗M ′
0 on M ′

0. It has complex dimen-
sion 20. Using the complex structure J0 it can be decomposed according to the type:

Λ3
CT

∗M ′
0 = Λ3,0 ⊕ Λ2,1 ⊕ Λ1,2 ⊕ Λ0,3.

The Hodge star ∗, acts as a complex linear operator, maps Λ3
CT

∗M ′
0 to itself with ∗2 = −1. We

can then decompose Λ3
CT

∗M ′
0 into parts:

Λ3
CT

∗M ′
0 = Λ3

+ ⊕ Λ3
−,

where Λ3
± denotes the ±i eigenspaces of ∗ on Λ3

CT
∗M ′

0. Note that complex conjugation gives an
isomorphism between Λ3

+ and Λ3
−, thus

dimC Λ3
+ = dimC Λ3

− =
1
2

dimC Λ3
CT

∗M ′
0 = 10.

Given any ϕ ∈ Λ3
CT

∗M ′
0 we can write ϕ = ϕ+ + ϕ− where ϕ+ = 1

2 (ϕ − i ∗ ϕ) ∈ Λ3
+ and

ϕ− = 1
2 (ϕ+ i∗ϕ) ∈ Λ3

−.

Using the Kähler form ω0 we can split Λ2,1 and Λ1,2 into:

Λ2,1 = Λ2,1
0 ⊕ (ω0 ∧ Λ1,0) and Λ1,2 = Λ1,2

0 ⊕ (ω0 ∧ Λ0,1),

where Λ2,1
0 and Λ1,2

0 denote respectively the kernels of the maps Λ2,1 −→ Λ3,2 and Λ1,2 −→ Λ2,3,
both given by α 7−→ ω0 ∧ α. We shall sometimes call these spaces the trace-free components.
Certainly every form in Λ3,0 and Λ0,3 is also trace-free. Here is an algebraic relation:

Lemma 4.21 The (+i)-eigenspace of the Hodge star ∗ on Λ3
CT

∗M ′
0 is

Λ3
+ = Λ2,1

0 ⊕ (ω0 ∧ Λ0,1)⊕ Λ0,3

and the (−i)-eigenspace is
Λ3
− = Λ3,0 ⊕ (ω0 ∧ Λ1,0)⊕ Λ1,2

0 .

We shall see this by direct checking from the model space C3: Let (z1, z2, z3) be complex
coordinates on C3. The trace-free (2,1)-forms are spanned by

dza ∧ dzb ∧ dz̄c and
1√
2

(
dza ∧ dzb ∧ dz̄b − dza ∧ dzc ∧ dz̄c

)
,

the forms in ω0 ∧ Λ0,1 by

i√
2

(
dza ∧ dz̄a ∧ dz̄c + dzb ∧ dz̄b ∧ dz̄c

)
,



Chapter 4. Desing. of CY 3-folds with c.s.: The obstructed case 86

and the Λ0,3-forms by
dz̄1 ∧ dz̄2 ∧ dz̄3

for a, b, c distinct. Together they give rise to a space of complex dimension 10, which is the same
as Λ3

+. As ∗ is complex linear, we have

α ∧ ∗α = (α, α) · vol

where (·, ·) is the pointwise inner product, and vol is the volume form i dz1 ∧ dz2 ∧ dz3 ∧ dz̄1 ∧
dz̄2 ∧ dz̄3. Putting α to be the basis elements and since they are of unit length, we check that
they all satisfy ∗α = i α.

Before moving on to the construction of χ, we pause to look at the harmonic 1-forms in
Ker (∆p

k+2,β |Λ1
C
) for β ≥ −3 through (covariant) constant 1-forms on M ′

0:

Proposition 4.22 For p > 1, k ≥ 0 and β ∈ R, we have Ker (∆p
k+2,β |Λ1

C
) = 0 for β ≥ −3.

Hence H1(M ′
0,C) = 0.

Proof. Take α ∈ Ker (∆p
k+2,−3|Λ1

C
). Using the upper semi-continuous property of the kernel

Ker (∆2
k+2,−3|Λ1

C
) , we have

Ker (∆2
k+2,−3|Λ1

C
) = Ker (∆2

k+2,−3+δ|Λ1
C
)

for small enough δ > 0. The kernel is upper semi-continuous at rate −3 because when −3 ∈ D∆1
Vi

,
all elements added to the kernel of ∆|Λ1

C
at rate −3 look like O(r−3(log r)t) by the argument

before Lemma 4.14. However, the L2
0,−3-norm for these things does not exist, which means

that they do not lie in L2
0,−3, and hence not in Ker (∆2

k+2,−3|Λ1
C
). We then conclude that

Ker (∆2
k+2,µ|Λ1

C
) ∼= Ker (∆2

k+2,−3|Λ1
C
) for −3 < µ ≤ −3 + δ. Together with Theorem 4.7 we

have α ∈ Ker (∆p
k+2,−3|Λ1

C
) = Ker (∆2

k+2,−3+δ|Λ1
C
).

Similar to the argument in showing Proposition 4.13, we have α ∈ Ker (∆2
k+2,−1−µ|Λ1

C
) for

small µ > 0, which then imply ∇α ∈ L2
k+1,−2−µ ↪→ L2

0,−3 = L2. Now the Weitzenbock formula
for 1-forms shows that ∆p

k+2,−3 α = ∇∗∇α since g0 is Ricci-flat. As a result, integration by parts
gives

‖∇α‖2L2 = 〈∇α,∇α〉L2 = 〈∇∗∇α, α〉L2 =
〈
∆p
k+2,−3 α, α

〉
L2

= 0,

which is valid as we have ∇α ∈ L2. Hence ∇α = 0, and α is therefore a constant 1-form on M ′
0.

Thus we have shown that every 1-form in the kernel Ker (∆p
k+2,−3|Λ1

C
) is constant.

Suppose there is a nonzero constant 1-form on M ′
0. Then there exist constant vector fields

v1, v2 on M ′
0. Define an integrable distribution 〈v1, v2〉 on M0, and we see that M0 is locally a

product N × R2, with product metric. As the flow along a constant vector field is an isometry,
so it takes singular points to singular points, and hence the leaf of foliation passing through
the singular point xi is all singular, which is a contradiction as the singularities are nonisolated
in M0. Thus there are no nonzero constant 1-forms on M ′

0. Combining this with the previous
paragraph, we obtain Ker (∆p

k+2,−3|Λ1
C
) = 0.
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Applying Proposition 4.18 on 1-forms, the vector space of closed and coclosed 1-forms in
L2
k+2,−3(Λ

1
CT

∗M ′
0) is isomorphic to H1(M ′

0,C). We then deduce

H1(M ′
0,C) ∼= Ker ((d+ d∗od)

2
k+2,−3|Λ1

C
) ⊆ Ker (∆p

k+2,−3|Λ1
C
) = 0.

This completes the proof. 2

Using the upper semi-continuity and Proposition 4.13 (ii), we know that the 1-forms in
Ker (∆p

k+2,β |Λ1
C
) for β ≥ −3 are closed and coclosed. Proposition 4.22 is thus a stronger result,

showing that all of them are zero by using the property that Calabi–Yau 3-folds with conical
singularities do not support constant 1-forms.

A similar result holds for 5-forms, as Ker (∆p
k+2,β |Λ1

C
) ∼= Ker (∆p

k+2,β |Λ5
C
). Furthermore, we

have H5
cs(M

′
0,C) ∼= H1(M ′

0,C) = 0.

Now consider the elliptic operator

d+ + d∗ : C∞(Λ3
+ ⊕ Λ5

C) −→ C∞(Λ4
C ⊕ Λ6

C)

(ϕ3, ϕ5) 7−→ (dϕ3 + d∗ϕ5, dϕ5).

Here d+ is the restriction of d to the forms in Λ3
+. We shall apply the theory in §4.2 to study

the operator

(d+ + d∗)pk+2,−3+δ : Lpk+2,−3+δ(Λ
3
+ ⊕ Λ5

C) −→ Lpk+1,−4+δ(Λ
4
C ⊕ Λ6

C). (4.34)

Define V ⊆ H3(M ′
0,C) to be the image of φ3 : H3

cs(M
′
0,C) −→ H3(M ′

0,C). Its dimen-
sion can be calculated using the long exact sequence (4.33): As we have assumed that M ′

0,
Γi’s are connected and M ′

0 has no compact connected components, then H0(M ′
0,C) = C,⊕n

i=1 H
0(Γi,C) = Cn and H0

cs(M
′
0,C) = 0. Combining these with H1(M ′

0,C) = 0 from Proposi-
tion 4.22 gives a short exact sequence in the beginning of (4.33). Hence taking alternating sums
of dimensions shows that

dimV = b3cs(M
′
0)−

n∑
i=1

b2(Γi) + b2(M ′
0)− b2cs(M ′

0) +
n∑
i=1

b1(Γi)

= b2(M ′
0) + b3(M ′

0)− b4(M ′
0) +

n∑
i=1

b1(Γi)−
n∑
i=1

b2(Γi).

Proposition 4.18 shows that V is isomorphic to Ker ((d+d∗od)
2
k+2,−3|Λ3

C
). Suppose V = V+⊕V− is

the decomposition of V into ±i eigenspaces of ∗. Then dim V+ = dim V− = 1
2 dim V , as V+ is iso-

morphic to V− under complex conjugation. We now identify the kernel of (d+ + d∗)pk+2,−3+δ and
V+, and hence one can interpret Ker ((d+ + d∗)pk+2,−3+δ) as a “half” of Ker ((d+ d∗od)

2
k+2,−3|Λ3

C
).

Theorem 4.23 Suppose p > 1, k ≥ 0 and 0 < δ < ν with D(d+d∗Vi
)od
∩ [−3 − δ,−3 + δ] ⊆

{−3}. Then the kernel Ker ((d+ + d∗)pk+2,−3+δ) is a vector space of closed Λ3
+-forms. The map

Ker ((d+ +d∗)pk+2,−3+δ) −→ H3(M ′
0,C) given by χ 7→ [χ] induces an isomorphism of Ker ((d+ +

d∗)pk+2,−3+δ) with V+ defined above. Hence dim Ker ((d+ + d∗)pk+2,−3+δ) = dimV+.
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Proof. Suppose (ϕ3, ϕ5) ∈ Ker ((d+ + d∗)pk+2,−3+δ). Then we have dϕ3 + d∗ϕ5 = 0 and dϕ5 = 0.
Applying ∗ to dϕ3 + d∗ϕ5 = 0 and using the fact that ∗ϕ3 = iϕ3, we get d∗ϕ3 + i d(∗ϕ5) = 0.
Therefore (d + d∗od)(i ∗ϕ5 + ϕ3 + ϕ5) = 0, that is, the mixed form i ∗ϕ5 + ϕ3 + ϕ5 lies in
the kernel of (d + d∗od)

p
k+2,−3+δ. It follows that i∗ϕ5 + ϕ3 + ϕ5 ∈ Ker (∆p

k+2,−3+δ), and so
i∗ϕ5 ∈ Ker (∆p

k+2,−3+δ|Λ1
C
). Proposition 4.22 then gives i∗ϕ5, and hence ϕ5 = 0. Consequently

the kernel Ker ((d+ + d∗)pk+2,−3+δ) is a vector space of closed Λ3
+-forms.

By Theorem 4.7 and the upper semi-continuity of the kernel (see the proof of Proposition
4.22), we have Ker ((d+ + d∗)pk+2,−3+δ) ∼= Ker ((d+ + d∗)2k+2,−3+δ) ∼= Ker ((d+ + d∗)2k+2,−3). It
follows that χ 7→ [χ] induces an isomorphism of Ker ((d+ + d∗)pk+2,−3+δ) with closed L2-forms in
Λ3

+ at rate −3, which is just the space V+. This proves the theorem. 2

Consider now the dual operator

d∗+ + d : C∞(Λ4
C ⊕ Λ6

C) −→ C∞(Λ3
+ ⊕ Λ5

C)

(ϕ4, ϕ6) 7−→ (d∗+ϕ4, dϕ4 + d∗ϕ6),

where d∗+ is the projection of d∗ to Λ3
+-forms.

The following result identifies the kernel and cokernel of d+ + d∗ for small δ > 0:

Theorem 4.24 Let p, q > 1 with 1
p + 1

q = 1, k, l ≥ 0 and 0 < δ < ν with Dd+d∗Vi
∩ [−3− δ,−3+

δ] ⊆ {−3}. Then the operator d+ + d∗ in (4.34) is Fredholm with

Coker ((d+ + d∗)pk+2,−3+δ) ∼= Ker ((d∗+ + d)ql+2,−2−δ)
∗.

Moreover, Ker ((d∗+ + d)ql+2,−2−δ) is a direct sum of vector spaces of closed and coclosed 4-forms
and constant 6-forms.

Proof. The first part follows from §4.2. To prove the last part, we use a similar tech-
nique as in the proof of Theorem 4.23. Suppose (ϕ4, ϕ6) ∈ Ker ((d∗+ + d)ql+2,−2−δ), so that
d∗+ϕ4 = 0 and dϕ4 + d∗ϕ6 = 0. The first one implies d∗ϕ4 + id(∗ϕ4) = 0. Therefore we have
(d+ d∗ev)(i∗ ϕ6 + i∗ ϕ4 + ϕ4 + ϕ6) = 0, which means the mixed form i∗ ϕ6 + i∗ ϕ4 + ϕ4 + ϕ6 lies
in Ker ((d + d∗ev)

q
l+2,−2−δ). Hence Ker ((d∗+ + d)ql+2,−2−δ) ⊆ Ker ((d + d∗ev)

q
l+2,−2−δ). The result

then follows from Theorem 4.19 showing that Ker ((d+ d∗ev)
q
l+2,−2−δ) is graded. 2

After so much analytic background and preparation, we finally come to the construction of our
desired 3-form on M ′

0. Take any smooth complex 3-form χ′, not necessarily closed or coclosed,
in Lpk+2,−3+δ(Λ

3
+) for some p > 1, k ≥ 0 and 0 < δ < ν with D(d+d∗Vi

)od
∩ [−3− δ,−3+ δ] ⊆ {−3},

such that

|∇j(Φ∗i (χ′)− ξi)|gVi
= O(r−3+δ−j) for all j ≥ 0 (4.35)

for i = 1, . . . , n, where ∇ is the Levi-Civita connection of the cone metric gVi .

Write χ = χ′ + ϕ for some complex 3-form ϕ on M ′
0. We shall try and solve the following

elliptic equation:

(d+ + d∗)(ϕ, ζ) = (−dχ′, 0),
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that is, dϕ + d∗ζ = −dχ′ and dζ = 0. From (4.35) we have Φ∗i (dχ
′) = O(r−4+δ). Then by

an elliptic regularity result (Theorem 4.6 with l = k + 1, β = −3 + δ), if (ϕ, ζ) exists, it lies in
Lpk+2,−3+δ(Λ

3
+ ⊕ Λ5

C). Thus we hope to solve

(d+ + d∗)pk+2,−3+δ(ϕ, ζ) = (−dχ′, 0). (4.36)

A general fact about the existence of solution to the equation (4.36) is that a solution (ϕ, ζ) exists
in Lpk+2,−3+δ(Λ

3
+ ⊕ Λ5

C) if and only if (−dχ′, 0) is L2-orthogonal to the cokernel Coker ((d+ +
d∗)pk+2,−3+δ), or equivalently to the kernel Ker ((d∗+ + d)ql+2,−2−δ) by Theorem 4.24. We shall
prove that under the condition that

⊕n
i=1[ξi] ∈

⊕n
i=1H

3(Γi,C) lies in the image of ρ3, then
(−dχ′, 0) is automatically orthogonal to Ker ((d∗+ +d)ql+2,−2−δ), and hence the equation is indeed
unobstructed and so is solvable. Furthermore, we shall show that ζ = 0, and hence dϕ = −dχ′,
which then implies dχ = 0. Since χ′, ϕ ∈ Λ3

+, we have χ ∈ Λ3
+ as well. Here is our main result

in this section:

Theorem 4.25 Suppose
⊕n

i=1[ξi] ∈
⊕n

i=1H
3(Γi,C) lies in ρ3(H3(M ′

0,C)). Then there exists
a complex 3-form χ on M ′

0 satisfying

(i) χ ∈ Λ3
+, and dχ = 0,

(ii) |∇j(Φ∗i (χ)− ξi)|gVi
= O(r−3+δ−j) for i = 1, . . . , n and all j ≥ 0.

Proof. The discussion above suggests that the desired χ exists if we can solve (4.36) for
(ϕ, ζ) ∈ Lpk+2,−3+δ(Λ

3
+ ⊕ Λ5

C).

Take any (α, β) ∈ Ker ((d∗+ + d)ql+2,−2−δ) where 1
p + 1

q = 1 and l ≥ 0. Equation (4.36) is
solvable if and only if

〈(dχ′, 0), (α, β)〉L2 = 0.

Theorem 4.24 tells us that α is a closed and coclosed 4-form, then

〈(dχ′, 0), (α, β)〉L2 = lim
r→0

∫
Kr

dχ′ ∧ ∗α + 0 ∧ ∗β where Kr := {x ∈M ′
0 : ρ(x) ≥ r}

= lim
r→0

∫
Kr

d(χ′ ∧ ∗α) as α is coclosed

= lim
r→0

∫
∂Kr

χ′ ∧ ∗α by Stokes’ Theorem.

Recall that Φ∗i (χ
′) = ξi + O(r−3+δ) on Γi × (0, ε). As α lies in the 4-form part in Ker ((d∗+ +

d)ql+2,−2−δ) ⊆ Ker ((d + d∗ev)
q
l+2,−2−δ), Theorem 4.19 shows that Φ∗i (α) = rdr ∧ δi3 + O(r−2+δ)

where δi3 ∈ C∞(Λ3
CT

∗Γi) with dδi3 = d∗Γi
δi3 = 0. We then have Φ∗i (∗α) = ∗Γi

δi3 + O(r−2+δ) on
Γi × (0, ε). Using the fact that ξi = O(r−3) and ∗Γiδ

i
3 = O(r−2) we obtain

〈(dχ′, 0), (α, β)〉L2 = lim
r→0

n∑
i=1

∫
Γi×{r}

(ξi ∧ ∗Γi
δi3 + O(r−5+δ))

= lim
r→0

n∑
i=1

[ξi] ∪ [∗Γi
δi3] + O(r−5+δ) ·O(r5) by the definition of cup

product and using vol(Γi × {r}) = O(r5)

=
n∑
i=1

[ξi] ∪ [∗Γi
δi3] (4.37)
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as δ > 0 and the cohomology classes are independent of r. From the hypothesis, we have⊕n
i=1[ξi] ∈ ρ3(H3(M ′

0,C)). Thus by Proposition 4.20, (
⊕n

i=1[ξi])∪ (
⊕n

i=1[θi]) = 0, or
∑n
i=1[ξi]∪

[θi] = 0, for all
⊕n

i=1[θi] ∈ ρ2(H2(M ′
0,C)). Since ρ2([∗α]) =

⊕n
i=1[∗Γi

δi3] from Φ∗i (∗α) =
∗Γi

δi3 +O(r−2+δ), so
⊕n

i=1[∗Γi
δi3] lies in the image of ρ2 and hence

∑n
i=1 [ξi]∪ [∗Γi

δi3] = 0. Thus
from (4.37) we have shown that 〈(dχ′, 0), (α, β)〉L2 = 0 for any (α, β) ∈ Ker ((d∗+ + d)ql+2,−2−δ).
It follows that a solution (ϕ, ζ) to (4.36) exists.

As χ′, ϕ ∈ Λ3
+, χ = χ′+ϕ also lies in Λ3

+. Since dϕ+d∗ζ = −dχ′, we have dd∗ζ = 0. Together
with dζ = 0, we see that ζ ∈ Ker (∆p

k+2,−3+δ|Λ5
C
), which is then equal to zero by the remark after

Proposition 4.22. This gives dχ = dχ′+dϕ = 0. Moreover, using the asymptotic condition (4.35)
for χ′ and the fact that ϕ is a smooth 3-form decaying at rate O(r−3+δ) near xi, we obtain (ii)
of the theorem. This completes the proof. 2

The space Ker ((d∗+ + d)ql+2,−2−δ) is in effect the obstruction space to the existence of the
3-form χ, as it is the obstruction space to solving (4.36). However, we can overcome all the
obstructions by fixing

⊕n
i=1[ξi] ∈ ρ3(H3(M ′

0,C)), which cause (4.37) to vanish automatically.
As we explained before, this condition is clearly necessary for the existence of χ, thus we have
shown that the necessary condition is also sufficient.

Proposition 4.26 The complex 3-form χ in Theorem 4.25 can be projected to the Λ2,1
0 -component

χ
(2,1)
0 of χ, satisfying

(i) dχ
(2,1)
0 = 0 and hence d∗χ

(2,1)
0 = 0, and

(ii) Φ∗i (χ
(2,1)
0 ) = ξi + dCi,

where Ci is a complex 2-form on Γi × (0, ε) and |∇jCi|gVi
= O(r−2+δ−j) for i = 1, . . . , n and all

j ≥ 0.

Proof. As χ ∈ Λ3
+, the algebraic relation from Lemma 4.21 gives

χ = χ
(2,1)
0 + (ω0 ∧ θ(0,1)) + χ(0,3). (4.38)

Since χ is closed and coclosed, it is harmonic and thus all its components in (4.38) are also
harmonic. In particular, θ(0,1) is harmonic. Note that ω0∧χ = ω0∧ω0∧ θ(0,1) as both χ(2,1)

0 and
χ(0,3) are trace-free. Using Theorem 4.25 (ii) we have Φ∗i (χ) = ξi + O(r−3+δ). It follows that
ω0 ∧ ω0 ∧ θ(0,1) = O(r−3+δ) as ξi ∧ ωVi = 0. Hence θ(0,1) ∈ Ker (∆p

k+2,−3+δ|Λ1
C
), which then gives

θ(0,1) = 0 by applying the Weitzenbock formula for 1-forms as in the proof of Proposition 4.22.
This kills the bit ω0 ∧ θ(0,1) in χ and (4.38) implies

0 = dχ = dχ
(2,1)
0 + dχ(0,3).

The components in dχ are of type (3,1) and (2,2) coming from dχ
(2,1)
0 and of type (1,3) coming

from dχ(0,3). Consequently, we have dχ(2,1)
0 = dχ(0,3) = 0. This proves (i) as χ(2,1)

0 ∈ Λ3
+.

To show (ii), let π : Λ3
C −→ Λ2,1

0 be the projection of complex 3-forms on M ′
0 to their Λ2,1

0 -
components, using structures on M ′

0, and let πVi
be the similar projection on Vi, using structures
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on Vi. Hence we have π(χ) = χ
(2,1)
0 , and πVi(ξi) = ξi, as ξi is by assumption a trace-free (2,1)-

form on Vi. Since the Calabi–Yau structures on M0 and Vi agree up to order O(rν) by definition,
we have Φ∗i ◦ π = πVi

◦ Φ∗i +O(r−3+ν). It follows that

Φ∗i (χ
(2,1)
0 ) = Φ∗i (π(χ)) = πVi

(Φ∗i (χ)) +O(r−3+ν) = πVi
(ξi) +O(r−3+δ) +O(r−3+ν)

= ξi +O(r−3+δ) as δ < ν.

The error term is an exact 3-form as it decays faster than O(r−3), and we may now define Ci by
integration as in Theorem 3.24. so that Φ∗i (χ

(2,1)
0 ) = ξi + dCi. The size of the derivatives of Ci

can be deduced from the result of integration, as we have seen in Theorem 3.24. This proves the
proposition. 2

4.4 Nearly Calabi–Yau structures (ωt, Ωt): the case λi = −3

This section constructs a 1-parameter family of smooth, nonsingular compact 6-folds Mt, as
in §3.4.1. We then construct nearly Calabi–Yau structures (ωt,Ωt) on Mt for small enough t, in
which we include a correction term to the definition of Ωt in §3.4.2. We use the notation in §4.1,
§4.2 and §4.3. Suppose that

⊕n
i=1[ξi] ∈

⊕n
i=1H

3(Γi,C) lies in ρ3(H3(M ′
0,C)), so that χ(2,1)

0

exists on M ′
0 by Proposition 4.26. We shall use η in place of χ(2,1)

0 from now on. For i = 1, . . . , n
apply a homothety to Yi as before. Then (Yi, JYi , t

2ωYi , t
3ΩYi) is also an AC Calabi–Yau 3-fold,

with the diffeomorphism Υt,i : Γi × (tR,∞) −→ Yi \Ki given by Υt,i(γ, r) = Υi(γ, t−1r). The
nonsingular 6-fold Mt will be constructed exactly in the same way as in §3.4.1. We now define
the nearly Calabi–Yau structures (ωt,Ωt) on Mt. The 2-form ωt will have the same definition as
in §3.4.2. As discussed in §3.4.2, we can write

Φ∗i (Ω0) = ΩVi
+ dAi (4.39)

for i = 1, . . . , n and some complex 2-form Ai(γ, r) on Γi × (0, ε) satisfying

|∇kAi(γ, r)|gVi
= O(rν+1−k) as r → 0 for all k ≥ 0. (4.40)

Then by Proposition 4.26 (ii), we have

Φ∗i (Ω0 + t3η) = ΩVi
+ t3ξi + d(Ai + t3Ci) (4.41)

for i = 1, . . . , n. As for the AC Calabi–Yau 3-folds, we have from §4.1

Υ∗
t,i(t

3ΩYi
) = ΩVi

+ t3ξi + t3dBi (4.42)

for i = 1, . . . , n and some complex 2-form Bi(γ, t−1r) on Γi × (tR,∞) satisfying

|∇kBi(γ, t−1r)|gVi
= O(t−λ

′
i−3rλ

′
i+1−k) for r > tR, λ′i < −3

and all k ≥ 0. (4.43)

Let F : R −→ [0, 1] be the smooth function introduced in §3.4.2. We now define a smooth
complex closed 3-form Ωt on Mt by
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Ωt =



Ω0 + t3η on Qt \
[(⋃n

i=1 Pt,i
)
∩Qt

]
,

ΩVi
+ t3ξi + d

[
F (t−αr)Ai(γ, r) + t3F (t−αr)Ci(γ, r)

+t3(1− F (t−αr))Bi(γ, t−1r)
]

on Pt,i ∩Qt for i = 1, . . . , n,

t3ΩYi
on Pt,i \ (Pt,i ∩Qt) for i = 1, . . . , n.

(4.44)

Then when 2tα ≤ r < ε we have F (t−αr) = 1 so that Ωt = Φ∗i (Ω0 + t3η) for each i by (4.41), and
when tR < r ≤ tα we have F (t−αr) = 0 so that Ωt = Υ∗

t,i(t
3ΩYi

) by (4.42). Thus Ωt interpolates
between Φ∗i (Ω0 + t3η) near r = ε and Υ∗

t,i(t
3ΩYi

) near r = tR.

Let Mt, ωt and Ωt be defined as above. For i = 1, . . . , n, (Mt, ωt,Ωt) is just (Yi, t2ωYi , t
3ΩYi)

on Pt,i \ (Pt,i ∩Qt). On each Pt,i ∩Qt, we have ωt = ωVi and

Ωt − ΩVi = t3ξi + d
[
F (t−αr)Ai(γ, r) + t3F (t−αr)Ci(γ, r)

+ t3(1− F (t−αr))Bi(γ, t−1r)
]

by (4.44). Then Proposition 4.26, (4.40) and (4.43) gives

|Ωt − ΩVi
|gVi

= O(t3(1−α)) +O(tαν) +O(t3(1−α)+αδ) +O(t−λ
′
i(1−α))

= O(tαν) +O(t3(1−α)) for r ∈ (tα, 2tα) (4.45)

since both O(t3(1−α)+αδ) and O(t−λ
′
i(1−α)) absorb in the term O(t3(1−α)). Hence |Ωt−ΩVi

|gVi
≤

K0t
κ where K0 > 0 is some constant and κ = min(αν, 3(1−α)). On Qt \

[(⋃n
i=1 Pt,i

)
∩Qt

]
, we

have

|Ωt − Ω0|g0 = |t3η|g0 = O(t3(1−α)), (4.46)

thus |Ωt−Ω0|g0 ≤ K1t
3(1−α) where K1 > 0 is some constant. Consequently, (ωt,Ωt) is sufficiently

close to the genuine Calabi–Yau structures on Qt \
[(⋃n

i=1 Pt,i
)
∩Qt

]
and Pt,i ∩Qt and is equal

to (t2ωYi
, t3ΩYi

) on Pt,i \ (Pt,i ∩Qt). Thus by Proposition 3.6, we have proved:

Proposition 4.27 Let Mt, ωt and Ωt be defined as above. Then (ωt,Ωt) gives a nearly Calabi–
Yau structure on Mt for sufficiently small t.

Similar to the unobstructed case in Chapter 3, we can then associate an almost complex struc-
ture Jt and a real 3-form θ′2,t such that Ω′t = Re(Ωt) + iθ′2,t is a (3,0)-form w.r.t. Jt. Moreover,
we have the 2-form ω′t, which is the rescaled (1,1)-part of ωt w.r.t. Jt, and the associated metric
gt on Mt. It follows from Proposition 3.6 that |gt−gVi |gVi

= O(tαν)+O(t3(1−α)) = |g−1
t −g−1

Vi
|gVi

on Pt,i ∩Qt, whereas |gt − gVi
|gVi

= O(t3(1−α)) = |g−1
t − g−1

Vi
|gVi

on Qt \
[(⋃n

i=1 Pt,i
)
∩Qt

]
.
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4.5 The main result when λi = −3

Here is our main result on desingularizing compact Calabi–Yau 3-folds M0 with finitely many
conical singularities, the analogue of Theorem 3.32, but allowing λi = −3 and [Υ∗

i (ΩYi)−ΩVi ] 6= 0
in H3(Γi,C).

Theorem 4.28 Suppose (M0, J0, ω0,Ω0) is a compact Calabi–Yau 3-fold with finitely many
conical singularities x1, . . . , xn with rate ν > 0 modelled on Calabi–Yau cones V1, . . . , Vn. Let
(Y1, JY1 , ωY1 ,ΩY1), . . . , (Yn, JYn

, ωYn
, ΩYn

) be AC Calabi–Yau 3-folds with rates −3 modelled on
the same Calabi–Yau cones V1, . . . , Vn.

Suppose that there is a closed, homogeneous, trace-free (2,1)-form ξi of order −3 on Vi such
that (4.2) holds for i = 1, . . . , n, and that

⊕n
i=1[ξi] ∈

⊕n
i=1H

3(Γi,C) lies in ρ3(H3(M ′
0,C)).

Define a family (Mt, ωt,Ωt) of nonsingular compact nearly Calabi–Yau 3-folds with the asso-
ciated metrics gt as in §4.4.

Then Mt admits a Calabi–Yau structure (J̃t, ω̃t, Ω̃t) such that ‖ω̃t − ωt‖C0 ≤ Ktκ and
‖Ω̃t − Ωt‖C0 ≤ Ktκ for some κ,K > 0 and for sufficiently small t. The cohomology classes
satisfy [Re(Ωt)] = [Re(Ω̃t)] ∈ H3(Mt,R) and [ωt] = ct [ω̃t] ∈ H2(Mt,R) for some ct > 0. Here
all norms are computed with respect to gt.

Proof. The scheme of the proof follows exactly in the same manner as in Theorem 3.32 for the
unobstructed case where λi < −3. Thus we only have to estimate various norms of forms on the
regions Pt,i ∩ Qt and Qt \

[(⋃n
i=1 Pt,i

)
∩ Qt

]
, so as to verify (i)-(iii) of Theorem 3.14. On the

annuli Pt,i ∩Qt for i = 1, . . . , n we have

|Ωt − (ΩVi + t3ξi)|gVi
= O(tαν) +O(t−λ

′
i(1−α))

by (4.44) where λ′i < −3. Now fix x ∈ V ′i and consider the space of all (ωx,Ωx) where ω is a
real 2-form and Ω a complex 3-form on V ′i . Let Sx be the subspace of (ωx,Ωx) which are SU(3)-
structures at x, that is, there is an isomorphism between TxV ′i and C3 such that ωx is identified
with ω̂ in C3 and Ωx with Ω̂ in C3 (cf. the discussion after Definition 3.1). Since ξi is a trace-free
(2,1)-form on Vi, changing ΩVi

by ξi will give a deformation of an SU(3)-structures to first order,
and so there is an SU(3)-structure (ωVi

,Ω′Vi
) on Vi, which is the projection of (ωVi

,ΩVi
+ t3ξi)

onto the subspace Sx for all x ∈ V ′i , such that

|(ΩVi
+ t3ξi)− Ω′Vi

|gVi
= O(|t3ξi|2gVi

)

= O(t6(1−α)) for r ∈ (tα, 2tα).

Therefore,

|Ωt − Ω′Vi
|gVi
≤ |Ωt − (ΩVi

+ t3ξi)|gVi
+ |(ΩVi

+ t3ξi)− Ω′Vi
|gVi

= O(tαν) +O(t−λ
′
i(1−α)) +O(t6(1−α)).
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Following the argument from the proof of Theorem 3.32, the crucial things to look at are the
L2-norms:

‖ωt − ω′t‖L2 = O(t3α+αν) +O(t3α−λ
′
i(1−α)) +O(t6−3α) = ‖Im(Ωt)− Im(Ω′t)‖L2 .

Although there is an extra term O(t6−3α) in the estimate, we can still show that there exist
solutions α ∈ (0, 1) and κ > 0 to the inequalities

3α+ αν ≥ 3 + κ, 3α− λ′i(1− α) ≥ 3 + κ and 6− 3α ≥ 3 + κ

for any ν > 0 and λ′i < −3, since the extra inequality holds automatically for any α ∈ (0, 1).
Hence on the annuli Pt,i ∩ Qt, we show that (i)-(iii) of Theorem 3.14 hold for sufficiently small
t, and it remains to estimate the norms on the region Qt \

[(⋃n
i=1 Pt,i

)
∩Qt

]
.

The hypothesis ensure the existence of η on M ′
0. Using the fact that η is of type (2,1),

Ωt = Ω0 + t3η on Qt \
[(⋃n

i=1 Pt,i
)
∩Qt

]
is then a change of (3,0)-form up to first order. Since

Ω′t = Re(Ωt) + iθ′2,t is of type (3,0) w.r.t. Jt, we have |Ωt − Ω′t|gt
= O(|t3η|2gt

), which gives
|Im(Ωt)− Im(Ω′t)|gt = O(|t3η|2gt

). For r ∈ (2tα, ε),

|Im(Ωt)− Im(Ω′t)|gt
= O(t6(1−α)). (4.47)

Now note that

Re(Ωt) ∧ Im(Ω′t) = Re(Ωt) ∧ Im(Ωt) + Re(Ωt) ∧ (Im(Ω′t)− Im(Ωt))

= (Re(Ω0 + t3η) ∧ Im(Ω0 + t3η)) +O(t6(1−α)) by (4.47)

= Re(Ω0) ∧ Im(Ω0) + Re(t3η) ∧ Im(t3η) + O(t6(1−α))

as both wedge products Re(Ω0) ∧ Im(t3η) and Im(Ω0) ∧Re(t3η) cannot give (3,3)-forms. Hence
we have

Re(Ωt) ∧ Im(Ω′t) = Re(Ω0) ∧ Im(Ω0) + O(t6(1−α)). (4.48)

For the difference between ωt and ω′t, note that ωt = ω0 on Qt \
[(⋃n

i=1 Pt,i
)
∩ Qt

]
, and hence

ωt − ω(1,1)
t w.r.t. Jt is essentially ω(0,2)

0 , which is isomorphic to ω0 ∧ Ω′t. Now,

ω0 ∧ Ω′t = ω0 ∧ (Ωt + i(Im(Ω′t)− Im(Ωt)))

= ω0 ∧ (Ω0 + t3η +O(t6(1−α)) by (4.47)

= O(t6(1−α)) since ω0 ∧ Ω0 = 0 = ω0 ∧ η

Hence
ω

(1,1)
t = ω0 +O(t6(1−α)),

and
(ω(1,1)
t )3 = ω3

0 +O(t6(1−α))

By comparing this to (4.48), we see that the function f for rescaling is equal to 1 + O(t6(1−α)).
Thus ω′t = f−

1
3ω

(1,1)
t = ω0 +O(t6(1−α)), and we have

|ωt − ω′t|gt
= O(t6(1−α)). (4.49)
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Once again by focussing on the L2-norms, we obtain

‖ωt − ω′t‖L2 = O(t6−3α) = ‖Im(Ωt)− Im(Ω′t)‖L2 ,

which have been handled before. As a consequence, (i)-(iii) of Theorem 3.14 hold on Qt \[(⋃n
i=1 Pt,i

)
∩Qt

]
for sufficiently small t. The theorem now follows from Theorem 3.14, arguing

in the same way as in the proof of Theorem 3.32. 2

Remark Theorem 4.28 can be regarded as a generalization of Theorem 3.32. If an AC Calabi–
Yau 3-fold (Yi, JYi

, ωYi
, ΩYi

) has rate λi < −3, it also has rate −3, in which case we take ξi = 0
and the conditions for ξi in Theorem 4.28 are then satisfied automatically. Hence Theorem 3.32
is a special case of Theorem 4.28.

4.6 Desingularizations of Calabi–Yau 3-folds with ordinary

double points

We now apply the theory of the previous sections to desingularize the simple kind of singulari-
ties known as ordinary double points, or nodes of Calabi–Yau 3-folds. We remark here that, unlike
the orbifold case, we need to assume the existence of singular Calabi–Yau metrics on compact
complex 3-folds with ordinary double points for the methods developed in the thesis to apply, as
we do not yet have any existence result for Calabi–Yau metrics on such kind of manifolds. As
we shall see in the following, the AC Calabi–Yau 3-fold we use for gluing is the cotangent bundle
T ∗S3 of S3. Our goal in this section is to construct a nice coordinate system on T ∗S3 so that the
conditions of (4.2) holds, and hence our main result is applicable to desingularizing Calabi–Yau
3-folds with ordinary double points. Some reading on ordinary double points are Friedman [16],
Joyce [26, Example 6.3.4] and Reid [44].

Definition 4.29 Let V be the cone in C4 defined by the complex quadric

{(z1, z2, z3, z4) ∈ C4 : z2
1 + z2

2 + z2
3 + z2

4 = 0},

which is smooth apart from the origin. The singularity at the origin is called an ordinary double
point, or a node. It is a kind of double point as both F = z2

1 + z2
2 + z2

3 + z2
4 and dF vanish at

the origin, but the hessian HessF (0) is nondegenerate. We have seen this in Example 3.19. By
making a linear change of coordinates: x = z1 + iz2, y = z1− iz2, z = z3 + iz4 and w = −z3− iz4,
we can write the quadric in the form

{(x, y, z, w) ∈ C4 : xy = zw}.

Stenzel constructed [48] Ricci-flat metrics on V (in fact on any complex m-dimensional
quadric), thus making V a Calabi–Yau cone. It can be shown that the link Γ has the topol-
ogy of S2 × S3, and hence V is topologically a cone on S2 × S3. One can also describe V as
follows. Consider the blow-up C̃4 of C4 at origin. It introduces an exceptional divisor CP3, and
the blow-up Ṽ of the cone V inside C̃4 meets this CP3 at S ∼= CP1 × CP1. The exceptional
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divisor CP3 corresponds to the zero section of the line bundle L given by C̃4 −→ CP3, and so
its normal bundle is isomorphic to L. Hence the normal bundle O(−1,−1) over CP1 × CP1 is
isomorphic to the line bundle Ṽ −→ S. This gives us the following isomorphisms:

V \ {0} ∼= Ṽ \ S ∼= O(−1,−1) \ (CP1 × CP1).

Let V1, . . . , Vn be Calabi–Yau cones defined by the complex quadric in C4. A Calabi–Yau
3-fold (M0, J0, ω0,Ω0) with ordinary double points x1, . . . , xn is a Calabi–Yau 3-fold with conical
singularities at x1, . . . , xn with rate ν > 0 modelled on the Calabi–Yau cones V1, . . . , Vn.

There are two different ways of repairing the ordinary double points, as we have discussed
briefly in first part of Chapter 1. The first is by making a small resolution, in which the singular
points are replaced by rational curves CP1. To see this explicitly, we define Ṽ +

i ⊂ C4 × CP1 for
i = 1, . . . , n by

Ṽ +
i =

{
((x, y, z, w), [u1, u2]) ∈ C4 × CP1 : xu2 = wu1, zu2 = yu1

}
and define π+

i : Ṽ +
i −→ C4 to be the projection to the first factor. Since u1, u2 are not both

zero, the two equations xu2 = wu1 and zu2 = yu1 imply xy = zw which is the defining equation
of the alternative form of Vi. This means π+

i maps Ṽ +
i to Vi. Moreover, π+

i is an isomorphism
except at 0, and so Ṽ +

i is isomorphic to Vi away from the origin, and replaces the origin by
(π+
i )−1(0) = CP1. Essentially Ṽ +

i is the normal bundle O(−1)⊕O(−1) over CP1 with fibre C2.
Thus we have

Vi \ {0} ∼= Ṽ +
i \ (π+

i )−1(0) ∼= O(−1)⊕O(−1) \ CP1.

Ṽ +
i is called a small resolution of Vi. Note that one can obtain a second small resolution Ṽ −i

by swapping z and w (which preserves xy = zw, i.e. preserves Vi) in Ṽ +
i . These two small

resolutions are related by a process in algebraic geometry called a flop.

Candelas and de la Ossa [11, p.258] constructed Ricci-flat metrics on Ṽ ±i , and in our notation,
these metrics satisfy Υ∗

i (gYi)−gVi = O(r−2) for Yi = Ṽ ±i . Therefore the small resolutions Ṽ ±i are
AC Calabi–Yau 3-folds with rate −2, and this is a rate out of reach by our techniques developed
in this chapter.

Another way of desingularizing the ordinary double points is by deformation or smoothing
(cf. Example 2.7 and Example 3.29), where Vi is deformed to

Qε = {(z1, z2, z3, z4) ∈ C4 : z2
1 + z2

2 + z2
3 + z2

4 = ε}

for some nonzero ε ∈ C. This has the effect of replacing the singularity by a 3-sphere S3. We
now relate the deformation to the cotangent bundle of the 3-sphere. By identifying the cotangent
bundle with the tangent bundle via the round metric, we can realize T ∗S3 as follows:

T ∗S3 = {(v, ξ) ∈ R4 × R4 : |v| = 1, 〈v, ξ〉 = 0}.

It has a canonical symplectic structure, and following [50], we can map the cotangent bundle
T ∗S3 diffeomorphically to the deformation Qε by

Fε : T ∗S3 −→ Qε

(v, ξ) 7→
√
ε v cosh|ξ| + i

√
ε
ξ

|ξ|
sinh|ξ|,
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so that the standard symplectic form on C4 restricted to Qε is identified with the canonical
symplectic form on T ∗S3. We now fix our attention on ε = 1.

Consider the action of the group SO(4) on Q1 given by the usual matrix multiplication:

(z1, z2, z3, z4)T 7−→ A · (z1, z2, z3, z4)T for A ∈ SO(4),

and on T ∗S3 given by
(v, ξ) 7−→ (Av,Aξ) for A ∈ SO(4).

Observe that F1 maps T ∗S3 to Q1 equivariantly with respect to these SO(4)-actions. On T ∗S3,
the action is transitive on each level set |ξ| = c > 0. Take v = (1, 0, 0, 0)T and ξ = (0, c, 0, 0)T ,
the stabilizer at (v, ξ) is of the form(

I 0
0 B

)
where I is the 2 × 2 identity matrix and B ∈ SO(2).

Thus T ∗S3 or Q1 admits an SO(4)-action with generic orbit SO(4)/SO(2), which implies that
the action is of cohomogeneity one, that is, each generic orbit has real codimension one in T ∗S3

or Q1. As the zero section S3 of T ∗S3 corresponds to the case when ξ = 0, we have the fibration

0 −→ SO(4)/SO(2) −→ T ∗S3 \ S3 −→ (0,∞) −→ 0. (4.50)

As a complex hypersurface of C4, Q1 inherits a complex structure. With respect to this
complex structure, Stenzel [48, p.161] constructed an SO(4)-invariant Ricci-flat metric on Q1,
and hence on the cotangent bundle T ∗S3. Denote by ωQ1 the Kähler form corresponding to
Stenzel’s Ricci-flat metric, and ΩQ1 the holomorphic (3,0)-form which can be computed explicitly
by the relation:

1
2
d(z2

1 + z2
2 + z2

3 + z2
4 − 1) ∧ ΩQ1 = dz1 ∧ dz2 ∧ dz3 ∧ dz4.

Thus on {z1 6= 0}, we have

ΩQ1 =
1
z1
dz2 ∧ dz3 ∧ dz4

∣∣∣
Q1

. (4.51)

Note that Stenzel’s Kähler form ωQ1 is the unique SO(4)-invariant Kähler form (see [48], Lemma
5) normalized w.r.t. ΩQ1 , that is, (JQ1 , ωQ1 ,ΩQ1) is a Calabi–Yau structure on Q1, where JQ1

is the complex structure on Q1 inherited from the standard complex structure on C4.

We hope to construct a special section of the fibration (4.50), i.e. a map s : (0,∞) −→ Q1\S3

such that s(x) is a unique point in the codimension one orbit SO(4)/SO(2) corresponding to
x ∈ (0,∞). Then we obtain a natural identification

SO(4)/SO(2)× (0,∞) ∼= Q1 \ S3

given by (A · SO(2), x) 7−→ A · s(x) for A ∈ SO(4), which is well-defined as the stabilizer at s(x)
is also SO(2).
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For this purpose, we are going to construct a distinguished real curve in T ∗S3 ∼= Q1 which
corresponds to the fixed point set of some automorphisms on Q1. The section s can then be
defined so that its image in Q1 is exactly the real curve. Here is an example of a suitable
automorphism σ:

(z1, z2, z3, z4) 7−→ (z̄1,−z̄2, z̄4,−z̄3).

Clearly, σ4 = Id, and hence σ generates a group 〈σ〉 of automorphisms of Q1 isomorphic to
Z4. Since σ is defined by conjugation, we have σ∗(JQ1) = −JQ1 . From (4.51), we obtain
σ∗(ΩQ1) = −Ω̄Q1 . With respect to the complex structure −σ∗(JQ1) = JQ1 , −σ∗(ωQ1) is also
an SO(4)-invariant Ricci-flat Kähler form, which is therefore equal to ωQ1 by uniqueness of
SO(4)-invariant Kähler forms normalized w.r.t. ΩQ1 . Hence σ preserves Stenzel’s Calabi–Yau
structure on T ∗S3 ∼= Q1 up to a sign, which is the main reason of using such an automorphism
to make a Z4-action. Together with the SO(4)-action on Q1 described before, we now have a
Z4 nSO(4)-action on Q1, where the Z4-action interacts nicely with the SO(4)-action in the sense
that σ ◦ A ◦ σ−1 ∈ SO(4) for each A ∈ SO(4), and that it commutes with the action of SO(2).
We will discuss this again later.

The fixed locus of σ is given by {(x1, ix2, 0, 0) : x1, x2 ∈ R, x2
1 − x2

2 = 1}. Choose a para-
metrization by x1 = coshx and x2 = sinhx for x ∈ R. Define s : (0,∞) −→ Q1 \ S3 by
s(x) = (coshx, i sinhx, 0, 0). Now we fix an identification ϕ : SO(4)/SO(2)× (0,∞) −→ Q1 \ S3

given by

ϕ(A · SO(2), x) = A · (coshx, i sinhx, 0, 0) for A ∈ SO(4) and x ∈ (0,∞).

Denote by Xij the 4×4-matrix with ij-th entry = 1, ji-th entry = −1 and all other entries zero.
Then {e1 = X12, e2 = X13, e3 = X14, e4 = X23, e5 = X24, e6 = X34} gives a basis for the Lie
algebra so(4). Project it to so(4)/so(2), then {e1, e2, e3, e4, e5} forms a basis. The differential
dϕ at (Id · SO(2), x) then identifies the tangent space T(cosh x,i sinh x,0,0)Q1 with the vector space
so(4)/so(2)× R by:

e1 7−→
(
i sinhx

∂

∂z1
− coshx

∂

∂z2

)
+
(
− isinhx

∂

∂z̄1
− coshx

∂

∂z̄2

)
e2 7−→ − coshx

∂

∂z3
− coshx

∂

∂z̄3

e3 7−→ − coshx
∂

∂z4
− coshx

∂

∂z̄4
(4.52)

e4 7−→ −i sinhx
∂

∂z3
+ i sinhx

∂

∂z̄3

e5 7−→ −i sinhx
∂

∂z4
+ i sinhx

∂

∂z̄4
∂

∂x
7−→

(
sinhx

∂

∂z1
+ i coshx

∂

∂z2

)
+
(
sinhx

∂

∂z̄1
− i coshx

∂

∂z̄2

)
.

We are interested in looking at all the closed homogeneous 2-forms on SO(4)/SO(2) ×(0,∞)
with σ = −1, as the Kähler form on the cone and on Q1 are of this type. This leads us to look at
the SO(4)-invariant 2-forms on SO(4)/SO(2), which is equivalent to considering the Ad(SO(2))-
invariant 2-forms on so(4)/so(2). Regard the tangent space T(cosh x,i sinh x,0,0)Q1 as a C3 subspace
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of C4 given by {(z1, z2, z3, z4) ∈ C4 : (coshx) z1 + i (sinhx) z2 = 0}. Write w1 = z2, w2 = z3

and w3 = z4 so that the C3 with coordinates (w1, w2, w3) parametrizes T(cosh x,i sinh x,0,0)Q1 by
(w1, w2, w3) 7→ (−i (tanhx)w1, w1, w2, w3).

The action of SO(2) can be written as:

(w1, w2, w3) 7−→ (w1, cos θw2 + sin θw3, −sin θw2 + cos θw3) for θ ∈ R.

Calculation shows that the invariant 2-forms are given by

dw1 ∧ dw̄1, dw2 ∧ dw̄2 + dw3 ∧ dw̄3, Re (dw2 ∧ dw3), Im (dw2 ∧ dw3) and Re (dw2 ∧ dw̄3).

Thus the space of SO(2)-invariant 2-forms on C3 has real dimension 5. For the Z4-action σ, we
have

(w1, w2, w3) 7−→ (−w̄1, w̄3,−w̄2).

Note that this action commutes with the above SO(2)-action. Among the SO(2)-invariant 2-
forms, σ acts as −1 on dw1 ∧ dw̄1, dw2 ∧ dw̄2 + dw3 ∧ dw̄3 and Im (dw2 ∧ dw3), and as 1 on
Re (dw2 ∧ dw3) and Re (dw2 ∧ dw̄3).

We now proceed to work out the complex structure on so(4)/so(2)×R which corresponds to
the complex structure on T(cosh x,i sinh x,0,0)Q1, i.e. multiplication by i on C3. Then we can write
the above SO(2)- and Z4-action in terms of e1, . . . , e5, ∂/∂x, and obtain the invariant 2-forms on
so(4)/so(2)× R by pulling back by ϕ. In view of (4.52), the corresponding complex structure J
on so(4)/so(2)× R is given by

J : e1 7−→ −
∂

∂x
, e2 7−→ (cothx) e4, e3 7−→ (cothx) e5,

(4.53)
e4 7−→ −(tanhx) e2, e5 7−→ −(tanhx) e3,

∂

∂x
7−→ e1.

Denote by ω1, . . . , ω6, dx the dual basis of e1, . . . , e6, ∂/∂x. Then {ω1, . . . , ω5} is a basis for
(so(4)/so(2))∗. Calculation shows that

ϕ∗(dz1) = sinhx · (dx+ iω1), ϕ∗(dz2) = i coshx · (dx+ iω1), (4.54)
ϕ∗(dz3) = −coshxω2 − i sinhxω4, ϕ∗(dz4) = −coshxω3 − i sinhxω5

and the SO(2)-invariant 2-forms with σ = −1 on so(4)/so(2)× R are given by

ϕ∗(
i

2
dw1 ∧ dw̄1) = cosh2 x · dx ∧ ω1,

ϕ∗(
i

2
(dw2 ∧ dw̄2 + dw3 ∧ dw̄3)) = coshx · sinhx · (ω2 ∧ ω4 + ω3 ∧ ω5),

ϕ∗(Im (dw2 ∧ dw3)) = coshx · sinhx · (ω2 ∧ ω5 − ω3 ∧ ω4).

Write α = ω1, β = ω2 ∧ ω4 + ω3 ∧ ω5 and γ = ω2 ∧ ω5 − ω3 ∧ ω4. A general SO(4)-invariant
2-form with σ = −1 can then be written as

f1(x) dx ∧ α+ f2(x)β + f3(x) γ

for some smooth real functions f1, f2 and f3.
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On the Lie algebra so(4), the Lie brackets for the basis elements satisfy [Xab, Xac] = −Xbc,
and [Xab, Xcd] = 0 if a, b, c, d are distinct. Using these relations yields all the structural constants
Ckij of the Lie bracket, and by applying the Maurer-Cartan equation dωk = −

∑
i<j C

k
ij ω

i ∧ ωj ,
we obtain

dω1 = ω2 ∧ ω4 + ω3 ∧ ω5, dω2 = −ω1 ∧ ω4 + ω3 ∧ ω6, dω3 = −ω1 ∧ ω5 − ω2 ∧ ω6, (4.55)
dω4 = ω1 ∧ ω2 + ω5 ∧ ω6, dω5 = ω1 ∧ ω3 − ω4 ∧ ω6, dω6 = ω2 ∧ ω3 + ω4 ∧ ω5.

It follows that β = dω1 = dα is an exact 2-form, and

dγ = dω2 ∧ ω5 − ω2 ∧ dω5 − dω3 ∧ ω4 + ω3 ∧ dω4

= −ω1 ∧ ω4 ∧ ω5 + ω3 ∧ ω6 ∧ ω5 − ω2 ∧ ω1 ∧ ω3 + ω2 ∧ ω4 ∧ ω6 + ω1 ∧ ω5 ∧ ω4

+ ω2 ∧ ω6 ∧ ω4 + ω3 ∧ ω1 ∧ ω2 + ω3 ∧ ω5 ∧ ω6

= 2ω1 ∧ (ω2 ∧ ω3 − ω4 ∧ ω5) 6= 0.

Suppose f1(x) dx∧α+ f2(x)β+ f3(x) γ is a closed 2-form. For the remainder of this section, we
shall use a prime to indicate differentiation w.r.t. x. Then

0 = d(f1(x) dx ∧ α+ f2(x)β + f3(x) γ)

= −f1(x) dx ∧ dα+ f ′2(x) dx ∧ β + f2(x) dβ + f ′3(x) dx ∧ γ + f3(x) dγ

= (−f1(x) + f ′2(x)) dx ∧ dα+ f ′3(x) dx ∧ γ + f3(x) dγ.

This amounts to f3(x) = 0, as dγ 6= 0. It follows that there is no γ component in a closed 2-form,
and f ′2(x) = f1(x). We thus obtain

Lemma 4.30 The SO(4)-invariant homogeneous closed 2-forms on SO(4)/SO(2)× (0,∞) with
the Z4-action σ = −1 are of the form

u′(x) dx ∧ α+ u(x)β (4.56)

where u is some smooth real function.

On Q1 Stenzel’s Kähler form is given by ωQ1 = d(JQ1df(w)) where w = cosh−1(|z1|2 +
· · ·+ |z4|2) = cosh−1(|coshx|2 + |isinhx|2) = 2x, and f(w) is the Kähler potential satisfying the
differential equation

d

dw

(( df
dw

)3) = 3c (sinhw)2 (4.57)

for some constant c to be fixed later. With the initial condition f ′(0) = 0 the derivative of f is
given by

df

dw
=
(

3c
4

(e2w
2
− 2w − e−2w

2

))1/3

or in terms of our coordinate x,

1
2
f ′(2x) =

(
3c
4

(e4x
2
− 4x− e−4x

2

))1/3

. (4.58)
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Expressing ωQ1 in the form of (4.56) we have

ωQ1 =
d2f

dw2
dw ∧ α+

df

dw
β

or

ωQ1 =
1
2

(f ′′(2x) dx ∧ α+ f ′(2x)β). (4.59)

Next we proceed to compute the pullback of the holomorphic (3,0)-form ΩQ1 on SO(4)/SO(2)×
(0,∞). At the point (coshx, i sinhx, 0, 0), (4.51) and (4.54) yield

ϕ∗(ΩQ1) =
1

coshx
(
i coshx · (dx+ iω1) ∧ (−coshxω2 − i sinhxω4) ∧ (−coshxω3 − i sinhxω5)

)
= i (cosh2 x · dx ∧ ω2 ∧ ω3 − sinh2 x · dx ∧ ω4 ∧ ω5 − coshx · sinhx · ω1 ∧ ω2 ∧ ω5

− coshx · sinhx · ω1 ∧ ω4 ∧ ω3 + icosh2 x · ω1 ∧ ω2 ∧ ω3 − isinh2 x · ω1 ∧ ω4 ∧ ω5

+ icoshx · sinhx · dx ∧ ω4 ∧ ω3 + icoshx · sinhx · dx ∧ ω2 ∧ ω5).

Now we can determine the value of the constant c in (4.57) by requiring the normalization formula
holds, i.e.

ω3
Q1

=
3
2

Re ΩQ1 ∧ Im ΩQ1 .

The above expression for ΩQ1 gives

3
2

Re ΩQ1 ∧ Im ΩQ1 = −6 cosh2 x · sinh2 x · (dx ∧ ω1 ∧ · · · ∧ ω5).

whereas from (4.59),

ω3
Q1

= −3
4
f ′′(2x)(f ′(2x))2(dx ∧ ω1 ∧ · · · ∧ ω5).

Equation (4.57) implies
f ′′(2x)(f ′(2x))2 = 64 c cosh2 x · sinh2 x,

which then gives c = 1/8.

Putting cosh2 x = 1
4 (e2x + 2 + e−2x), sinh2 x = 1

4 (e2x − 2 + e−2x) and coshx · sinhx =
1
4 (e2x − e−2x) into the formula for ΩQ1 yields

ϕ∗(ΩQ1) =
i

4
e2x (dx ∧ ω2 ∧ ω3 − dx ∧ ω4 ∧ ω5 − ω1 ∧ ω2 ∧ ω5 − ω1 ∧ ω4 ∧ ω3

+ iω1 ∧ ω2 ∧ ω3 − iω1 ∧ ω4 ∧ ω5 + idx ∧ ω4 ∧ ω3 + idx ∧ ω2 ∧ ω5)

+
i

2
(dx ∧ ω2 ∧ ω3 + dx ∧ ω4 ∧ ω5 + iω1 ∧ ω2 ∧ ω3 + iω1 ∧ ω4 ∧ ω5) +O(e−2x)

=
i

4
e2x (dx+ iω1) ∧ (ω2 + iω4) ∧ (ω3 + iω5) +

i

2
(dx+ iω1) ∧ (ω2 ∧ ω3 + ω4 ∧ ω5)

+O(e−2x). (4.60)

Consider now the Calabi–Yau structure (JQ0 , ωQ0 ,ΩQ0) on the cone Q0. Instead of us-
ing coshw = |z1|2 + · · · + |z4|2, we use 1

2 e
w̃ = |z1|2 + · · · + |z4|2 for Q0 case. Then w̃ =
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log (2 (|z1|2 + · · ·+ |z4|2)). Again, we choose a parametrization of the fixed locus of σ on Q0 given
by ( 1

2e
x̃, i2e

x̃, 0, 0) for x̃ ∈ (0,∞). Hence w̃ = log (2 (| 12e
x̃|2 + | i2e

x̃|2)) = 2x̃.

Let φ : SO(4)/SO(2)× (0,∞) −→ Q0 be a coordinate map for Q0 defined by

φ(A · SO(2), x̃) = A ·
(1
2
ex̃,

i

2
ex̃, 0, 0

)
for A ∈ SO(4) and x̃ ∈ (0,∞).

From this, we are going to get a new radial coordinate r ∈ (0,∞) representing the radial distance
on Q0, and write the Calabi–Yau structure in terms of r.

The same analysis for Q0 instead of Q1 gives

ωQ0 =
(

3
64

)1/3

e4x̃/3
(4
3
dx̃ ∧ α+ β

)
,

(4.61)
and φ∗(ΩQ0) =

i

4
e2x̃ (dx̃ ∧ ω2 ∧ ω3 − dx̃ ∧ ω4 ∧ ω5 − ω1 ∧ ω2 ∧ ω5 − ω1 ∧ ω4 ∧ ω3

+ iω1 ∧ ω2 ∧ ω3 − iω1 ∧ ω4 ∧ ω5 + idx̃ ∧ ω4 ∧ ω3 + idx̃ ∧ ω2 ∧ ω5)

where we have used c = 1/8.

On the other hand, in terms of the radial coordinate r, the complex 3-form ΩQ0 on the cone
Q0 with link SO(4)/SO(2) (or S2 × S3) can be written as

φ∗(ΩQ0) = r3 · (3-form on SO(4)/SO(2)) + r2 dr ∧ (2-form on SO(4)/SO(2)).

Comparing this with (4.61), we obtain

r3 = k e2x̃

for some constant k to be determined later. It follows that

dx̃ =
3
2r
dr, or

∂

∂x̃
=

2r
3

∂

∂r
.

As Q1 approaches the cone Q0 asymptotically when x→∞, and for large x, we have x ≈ x̃.
So from (4.53), the complex structure J̃ on so(4)/so(2)× R corresponding to JQ0 is given by

e1 7−→ −
∂

∂x̃
, e2 7−→ e4, e3 7−→ e5, e4 7−→ −e2, e5 7−→ −e3,

∂

∂x̃
7−→ e1

since tanhx, cothx → 1 as x → ∞. With respect to this complex structure, the vectors e1 and
∂
∂r , using the relation ∂

∂x̃ = 2r
3

∂
∂r , transform as

e1 7−→ −
2r
3

∂

∂r
,

∂

∂r
7−→ 3

2r
e1.

By definition of the cone metric gQ0 and the radial coordinate r, we have

gQ0

( ∂
∂r
,
∂

∂r

)
= 1 =⇒ ωQ0

( ∂
∂r
, J̃

∂

∂r

)
= 1

=⇒ ωQ0

( ∂
∂r
, e1
)

=
2r
3
.
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Substituting r3 = k e2x̃ and dx̃ = 3
2r dr into ωQ0 in (4.61) gives

ωQ0 =
(

3
64

)1/3

k−2/3 (2r dr ∧ α+ r2 β).

The value for k can then be computed by applying ∂
∂r and e1 to ωQ0 :(

3
64

)1/3

k−2/3 · 2r =
2r
3
,

giving k = 9/8, and ωQ0 , in terms of r, is given by

ωQ0 =
1
3

(2r dr ∧ α+ r2 β), (4.62)

which also satisfies Lemma 4.30 for u(r) = r2

3 .

Thus in terms of the radial coordinate r, the coordinate map φ : SO(4)/SO(2)×(0,∞) −→ Q0

can now be written as:

φ(A · SO(2), r) = A ·
(√2

3
r3/2,

i
√

2
3

r3/2, 0, 0
)

for A ∈ SO(4) and r ∈ (0,∞),

and from (4.61) we have

φ∗(ΩQ0) =
2i
9
r3 (

3
2r
dr ∧ ω2 ∧ ω3 − 3

2r
dr ∧ ω4 ∧ ω5 − ω1 ∧ ω2 ∧ ω5 − ω1 ∧ ω4 ∧ ω3

+ iω1 ∧ ω2 ∧ ω3 − iω1 ∧ ω4 ∧ ω5 +
3i
2r
dr ∧ ω4 ∧ ω3 +

3i
2r
dr ∧ ω2 ∧ ω5)

=
2i
9
r3 (

3
2r
dr + iω1) ∧ (ω2 + iω4) ∧ (ω3 + iω5). (4.63)

It is easy to check that the normalization formula ω3
Q0

= 3
2 Re (ΩQ0) ∧ Im (ΩQ0) holds.

The relation between the radial coordinate r ∈ (0,∞) for the cone Q0 and the coordinate
x ∈ (0,∞) for Q1 can be obtained by equating ωQ1 in (4.59) and ωQ0 in (4.62) so that the map
Υ : Q0 −→ Q1 we hope to construct preserves the symplectic forms. Explicitly, this is given by

1
3
r2 =

1
2
f ′(2x),

which is equivalent to the relation

r =
(

81
32

(e4x
2
− 4x− e−4x

2

))1/6

. (4.64)

This implies

r =
(

9
8

)1/3

e2x/3
(
1 + O(x e−4x)

)
and hence

e2x =
8
9
r3
(
1 + O(r−6log r)

)
.

Putting this into (4.60), and using the fact that for large x, dx ≈ dx̃ = 3
2rdr, we have

ϕ∗(ΩQ1) =
2i
9
r3
(
1 + O(r−6log r)

)
(

3
2r
dr + iω1) ∧ (ω2 + iω4) ∧ (ω3 + iω5) +

i

2
(

3
2r
dr + iω1)

∧ (ω2 ∧ ω3 + ω4 ∧ ω5) +O(r−3)

=φ∗(ΩQ0) +O(r−3log r) +
i

2
(

3
2r
dr + iω1) ∧ (ω2 ∧ ω3 + ω4 ∧ ω5) +O(r−3) by (4.63).
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We remark here that both O(r−3log r) and O(r−3) are measured w.r.t. the cylinder metric,
and notice that the term O(r−3) can be absorbed in O(r−3log r). Denote by ξ the 3-form
i
2 ( 3

2rdr + iω1) ∧ (ω2 ∧ ω3 + ω4 ∧ ω5), thus we have

ϕ∗(ΩQ1) = φ∗(ΩQ0) + ξ +O(r−3log r). (4.65)

Measuring (4.65) w.r.t. the cone metric gQ0 , the error terms ξ and O(r−3log r) will then have
size O(r−3) and O(r−6log r) respectively. This suggests that ξ is the 3-form we need.

We can finally define the map Υ : Q0 −→ Q1 so that the following diagram commutes:

SO(4)/SO(2)× (0,∞)
(A·SO(2), r) 7→(A·SO(2), x)−−−−−−−−−−−−−−−−−→ SO(4)/SO(2)× (0,∞)

φ

y yϕ
Q0 −−−−−−−−−−−−−−−−−→

Υ
Q1

The map in the upper arrow is the change of variable from r to x on (0,∞) given by the inverse
of (4.64). We have therefore constructed a nice coordinate system such that

Υ∗(ωQ1) = ωQ0 and Υ∗(ΩQ1) = ΩQ0 + ξ +O(r−6log r)

computed using the cone metric gQ0 . It is not hard to see that, for the holomorphic (3,0)-forms,
the equation for derivatives also holds, i.e.

∇k(Υ∗(ΩQ1)− ΩQ0 − ξ) = O(r−6−klog r) for all k ≥ 0

where ∇ is the Levi-Civita connection of gQ0 . In order to show the conditions of (4.2) holds, we
still need to check if ξ is a closed, trace-free (2,1)-form. Indeed,

dξ =
i

2
((i dω1) ∧ (ω2 ∧ ω3 + ω4 ∧ ω5)− (

3
2r
dr + iω1) ∧ d(ω2 ∧ ω3 + ω4 ∧ ω5))

=
i

2
(i (ω2 ∧ ω4 + ω3 ∧ ω5) ∧ (ω2 ∧ ω3 + ω4 ∧ ω5)− (

3
2r
dr + iω1) ∧ d(dω6)) from (4.55)

= 0,

which shows ξ is closed. Moreover, it is of type (2,1) with respect to the complex structure JQ0

on the cone Q0. From the complex structure on so(4)/so(2)× R corresponding to JQ0 , which is
the limit of the complex structure in (4.53), we have

ω2 ∧ ω3 + ω4 ∧ ω5 = ω2 ∧ J̃ω5 − J̃ω2 ∧ ω5,

which is of type (1,1), as it is J̃-invariant, and

3
2r
dr + iω1 = J̃ω1 + iω1,

which is of type (1,0). Hence ξ = i
2 ( 3

2rdr+ iω1)∧ (ω2 ∧ω3 +ω4 ∧ω5) is a (2,1)-form. Finally, it
is easy to see that ξ is trace-free by using Lemma 4.30, as (dr ∧ α) ∧ ξ = 0 and β ∧ ξ = 0.

Therefore we have just illustrated that there is a closed, trace-free (2,1)-form ξ with order
O(r−3) w.r.t. the cone metric, and a diffeomorphism Υ such that (4.2) holds. The cohomology
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class [ξ] can be expressed as [ξ] = [Υ∗(ΩQ1) − ΩQ0 ] = [−1
2 ω

1 ∧ (ω2 ∧ ω3 + ω4 ∧ ω5)], which is a
nonzero fixed class in H3(S2 × S3,C). Thus Q1 is an AC Calabi–Yau 3-fold with rate −3. By
transferring our nice coordinates from Q1 to Qεi , where εi ∈ C \ {0}, and i = 1, . . . , n, we can
then use Qεi , or the cotangent bundle (T ∗S3)i, as the AC Calabi–Yau 3-fold (Yi, JYi

, ωYi
,ΩYi

)
to desingularize Calabi–Yau 3-folds with ordinary double points x1, . . . , xn. The transformation
can be achieved by using the map fεi : Qεi −→ Q1 given by (z1, . . . , z4) 7→ (ε−1/2

i z1, . . . , ε
−1/2
i z4).

From (4.51), we have
ΩQεi

= εi f
∗
εi(ΩQ1).

Note that fεi maps Q0 to Q0 and ΩQ0 = εi f
∗
εi(ΩQ0). Define Υεi = f−1

εi ◦Υ ◦ fεi : Q0 −→ Qεi . It
follows that

Υ∗
εi(ΩQεi

) = ΩQ0 + εi ξ +O(r−6log r)

where we have used f∗εi(ξ) = ξ, as ξ is invariant under scaling of r. The equation for deriv-
atives of the above formula also holds. Define ξεi = εi ξ. Then the cohomology class [ξεi ] ∈
H3((S2 × S3)i,C) equals εi [ξ], which is nonzero as both εi and [ξ] 6= 0.

Our main result in §4.5 can then be applied to desingularize Calabi–Yau 3-folds with ordinary
double points, assuming the existence of these singular Calabi–Yau manifolds:

Theorem 4.31 Let (M0, J0, ω0,Ω0) be a Calabi–Yau 3-fold with ordinary double points x1, . . . ,

xn, that is, a Calabi–Yau 3-fold with conical singularities x1, . . . , xn with some rate ν > 0 mod-
elled on the Calabi–Yau cones V1, . . . , Vn defined by the complex quadric in C4. If there exist
εi ∈ C\{0} for i = 1, . . . , n such that

⊕n
i=1[ξεi ] ∈

⊕n
i=1H

3((S2×S3)i,C) lies in ρ3(H3(M ′
0,C)),

then there exists a smooth family Mt of nonsingular compact Calabi–Yau 3-folds Mt for suffi-
ciently small t > 0 constructed by gluing the AC Calabi–Yau 3-fold Qεi , which is the cotangent
bundle (T ∗S3)i, into M0 at xi for i = 1, . . . , n.

We remark here that we can choose such εi for i = 1, . . . , n if and only if ρ3(H3(M ′
0,C))

contains an element with every component in
⊕n

i=1H
3((S2 × S3)i,C) nonzero. In particular, if

the cohomology class [(S3)i] of (S3)i vanishes for some i, then we can’t choose εi nonzero.

We finish this chapter by relating our theorem to an algebraic geometry result on smoothing
of singular Calabi–Yau 3-folds with ordinary double points given by Friedman [17, Cor. 8.8].
Suppose Y is a small resolution of the singular Calabi–Yau 3-fold M0 with ordinary double
points at x1, . . . , xn, and suppose Ci ⊂ Y is the S2 introduced at each xi. Friedman proved
that M0 admits a smoothing if there is a linear relation between the homology classes [Ci] of the
Ci ∼= S2, namely

n∑
i=1

αi [Ci] = 0 in H2(Y,C) with all αi 6= 0.

We claim that our condition on the cohomology classes [ξεi ] in Theorem 4.31 is equivalent to
Friedman’s condition on the homology classes [Ci].

As we have shown,
⊕n

i=1[ξεi ] ∈ ρ3(H3(M ′
0,C)) implies there exists a closed 3-form χ in M ′

0

such that Φ∗i (χ) = ξεi + O(r−3+δ). Thus for each i,
∫
(S3)i

χ = [ξεi ] · [S3], which is nonzero as
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[ξεi ] 6= 0 in H3((S2 × S3)i,C). Now consider a part of the exact sequence of the pair (Y, Y \⋃n
i=1 Ci):

· · · −→ H3(Y \
⋃n
i=1 Ci, C) −→ H4(Y, Y \

⋃n
i=1 Ci, C) −→ H4(Y,C) −→ · · ·

Note that H3(M ′
0,C) ∼= H3(Y \

⋃n
i=1 Ci,C), and using the Thom isomorphism (see for ex-

ample [4, p. 63]), we have H4(Y, Y \
⋃n
i=1 Ci, C) ∼= H0(

⋃n
i=1 Ci,C), which is isomorphic to

H2(
⋃n
i=1 Ci,C) (∼=

⊕
i C ) by Poincaré duality. It then maps to H4(Y,C) ∼= H2(Y,C) by inclu-

sion. The exact sequence now becomes:

· · · −→ H3(M ′
0,C) −→ H2(

⋃n
i=1 Ci,C) −→ H2(Y,C) −→ · · ·

with [χ] ∈ H3(M ′
0,C) maps to

∑n
i=1 (

∫
(S3)i

χ) [Ci], and thus maps to 0 by exactness. This
gives Friedman’s condition on the homology classes [Ci], as

∫
(S3)i

χ is nonzero for all i. Thus
our cohomology condition implies Friedman’s homology relation, and it is not hard to see the
inverse is also true. It follows that our desingularization result in this chapter provides an ana-
lytic way, rather than the existing algebro-geometric way, of repairing the ordinary double points.

Friedman’s result, together with Yau’s solution to the Calabi conjecture, gives a unique
Calabi–Yau metric on the deformation or smoothing of M0. Our result then describes explicitly
what this Calabi–Yau metric looks like, showing that it is in fact obtained by gluing the Calabi–
Yau metric on the singular Calabi–Yau 3-foldM0 with ordinary double points and the Calabi–Yau
metrics on each (T ∗S3)i.



Chapter 5

SL m-folds with conical

singularities and AC SL m-folds

In Chapters 3 and 4 we studied the desingularization of Calabi–Yau 3-folds with conical
singularities. The objects or data we had were Calabi–Yau cones V1, . . . , Vn, a Calabi–Yau 3-
fold M0 with conical singularities x1, . . . , xn modelled on V1, . . . , Vn, and AC Calabi–Yau 3-folds
Y1, . . . , Yn, modelled on the same cones V1, . . . , Vn. This chapter is devoted to studying spe-
cial Lagrangian 3-folds inside the above objects. The extra data in this chapter will be SL
cones C1, . . . , Cn in V1, . . . , Vn, a singular SL 3-fold N0 in M0 with conical singularities at the
same points x1, . . . , xn and modelled on SL cones C1, . . . , Cn, and AC SL 3-folds L1, . . . , Ln in
Y1, . . . , Yn modelled on same cones C1, . . . , Cn.

We shall introduce the notion of SL cones in §5.1, SL m-folds with conical singularities in §5.2
and AC SL m-folds in §5.3. Finally, we give some examples of AC SL m-folds in AC Calabi–Yau
m-folds given by the canonical line bundle KCPm−1 over CPm−1 and the cotangent bundle T ∗Sm

of spheres.

5.1 Special Lagrangian cones and their Lagrangian Neigh-

bourhoods

We shall carry on using the notations in §4.1 for the ambient Calabi–Yau setting, and set up
new notations for the special Lagrangian submanifolds inside based on them. In this section we
consider special Lagrangian cones in Calabi–Yau cones.

Definition 5.1 For i = 1, . . . , n, let Ci be an SL m-fold, which is closed and nonsingular except
at 0, in the Calabi–Yau cone (Vi, JVi

, ωVi
, ΩVi

). Recall that V ′i = Vi \ {0} can be written as
Γi × (0,∞) where Γi is a compact, connected (2m − 1)-dimensional smooth manifold. Then Ci

is an SL cone in Vi if C ′i = Ci \ {0} can be written as Σi× (0,∞) for some compact, nonsingular
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(m − 1)-dimensional submanifold Σi of Γi. Let gCi be the restriction of the Calabi–Yau cone
metric gVi

to Ci.

We call Σi the link of the SL cone Ci. Here we can allow Σi to be disconnected, or equivalently
C ′i disconnected, though we have assumed for simplicity Γi is connected.

Recall from §3.3.1 that Γi is a contact (2m−1)-fold with a contact 1-form αi defined by r2αi =
ι(Xi)ωVi

where Xi is the radial vector field on Vi. The fact that the SL cone C ′i = Σi × (0,∞)
is Lagrangian in the Calabi–Yau cone V ′i = Γi × (0,∞) implies Σi is a (m − 1)-dimensional
Legendrian submanifold in Γi. In §3.3.1, there is also a complex dilation λt,θ : Vi −→ Vi, given
by λt,θ(γ, r) = (exp(θZi)(γ), tr) for θ ∈ R and t > 0, where Zi = JVi

Xi. When θ = 0, λt,0 gives
a “real dilation” (γ, r) 7→ (γ, tr), and the cone Ci is therefore invariant under this real dilation,
i.e. Ci = λt,0(Ci) for all t > 0. We note that λt,0(Ci) is still special Lagrangian in Vi since

0 = λ∗t,0(ωVi
|Ci

) = t2ωVi
|λt,0(Ci), and 0 = λ∗t,0(Im(ΩVi

)|Ci
) = tmIm(ΩVi

)|λt,0(Ci).

Let ιi : Σi × (0,∞) −→ Γi × (0,∞) be the inclusion map given by ιi(σ, r) = (σ, r). We
identify Σi ∼= Σi × {1}. Let (σ, r) ∈ Σi × (0,∞). A 1-form on Σi × (0,∞) at the point (σ, r)
can be expressed as η + c dr, where η ∈ T ∗σΣi and c ∈ R. Use (σ, r, η, c) to denote a point in
T ∗(σ,r)(Σi × (0,∞)). Identify Σi × (0,∞) as the zero section {(σ, r, η, c) : η = c = 0} of the
cotangent bundle T ∗(Σi × (0,∞)). Define a dilation action on T ∗(Σi × (0,∞)) by

t · (σ, r, η, c) = (σ, tr, t2 η, tc), (5.1)

where t ∈ R+. This t-action restricts to the usual dilation on the cone Σi × (0,∞), and the
pullback of the canonical symplectic form ωcan on T ∗(Σi×(0,∞)) by t satisfies t∗(ωcan) = t2ωcan.

As we have seen in Theorem 2.9, the Lagrangian Neighbourhood Theorem gives that any
compact Lagrangian submanifold N in a symplectic manifold looks locally like the zero section
in T ∗N . We are going to extend the Lagrangian Neighbourhood Theorem to special Lagrangian
cones Ci in the Calabi–Yau cones Vi:

Theorem 5.2 With the above notations, there exist an open tubular neighbourhood UCi of
the zero section Σi × (0,∞) in T ∗(Σi × (0,∞)), which is invariant under the t-action, and an
embedding ΨCi

: UCi
−→ V ′i

∼= Γi × (0,∞) such that

ΨCi
|Σi×(0,∞) = ιi, Ψ∗

Ci
(ωVi

) = ωcan and ΨCi
◦ t = λt,0 ◦ΨCi

for t ∈ R+, where t acts on UCi
as in (5.1), and λt,0 is the dilation on the Calabi–Yau cone Vi.

Theorem 5.2 can be proved by arguing in the same way as in the proof of [31, Thm. 4.3],
which applies [31, Thm. 4.2], a version of a result of Weinstein on Lagrangian foliations. Here
is the rough idea. In order to use Theorem 4.2 of [31], we need a smooth family L(σ,r) of non-
compact Lagrangian submanifolds in Γi × (0,∞) containing the point (σ, r) and transverse to
Σi × (0,∞) at (σ, r), i.e. T(σ,r)L(σ,r) ∩ T(σ,r)(Σi × (0,∞)) = {0}, with L(σ,tr) = λt,0 (L(σ,r)).
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Since Σi ∼= Σi × {1} is compact, it is possible to choose such a family for r = 1, i.e. we can
choose noncompact Lagrangian submanifolds L(σ,1) for all σ ∈ Σi, transverse to Σi × (0,∞) at
(σ, 1). Define L(σ,r) = λr,0 (L(σ,1)), then the family {L(σ,r) : (σ, r) ∈ Σi×(0,∞)} is what we need.

As we shall see, the Lagrangian neighbourhoods for Ci, together with the Lagrangian neigh-
bourhoods for N0 (SL 3-fold with conical singularities) and Li (AC SL 3-fold), are useful in the
analytic result in Theorem 6.1 as we will glue all these neighbourhoods together.

5.2 SL m-folds with conical singularities

After defining SL cones in Calabi–Yau cones, we now define SL m-folds N0 with conical
singularities. Essentially, N0 is an SL m-fold in some Calabi–Yau m-fold M0 with conical sin-
gularities at x1, . . . , xn, and it is asymptotic at x1, . . . , xn to the SL cones C1, . . . , Cn in the
Calabi–Yau cones V1, . . . , Vn. The idea is to define N0 as a graph of some 1-form ζi on Ci near xi
for i = 1, . . . , n. The fact that N0 is Lagrangian implies ζi is a closed 1-form. Moreover, for N0

to approach Ci near xi, ζi should decay at least like O(r) which then implies ζi is in fact exact.
As a result, we are able to express N0 as a graph of some exact 1-form dai.

We write (M0, J0, ω0,Ω0) for a Calabi–Yau m-fold with conical singularities at x1, . . . , xn with
rate ν > 0, modelled on Calabi–Yau cones V1, . . . , Vn with diffeomorphism Φi : Γi × (0, ε) −→
Si \ {xi} such that

Φ∗i (ω0) = ωVi
and |∇k(Φ∗i (Ω0)− ΩVi

)|gVi
= O(rν−k) as r → 0

for i = 1, . . . , n and all k ≥ 0. Here is the definition of SL m-folds with conical singularities:

Definition 5.3 Let N0 be a singular SL m-fold in M0, with singularities at x1, . . . , xn and no
other singularities. Then N0 is an SL m-fold with conical singularities at x1, . . . , xn with rate
µ ∈ (1, ν + 1), modelled on SL cones C1, . . . , Cn, if there exist an open neighbourhood Ti ⊂ Si

of xi in N0, and a smooth function ai on Σi × (0, ε′) for i = 1, . . . , n and ε′ < ε, satisfying

|∇kai|gCi
= O(rµ+1−k) as r → 0 and for all k ≥ 0, (5.2)

computing ∇ and | · |gCi
using the cone metric gCi , such that

Ti \ {xi} = Φi ◦ΨCi
(Γ(d ai)) (5.3)

where ΨCi
: UCi

−→ V ′i is the embedding from the Lagrangian neighbourhood UCi
to the Calabi–

Yau cone V ′i , and Γ(d ai) is the graph of the 1-form d ai. From (5.2), d ai has rate O(rµ) as r → 0,
which shows it is a small 1-form, and by making ε′ smaller if necessary, the graph Γ(d ai) of d ai
lies in UCi .

We require the rate µ to be greater than 1 to ensure N0 approaches the cone Ci near xi. For
the upper bound, we choose µ to be less than ν + 1 so that whether N0 is an SL m-fold with
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conical singularities with rate µ is independent of the choice of the diffeomorphisms or coordinates
Φi amongst equivalent coordinates. Recall that two coordinates Φi and Φ′i are equivalent if and
only if the following relation holds

|∇k(Φi − Φ′i)|gVi
= O(rν+1−k) as r → 0 and for all k ≥ 0.

Here we interpret the difference between Φi and Φ′i using local coordinates on the image Si\{xi}.
From (5.3), Ti \ {xi} is written as Φi ◦ΨCi

(Γ(d ai)). If a′i is another smooth function such that
Ti \ {xi} = Φ′i ◦ΨCi

(Γ(d a′i)) under the coordinate Φ′i, then

|∇k+1a′i|gCi
= |∇k(Φi − Φ′i)|gVi

+ |∇k+1ai|gCi

= O(rν+1−k) +O(rµ−k) from (5.2)

= O(rµ−k) provided µ ≤ ν + 1

for k ≥ 0. Integration then gives |a′i|gCi
= O(rµ+1). Hence (5.2) for ai is equivalent to (5.2) for

a′i, and the definition of SL m-folds with conical singularities with rate µ is therefore independent
of the choice of Φi.

Now we give a result on the construction of Lagrangian neighbourhoods for N0, compatible
with the Lagrangian neighbourhoods for Ci in Theorem 5.2. The proof is similar to that of
Theorem 4.6 of [31].

Theorem 5.4 With the above notations, there exists an open tubular neighbourhood UN0 of the
zero section N0 in T ∗N0 such that

dΦi|UCi
∩T∗(Σi×(0,ε′)) (UCi ∩ T ∗(Σi × (0, ε′))) = T ∗(Ti \ {xi}) ∩ UN0 for i = 1, . . . , n,

and there exists an embedding ΨN0 : UN0 −→ M0 with ΨN0 |N0 = Id, Ψ∗
N0

(ω0) = ωT∗N0 , where
Id is the identity map on N0 and ωT∗N0 the canonical symplectic structure on T ∗N0, such that

ΨN0 ◦ dΦi|UCi
∩T∗(Σi×(0,ε′))(σ, r, η, c) = Φi ◦ΨCi

(σ, r, η + da1
i (σ, r), c+ da2

i (σ, r))

for i = 1, . . . , n, (σ, r, η, c) ∈ UCi ∩ T ∗(Σi × (0, ε′)), and for dai(σ, r) = da1
i (σ, r) + da2

i (σ, r)dr
with da1

i (σ, r) ∈ T ∗σΣi and da2
i (σ, r) ∈ R.

Let us focus on the zero section {η = c = 0} ∼= Σi× (0, ε′). The first part of the theorem gives

dΦi|UCi
∩T∗(Σi×(0,ε′))(σ, r, 0, 0) = Ti \ {xi}.

This is consistent with the second part of the theorem, as from the left hand side we have

ΨN0 ◦ dΦi|UCi
∩T∗(Σi×(0,ε′))(σ, r, 0, 0) = ΨN0(Ti \ {xi}) = Ti \ {xi},

using ΨN0 |N0 = Id, and the right hand side gives

Φi ◦ΨCi
(σ, r, da1

i (σ, r), da
2
i (σ, r)) = Φi ◦ΨCi

(Γ(dai)) = Ti \ {xi}

by (5.3).
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5.3 AC SL m-folds

We proceed to define AC SL m-folds Li in AC Calabi–Yau m-folds Yi for i = 1, . . . , n. Similar
to the conical singularities case, we want to define Li as a graph of some closed 1-form χi near
infinity. The condition for Li to converge to Ci at infinity is that χi has size O(rκi) for large r
and κi < 1.

Let (Yi, JYi , ωYi ,ΩYi) be an AC Calabi–Yau m-fold with rate λi ≤ −m modelled on Calabi–
Yau cones Vi with diffeomorphism Υi : Γi × (R,∞) −→ Yi \Ki such that

Υ∗
i (ωYi

) = ωVi
and |∇k(Υ∗

i (ΩYi
)− ΩVi

)|gVi
= O(rλi−k) as r →∞ and for all k ≥ 0.

Definition 5.5 Let Li be a nonsingular SL m-fold in Yi for i = 1, . . . , n. Then Li is an AC SL
3-fold with rate κi ∈ (λi+1, 1), modelled on SL cones Ci if there exist a compact subset Hi ⊂ Li
and a smooth closed 1-form χi on Σi × (R′,∞) for R′ > R, satisfying

|∇kχi|gCi
= O(rκi−k) as r →∞ and for all k ≥ 0, (5.4)

computing ∇ and | · |gCi
using the cone metric gCi

, such that

Li \Hi = Υi ◦ΨCi(Γ(χi)). (5.5)

Equation (5.4) implies χi has rate O(rκi) as r → ∞, and by making R′ larger if necessary, the
graph Γ(χi) of χi lies in UCi

.

Analogous to the upper bound for the rate µ in the conical singularities case, we require
κi > λi + 1 so that the definition of AC SL m-folds with rate κi does not depend on the choice
of the coordinate Υi.

Here we work with closed 1-forms with rate κi < 1 in the definition. However, assuming χi to
be closed is not enough for our purpose, as we hope to express Li as a graph of an exact 1-form
near infinity. The reason for that is if the 1-form χi was not exact, we shall come across global
topological obstructions (cf. the obstructed case in [34], or the λi = −3 case for Calabi–Yau
3-folds in Chapter 4) which we do not want to deal with.

Note that if we assume κi < −1, then χi is automatically exact, and it can be written as
d bi for some smooth function bi on Σi × (R′,∞). We can construct bi by integration: Write
χi(σ, r) = χ1

i (σ, r)+χ2
i (σ, r) dr where χ1

i (σ, r) ∈ T ∗σΣi and χ2
i (σ, r) ∈ R. Similar to the argument

we used before in defining the 1-form in Theorem 3.24, we define bi(σ, r) =
∫∞
r
χ2
i (σ, s)ds, which

is well-defined if κi < −1, and it satisfies bi(σ, r) = O(rκi+1). Then χi(σ, r) = d bi(σ, r). It
follows that assuming κi < −1 will suit our purpose, and in fact we shall see in Chapter 6 that
we need to assume κi < −3/2 to apply Theorem 6.1 (for the case m = 3). Thus from now on, we
adjust the rate κi of AC SL m-folds to be less than −1, so that κi ∈ (λi + 1,−1), and equations
(5.4) and (5.5) in the definition become respectively

|∇kbi|gCi
= O(rκi+1−k) as r →∞ and for all k ≥ 0, (5.6)
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and

Li \Hi = Υi ◦ΨCi(Γ(d bi)). (5.7)

In the last part of this section, we give the Lagrangian Neighbourhood Theorem for AC SL
m-folds Li (compare to [31, Thm. 7.5]), which is an analogue of Theorem 5.4:

Theorem 5.6 With the above notations, for i = 1, . . . , n, there exists an open tubular neigh-
bourhood ULi of the zero section Li in T ∗Li such that

dΥi|UCi
∩T∗(Σi×(R′,∞)) (UCi ∩ T ∗(Σi × (R′,∞))) = T ∗(Li \Hi) ∩ ULi ,

and there exists an embedding ΨLi : ULi −→ Yi with ΨLi |Li = Id, Ψ∗
Li

(ωYi) = ωT∗Li , where Id
is the identity map on Li and ωT∗Li

the canonical symplectic structure on T ∗Li, such that

ΨLi
◦ dΥi|UCi

∩T∗(Σi×(R′,∞))(σ, r, η, c) = Υi ◦ΨCi
(σ, r, η + db1i (σ, r), c+ db2i (σ, r))

for (σ, r, η, c) ∈ UCi
∩T ∗(Σi× (R′,∞)) and for dbi(σ, r) = db1i (σ, r)+db2i (σ, r)dr with db1i (σ, r) ∈

T ∗σΣi and db2i (σ, r) ∈ R.

5.4 Some examples of AC SL m-folds

This section gives some examples of AC SL m-folds in the following AC Calabi–Yau m-folds:
(i) the crepant resolution of the Calabi–Yau cone Cm/Zm, or equivalently, the total space of
the canonical line bundle KCPm−1 over CPm−1 endowed with Calabi’s metric, as described in
Example 3.28; (ii) the cotangent bundle T ∗Sm of Sm (∼= the complex quadric Qε) endowed with
Stenzel’s metric, as described in Example 3.29 and §4.6. We shall basically use methods described
in §2.2.4 of Chapter 2, and generalize the constructions to AC Calabi–Yau m-folds.

5.4.1 AC SL m-folds in KCPm−1

Examples 5.7 Our first example of an AC SL m-fold will be given by the fixed point set of an
antiholomorphic isometric involution (Proposition 2.25) on the AC Calabi–Yau m-fold KCPm−1

(Example 3.28). Consider the usual complex conjugation σ0 : Cm −→ Cm having Rm as its
fixed point set. Since σ0 ◦ γ ◦ σ−1

0 = γ−1 for any γ ∈ Zm, σ0 induces an involution on Cm/Zm,
and then lifts to σ on the crepant resolution of Cm/Zm, or KCPm−1 . This map σ is actually an
antiholomorphic isometric involution on KCPm−1 : since σ is induced by the complex conjugation,
it satisfies σ2 = Id and σ∗(J) = −J where J is the complex structure on KCPm−1 . We know
that σ∗(r) = r, where r is the radius function on Cm/Zm \ {0}, and hence σ∗(f) = f as the
Kähler potential f defined by Calabi is a function of r2. It follows that σ∗(g) = g and hence
σ∗(ω) = −ω. Furthermore, σ∗(Ω) = Ω̄ on KCPm−1 since the holomorphic volume form on KCPm−1

is just the same as that on Cm. Consequently, σ : KCPm−1 −→ KCPm−1 is an antiholomorphic
isometric involution on KCPm−1 , and the fixed point set of σ is an SL m-fold of KCPm−1 .
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Next we investigate the fixed point set of σ in KCPm−1 , which is just the union of the fixed
points set L0 of σ0 : Cm/Zm −→ Cm/Zm with the origin removed and the fixed points set of
σ|CPm−1 : CPm−1 −→ CPm−1 in CPm−1. Now a point Zm · (z1, . . . , zm) in Cm/Zm is fixed by
σ0 whenever (z̄1, . . . , z̄m) = (z1 e2πik/m, . . . , zm e2πik/m) for some 0 ≤ k ≤ m− 1. It follows that
zj = rj e

πik/m where rj ∈ R, j = 1, . . . ,m and hence the fixed point set L0 in Cm/Zm is given
by

L0 = {Zm · (r1 eπik/m, . . . , rm eπik/m) : rj ∈ R, k = 0, 1, . . . ,m− 1}.

Observe that Zm · (r1 eπik/m, . . . , rm eπik/m) is equal to Zm · (r1, . . . , rm) for k even and Zm ·
(r1 eπi/m, . . . , rm eπi/m) for k odd. Thus L0 has two components,

L0 = (Zm · Rm)/Zm ∪ eπi/m ((Zm · Rm)/Zm). (5.8)

(i) When m is even, then −1 ∈ Zm, and Z2 is the subgroup of Zm fixing Rm. In this case, L0

is topologically a union of two copies of Rm/Z2, i.e. two cones on RPm−1 meeting at 0;

(ii) When m is odd, then m−1
2 ∈ Z, and hence

eπi/m Zm · (r1, . . . , rm) = eπi/m e
2πi
m ( m−1

2 ) Zm · (r1, . . . , rm)

= eπi Zm · (r1, . . . , rm)

= Zm · (−r1, . . . ,−rm).

It follows from (5.8) that L0 = (Zm · Rm)/Zm, which is topologically a copy of Rm, or
equivalently, a cone on Sm−1.

Together with the fixed point set of σ|CPm−1 : CPm−1 −→ CPm−1, which is just RPm−1, this
yields the fixed point set L of σ, i.e. an AC SL m-fold in KCPm−1 :

(i) When m is even, L is homeomorphic to RPm−1 × R;

(ii) When m is odd, L is homeomorphic to Sm−1× (0,∞) ∪ RPm−1. We may regard L as the
quotient (Sm−1 × R)/Z2, where Z2 acts freely on Sm−1 × R.

In both cases, L is the canonical line bundle KRPm−1 over RPm−1. In fact, KRPm−1 is trivial
(nontrivial) if m is even (odd), as RPm−1 is oriented (non-oriented).

We are particularly interested in the case m = 3. From the above analysis we obtain an
AC SL 3-fold KRP2 as the fixed point set of some antiholomorphic isometric involution in the
AC Calabi–Yau 3-fold KCP2 . Observe that KRP2 admits a double cover which is diffeomorphic
to S2 × R. We remark that this AC SL 3-fold KRP2 has rate “κ = −∞”, since there will be
coordinates in which KRP2 is a cone. As we have discussed before in the definition of AC SL
m-folds, we require 1 + rate for KCP2 < κ < −1. Thus we could say the rate for KRP2 is any
κ ∈ (−5,−1), as KCP2 has rate −6.

Examples 5.8 Next we describe an example of a Tm−1-invariant AC SL m-fold in KCPm−1 , as
given in [13, §5.1.1]. The idea of the construction is to use the method of moment maps, similar
to Proposition 2.17. The Tm−1-action on KCPm−1 is just the Tm−1-action on KCPm−1 \CPm−1 ∼=
Cm/Zm \ {0} given by

(eiθ1 , . . . , eiθm) · (z1, . . . , zm) = (eiθ1z1, . . . , eiθmzm)
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where θ1 + · · · + θm = 0, and the Tm−1-action on CPm−1. According to the calculation in [13,
§5.1.1], the moment map µ for the Tm−1-action on KCPm−1 is given by:

µ(z1, . . . , zm) = f ′(r2)
(
|z1|2 −

1
m
r2, . . . , |zm|2 −

1
m
r2
)

on the bit KCPm−1 \ CPm−1 ∼= Cm/Zm \ {0}. Here f is the Kähler potential defined by Calabi.
On CPm−1, we have

µ([w1, . . . , wm]) =
(
|w1|2 −

1
m
, . . . , |wm|2 −

1
m

)
where w1, . . . , wm are normalized such that |w1|2 + · · ·+ |wm|2 = 1. Up to a constant factor, this
is just the same as the moment map of Tm−1 acting on CPm−1 with the Fubini-Study metric.
The image of CPm−1 under the moment map µ is

µ(CPm−1) ∼=
{

(x1, . . . , xm) ∈ Rm : x1 + · · ·+ xm = 0,
−1
m
≤ xj ≤

m− 1
m

∀ j
}
.

This is a simplex in Rm, and in fact the convex hull of m vertices given by (m−1
m , −1

m , . . . , −1
m ),

(−1
m , m−1

m , . . . , −1
m ), . . . , (−1

m , −1
m , . . . , m−1

m ), corresponding to the image of points p1, . . . , pm under

µ, where pj = [0, . . . , 0,
j th

1 , 0, . . . , 0]. Moreover, these pj ’s are fixed points of the Tm−1-action
on CPm−1. This situation illustrates a well-known convexity theorem of Atiyah, Guillemin and
Sternberg (see for instance McDuff and Salamon [41], Thm. 5.47, p.180).

It follows that if c = (c1, . . . , cm) ∈ Rm with c1 + · · ·+ cm = 0 does not lie in the convex hull
of the m points µ(p1), . . . , µ(pm), then µ−1(c) ∩ CPm−1 = ∅. On the other hand, for each c in
the (m − 1)-simplex µ(CPm−1), µ−1(c)|CPm−1 is a Tm−1-orbit in CPm−1. It turns out that if c
lies on a k-dimensional face of the simplex for some k = 0, 1, . . . ,m− 1, µ−1(c)|CPm−1 will be a
k-torus T k in CPm−1. Note that a 0-torus is just a point corresponding to one of the pj ’s which
are the fixed points of the Tm−1-action on CPm−1.

The “generalized moment map” η of the Tm−1-action on KCPm−1 is basically the same as that
of the Tm−1-action on Cm, because the metric on KCPm−1 constructed by Calabi has the same
holomorphic volume form as that on Cm. Thus from Example 2.18, η is given by Re(z1 · · · zm)
if m is even and Im(z1 · · · zm) if m is odd. Note that η ≡ 0 on CPm−1.

We can now write down the SL m-fold in KCPm−1 as the level sets of µ and η. Let c =
(c1, . . . , cm, c′) where c1, . . . , cm, c′ ∈ R and c1 + · · ·+ cm = 0. Define

Lc =
{

(z1, . . . , zm) ∈ Cm \ {0} : f ′(r2)
(
|zj |2 −

1
m
r2
)

= cj , for j = 1, . . . ,m,

and Re(z1 · · · zm) = c′ if m is even, Im(z1 · · · zm) = c′ if m is odd
}
.

Then Lc is a Tm−1-invariant SL m-fold in Cm \ {0} with respect to Calabi’s metric. Since Lc is
invariant under the Zm-action on Cm\{0}, it follows that the quotient Lc/Zm is a Tm−1-invariant
SL m-fold in Cm/Zm \ {0}, and converges to the cone{

Zm · (z1, . . . , zm) : |z1|2 = · · · = |zm|2 =
1
m
r2, and Re(z1 · · · zm) = c′ if m is even,

Im(z1 · · · zm) = c′ if m is odd
}
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in Cm/Zm.

Now suppose c′ 6= 0, then Lc/Zm will not intersect CPm−1 in KCPm−1 , as η ≡ 0 on CPm−1.
Consequently, Lc/Zm is a Tm−1-invariant SL m-fold in KCPm−1 for any c1, . . . , cm, c′ ∈ R with
c1 + · · ·+ cm = 0 and c′ 6= 0.

For the case c′ = 0, if (c1, . . . , cm) does not lie in the convex hull of them points µ(p1), . . . , µ(pm)
in Rm−1, then Lc/Zm is a Tm−1-invariant SL m-fold in KCPm−1 . If the point (c1, . . . , cm) is on
a k-dimensional face of the simplex for some k = 0, 1, . . . ,m − 1, then we have to include a
k-torus T k in CPm−1, and hence in this case we obtain a Tm−1-invariant SL m-fold Lc/Zm ∪ T k

in KCPm−1 . Note that the singular behaviour for these SL m-folds Lc/Zm ∪ T k is analogous to
the case in Example 2.18.

The casem = 3 gives examples of T 2-invariant SL 3-folds inKCP2 . If k = 0, then Lc/Z3∪{pj},
for j = 1, 2, 3, has an isolated singular point at pj ∈ CP2. If k = 1, then the whole T 1 is where
the singularities located in Lc/Z3∪T 1, and for k = 2, we have a nonsingular SL 3-fold Lc/Z3∪T 2

in KCP2 .

Examples 5.9 This example constructs AC SL 3-folds in KCP2 invariant under the standard
SO(3)-action. From the calculation of the moment map of the U(m)-action on Cm w.r.t. Calabi’s
metric in [13, §5.1.1], it can be seen that the moment map µ : KCP2 −→ so(3)∗ ∼= R3 of the SO(3)-
action on KCP2 is given by

µ = f ′(r2) (Im(z1z̄2), Im(z2z̄3), Im(z3z̄1)).

Again, f denotes the Kähler potential defined by Calabi. Since Z(so(3)∗) = {0}, it follows that
any SO(3)-invariant SL 3-fold in KCP2 must lie in the level set µ−1(0). Using the same construc-
tion as in Example 2.20 of Chapter 2, we obtain a family of SL 3-folds Lc in KCP2 which has
the same form as in Example 2.20, since the level sets of both moment maps coincide. Thus
for c 6= 0, Lc is an AC SL 3-fold in KCP2 with Calabi’s metric and is diffeomorphic to S2 × R.
As the cone (Z3 · R3)/Z3 is identified with the cone eiπ/3 · (Z3 · R3)/Z3 in C3/Z3, Lc converges
to two copies of (Z3 · R3)/Z3 in C3/Z3 from Theorem 2.21. We have seen that the rate for the
SO(3)-invariant SL 3-folds in C3 is −2, thus Lc also has rate −2. With the discussion in Example
5.7 the fixed point set KRP2 admits a double cover diffeomorphic to S2 × R, which is just one
possible Lc, and hence we have obtained a family of deformations of a double cover of Example
5.7 for m = 3. One can generalize this example to higher dimensions and obtain SO(m)-invariant
AC SL m-folds in KCPm−1 .

5.4.2 AC SL m-folds in T ∗Sm

Examples 5.10 As we have seen in Example 2.7 and §4.6, the cotangent bundle T ∗Sm can
be described as an AC Calabi–Yau m-fold, which can also be viewed as the complex quadric
Qε = {

∑
j z

2
j = ε} for 0 6= ε ∈ C. We first use the fixed point set of an antiholomorphic isometric

involution to construct SL m-folds in Qε. Let σ : Cm+1 −→ Cm+1 be the usual complex
conjugation. Suppose ε ∈ R with ε > 0, then σ maps Qε to Qε, and it is an antiholomorphic
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isometric involution on Qε with respect to Stenzel’s metric. In this case, the fixed point set L is
the real points of Qε, which corresponds to the zero section Sm of the cotangent bundle T ∗Sm,
and therefore Sm is an SL m-fold in T ∗Sm. More generally, if we take σk : Qε −→ Qε with

σk(z1, . . . , zm+1) = (z̄1, . . . , z̄k,−z̄k+1, . . . ,−z̄m+1)

for 0 ≤ k ≤ m + 1 and write zj = xj + iyj for j = 1, . . . ,m + 1, then the fixed point set Lk for
σk is given by

Lk = {(x1, . . . , xk, iyk+1, . . . , iym+1) ∈ Cm+1 : x2
1 + · · ·+ x2

k − y2
k+1 − · · · − y2

m+1 = ε}.

If ε > 0, then L0 = ∅ and for k ≥ 1, Lk is topologically an Sk−1×Rm−k+1 in T ∗Sm and it follows
that Sk−1×Rm−k+1 is an SL m-fold with phase im−k+1 in T ∗Sm for each 0 ≤ k ≤ m. In fact this
agrees with a standard result in symplectic geometry that given a submanifold N in a manifold
M , the annihilator TN⊥ of TN is Lagrangian in T ∗M with its canonical symplectic structure.
Here those Sk−1 ×Rm−k+1’s are exactly the annihilators (TSk−1)⊥ of TSk−1 in T ∗Sm. Similar
result holds for ε < 0 where Lk now corresponds to Sm−k × Rk for 0 ≤ k ≤ m and Lm+1 = ∅.

The case m = 3 yields four topologically distinct SL 3-folds S3, S2×R, S1×R2 and S0×R3

(or two disjoint copies of R3) in Qε ∼= T ∗S3. Recall that the complex quadric Qε is the deforma-
tion of the singular Calabi–Yau cone Q0, a cone on S2 × S3. As ε → 0, the fixed point sets in
Qε converges to fixed point sets in Q0 with different topologies:
(i) the 3-sphere S3 collapses to a single point in Q0;
(ii) the S2 × R converges to two cones on S2, i.e. two R3 intersecting at 0;
(iii) the S1 × R2 converges to one cone on S1 × S1 ∼= T 2; and
(iv) the S0 × R3 converges to two R3 intersecting at 0.

Examples 5.11 We describe here an example of T 2-invariant SL 3-fold (§5.2.2 of [13]) in Qε

constructed by the method of moment maps. Take T 2 as a subgroup of SO(4) defined by :




cos θ1 sin θ1 0 0
−sin θ1 cos θ1 0 0

0 0 cos θ2 sin θ2
0 0 −sin θ2 cos θ2

 : θ1, θ2 ∈ R

 .

The associated vector fields for the two basis elements x1, x2 of the Lie algebra of T 2 are :

φ(x1) = z2
∂

∂z1
− z1

∂

∂z2
+ z̄2

∂

∂z̄1
− z̄1

∂

∂z̄2

φ(x2) = z4
∂

∂z3
− z3

∂

∂z4
+ z̄4

∂

∂z̄3
− z̄3

∂

∂z̄4
.

The moment map µ : Qε → R2 for this T 2-action is given by

µ(z1, z2, z3, z4) = f ′(r2)
(
Im(z2z̄1), Im(z4z̄3)

)
,

where f is the Kähler potential defined by Stenzel.
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Let ΩQε be the holomorphic volume form on Qε, as given in (4.51). Then by solving the
equation ι(φ(x1) ∧ φ(x2))ΩQε

= dα for α, we obtain the generalized moment map η = Im(α).
Recall that dz1 ∧ dz2 ∧ dz3 ∧ dz4 = (z1dz1 + z2dz2 + z3dz3 + z4dz4) ∧ ΩQε

, thus taking interior
products with φ(x1) ∧ φ(x2) on both sides gives

ι(φ(x1) ∧ φ(x2)) (dz1 ∧ dz2 ∧ dz3 ∧ dz4) = (z1dz1 + · · ·+ z4dz4) ∧ (ι(φ(x1) ∧ φ(x2))ΩQε
)

= (z1dz1 + z2dz2 + z3dz3 + z4dz4) ∧ dα

= −d
(
α (z1dz1 + z2dz2 + z3dz3 + z4dz4)

)
.

Here we have used the fact that z2
1 + z2

2 + z2
3 + z2

4 is T 2-invariant, and so ι(φ(xj))(z1dz1 + z2dz2 +
z3dz3 + z4dz4) = 0 for j = 1, 2. After some brief calculations, we obtain α = z2

1 + z2
2 − z2

3 − z2
4

up to a constant multiple, and hence the generalized moment map η : Qε → R is given by

η = Im(z2
1 + z2

2 − z2
3 − z2

4).

Consequently, for each c = (c1, c2, c3) ∈ R3,

Lc = {(z1, z2, z3, z4) ∈ Qε : f ′(r2) Im(z2z̄1) = c1, f
′(r2) Im(z4z̄3) = c2,

Im(z2
1 + z2

2 − z2
3 − z2

4) = c3}

is a T 2-invariant SL 3-fold in Qε. As ε → 0, Lc converges to the following T 2-invariant cone C
in Q0:

C = {(z1, z2, z3, z4) ∈ Q0 : Im(z2z̄1) = 0, Im(z4z̄3) = 0, Im(z2
1 + z2

2 − z2
3 − z2

4) = 0}.

As we have z2
1 + z2

2 + z2
3 + z2

4 = 0 on Q0, the last equation defining C thus becomes Im(z2
1 + z2

2) =
0 = Im(z2

3 + z2
4). It can then be shown that the cone C can actually be written as the union of

{(x1, x2, iy3, iy4) : xj , yj ∈ R, x2
1 + x2

2 − y2
3 − y2

4 = 0}

and {(iy1, iy2, x3, x4) : xj , yj ∈ R, −y2
1 − y2

2 + x2
3 + x2

4 = 0},

i.e. T 2-invariant cones coming from the fixed point sets of some antiholomorphic isometric invo-
lution on Q0. Note also that the fixed point set L2 for σ2 in Example 5.10 is a special case of
this example, as it corresponds to the case when c1 = c2 = c3 = 0.

Examples 5.12 The last example we give here is on SO(3)-invariant AC SL 3-folds in Qε for
0 6= ε ∈ C. Take an SO(3) subgroup of SO(4) with matrices of the form

{(
A 00 1) , A ∈ SO(3)} .

We shall apply the construction by the cohomogeneity one method described in Example 2.20,
we first calculate the moment map µ : Qε −→ so(3)∗ ∼= R3 of this SO(3)-action, which is given
by

(z1, z2, z3, z4) 7−→ f ′(r2) (Im(z1z̄2), Im(z2z̄3), Im(z3z̄1))

where f is the Kähler potential defined by Stenzel. Following exactly the same technique in
Example 2.20, it can be shown that the SO(3)-orbits in µ−1(0) can be written as

{(
√
ε− λ2 x1,

√
ε− λ2 x2,

√
ε− λ2 x3, λ) : xj ∈ R, x2

1 + x2
2 + x2

3 = 1}
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for each λ ∈ C, and the differential equation in λ becomes

Im
(
dλ

dt

√
ε− λ2

)
= 0. (5.9)

Integrating (5.9) and we get

P (λ) =
ε

2
arcsin

(
λ√
ε

)
+

1
2
λ
√
ε− λ2 + constant.

Hence we have obtained a family of SO(3)-invariant SL 3-folds

Lc =
{
(
√
ε− λ2 x1,

√
ε− λ2 x2,

√
ε− λ2 x3, λ) : xj ∈ R, x2

1 + x2
2 + x2

3 = 1, Im(P (λ)) = c
}

for c ∈ R. In what follows, we shall focus on the flow lines of P (λ) given by (5.9) and describe the
topology of Lc. Let us first consider the case when ε = 1. Then we have two singular points at
±1, and there is a flow line along the segment [−1, 1] where our SL 3-fold Lc corresponds to an S3.

When λ is close to 1, write λ = 1 + w, then for w small enough, we have

Im
(
dλ

dt

√
1− λ2

)
≈ Im

(
dw

dt

√
−2w

)
.

Calculation shows that this yields three flow lines ending at 1, one of which corresponds to the
line segment [−1, 1], and the other two, A1 and A2, look like half lines {arg(z) = π/3} and
{arg(z) = 5π/3} near the point 1 respectively. Similarly, for λ close to −1, the flow lines are
[−1, 1], A3 and A4, where A3, A4 look like half lines {arg(z) = 2π/3} and {arg(z) = 4π/3} near
the point −1 respectively. Consequently, we have four different SL cones on S2, i.e. four different
SL R3’s represented by A1, A2, A3 and A4, in which the two R3’s corresponding to A1 and A2

intersect at the point (0, 0, 0, 1) on Q1, and the two R3’s corresponding to A3 and A4 intersect
at the point (0, 0, 0,−1) on Q1.

For large |λ|, (5.9) for ε = 1 becomes:

Im
(
dλ

dt

√
1− λ2

)
≈ Im

(
dλ

dt
(iλ)

)
,

which implies Re(λ2) = constant. It follows that A1, A2, A3 and A4 are asymptotic to the lines
{arg(z) = π/4}, {arg(z) = 7π/4}, {arg(z) = 3π/4} and {arg(z) = 5π/4} respectively. Thus the
four R3’s represented by A1, A2, A3, A4 are AC SL 3-folds in Q1 asymptotic respectively to the
cones C0, C3, C1, C2 in Q0 given by:

Ck = {ikeiπ/4 (ix1, ix2, ix3, x4) : xj ∈ R, x4 > 0, x2
1 + x2

2 + x2
3 − x2

4 = 0} for k = 0, 1, 2, 3.

All flow lines other than [−1, 1] and the Aj ’s correspond to S2×R, and we have four different
kinds of such of them, flowing between the regions bounded by A1∪A2, A1∪ [−1, 1]∪A3, A3∪A4

and A4∪[−1, 1]∪A2. These yields four families of AC SL 3-folds Lc, homeomorphic to S2×R and
asymptotic to the cones C0 ∪C1, C1 ∪C2, C2 ∪C3 and C3 ∪C0. Summarizing the above results,
we have obtained the following topologically distinct families of SO(3)-invariant SL 3-folds Lc in
Q1:

(i) a 3-sphere S3;



Chapter 5. SL m-folds with conical singularities and AC SL m-folds 119

(ii) 4 different AC SL R3’s, converging to 4 SL cones Cj ’s in Q0; and

(iii) 4 different kinds of AC SL S2×R, converging to unions of cones C0 ∪C1, C1 ∪C2, C2 ∪C3

and C3 ∪ C0 .

After interpreting the case ε = 1, we proceed to discuss the situation for ε 6= 1 with Re(
√
ε)

> 0 and Im(
√
ε) > 0. The singular points for (5.9) are now ±

√
ε. Unlike the ε = 1 case, there

is no flow line along the line segment [−
√
ε,
√
ε]. As a result, we have no special Lagrangian

3-spheres S3 (with phase 1) for this case.

When λ is close to
√
ε, we also have three flow lines B1, B2, B3 ending at

√
ε, converging to

three half lines near
√
ε with slopes depending on arg(

√
ε). A similar situation appears near the

point −
√
ε, where we have three flow lines B4, B5, B6 ending at −

√
ε. Thus there are six different

special Lagrangian R3’s B1, B2, B3, B4, B5 and B6, where the first three intersect at the point
(0, 0, 0,

√
ε) in Qε, while the last three intersect at the point (0, 0, 0,−

√
ε) in Qε. Now for large

|λ|, the asymptotic behaviour of the flow lines is similar to the case ε = 1 before. We fix B1 to be
the flow line ending at

√
ε and converging to the line {arg(z) = π/4} at infinity, B2 the flow line

converging to {arg(z) = 7π/4} and B3 the flow line converging to {arg(z) = 3π/4}. Thus B1, B2

and B3 are AC SL 3-folds in Qε, asymptotic respectively to the cones C0, C3, C1 in Q0. On the
other hand, we fix B4 to be the flow line ending at −

√
ε and converging to line {arg(z) = 5π/4}

at infinity, B5 the flow line converging to {arg(z) = 3π/4} and B6 the flow line converging to
{arg(z) = 7π/4}. Then B4, B5 and B6 are AC SL 3-folds in Qε, asymptotic respectively to
the cones C2, C1, C3 in Q0. We note that although there are six different R3’s converging to six
cones at infinity, the pair {B2, B6} shares the same asymptotic cone C3, and {B3, B5} the cone C1.

Apart from the Bj ’s, all other flow lines represent S2×R, flowing between the regions bounded
by B1 ∪ B2, B1 ∪ B3, B4 ∪ B5, B4 ∪ B6 and B2 ∪ B3 ∪ B5 ∪ B6, and so we have five different
kinds of AC SL 3-folds S2 × R. To summarize, when ε 6= 1 with Re(

√
ε) > 0 and Im(

√
ε) > 0,

we have the following two topologically distinct families of SO(3)-invariant SL 3-folds in Qε:

(i) 6 different AC SL R3’s, converging to 4 SL cones Cj ’s in Q0; and

(ii) 5 different kinds of AC SL S2×R, converging to 5 unions of cones C0∪C1, C1∪C2, C2∪C3,
C3 ∪ C0 and C1 ∪ C3.

Let us finish by stating the situation when ε 6= 1 with Re(
√
ε) > 0 and Im(

√
ε) < 0. The

whole picture of the flow lines will be a kind of rotation of the previous one by i. Again, we
have three flow lines B′1, B

′
2, B

′
3 ending at

√
ε, converge to {arg(z) = 7π/4}, {arg(z) = 5π/4} and

{arg(z) = π/4} respectively. The other three B′4, B
′
5, B

′
6 ending at −

√
ε, converge to {arg(z) =

3π/4}, {arg(z) = π/4} and {arg(z) = 5π/4} respectively. Hence the six B′j ’s are AC SL R3’s in
Qε, with B′1 converges to the cone C3, B′2, B

′
6 to C2, B′4 to C1 and B′3, B

′
5 to C0. Similarly, we

have five kinds of AC SL S2 × R, flowing between the regions bounded by B′1 ∪ B′2, B′4 ∪ B′6,
B′4 ∪B′5, B′1 ∪B′3 and B′2 ∪B′3 ∪B′5 ∪B′6.



Chapter 6

Desingularizations of SL 3-folds

with conical singularities

After introducing SL m-folds with conical singularities and AC SL m-folds in the correspond-
ing Calabi–Yau m-folds, we are going to study simultaneous desingularization of Calabi–Yau and
SL 3-folds. Suppose N0 is an SL 3-fold in M0 with conical singularities at the same points xi for
i = 1, . . . , n, and Li an AC SL 3-fold in Yi. When we glue in a rescaled Yi to M0 at each xi, we
also glue in a rescaled Li to N0 at each xi. The idea of the desingularization is to construct a fam-
ily of nonsingular 3-folds Nt in the family of nonsingular nearly Calabi–Yau 3-folds (Mt, ωt,Ωt)
so that Nt is Lagrangian in (Mt, ωt,Ωt). Our result on Calabi–Yau desingularization then gives
genuine Calabi–Yau 3-folds (Mt, J̃t, ω̃t, Ω̃t). Choose a suitable coordinate/diffeomorphism ψt on
Mt so that ωt = ψ∗t (ctω̃t). Then the pullback (Ĵt, ω̂t, Ω̂t) of (J̃t, ω̃t, Ω̃t) under ψt is also a genuine
Calabi–Yau structure on Mt, and Nt is Lagrangian in the Calabi–Yau 3-folds (Mt, Ĵt, ω̂t, Ω̂t) as
well.

The analytic result we need in this chapter is adapted from Joyce [33, Thm. 5.3], in which he
shows that when t is sufficiently small, we can deform the Lagrangian m-fold Nt to a compact
nonsingular SL m-fold. The hypotheses in Joyce’s theorem involves estimates of various kinds of
norms of Im (Ω̂t)|Nt

. This suggest us to compute the term Im (Ω̂t) restricting on different regions
of Nt.

We begin in §6.1 by establishing necessary notations and discussing Joyce’s analytic result.
In §6.2 we construct Lagrangian 3-folds Nt by gluing in Li to N0 at each xi. Then in §6.3 we
compute the estimates of the size of Im (Ω̂t)|Nt

. We divide the whole computation into three
components, as given in equation (6.4). Using the concept of local injectivity radius, together
with a kind of isoperimetric inequality and the elliptic regularity result, we finally verify all the
conditions, and so we are able to prove a result on SL desingularizations in §6.4. In the last
section, §6.5, we illustrate our main result by taking two examples of Calabi–Yau 3-folds with
conical singularities, namely the orbifold T 6/Z3 and some quintic 3-folds, and perform the desin-
gularization simultaneously for both Calabi–Yau and SL 3-folds with conical singularities. We
use AC SL 3-folds from §5.4 for gluing, thus obtaining various kinds of nonsingular SL 3-folds in

120
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the nonsingular Calabi–Yau 3-folds.

Results related to the desingularization of SL m-folds can also be found, for instance, in
Butscher [9], Joyce [33], [34], [35], and Lee [37]. Butscher shows existence of SL connected sums
of two compact SL m-folds (in Cm with boundary) at one point by gluing in Lawlor necks (for
definition, see [36]). Joyce proves a desingularization result of SL m-folds with conical singu-
larities in nonsingular almost Calabi–Yau m-folds by gluing in AC SL m-folds in Cm. He also
studies desingularizations in families of almost Calabi–Yau m-folds. Lee considers a compact,
connected, immersed SL m-fold in a Calabi–Yau m-fold, whose self-intersection points satisfy an
angle criterion. She uses Lawlor necks for gluing at the singular points.

6.1 Joyce’s desingularization theory

Joyce has developed a comprehensive desingularization theory of SL m-folds with isolated
conical singularities in Calabi–Yau m-folds (and more generally in almost Calabi–Yau m-folds).
His approach is to glue in appropriate AC SL m-folds in Cm which are asymptotic to some SL
cones, thus obtaining a 1-parameter family of compact nonsingular Lagrangian m-folds. Then
he proves using analysis that the Lagrangian m-folds which are close to being special Lagrangian
can actually be deformed to SL m-folds in the Calabi–Yau m-fold. The whole programme on
SL m-folds with isolated conical singularities is given in the series of his papers [31, 32, 33, 34, 35].

We shall now fix m = 3 to fit into our situation for desingularizing SL 3-folds in Calabi–Yau
3-folds.

Before stating Joyce’s analytic result, we need to establish the necessary notations, which can
be found in Definition 5.2 of [33]. However we shall only consider the following particular case
of his definition:

Let (M,J, ω,Ω) be a Calabi–Yau 3-fold, with Calabi–Yau metric g. Since we only deal with
Calabi–Yau manifolds, not the more general class of almost Calabi–Yau manifolds, we can take
the smooth function ψ in Definition 5.2 of [33] to be 1 on M , so that condition (ii) of Theorem
5.3 in [33] becomes trivial in our case.

Suppose N ⊂M is a Lagrangian 3-fold. Restricting the Calabi–Yau metric g on N , we obtain
a metric h = g|N , with volume form dV . The holomorphic (3,0)-form Ω restricts to a 3-form Ω|N
on N . As N is Lagrangian, we can write

Ω|N = eiθ dV

for some phase function θ on N , which equals zero if and only if N is special Lagrangian (with
phase 1). Suppose [Im(Ω)|N ] = 0 in H3(N,R), or equivalently,∫

N

Im(Ω) =
∫
N

sinθ dV = 0.
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Clearly, this is a necessary condition for N to be special Lagrangian in M . Note that this can
be satisfied by choosing the phase of Ω appropriately, which means this is actually a fairly mild
restriction.

In (iii) of Theorem 5.3 in [33], we need a 3-form β and a connection ∇́ on T ∗N (∇̂ in the
original notation). For r > 0, define Br ⊂ T ∗N to be Br = {α ∈ C∞(T ∗N) : |α|h−1 < r}, where
| · |h−1 is computed using the metric h−1. The Levi-Civita connection ∇ of h on TN induces
a splitting TBr = H ⊕ V , where H ∼= TN and V ∼= T ∗N are the horizontal and vertical sub-
bundles of T ∗N . Define h́ on Br such that H and V are orthogonal w.r.t. h́, and h́|H = π∗(h),
h́|V = π∗(h−1) where π : Br → N denotes the natural projection. Let ∇́ be the connection on
TBr given by lift of ∇ on N in the horizontal directions H, and by partial differentiation in the
vertical directions V . Since N is Lagrangian in M , for small r > 0, the Lagrangian Neighbour-
hood Theorem gives an embedding Ψ : Br → M such that Ψ∗(ω) = ωcan and Ψ|N = Id, where
ωcan is the natural symplectic structure on Br ⊂ T ∗N . Finally, we define a 3-form β on Br by
β = Ψ∗(Im (Ω)), the pullback of the imaginary part of the holomorphic (3,0)-form Ω on M by
the Lagrangian embedding.

The finite dimensional vector space W in Definition 5.2 of [33] has to do with the number of
connected components of N0 \ {x1, . . . , xn} where N0 is a SL 3-fold with conical singularities at
x1, . . . , xn. We will make the nonsingular Lagrangian 3-fold Nt (which is our N defined above) by
gluing AC SL 3-folds L1, . . . , Ln into N0. If N0 \ {x1, . . . , xn} is not connected, then each of the
Li’s is connected but may contain more than one end, so that Nt consists of several components
of N0 joined by “small necks” from Li’s. The vector space W will then be a space of functions
which is approximately constant on each component of N0 \ {x1, . . . , xn} and changes on small
necks. The dimension dimW will be the number of connected component of N0\{x1, . . . , xn}. For
the sake of simplicity, we only study the case when N0 \ {x1, . . . , xn} is connected, which means
we can take W = 〈1〉, the space of constant functions. As a result, condition (vii) of Theorem
5.3 of [33] is trivial and we can drop it entirely. The natural projection πW : L2(N)→W is now
given by

πW (v) = vol(N)−1

∫
N

v dV

for W = 〈1〉, and we have πW (v) = 0 ⇐⇒
∫
N
v dV = 0. It follows that the last inequality of

Theorem 5.3 (i) in [33] holds automatically, as we have assumed
∫
N

sinθ dV = 0. Moreover, we
can replace πW (v) = 0 by

∫
N
v dV = 0 in (vi) of the theorem to leave W out of our definition.

We are now ready to state the following analytic existence result for SL 3-folds, adapted from
[33, Thm. 5.3]:

Theorem 6.1 Let κ′ > 1 and A1, . . . , A6 > 0. Then there exist ε,K > 0 depending only on
κ′, A1, . . . , A6 such that the following holds.

Refer to the notation in §6.1. Suppose 0 < t ≤ ε and r = A1t, and

(i) ‖sin θ‖L6/5 ≤ A2t
κ′+3/2, ‖sin θ‖C0 ≤ A2t

κ′−1 and ‖d sin θ‖L6 ≤ A2t
κ′−3/2.

(ii) ‖∇́kβ‖C0 ≤ A3t
−k for k = 0, 1, 2 and 3.

(iii) The injectivity radius δ(h) satisfies δ(h) ≥ A4t.
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(iv) The Riemann curvature R(h) satisfies ‖R(h)‖C0 ≤ A5t
−2.

(v) If v ∈ L2
1(N) with

∫
N
v dV = 0, then v ∈ L6(N), and ‖v‖L6 ≤ A6‖dv‖L2 .

Here all norms are computed using the metric h on N in (i), (iv) and (v), and the metric h́ on
BA1t in (ii). Then there exists f ∈ C∞(N) with

∫
N
f dV = 0, such that ‖df‖C0 ≤ Ktκ

′
< A1t

and N̂ = Ψ∗(Γ(df)) is an immersed special Lagrangian 3-fold in (M,J, ω,Ω).

For a small 1-form α ∈ C∞(T ∗N), Ψ∗(Γ(α)) is a Lagrangian submanifold in M if α is closed,
and it is a special Lagrangian submanifold if α also satisfies d∗(cos θ α) = sin θ + Q(α) where
Q is a smooth map with Q(α) = O(|α|2 + |∇α|2) (see [33, Lemma 5.7]). Now if f ∈ C∞(N)
is a small function in C1(N), then df is a small 1-form, and Ψ∗(Γ(df)) is special Lagrangian
if and only if d∗(cos θ df) = sin θ + Q(df). Thus the function f in the theorem is basically the
solution to the above nonlinear elliptic equation. Joyce [33, §5.5] solved this equation by con-
structing inductively a sequence (fk)∞k=0 in C∞(N) with f0 = 0 and

∫
N
fk dV = 0 satisfying

d∗(cos θdfk) = sin θ +Q(dfk−1) for k ≥ 1. Then he showed that this sequence converges in some
Sobolev space to f which satisfies the nonlinear elliptic equation and is smooth by elliptic regu-
larity.

6.2 Construction of Nt

In this section we are going to define a 1-parameter family of compact nonsingular Lagrangian
3-folds Nt in the nearly Calabi–Yau 3-folds Mt for small t > 0. Recall that we desingularize
the Calabi–Yau 3-fold M0 with conical singularities by first applying a homothety to each AC
Calabi–Yau 3-fold Yi, and then gluing it into M0 at xi for i = 1, . . . , n to make the nonsingular
Mt’s. For the special Lagrangians inside these Calabi–Yau’s, we then desingularize N0 (inside
(M0, J0, ω0,Ω0)) by gluing Li (inside (Yi, JYi

, t2ωYi
, t3ΩYi

)) into N0 at xi for each i. Note that
after applying the homothety to Yi, equations (5.6) and (5.7) now become

|∇kbi(σ, t−1r)|gCi
= O(t−κi−1rκi+1−k) as r →∞ and for all k ≥ 0, (6.1)

and

Li \Hi = Υt,i ◦ΨCi(Γ(t2d bi(σ, t−1r))) (6.2)

where the diffeomorphism Υt,i : Γi × (tR,∞) −→ Yi \Ki is given by Υt,i(γ, r) = Υi(γ, t−1r).

Now for i = 1, . . . , n, α ∈ (0, 1) and small enough t > 0 with tR < tR′ < tα < 2tα < ε′ < ε,
define a smooth function ut,i on Σi × (tR′, ε′) by

ut,i(σ, r) = F (t−αr) ai(σ, r) + t2(1− F (t−αr)) bi(σ, t−1r). (6.3)

Again, F is the smooth, increasing function we used before in defining Ωt in Calabi–Yau desin-
gularizations. Thus we have F (t−αr) = 1 when 2tα ≤ r < ε′, in which case ut,i(σ, r) = ai(σ, r),
and F (t−αr) = 0 when tR′ ≤ r < tα, in which case ut,i(σ, r) = t2bi(σ, t−1r).
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Here we are going to use the same α ∈ (0, 1) as in the previous Calabi–Yau 3-fold desingular-
izations, and we shall require α to satisfy certain inequalities for this SL desingularization as well.

Define Nt to be the union of (N0 \
⋃n
i=1 Ti),

⋃n
i=1 ΨCi

(Γ(dut,i)), and
⋃n
i=1Hi. Basically, we

construct Nt in the way that for r > ε′, Nt is just (N0 \
⋃n
i=1 Ti) ⊂ N0. For tR′ < r < ε′, Nt is

diffeomorphic to the union of the graphs Γ(dut,i) of the 1-forms dut,i which in fact interpolate
between the graphs Γ(dai) of dai, i.e. part of N0, for 2tα ≤ r < ε′ and the graphs Γ(t2dbi) of
t2dbi, i.e. part of Li, for tR′ ≤ r < tα. Finally for r < tR′, Nt is the union of Hi ⊂ Li.

Under our construction the boundary of eachHi (∼= Σi) joins smoothly onto
⋃n
i=1 ΨCi

(Γ(dut,i))
at the Σi × {tR′} end, and the boundary of (N0 \

⋃n
i=1 Ti), which is the disjoint union of the

Σi, joins smoothly onto
⋃n
i=1 ΨCi

(Γ(dut,i)) at the Σi × {ε′} end. Thus Nt is a compact smooth
manifold without boundary. More importantly, Nt is in fact a Lagrangian submanifold:

Proposition 6.2 Nt is a Lagrangian 3-fold in the nearly Calabi–Yau 3-fold (Mt, ωt,Ωt) for
sufficiently small t > 0.

Proof. We shall look at the symplectic form ωt restricts to different regions of Nt. Since Nt
coincides with N0, which is Lagrangian in M0, in the component N0 \

⋃n
i=1 Ti, and ωt equals

ω0 on this part, we see that ωt ≡ 0 on N0 \
⋃n
i=1 Ti. In the same way, as Nt coincides with the

union of Li in the component
⋃n
i=1Hi, and ωt is now t2ωYi

on each Li, thus we have ωt ≡ 0 on⋃n
i=1Hi, as Li is Lagrangian in Yi. For the middle part, Nt is given by

⋃n
i=1 ΨCi

(Γ(dut,i)). As
ωt is equal to ωVi

on each ΨCi
(Γ(dut,i)), and Ψ∗

Ci
(ωVi

) = ωcan from Theorem 5.2, where ωcan

is the canonical symplectic form on T ∗(Σi × (0,∞)), we get ωt ≡ 0 on
⋃n
i=1 ΨCi(Γ(dut,i)) as

Γ(dut,i) is the graph of a closed 1-form dut,i on Σi × (tR′, ε′). It follows that ωt|Nt = 0, and Nt

is then Lagrangian in Mt. 2

Now we deform the underlying nearly Calabi–Yau structure on Mt to a genuine Calabi–Yau
structure (J̃t, ω̃t, Ω̃t) for small t by applying Theorem 4.28. As shown in the theorem, we have
the relation [ωt] = ct [ω̃t] ∈ H2(Mt,R) for some ct > 0 between the cohomology classes of the
Kähler forms. Thus ωt and ct ω̃t are in the same cohomology class. Using Moser’s type argument
there is a diffeomorphism ψt : Mt −→ Mt on Mt satisfying ψ∗t (ct ω̃t) = ωt. Write ω̂t = ψ∗t (ω̃t),
Ĵt = ψ∗t (J̃t), ĝt = ψ∗t (g̃t) and Ω̂t = ψ∗t (Ω̃t) under the new coordinates. The fact that ωt and
ct ω̃t are close for small t > 0 means that the diffeomorphism ψt is close to identity, which then
implies that the complex 3-forms are also close under the new coordinates, i.e. Ω̂t ≈ Ωt. We
shall evaluate this difference in the next section.

As we have arranged ωt = ct ω̂t by applying a diffeomorphism ψt, it follows that ω̂t|Nt
= 0

since ct > 0, and so we obtain:

Proposition 6.3 Nt is a Lagrangian 3-fold in the Calabi–Yau 3-fold (Mt, Ĵt, ω̂t, Ω̂t) for suffi-
ciently small t > 0.
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6.3 Estimates of Im(Ω̂t)|Nt

We have constructed a family of compact, nonsingular Lagrangian 3-folds Nt by gluing Li

into N0 at each xi, and our next step is to apply Theorem 6.1 to deform Nt to a special La-
grangian 3-fold N̂t in the Calabi–Yau 3-fold (Mt, Ĵt, ω̂t, Ω̂t) for small enough t > 0. This leads
us to consider the estimates of various norms of Im(Ω̂t)|Nt for (i) of Theorem 6.1.

Let ht, h̃t and ĥt be the restrictions of gt, g̃t and ĝt to Nt respectively. In view of Theorem
4.28, or Theorem 3.32, the metrics gt, g̃t, and hence ht, h̃t, are uniformly equivalent in t, so norms
of any tensor on Nt measuring with respect to ht, h̃t only differ by a bounded factor independent
of t. We shall see later the uniform equivalence between ĥt and the other two.

Here is the basic estimate, computing with respect to ĥt:∣∣Im(Ω̂t)|Nt

∣∣
ĥt
≤
∣∣(Ω̂t − Ω̃t)|Nt

∣∣
ĥt

+
∣∣(Ω̃t − Ωt)|Nt

∣∣
ĥt

+
∣∣Im(Ωt)|Nt

∣∣
ĥt
. (6.4)

We hope to arrange for this error to be small enough that we can deform Nt to an SL 3-fold
by using the analytic result in Theorem 6.1. The first term (Ω̂t − Ω̃t)|Nt in the right side of
(6.4) is basically the error coming from changing coordinates on Mt, which can be estimated by
considering the diffeomorphism ψt from Moser’s argument. The second term (Ω̃t −Ωt)|Nt

is the
error arising from deforming the nearly Calabi–Yau structure (ωt,Ωt) to the genuine Calabi–Yau
structure (J̃t, ω̃t, Ω̃t) on Mt. We already have the C0-estimates from Theorem 3.32 or Theorem
4.28, but for part (i) of Theorem 6.1 to hold we need to improve and get a better control of this
term. We shall devote most of the section to achieving this. For the final term Im(Ωt)|Nt , we
can estimate it by restricting Ωt to different regions of Nt.

Let us first evaluate the last term Im(Ωt) on various components of Nt. We first adopt the
definition of the complex 3-form Ωt from (3.39) when λi < −3, and we will treat the case λi = −3
afterwards. From (3.39) we have

Ωt =


Ω0 on Qt \ [(

⋃n
i=1 Pt,i) ∩Qt],

ΩVi
+ d
[
F (t−αr)Ai(γ, r) + t3(1− F (t−αr))Bi(γ, t−1r)

]
on Pt,i ∩Qt, for i = 1, . . . , n,

t3ΩYi
on Pt,i \ (Pt,i ∩Qt), for i = 1, . . . , n.

On Qt \ [(
⋃n
i=1 Pt,i) ∩ Qt], Ωt is given by Ω0, and Nt is the union of N0 \

⋃n
i=1 Ti and⋃n

i=1 ΨCi
(Γ(dai)), which is a part of N0. Thus Im(Ωt) = 0 on this region of Nt, as N0 is special

Lagrangian in M0. Similarly, on Pt,i \ (Pt,i ∩Qt) for each i, Ωt is given by t3ΩYi
, and Nt is the

union of
⋃n
i=1Hi and

⋃n
i=1 ΨCi

(Γ(t2dbi)) which lies in Li. It follows that Im(Ωt) = 0 on this
region of Nt, as Li is special Lagrangian in Yi. For the annuli region, we have

Im(Ωt)|Nt
= Im

(
ΩVi

+ d
[
F (t−αr)Ai(γ, r) + t3(1− F (t−αr))Bi(γ, t−1r)

])∣∣
ΨCi

(Γ(dut,i))
. (6.5)

Consider the term Im(ΩVi
)|ΨCi

(Γ(dut,i)). Regard Ci as the zero section in T ∗(Σi × (0,∞)). Then
the difference between Im(ΩVi

)|ΨCi
(Γ(dut,i)) and Im(ΩVi

)|Ci
is given by

O( |∇́ΩVi
|gVi
· |dut,i|gCi

) + O( |ΩVi
|gVi
· |∇dut,i|gCi

),
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where ∇́ denotes a connection on T ∗(Σi × (0,∞)) (see §6.1 for the construction of ∇́ on T ∗N),
and ∇ the connection on Ci computed using the metric gCi

. Roughly speaking, the first term is
coming from moving base points, whereas the second term from changing tangent spaces. Now we
have |∇́ΩVi

|gVi
= O(t−α) on the annulus, and |ΩVi

|gVi
is a constant. Together with the fact that

Ci is special Lagrangian in Vi, i.e. Im(ΩVi)|Ci = 0, we obtain the size for Im(ΩVi)|ΨCi
(Γ(dut,i)):∣∣ Im(ΩVi

)|ΨCi
(Γ(dut,i))

∣∣
gCi

= O( t−α|dut,i|gCi
) + O( |∇dut,i|gCi

) (6.6)

for r ∈ (tα, 2tα). Using (5.2) and (6.1), and the definition of ut,i in (6.3) we get

|dut,i|gCi
= O(tµα) +O(t1−κi(1−α)), and

(6.7)
|∇dut,i|gCi

= O(t(µ−1)α) +O(t(1−κi)(1−α)) for r ∈ (tα, 2tα).

Putting (6.7) into (6.6), and using the estimates for Ai and Bi from (3.36) and (3.38), we compute
the size for (6.5):∣∣ Im(Ωt)|Nt

∣∣
gCi

= O(t(µ−1)α) +O(t(1−κi)(1−α)) +O(tαν) +O(t−λi(1−α))

= O(t(µ−1)α) +O(t(1−κi)(1−α)) for r ∈ (tα, 2tα). (6.8)

The term O(tαν) is absorbed into O(t(µ−1)α) as we have chosen µ < ν + 1 in the definition
of SL 3-folds with conical singularities, and similarly the term O(t−λi(1−α)) is absorbed into
O(t(1−κi)(1−α)) as κi > λi + 1 in the definition of AC SL 3-folds.

Summing up all these, and using the uniform equivalence between metrics gCi and ht (follows
from that between gVi and gt), we see that

Proposition 6.4 In the situation above, the error term Im(Ωt)|Nt
, for the case λi < −3,

satisfies

∣∣ Im(Ωt)|Nt

∣∣
ht

=


0 on Nt ∩

(
Qt \ [(

⋃n
i=1 Pt,i) ∩Qt]

)
,

O(t(µ−1)α) +O(t(1−κi)(1−α)) on Nt ∩
(
Pt,i ∩Qt

)
, for i = 1, . . . , n,

0 on Nt ∩
(
Pt,i \ (Pt,i ∩Qt)

)
, for i = 1, . . . , n.

Now we briefly sketch the case λi = −3. Note from (4.44) that on Qt \ [(
⋃n
i=1 Pt,i) ∩Qt] the

extra term t3η contributes O(t3) on M0 \
⋃n
i=1 Si, and O(t3r−3) on Γi × (2tα, ε) to the error,

whereas on the annulus Pt,i∩Qt, the extra terms t3ξi and t3F (t−αr)Ci(γ, r) contribute O(t3(1−α))
and O(t3(1−α)+αδ) respectively. Calculation then shows that

Proposition 6.5 In the situation above, the error term Im(Ωt)|Nt
, for the case λi = −3,

satisfies

∣∣ Im(Ωt)|Nt

∣∣
ht

=



O(t3) on Nt ∩
(
M0 \

⋃n
i=1 Si

)
,

O(t3r−3) on Nt ∩
(
Γi × (2tα, ε)

)
, for i = 1, . . . , n,

O(t3(1−α)) +O(t(µ−1)α) +O(t(1−κi)(1−α)) on Nt ∩
(
Pt,i ∩Qt

)
,

for i = 1, . . . , n,

0 on Nt ∩
(
Pt,i \ (Pt,i ∩Qt)

)
, for i = 1, . . . , n.
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Next we estimate the term (Ω̃t − Ωt)|Nt in (6.4), which comes from deforming the nearly
Calabi–Yau structure to the genuine Calabi–Yau structure on Mt. From Theorem 3.32 or Theo-
rem 4.28, we have the C0-estimates for Ω̃t − Ωt on the whole Mt given by ‖Ω̃t − Ωt‖C0 = O(tκ)
for some κ > 0. This term then contributes O(tκ) to the basic estimate (6.4), which in turn
contributes O(tκ) to different norms of sin θ in Theorem 6.1. But for the L6/5-estimate to hold,
one needs κ ≥ κ′ + 3/2 > 5/2 as κ′ > 1. Since we have no a priori control of κ > 0, this will put
a strong restriction on κ, and in turn on the rates ν and λi as well.

To resolve this problem we are going to improve the global L2-estimate for Ω̃t − Ωt to C0-
estimates locally by applying modified versions of Theorem 3.11 and Theorem 3.12 (see also
Theorems G1 and G2 in [26, §11.6] for 7 dimensions). Note that if we look back on the construc-
tion of Ω̃t in Theorem 3.14, the size of Ω̃t −Ωt is of the same order as the size of dηt = ϕ̃t − ϕt,
in other words, the error introduced when deforming the nearly Calabi–Yau structure to the
genuine Calabi–Yau structure on the 6-fold Mt is essentially the same as that introduced when
deforming the G2-structure to the torsion-free G2-structure on the 7-fold S1 ×Mt. It suggests
that in order to get a better control of the C0-norm of Ω̃t − Ωt on Mt, one could consider im-
proving the C0-norm of dηt on S1 ×Mt.

In [26, §11.6] Joyce proved an existence result for torsion-free G2-structures by constructing
the 2-form η upon solving a nonlinear elliptic p.d.e. (equation (11.33) of [26]) in η. His method of
solving the p.d.e. is to inductively construct sequences of 2-forms {ηj}∞j=0 and functions {fj}∞j=0

with η0 = f0 = 0, and then he showed that these sequences converge in some Sobolev spaces to
limits η and f which satisfy the p.d.e. The C0-estimate of dη is derived from the C0-estimates
of the sequence elements dηj . So to improve ‖dη‖C0 , we need to improve Theorems G1 and G2
in [26], or more appropriately, the 6-dimensional version of them, i.e. Theorems 3.11 and 3.12 in
Chapter 3, in our situation.

Here is the modified version of Theorem 3.11:

Theorem 6.6 Let D2, D3 > 0 be constants, and suppose (M, g) is a complete Riemannian
6-fold with a continuous function ρ having the following properties:

(1) the injectivity radius of geodesics δ(g)x of (M, g) starting at x satisfies δ(g)x ≥ D2ρ(x),

(2) the Riemann curvature R(g) satisfies |R(g)|g ≤ D3ρ
−2 on M , and

(3) for all x ∈M , we have 1/2 ρ(x) ≤ ρ ≤ 2ρ(x) on balls BD2ρ(x)(x) of radius D2ρ(x) about x.

Then there exist K1,K2 > 0 depending only on D2 and D3, such that if χ ∈ L12
1 (Λ3T ∗M) ∩

L2(Λ3T ∗M) then

‖ρ7/2∇χ‖L12 ≤ K1 ( ‖ρ7/2 dχ‖L12 + ‖ρ7/2 d∗χ‖L12 + ‖χ‖L2 )

and ‖ρ3 χ‖C0 ≤ K2 ( ‖ρ7/2∇χ‖L12 + ‖χ‖L2 ).

We shall call ρ a local injectivity radius function on M . Condition (3) ensures that ρ does
not change quickly, and we may treat it as constant on BD2ρ(x)(x). Moreover, (1) and (3) imply
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δ(g)y ≥ 1/2D2ρ(x) for all y ∈ BD2ρ(x)(x), whereas (2) and (3) give |R(g)|g ≤ 4D3ρ(x)−2 on
BD2ρ(x)(x). The right hand sides of these inequalities are just constants, so that we get control
of injectivity radius and Riemann curvature on balls about x with radius at most D2ρ(x), which
can then be compared with Euclidean balls.

As in Theorem 3.11, we can prove Theorem 6.6 using the same method of proof as that of
Theorem G1 in [26, p. 298], but we now use balls of radius Lρ(x), where 0 < L < D2, about x
instead of Lt in the proof of Theorem G1. Note that it is important to have the constants D2, D3

in the theorem independent of t, so that we have K1 and K2 are independent of t as well.

Next we give the improved result for Theorem 3.12:

Theorem 6.7 Let κ > 0 and D1, D2, D3, D4,K1,K2 > 0 be constants. Then there exist con-
stants ε ∈ (0, 1], K3 and K > 0 such that whenever 0 < t ≤ ε, the following is true.

Let M be a compact 6-fold, with metric gM and a local injectivity radius function ρ satisfying
(1), (2) and (3) in Theorem 6.6. Suppose ρ also satisfies ρ ≥ D4t > 0 on M . Let (ϕ, g) be an
S1-invariant G2-structure on S1×M with dϕ = 0. Suppose ψ is an S1-invariant smooth 3-form
on the 7-fold S1 ×M with d∗ψ = d∗ϕ, and

(i) ‖ψ‖L2 ≤ D1t
3+κ, ‖ρ3 ψ‖C0 ≤ D1t

3+κ and ‖ρ7/2 d∗ψ‖L12 ≤ D1t
3+κ,

(ii) if χ ∈ L12
1 (Λ3T ∗(S1 × M)) is S1-invariant, then ‖ρ7/2∇χ‖L12 ≤ K1 (‖ρ7/2 dχ‖L12 +

‖ρ7/2 d∗χ‖L12 + ‖χ‖L2),

(iii) if χ ∈ L12
1 (Λ3T ∗(S1 ×M)) is S1-invariant, then ‖ρ3 χ‖C0 ≤ K2 (‖ρ7/2∇χ‖L12 + ‖χ‖L2).

With the same notation as in Theorem 3.10, there exist sequences {ηj}∞j=0 in L12
2 (Λ2T ∗(S1×M))

and {fj}∞j=0 in L12
1 (S1 ×M) with ηj , fj being all S1-invariant and η0 = f0 = 0, satisfying the

equations

(dd∗ + d∗d)ηj = d∗ψ + d∗(fj−1ψ) + ∗ dF (dηj−1) and fjϕ =
7
3
π1(dηj)

for each j > 0, and the inequalities

(a) ‖dηj‖L2 ≤ 2D1t
3+κ, (d) ‖dηj − dηj−1‖L2 ≤ 2D12−jt3+κ,

(b) ‖ρ7/2∇dηj‖L12 ≤ K3t
3+κ, (e) ‖ρ7/2∇(dηj − dηj−1)‖L12 ≤ K32−jt3+κ,

(c) ‖ρ3 dηj‖C0 ≤ Kt3+κ and (f) ‖ρ3 (dηj − dηj−1)‖C0 ≤ K2−jt3+κ.

Here ∇ and ‖ · ‖ are computed using g on S1 ×M .

We can prove Theorem 6.7 by applying Theorem 6.6 in place of Theorem 3.11, and then
follow the same arguments in the proof of Theorem G2 [26, p. 299]. The only extra issue here
is that we need a lower bound for ρ: ρ ≥ D4t > 0 on M . The inequality in part (c) implies
|dηj |g ≤ Kt3+κρ−3 ≤ KD−3

4 tκ if ρ ≥ D4t. Thus assuming ρ ≥ D4t on M gives |dηj |g ≤ ε1 if t
is sufficiently small, where ε1 is the small positive constant defined in Definition 10.3.3 in [26].
The lower bound for ρ therefore ensures dηj is small enough for each j which is needed to apply
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Proposition 10.3.5 in [26]. We also make a remark here about the difference between (a), (d)
and (b), (c), (e), (f) in the theorem: (a) and (d) are global estimates on the whole manifold, as
we get ‖dηj‖2L2 and ‖dηj − dηj−1‖2L2 from the elliptic equation in the theorem by integration by
parts. On the other hand, (b), (c), (e) and (f) are local estimates on small balls, and so we are
allowed to insert powers of ρ.

Let us now return to our Calabi–Yau 3-fold Mt. Define a function ρt on Mt by

ρt =


ε on M0 \

⋃n
i=1 Si,

r on Γi × (tR, ε), for i = 1, . . . , n,

tR on Ki ⊂ Yi, for i = 1, . . . , n.
(6.9)

We claim that ρt is a local injectivity radius function on Mt. To see properties (1) and (2),
recall that the way we construct gt on Mt is, on M0 \

⋃n
i=1 Si it is equal to g0, on the annu-

lus Γi × (tR, ε) it is gVi , and on Ki ⊂ Yi it is t2gYi . It follows that for x ∈ M0 \
⋃n
i=1 Si,

we have δ(gt)x = δ(g0)x ≥ C1 and |R(gt)|gt = |R(g0)|g0 ≤ C2 for some constant C1, C2 > 0,
as the metric here is independent of t. For x ∈ Γi × (tR, ε), we have δ(gt)x = δ(gVi

)x ≥ C3r

and |R(gt)|gt
= |R(gVi

)|gVi
≤ C4r

−2 for some constant C3, C4 > 0, as the length scale for the
cone metric is given by r. Finally for x ∈ Ki ⊂ Yi, we have δ(gt)x = δ(t2gYi

)x ≥ C5t and
|R(gt)|gt

= |R(t2gYi
)|t2gYi

≤ C6t
−2 for some constant C5, C6 > 0, as the length scale for the

metric t2gYi is given by t. Thus from the explicit definition of ρt in (6.9), (1) and (2) hold with
D2 = min(C1ε

−1, C3, C5R
−1) and D3 = max(C2ε

2, C4, C6R
2).

Condition (3) holds with small enough D2 << 1/2, thus by making D2 smaller if necessary,
ρt satisfies (3) as well. Therefore Theorem 6.6 applies to (Mt, gt) and ρt. Let D4 = R, then
ρt ≥ D4t on Mt, and we thus have a lower bound for ρt. It follows that Theorem 6.7 also applies
to (Mt, gt) and ρt.

As proved in Theorem G2, the sequence {ηj} converges to η in some Sobolev space of
Λ2T ∗(S1 ×M). From part (c) of Theorem 6.7, we deduce that ‖ρ3 dη‖C0 ≤ Kt3+κ, that is,
|dη|g = O(t3+κ ρ−3). Thus on our 7-fold S1 ×Mt, we have |dηt|gϕt

= O(t3+κ ρ−3
t ), where the

norm is measured by the metric gϕt
associated to the G2 3-form ϕt = ds ∧ ωt + Re(Ωt). Using

(6.9) and the fact that the metrics gϕt and ds2 + gt on S1 ×Mt are uniformly equivalent (see
Lemma 3.7), we obtain for (s, x) ∈ S1 ×Mt,

∣∣ (dηt)(s,x)|TxMt

∣∣
gt

=


O(t3+κ) for x ∈M0 \

⋃n
i=1 Si,

O(t3+κr−3) for x ∈ Γi × (tR, ε), for i = 1, . . . , n,

O(tκ) for x ∈ Ki ⊂ Yi, for i = 1, . . . , n,

(6.10)

which then implies the improved C0-estimate of Ω̃t − Ωt given by:

Proposition 6.8 In the situation above, the error term (Ω̃t − Ωt)|Nt satisfies
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∣∣ (Ω̃t − Ωt)|Nt

∣∣
ht

=


O(t3+κ) on Nt ∩ (M0 \

⋃n
i=1 Si),

O(t3+κr−3) on Nt ∩ (Γi × (tR, ε)), for i = 1, . . . , n,

O(tκ) on Nt ∩Ki, for i = 1, . . . , n.

To finish the basic estimate, it remains to compute the error term (Ω̂t − Ω̃t)|Nt . This term
arises from changing the coordinates on Mt by applying the diffeomorphism ψt obtained from
Moser’s argument. We claim that this term is of the same order as the term (Ω̃t − Ωt)|Nt

.

Recall that we use Moser’s argument to construct the diffeomorphism ψt : Mt −→Mt so that
ψ∗t (ctω̃t) = ωt, and we write Ω̂t = ψ∗t (Ω̃t). Thus the difference between Ω̂t and Ω̃t is essentially
given by the term “∂(ψt−Id)”, where Id denotes the identity map on Mt. Here what we mean by
the difference between ψt and Id can be interpreted in terms of local coordinates on Mt (similar
arguments appeared in the proof of Theorem 3.24), and we use ∂ to denote the usual partial
differentiation.

Now as ctω̃t and ωt are cohomologous, we write ctω̃t − ωt = dσt for some smooth 1-form σt.
Note that ctω̃t−ωt = ι( ∂∂s )(ϕ̃t−ϕt) = ι( ∂∂s )dηt is just a component of dηt, and so |dσt|gt is given
by (6.10). We claim that we can choose a small 1-form σt uniquely on Mt, so that Moser’s argu-
ment defines “small” vector fields Xt (see also in the proof of Theorem 3.24), and then constructs
“small” diffeomorphisms ψt by representing them as the flow of Xt on Mt. Our technique is to
adopt a kind of isoperimetric inequality which is similar to the one in (v) of Theorem 6.1, but
we are working with 1-forms on the real 6-folds M ′

0 and Yi. Using the notation on the weighted
Sobolev spaces in Chapter 4, we have the following:

Proposition 6.9 There exists a constant C1 > 0 such that ‖σ‖L3 ≤ C1(‖dσ‖L2 + ‖d∗σ‖L2) for
all σ ∈ L2

1,−2(Λ
1
CT

∗M ′
0).

Proof. By the Weighted Sobolev Embedding theorem (Theorem 4.2 (i)), L2
1,−2(Λ

1
C) embeds in

L3
0,−2(Λ

1
C) in 6 dimensions. From (4.4), we have L3(Λ1

C) = L3
0,−2(Λ

1
C). Then ‖σ‖L3 ≤ D1‖σ‖L2

1,−2

for some constant D1 > 0.

Now (d+ d∗od)
2
1,−2 : L2

1,−2(Λ
odd
C ) −→ L2

0,−3(Λ
even
C ) is an elliptic operator, so we can apply el-

liptic regularity (Theorem 4.6) which gives ‖σ‖L2
1,−2
≤ D2(‖(d+ d∗)σ‖L2

0,−3
+ ‖σ‖L2

0,−2
) for some

constant D2 > 0 independent of σ. If σ is also L2-orthogonal to the kernel Ker((d + d∗od)
2
1,−2),

then one can drop the term ‖σ‖L2
0,−2

on right hand side by increasing D2, and thus obtain-
ing ‖σ‖L2

1,−2
≤ D2‖(d + d∗)σ‖L2

0,−3
(analogous result in Proposition 2.30). By (4.20), we have

L2 = L2
0,−3, and so ‖σ‖L2

1,−2
≤ D2(‖dσ‖L2 +‖d∗σ‖L2). Moreover, the kernel Ker((d+d∗od)

2
0,−3|Λ1

C
)

is exactly the vector space of closed and coclosed 1-forms in L2(Λ1
C), which is isomorphic to

H1(M ′
0,C) by Proposition 4.18. But H1(M ′

0,C) = 0 from Proposition 4.22, so σ is always L2-
orthogonal to Ker((d+d∗od)

2
1,−2), and hence ‖σ‖L2

1,−2
≤ D2(‖dσ‖L2 +‖d∗σ‖L2) holds. Combining

this with ‖σ‖L3 ≤ D1‖σ‖L2
1,−2

, the result follows with C1 = D1D2. 2

A similar result holds on AC Calabi–Yau 3-folds Yi:



Chapter 6. Desing. of SL 3-folds with conical singularities 131

Proposition 6.10 There exists a constant C2 > 0 such that ‖σ‖L3 ≤ C2(‖dσ‖L2 + ‖d∗σ‖L2)
for all σ ∈ L2

1,−2(Λ
1
CT

∗Yi), for i = 1, . . . , n.

The proof follows very closely the proof of Proposition 6.9, but this time we apply a result
from Dodziuk [14, Cor. 1, p.24], which tells us that there are no nonzero L2-harmonic 1-forms
on any complete, oriented, Riemannian manifold with nonnegative Ricci curvature and infinite
volume, on our AC Calabi–Yau 3-folds Yi. This implies that there are no nonzero closed and
coclosed 1-forms in L2(Λ1

CT
∗Yi), and hence σ is always L2-orthogonal to the kernel of d + d∗.

We remark here that the inequality in Proposition 6.10 is invariant under homotheties, which
means the inequality also holds on (Yi, JYi

, t2ωYi
, t3ΩYi

) with the same constant. Now take C =
max(C1, C2), we have ‖σ‖L3 ≤ C(‖dσ‖L2 +‖d∗σ‖L2) for 1-forms σ on M ′

0 and Yi for i = 1, . . . , n.

We now proceed to “glue” together the inequalities on M ′
0 and Yi to obtain an inequality for

1-forms on Mt for small t > 0. Choose u, v > 0 with v < u < α such that tR < tα < 2tα < tu <

tv < ε for small t > 0. Let H : (0,∞) −→ [0, 1] be a smooth decreasing function so that H(s) = 1
for s ∈ (0, v], and H(s) = 0 for s ∈ [u,∞). Define a function Gt : Mt −→ [0, 1] by Gt(x) = 1 for
x ∈ M0 \

⋃n
i=1 Si, Gt(x) = H(log r/log t) for x ∈ Γi × (tR, ε), i = 1, . . . , n, and Gt(x) = 0 for

x ∈ Ki ⊂ Yi, i = 1, . . . , n. Observe that Gt ≡ 0 on Ki and Γi × (tR, tu) for i = 1, . . . , n, and
Gt ≡ 1 on Γi × (tv, ε) and M0 \

⋃n
i=1 Si for i = 1, . . . , n.

Let σt be a smooth 1-form on Mt with dσt = ctω̃t − ωt. Since H1(Mt,C) = 0 from a general
fact on compact Calabi–Yau manifolds, so σt is automatically orthogonal to the space of closed
and coclosed 1-forms on Mt, and it follows that we can choose σt uniquely by requiring d∗σt = 0,
where d∗ is computed using the metric gt.

Write σt = Gtσt + (1−Gt)σt. We can regard Gtσt as a compactly-supported 1-form on M ′
0,

and (1−Gt)σt a sum of compactly-supported 1-forms on Yi. Applying Proposition 6.9 to Gtσt,
using the metric g0 on the support of Gt and putting the constant C = max(C1, C2) gives

‖Gtσt‖L3 ≤ C
(
‖d(Gtσt)‖L2 + ‖d∗(Gtσt)‖L2

)
≤ C

(
‖Gt dσt‖L2 + ‖dGt ∧ σt‖L2 + ‖dGt‖L6 · ‖σt‖L3 + ‖Gt d∗σt‖L2

)
≤ C

(
‖Gt dσt‖L2 + 2‖dGt‖L6 · ‖σt‖L3

)
,

where we have used d∗σt = 0 and Hölder’s inequality. The same inequality holds with the metric
gt, as it coincides with g0 on the support of Gt. For the 1-form (1−Gt)σt, since the support of
1−Gt in Yi is Ki ∪ (Γi× (tR, tv)) for i = 1, . . . , n, we apply Proposition 6.10, using the constant
C, and get

‖(1−Gt)σt|Ki∪(Γi×(tR,tv))‖L3

≤ C
(
‖d((1−Gt)σt)|Ki∪(Γi×(tR,tv))‖L2 + ‖d∗((1−Gt)σt)|Ki∪(Γi×(tR,tv))‖L2

)
≤ C

(
‖(1−Gt)dσt|Ki∪(Γi×(tR,tv))‖L2 + 2‖dGt|Ki∪(Γi×(tR,tv))‖L6 · ‖σt|Ki∪(Γi×(tR,tv))‖L3

+ ‖(1−Gt)d∗σt|Ki∪(Γi×(tR,tv))‖L2

)
using the metric t2gYi . As the metric t2gYi coincides with gt for r ≤ tα, and is close to it for
tα ≤ r ≤ tv, d∗σt equals zero for r ≤ tα, and is small for tα ≤ r ≤ tv, computed using t2gYi

.
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Thus by increasing C, we have

‖(1−Gt)σt|Ki∪(Γi×(tR,tv))‖L3 ≤ C
(
‖((1−Gt)dσt)|Ki∪(Γi×(tR,tv))‖L2

+ 2‖dGt|Ki∪(Γi×(tR,tv))‖L6 · ‖σt|Ki∪(Γi×(tR,tv))‖L3

)
,

computed using gt. It follows that

‖(1−Gt)σt‖L3 ≤
n∑
i=1

‖(1−Gt)σt|Ki∪(Γi×(tR,tv))‖L3

≤ C
n∑
i=1

(
‖((1−Gt)dσt)|Ki∪(Γi×(tR,tv))‖L2

+ 2‖dGt|Ki∪(Γi×(tR,tv))‖L6 · ‖σt|Ki∪(Γi×(tR,tv))‖L3

)
≤ C

√
n
(
‖(1−Gt)dσt‖L2 + 2‖dGt‖L6 · ‖σt‖L3

)
,

where we used the inequality of arithmetic and geometric means on the last row. Consequently
we have

‖σt‖L3 ≤ ‖Gtσt‖L3 + ‖(1−Gt)σt‖L3

≤ C
(
‖Gt dσt‖L2 + 2‖dGt‖L6 · ‖σt‖L3

)
+ C
√
n
(
‖(1−Gt) dσt‖L2 + 2‖dGt‖L6 · ‖σt‖L3

)
,

which implies(
1− 2C(1 +

√
n) ‖dGt‖L6

)
· ‖σt‖L3 ≤ C‖Gt dσt‖L2 + C

√
n ‖(1−Gt) dσt‖L2

≤ C(1 +
√
n) ‖dσt‖L2

as ‖Gt dσt‖L2 , ‖(1−Gt) dσt‖L2 ≤ ‖dσt‖L2 . Calculation shows that the L6-norm of dGt is given
by O(|log t|−5/6), which tends to zero as t→ 0. Thus for sufficiently small t > 0, we can make

2C(1 +
√
n) ‖dGt‖L6 ≤ 1/2.

Therefore
‖σt‖L3 ≤ 2C(1 +

√
n) ‖dσt‖L2 ,

and hence we have proved:

Theorem 6.11 Suppose σt is a smooth 1-form on Mt with dσt = ctω̃t−ωt and d∗σt = 0. Then
there exists a constant K > 0, independent of t, such that

‖σt‖L3 ≤ K ‖dσt‖L2

for sufficiently small t > 0.

As we have seen earlier, |dσt|gt
is of the same order as |(dηt)(s,x)|TxMt

|gt
, and so is given by

(6.10), i.e. |dσt|gt = O(t3+κρ−3
t ) on balls of radius O(ρt(x)) about x ∈ Mt, where ρt is given

in (6.9). Thus we have estimates of (d + d∗)σt = dσt and all derivatives, given by |∇ldσt|gt =
O(t3+κρ−3−l

t ) for l ≥ 0. Moreover, we have the global estimate ‖dσt‖L2 = O(t3+κ) on the whole
Mt as in Theorem 6.7, which implies ‖σt‖L3 = O(t3+κ) from Theorem 6.11. Now using similar
arguments to the proof of Theorem 6.7, the elliptic regularity for the operator d + d∗ and the
global estimate ‖σt‖L3 = O(t3+κ) give

|∇lσt|gt
= O(t3+κρ−2−l

t )
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for l ≥ 0. It follows that we have the same estimates for |∇lXt|gt , and hence for |∇l(ψt − Id)|gt

which can be interpreted using local coordinates. Now this diffeomorphism estimate for l = 1 is
sufficient to prove our expected size for the term (Ω̂t − Ω̃t)|Nt

:

Proposition 6.12 In the situation above, the error term (Ω̂t − Ω̃t)|Nt
satisfies

∣∣ (Ω̂t − Ω̃t)|Nt

∣∣
ht

=


O(t3+κ) on Nt ∩ (M0 \

⋃n
i=1 Si),

O(t3+κr−3) on Nt ∩ (Γi × (tR, ε)), for i = 1, . . . , n,

O(tκ) on Nt ∩Ki, for i = 1, . . . , n.

Before proceeding to combining the errors to get the basic estimate in (6.4), let us return to
the issue on the uniform equivalence between the metrics ĥt and ht. We already got the size for
(Ω̃t −Ωt)|Nt

and (ω̃t − ωt)|Nt
, both have same order. The size for (Ω̂t − Ω̃t)|Nt

and (ω̂t − ω̃t)|Nt

are essentially given by the “difference” between the diffeomorphism ψt and the identity, and we
have shown that it is of the same order as the size for (Ω̃t − Ωt)|Nt

or (ω̃t − ωt)|Nt
. It follows

that the size for (Ω̂t−Ωt)|Nt
and (ω̂t−ωt)|Nt

has the same order as (Ω̃t−Ωt)|Nt
or (ω̃t−ωt)|Nt

.
This implies the metrics ĥt and ht are uniformly equivalent in t, and therefore Propositions 6.4,
6.5, 6.8 and 6.12 also hold for ĥt.

We summarize the above estimates from Propositions 6.4, 6.5, 6.8 and 6.12 in the following
table, measuring w.r.t ĥt:

(Ω̂t − Ω̃t)|Nt (Ω̃t − Ωt)|Nt Im(Ωt)|Nt (λi < −3) Im(Ωt)|Nt (λi = −3)

Nt ∩ (M0 \
Sn

i=1 Si) O(t3+κ) O(t3+κ) 0 O(t3)

Nt ∩ (Γi × (2tα, ε)) O(t3+κr−3) O(t3+κr−3) 0 O(t3r−3)

Nt ∩ (Γi × (tα, 2tα)) O(t3(1−α)+κ) O(t3(1−α)+κ)
O(t(µ−1)α) O(t3(1−α)) + O(t(µ−1)α)

+O(t(1−κi)(1−α)) +O(t(1−κi)(1−α))

Nt ∩ (Γi × (tR, tα)) O(t3+κr−3) O(t3+κr−3) 0 0

Nt ∩Ki O(tκ) O(tκ) 0 0

Table 6.1 The estimate (6.4) on different regions of Nt

As in §6.1 we may write Ω̂t|Nt = eiθtdVt for some phase function eiθt on Nt. Here dVt is the
volume form induced by the metric ĥt. Then Im(Ω̂t)|Nt = sin θt dVt. We see from the table that,
for the case λi < −3,

|sin θt|ĥt
=



O(t3+κ) on Nt ∩ (M0 \
⋃n
i=1 Si),

O(t3+κr−3) on Nt ∩ (Γi × (2tα, ε)),

O(t3(1−α)+κ) + O(t(µ−1)α) + O(t(1−κi)(1−α)) on Nt ∩ (Γi × (tα, 2tα)),

O(t3+κr−3) on Nt ∩ (Γi × (tR, tα)),

O(tκ) on Nt ∩Ki,

(6.11)

for all i = 1, . . . , n. For the case λi = −3, we have
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|sin θt|ĥt
=



O(t3) on Nt ∩ (M0 \
⋃n
i=1 Si),

O(t3r−3) on Nt ∩ (Γi × (2tα, ε)),

O(t3(1−α)) + O(t(µ−1)α) + O(t(1−κi)(1−α)) on Nt ∩ (Γi × (tα, 2tα)),

O(t3+κr−3) on Nt ∩ (Γi × (tR, tα)),

O(tκ) on Nt ∩Ki,

(6.12)

for all i = 1, . . . , n. Note that on each region the error from (6.12) dominates that from (6.11),
so (i) of Theorem 6.1 holds when λi = −3 implies it also holds when λi < −3. Thus it is enough
for us to consider (6.12) only.

We also need to estimate the derivative d sin θt. Using similar arguments it can be deduced
that (when λi = −3)

|d sin θt|ĥt
=



O(t3) on Nt ∩ (M0 \
⋃n
i=1 Si),

O(t3r−4) on Nt ∩ (Γi × (2tα, ε)),

O(t3(1−α)−α) + O(t(µ−1)α−α) + O(t(1−κi)(1−α)−α) on Nt ∩ (Γi × (tα, 2tα)),

O(t3+κr−4) on Nt ∩ (Γi × (tR, tα)),

O(tκ−1) on Nt ∩Ki,

(6.13)

for all i = 1, . . . , n. Here we used equations (5.2) and (6.1) to obtain the bound on Nt ∩ (Γi ×
(tα, 2tα)).

As in part (i) of Theorem 6.1, we need bounds for ‖sin θt‖L6/5 , ‖sin θt‖C0 and ‖d sin θt‖L6 ,
computing norms w.r.t. ĥt. Since vol(Nt ∩Ki) = O(t3) and vol(Nt ∩ (Γi × (tα, 2tα))) = O(t3α),
and vol(Nt ∩ (M0 \

⋃n
i=1 Si)) = O(1), it follows that

‖sin θt‖L6/5 = O(1)5/6 ·O(t3) + O

(
n∑
i=1

vol(Σi)5/6
(∫ ε

2tα
(t3r−3)6/5 r2dr

)5/6
)

+ O(t3α)5/6 ·
(
O(t3(1−α)) + O(t(µ−1)α) +

n∑
i=1

O(t(1−κi)(1−α))
)

+ O

 n∑
i=1

vol(Σi)5/6
(∫ tα

tR

(t3+κr−3)6/5 r2dr

)5/6
 + O(t3)5/6 ·O(tκ)

= O(t3(1−α)+5α/2) + O(t(µ−1)α+5α/2) +
n∑
i=1

O(t(1−κi)(1−α)+5α/2) + O(tκ+5/2)

(6.14)

using (6.12). Similarly, we have
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‖sin θt‖C0 = O(t3) + O(t3(2tα)−3) + O(t3(1−α)) + O(t(µ−1)α) +
n∑
i=1

O(t(1−κi)(1−α))

+ O(t3+κ(tR)−3) + O(tκ)

= O(t3(1−α)) + O(t(µ−1)α) +
n∑
i=1

O(t(1−κi)(1−α)) + O(tκ). (6.15)

Using the estimate (6.13) for the derivative, we have

‖d sin θt‖L6 = O(1)1/6 ·O(t3) + O

(
n∑
i=1

vol(Σi)1/6
(∫ ε

2tα
(t3r−4)6 r2dr

)1/6
)

+ O(t3α)1/6 ·
(
O(t3(1−α)−α) + O(t(µ−1)α−α) +

n∑
i=1

O(t(1−κi)(1−α)−α)
)

+ O

 n∑
i=1

vol(Σi)1/6
(∫ tα

tR

(t3+κr−4)6 r2dr

)1/6
 + O(t3)1/6 ·O(tκ−1)

= O(t3(1−α)−α/2) + O(t(µ−1)α−α/2) +
n∑
i=1

O(t(1−κi)(1−α)−α/2) + O(tκ−1/2).

(6.16)

Now for part (i) of Theorem 6.1 to hold, we need:κ+ 5/2 ≥ κ′ + 3/2, 3(1− α) + 5α/2 ≥ κ′ + 3/2,

(µ− 1)α+ 5α/2 ≥ κ′ + 3/2, and (1− κi)(1− α) + 5α/2 ≥ κ′ + 3/2
(6.17)

from (6.14), κ ≥ κ′ − 1, 3(1− α) ≥ κ′ − 1,

(µ− 1)α ≥ κ′ − 1, and (1− κi)(1− α) ≥ κ′ − 1
(6.18)

from (6.15), andκ− 1/2 ≥ κ′ − 3/2, 3(1− α)− α/2 ≥ κ′ − 3/2,

(µ− 1)α− α/2 ≥ κ′ − 3/2, and (1− κi)(1− α)− α/2 ≥ κ′ − 3/2
(6.19)

from (6.16).

Calculations show that given κ > 0, µ > 1 and κi < −3/2, we can choose κ′ > 1 close to
1, and α ∈ (0, 1) close to 1, such that (6.17), (6.18) and (6.19) hold. Here is the place where
we need to assume the rate κi of AC SL 3-folds Li to be less than −3/2. As we have fixed the
rate λi of the AC Calabi–Yau 3-fold Yi to satisfy λi ≤ −3, and also we require κi > λi + 1 in
Definition 5.5, so that assuming κi < −3/2 is still possible.

Therefore, we have shown that there exist κ′ > 1 and A2 > 0 such that ‖sin θt‖L6/5 ≤
A2t

κ′+3/2, ‖sin θt‖C0 ≤ A2t
κ′−1 and ‖d sin θt‖L6 ≤ A2t

κ′−3/2 for sufficiently small t > 0, i.e. (i)
of Theorem 6.1 holds for Nt.
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6.4 Desingularizations of N0

This section gives the main result of the chapter, the desingularizations of SL 3-folds N0 with
conical singularities. The proof of it is based on an analytic existence theorem for SL 3-folds,
Theorem 6.1, which is adapted from Joyce’s result [33, Thm. 5.3]. We have already verified part
(i) of Theorem 6.1 in §6.3, and it remains to check (ii) to (v) hold for the Lagrangian 3-folds Nt
we constructed.

Theorem 6.13 Suppose (M0, J0, ω0,Ω0) is a compact Calabi–Yau 3-fold with finitely many
conical singularities at x1, . . . , xn with rate ν > 0 modelled on Calabi–Yau cones V1, . . . , Vn. Let
(Y1, JY1 , ωY1 ,ΩY1), . . . , (Yn, JYn

, ωYn
, ΩYn

) be AC Calabi–Yau 3-folds with rates λ1, . . . , λn ≤ −3
modelled on the same Calabi–Yau cones V1, . . . , Vn.

Suppose that there is a closed, homogeneous, trace-free (2,1)-form ξi of order −3 on Vi such
that (4.2) holds for i = 1, . . . , n, and that

⊕n
i=1[ξi] ∈

⊕n
i=1H

3(Γi,C) lies in ρ3(H3(M ′
0,C)),

where ρ3 denotes the natural pull-back map H3(M ′
0,C) −→

⊕n
i=1H

3(Γi,C).

Then Theorem 4.28 gives a family of Calabi–Yau 3-folds (Mt, J̃t, ω̃t, Ω̃t) for sufficiently small
t > 0. Apply the diffeomorphism ψt : Mt −→Mt on Mt to get Calabi–Yau structures (Ĵt, ω̂t, Ω̂t),
as in §6.2.

Let N0 be a compact SL 3-fold in M0 with the same conical singularities at x1, . . . , xn with
rate µ ∈ (1, ν+1) modelled on SL cones C1, . . . , Cn. Suppose N0 \ {x1, . . . , xn} is connected. Let
L1, . . . , Ln be AC SL 3-folds in Y1, . . . , Yn with rates κ1 ∈ (λ1 +1,−3/2), . . . , κn ∈ (λn+1,−3/2)
modelled on the same SL cones C1, . . . , Cn.

Then there exists a family of compact nonsingular SL 3-folds N̂t in (Mt, Ĵt, ω̂t, Ω̂t) for suffi-
ciently small t, such that N̂t is constructed by deforming the Lagrangian 3-fold Nt which is made
by gluing Li into N0 at xi for i = 1, . . . , n.

Proof. First of all, we have to check that Nt satisfies the conditions in §6.1. Let us start
with evaluating the integral

∫
Nt

Im(Ω̂t). Calculation using (6.11) shows that∫
Nt

Im(Ω̂t) = O(t3+τ )

for some τ ∈ (0, κ) when λi < −3. For the case λi = −3, we compute∫
Nt

Im(Ω̂t) = O(t3log t),

using (6.12). As mentioned in §6.1, we can rescale the phase for Ω̂t by Ω̂t 7→ eiζt Ω̂t such
that

∫
Nt

Im(eiζtΩ̂t) = 0. Thus we have sin θt 7→ sin (θt + ζt) ≈ sin (θt) + ζt, and the size
for the term ζt is approximately given by the ratio between

∫
Nt

Im(Ω̂t) and
∫
Nt

Re(Ω̂t). Now
since

∫
Nt

Re(Ω̂t) ≈ vol(Nt) = O(1), the correction term ζt essentially contributes O(t3+τ ) when
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λi < −3, and O(t3log t) when λi = −3 to sin(θt). As we have shown that ‖sin(θt)‖L6/5 =
O(tκ

′+3/2) for some κ′ > 1, then ‖sin(θt + ζt)‖L6/5 = O(tκ
′+3/2) + O(t3+τ ) when λi < −3 and

‖sin(θt+ζt)‖L6/5 = O(tκ
′+3/2)+O(t3log t) when λi = −3. But for both cases the term O(tκ

′+3/2)
will be dominant if κ′ is close to 1. As a result, the rescaling of phases does not affect the L6/5-
estimates in (i) of Theorem 6.1 at all. For the terms ‖sin(θt)‖C0 and ‖dsin(θt)‖L6 , calculation
shows that the rescaling of phases does not affect the estimates as well.

As we have assumed N0 \{x1, . . . , xn} is connected, we can take the finite dimensional vector
space W to be the space of constant functions, i.e. W = 〈1〉, as in §6.1.

Under our construction, N , h and h́ in §6.1 are replaced by Nt, ĥt and ´̂
ht respectively, and

we thus need to show (i), (iii), (iv) and (v) hold using the metric ĥt on Nt, and (ii) holds using

the metric ´̂
ht on T ∗Nt. Basically the proof for (iii) and (iv) using the metric ht and for (ii) using

the metric h́t can be found in [33, Thm. 6.8], and the proof for (v) using the metric ht is given
in [33, Thm. 6.12]. Thus our approach to showing (ii)-(v) in Theorem 6.1 is to apply Theorems
6.8 and 6.12 in [33] together with the uniform equivalence between the metrics ht and ĥt.

We have shown in §6.3 that given κ > 0, µ > 1 and κi < −3/2 for i = 1, . . . , n, there exists
κ′ > 1 and A2 > 0 such that (i) of Theorem 6.1 holds for sufficiently small t > 0, measuring
w.r.t. the metric ĥt.

For part (v), Theorem 6.12 in [33] shows that there exists A6 > 0 such that (v) holds using
the metric ht. Note that the assumption on the connectedness of N0 \ {x1, . . . , xn} is used here.
The fact that v ∈ L6(Nt) follows from L2

1(Nt) ↪→ L6(Nt) by the Sobolev Embedding Theorem
(Theorem 2.28). The idea of proving the inequality for the metric ht on Nt for small t is to
combine the Sobolev embedding inequalities on N0 \ {x1, . . . , xn} and Li. Now as ht and ĥt are
uniformly equivalent metrics, so (v) is true for ht if and only if it is true for ĥt. As a result, by
making A6 larger if necessary, (v) holds with the metric ĥt.

To deduce (iii) and (iv) for ĥt, we first apply Theorem 6.8 in [33] to show they are true for
ht for some A4, A5 > 0. The idea of which is to consider the behaviour of the metric ht for
small t. Since ht is t2gYi

|Li
on Hi and on ΨCi

(Γ(dut,i)) near Σi × {tR′} for each i, we have
δ(t2gYi

|Li
) = tδ(gYi

|Li
) and ‖R(t2gYi

|Li
)‖C0 = t−2‖R(gYi

|Li
)‖C0 . For small t > 0, the dominant

contributions to δ(ht) and ‖R(ht)‖C0 come from δ(t2gYi
|Li

) and ‖R(t2gYi
|Li

)‖C0 for some i, and
hence we have δ(ht) = O(t) and ‖R(ht)‖C0 = O(t−2). Now we prove (iii) and (iv) also hold,
increasing A4, A5 if necessary, for ĥt by showing the metrics t−2ĥt and t−2ht are C2-close w.r.t.
t−2ht (compare to the similar argument in the proof of Theorem 3.14). From the estimate we
know using elliptic regularity on balls of radius O(t), we have |(dηt)(s,x)|TxMt

|gt
= O(tκ) for

(s, x) ∈ S1 ×Mt. Here we do not need to use the improved estimate for dηt as in §6.3. Then we
have |(∇gt)l (dηt)(s,x)|TxMt

|gt
= O(tκ−l) for l ≥ 0, where ∇gt denotes the Levi-Civita connection

of gt. This implies

|(∇gt)l(Ω̃t − Ωt)|gt
= O(tκ−l) = |(∇gt)l(ω̃t − ωt)|gt

for l ≥ 0,

and from Moser’s argument in §6.3, we also have

|(∇gt)l(Ω̂t − Ω̃t)|gt
= O(tκ−l) = |(∇gt)l(ω̂t − ω̃t)|gt

for l ≥ 0.
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Putting together implies

|(∇gt)l(ĝt − gt)|gt = O(tκ−l) for l ≥ 0. (6.20)

Denote by ∇ht the Levi-Civita connection of ht = gt|Nt
. Then we have

∇gt(ĝt − gt)|Nt
= ∇ht(ĥt − ht) + bilinear terms in (ĝt − gt)|Nt

and T,

where T is the second fundamental form of Nt in Mt w.r.t. gt. The largest contribution to |T |ht

comes from the second fundamental form TLi
of Li in Yi w.r.t. t2gYi

. As |TLi
|gYi

|Li
is bounded

on Li, conformal rescaling then shows |TLi
|t2gYi

|Li
= O(t−1). Thus we have |T |ht

= O(t−1), and
more generally | (∇ht)lT |ht

= O(t−l−1) for l ≥ 0. The estimate for the lth derivative of ĥt − ht
then follows from the relation∣∣(∇gt)l(ĝt − gt)|Nt

∣∣
ht

=
∣∣∣(∇ht)l(ĥt − ht)

∣∣∣
ht

+ O
(∑

| (∇ht)jT |ht
·
∣∣(∇gt)l−j−1(ĝt − gt)|Nt

∣∣
ht

)
+ O

(∑
| (∇ht)j1T |ht · | (∇ht)j2T |ht ·

∣∣(∇gt)l−j1−j2−2(ĝt − gt)|Nt

∣∣
ht

)
+ · · ·+ O

(
|T |ht · · · |T |ht · (ĝt − gt)|Nt |ht

)
.

Note that the terms O(·) all have size O(tκ−l), and therefore by (6.20) we see that∣∣∣(∇ht)l(ĥt − ht)
∣∣∣
ht

= O(tκ−l) for l ≥ 0. (6.21)

In particular, (6.21) shows |ĥt − ht|ht , t |∇ht(ĥt − ht)|ht and t2 |(∇ht)2(ĥt − ht)|ht are all of size
O(tκ). It follows that |t−2ĥt − t−2ht|t−2ht

, |∇t−2ht(t−2ĥt − t−2ht)|t−2ht
and |(∇t−2ht)2(t−2ĥt −

t−2ht)|t−2ht
are all of the same size O(tκ), where ∇t−2ht and | · |t−2ht

are computed using t−2ht.
Therefore the metrics t−2ĥt and t−2ht are C2-close w.r.t. t−2ht for small t, and hence (iii) and
(iv) are true for ĥt as well.

We remain to show (ii), using the metric ´̂
ht and the connection ∇

´̂
ht on T ∗Nt. Here we re-

call the construction of ´̂
ht and ∇

´̂
ht , as in §6.1. Write T (T ∗Nt) = Ht ⊕ Vt, where Ht

∼= TNt

and Vt ∼= T ∗Nt are the horizontal and vertical subbundles w.r.t. ∇ĥt , and define ´̂
ht|Ht = ĥt

and ´̂
ht|Vt

= ĥ−1
t . The connection ∇

´̂
ht is given by the lift of the Levi-Civita connection ∇ĥt of

ĥt in Ht, and by partial differentiation in Vt. Following the steps in Definition 6.7 in [33], we
define Lagrangian neighbourhoods UNt , ΨNt for Nt by gluing together the Lagrangian neighbour-
hoods UN0 , ΨN0 for N0 from Theorem 5.4and Lagrangian neighbourhoods ULi , ΨLi for Li from
Theorem 5.6. The neighbourhood UNt

is an open tubular neighbourhood of Nt in T ∗Nt, and
ΨNt

: UNt
−→ Mt is an embedding with ΨNt

|Nt
= Id and Ψ∗

Nt
(ωt) = ωT∗Nt

where ωT∗Nt
is the

canonical symplectic structure on T ∗Nt. Recall that we have ctω̂t = ωt, so Ψ∗
Nt

(ctω̂t) = ωT∗Nt
.

Now we define 3-forms βt and β̂t by βt = Ψ∗
Nt

(Im(Ωt)) and β̂t = Ψ∗
Nt

(Im(c3/2t Ω̂t)).

Using arguments in Theorem 6.8 in [33], we have ‖ (∇h́t)lβt ‖C0 ≤ A3 t
−l for l = 0, 1, 2, 3 on

BA1t ⊂ UNt for some A1, A3 > 0, where the norm is measuring w.r.t. h́t. To prove (ii) in our case,
we try to get from estimates on βt to estimates on β̂t. Note that β̂t and βt are Cl-close w.r.t. t2gt.
This follows from |(∇gt)l(Ω̂t−Ωt)|gt

= O(tκ−l) = |(∇gt)l(ω̂t−ωt)|gt
for l ≥ 0, which we have

discussed earlier. Combining the Cl+1-closeness of t−2ĥt and t−2ht from (6.21), we get a similar

estimate for β̂t, using the metric ´̂
ht. Thus making A1 smaller and A3 larger if necessary, we ob-

tain ‖ (∇
´̂
ht)lβ̂t ‖C0 ≤ A3 t

−l for l = 0, 1, 2, 3 on BA1t ⊂ UNt
, where the norm is computed using ´̂

ht.
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The theorem now follows from Theorem 6.1 which shows that for sufficiently small t > 0 we
can deform Nt to a nearby special Lagrangian 3-fold N̂t = (ΨNt

)∗(Γ(dft)) for some ft ∈ C∞(Nt)
with

∫
Nt
ftdVt = 0 and ‖dft‖C0 ≤ Ktκ′ ≤ A1t. This completes the proof of Theorem 6.13. 2

6.5 Applications of the desingularization theory

We conclude with applying the results of §6.4 to two cases where the ambient Calabi–Yau
3-folds M0 are taken to be (i) the Calabi–Yau 3-orbifold T 6/Z3, as described in §3.4.4, and (ii)
the Calabi–Yau 3-fold with ordinary double points given by some explicit quintic 3-fold. In most
cases, we shall take the SL 3-folds N0 with conical singularities as the fixed point set of some
antiholomorphic involutions on those Calabi–Yau 3-folds, whereas the AC SL 3-folds Li will be
taken from examples in §5.4 inside the corresponding AC Calabi–Yau 3-folds.

Example 6.14 Take the Calabi–Yau 3-fold M0 with conical singularities to be the Calabi–Yau
3-orbifold T 6/Z3 given in [26, Example 6.6.3] and also in §3.4.4. Applying our desingularization
result in Theorem 3.32, we can desingularize T 6/Z3 by gluing in AC Calabi–Yau 3-folds KCP2

at the singular points, obtaining the crepant resolution of T 6/Z3. We shall use the notations in
§3.4.4.

Now we produce examples of SL 3-folds N0 with conical singularities in T 6/Z3 by using the
fixed point set of an antiholomorphic isometric involution (see Proposition 2.25), a well-known
way of producing special Lagrangians in Calabi–Yau manifolds. Recall that an antiholomorphic
isometric involution of a Calabi–Yau manifold (M,J, ω,Ω) is a diffeomorphism σ : M −→M such
that σ2 = Id, σ∗(J) = −J , σ∗(ω) = −ω, σ∗(Ω) = Ω̄ and σ∗(g) = g, where g is the associated
Calabi–Yau metric.

Let σ0 : T 6 −→ T 6 be the complex conjugation given by

σ0 : (z1, z2, z3) + Λ 7−→ (z̄1, z̄2, z̄3) + Λ,

which is well-defined as Λ̄ = Λ. The fixed points of σ0 satisfy zj = z̄j + aj + bjζ for some
aj , bj ∈ Z. Write zj = xj + yjζ for xj , yj ∈ R. It follows that zj = xj + ajζ and bj = 2aj , and
hence the fixed point set of σ0 is given by

{(x1, x2, x3) + Λ : xj ∈ R},

and is then topologically a T 3.

Since σ0 · ζ · σ−1
0 = ζ−1, the map σ0 on T 6 induces a conjugation σ on T 6/Z3 which is given

by
σ : Z3 · (z1, z2, z3) + Λ 7−→ Z3 · (z̄1, z̄2, z̄3) + Λ.

Observe that σ0 swaps ζT 3 and ζ2T 3, and fixes T 3 as above. But in the orbifold level, T 3,
ζT 3 and ζ2T 3 are the same. Moreover, it is not hard to see that the map T 6 −→ T 6/Z3 is
injective when restricted to T 3 ⊂ T 6, which means the image of T 3 in T 6/Z3 is homeomorphic
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to T 3. As a result, the fixed point set of σ is topologically a T 3, and is given by (Z3 · T 3)/Z3,
which is then our SL 3-fold N0 in M0 = T 6/Z3.

It is worth knowing how σ acts on those 27 orbifold singular points, and see how many of
them are being fixed by σ, which will then be the singular points of the SL 3-fold N0. It turns
out that σ only fixes the point Z3 · (0, 0, 0) + Λ, i.e. 0 in T 6/Z3, and swaps the other 26 points
in pairs, for example, Z3 · (0, i√

3
, 2i√

3
) + Λ ←→ Z3 · (0, 2i√

3
, i√

3
) + Λ. This means that we have

constructed an SL 3-fold N0, which is topologically a T 3, with one singular point at 0 in T 6/Z3,
modelled on the SL cone (Z3 · R3)/Z3 in C3/Z3.

To desingularize this N0 we glue in at the singular point some appropriate pieces of AC SL
3-folds in the AC Calabi–Yau 3-folds KCP2 , the canonical bundle over CP2. As we have discussed
in §3.4.4, the Calabi–Yau desingularization we get is the crepant resolution of orbifold T 6/Z3,
and so the nonsingular SL 3-folds we constructed will sit inside this crepant resolution. Our first
example of an AC SL 3-fold will be taken from Example 5.7 in which the real line bundle KRP2

over RP2 is constructed as the fixed point set of an antiholomorphic isometric involution. By
gluing this KRP2 into N0 = (Z3 · T 3)/Z3 at the singular point, we obtain a nonsingular SL 3-fold
in the crepant resolution of M0 = T 6/Z3. Topologically, what we obtain will be a real blow-up
of T 3 at a point, i.e. replacing a point by an RP2, which can also be interpreted as a T 3#RP3.
As we have discussed in Example 5.7, the AC SL 3-fold KRP2 has rate κ = −∞, and in order to
fit into our desingularization theorem, we could choose the rate forKRP2 to be any κ ∈ (−5,−3/2).

The next example of AC SL 3-folds in KCP2 is given by Example 5.9. There we have con-
structed a family of SO(3)-invariant SL 3-folds Lc diffeomorphic to S2 × R which converges to
two copies of the cone ((Z3 ·R3)/Z3) in C3/Z3. If we now take N0 to be a connected double cover
of T 3 so that we have two singular points in the same place in M0 = T 6/Z3 (and N0 \ {0} is
connected), we can desingularize this N0 by doing the connected sum with an S2 ×R, obtaining
an SL 3-fold which is homeomorphic to a T 3#(S1 × S2) in the crepant resolution of T 6/Z3. We
mentioned in Example 5.9 that one possible Lc will be a double cover of KRP2 , which means the
family of nonsingular SL 3-folds we constructed here will be deformations of a double cover of
the SL 3-fold T 3#RP3 in the first example. Notice also that each Lc has rate −2, as discussed
in Example 5.9, and so our desingularization theorem works.

Here is an alternative way of producing SL 3-folds in the crepant resolution of T 6/Z3. Split
T 6 as T 6 = T 4 × T 2. Let X be an SL 2-fold (but not a T 2) in T 4, or equivalently, a complex
curve w.r.t. another complex structure on T 4. Take N0 to be the image of X×S1 in T 6/Z3, and
suppose N0 passes through a singular point in T 6/Z3. By gluing in KRP2 at the singular point,
we get a real blow-up of N0 at a point, homeomorphic to N0#RP3. In these examples, we obtain
SL 3-folds not from fixed points of an involution on the crepant resolution of T 6/Z3, as N0 does
not come from one.
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Example 6.15 Let us take M0 to be a quintic 3-fold (taken from [21, §18.2]) given by

M0 =
{
[z0, z1, z2, z3, z4] ∈ CP4 : f(z0, z1, z2, z3, z4) = z5

0 + z5
1 + z5

2 + z5
3 + z5

4 − 5z0z1z2z3z4 = 0
}
.

We see that M0 is a hypersurface of CP4 defined by a homogeneous quintic polynomial f , and
it has trivial canonical bundle by the adjunction formula, as we have seen in Example 2.4. Now
assume the existence of a singular Calabi–Yau metric on M0, so that M0 is a Calabi–Yau 3-fold
with conical singularities given by the ordinary double points, and hence our desingularization
result can be applied to M0.

By looking at the Jacobian of f , the singular points are given by [ζa0 , ζa1 , ζa2 , ζa3 , ζa4 ] where
ζ = e2πi/5 and aj ∈ Z5 with

∑
aj = 0. Thus there are 125 singular points in total. To see

why they are ordinary double points, let us first focus on the point [1, 1, 1, 1, 1] and investigate
the neighbourhood of it in M0. Take z0 = 1, and write zj = 1 + wj for j = 1, . . . , 4. Then
f(z0, z1, z2, z3, z4) = 1 + (1 + w1)5 + · · · + (1 + w4)5 − 5(1 + w1) · · · (1 + w4). We see that the
constant and linear terms vanish, and the quadratic term is given by

q(w1, w2, w3, w4) = 10(w2
1 + w2

2 + w2
3 + w2

4)− 5(w1w2 + w1w3 + w1w4 + w2w3 + w2w4 + w3w4).

Thus M0 is locally modelled on

{(w1, w2, w3, w4) ∈ C4 : q(w1, w2, w3, w4) = 0}

near the point [1, 1, 1, 1, 1]. In matrix representation, q is given by
10 −5/2 −5/2 −5/2
−5/2 10 −5/2 −5/2
−5/2 −5/2 10 −5/2
−5/2 −5/2 −5/2 10


and the eigenvalues are given by: 5/2, 25/2, 25/2, 25/2. It follows that under an appropriate
linear change of coordinates, M0 is locally modelled on

{(w1, w2, w3, w4) ∈ C4 : w2
1 + w2

2 + w2
3 + w2

4 = 0},

i.e. the cone Q0 described in Example 3.19 and §4.6, near [1, 1, 1, 1, 1]. Hence the point
[1, 1, 1, 1, 1] is an ordinary double point for M0. Similar arguments show that all the singu-
lar points [ζa0 , ζa1 , ζa2 , ζa3 , ζa4 ] are actually ordinary double points.

Consider the following 1-parameter family of quintic 3-folds:

Mψ =
{
[z0, z1, z2, z3, z4] ∈ CP4 : z5

0 + z5
1 + z5

2 + z5
3 + z5

4 − 5ψz0z1z2z3z4 = 0
}
.

This family is well-studied, and a lot of work has been done on constructing “mirror Calabi–Yau
3-folds” of Mψ, see [12]. It can be shown that when ψ5 = 1, Mψ is singular with 125 ordinary
double points (our M0 belongs to this sub-family). When ψ5 6= 1, Mψ is nonsingular, with
h1,1(Mψ) = 1 and h2,1(Mψ) = 101. Thus there are 101 families of complex deformations of M0,
and so we can deform M0 smoothly to obtain a family of nonsingular Calabi–Yau 3-folds Mψ

with ψ = 1 + ε for some small nonzero ε ∈ C. In fact, Mψ is what we shall get by gluing in some
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Qεi to each singular point xi at M0, and so Mψ is a Calabi–Yau desingularization obtained in
Chapter 4. In addition, ψ = ∞ corresponds to the singular variety {z0z1z2z3z4 = 0}, which is
the union of five CP3’s ({zj = 0}).

Consider the following involution on M0:

σ : [z0, z1, z2, z3, z4] 7−→ [z̄0, z̄1, z̄2, z̄4, z̄3].

The fixed point set of σ is given by

Fix(σ) = {[x0, x1, x2, x3 + ix4, x3 − ix4] ∈ CP4 : xj ∈ R, f(x0, x1, x2, x3 + ix4, x3 − ix4) = 0}.

Among the singular points on M0, five of which are fixed by σ: p1 = [1, 1, 1, 1, 1], p2 =
[1, 1, 1, ζ, ζ4], p3 = [1, 1, 1, ζ2, ζ3], p4 = [1, 1, 1, ζ3, ζ2], and p5 = [1, 1, 1, ζ4, ζ]. As before, we
look at a neighbourhood of the point p1 = [1, 1, 1, 1, 1] by taking z0 = 1 and zj = 1 + wj for
j = 1, . . . , 4. Thus near p1, the fixed point set Fix(σ) of σ is locally modelled on

{(x1, x2, x3 + ix4, x3 − ix4) : q(x1, x2, x3 + ix4, x3 − ix4) = 0},

where q(x1, x2, x3 + ix4, x3 − ix4)

= (x1, x2, x3 + ix4, x3 − ix4) ·


10 −5/2 −5/2 −5/2
−5/2 10 −5/2 −5/2
−5/2 −5/2 10 −5/2
−5/2 −5/2 −5/2 10

 ·


x1

x2

x3 + ix4

x3 − ix4



= (x1, x2, x3, x4) ·


1 0 0 0
0 1 0 0
0 0 1 1
0 0 i −i

 ·


10 −5/2 −5/2 −5/2
−5/2 10 −5/2 −5/2
−5/2 −5/2 10 −5/2
−5/2 −5/2 −5/2 10

 ·


1 0 0 0
0 1 0 0
0 0 1 i

0 0 1 −i

 ·

x1

x2

x3

x4



= (x1, x2, x3, x4) ·


10 −5/2 −5 0
−5/2 10 −5 0
−5 −5 15 0
0 0 0 −25

 ·

x1

x2

x3

x4

 .

This matrix has three positive and one negative eigenvalues, and hence by performing a linear
change of coordinates, the fixed point set of σ is locally modelled on

{(x1, x2, x3, x4) ∈ R4 : x2
1 + x2

2 + x2
3 − x2

4 = 0} (6.22)

near p1, i.e. two cones on S2 (or two copies of R3) meeting at 0. This is also the case for each
of the other four singular points p2, . . . , p5.

Let us look at the fixed point set Fix(σ) of σ restricted to the subspaces {z0 = z1 = z2}, that
is, we consider

U = {[1, 1, 1, x+ iy, x− iy] : x, y ∈ R, 2x5 − 20x3y2 + 10xy4 − 5x2 − 5y2 + 3 = 0}

∪ {[0, 0, 0, x+ iy, x− iy] : x, y ∈ R, y 6= 0, 2x5 − 20x3y2 + 10xy4 = 0}.
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Calculation shows that the second bit of U consists of five points in CP4: a = [0, 0, 0, i,−i],
b = [0, 0, 0, 1 + i

√
5 + 2

√
5, 1 − i

√
5 + 2

√
5], c = [0, 0, 0, 1 − i

√
5 + 2

√
5, 1 + i

√
5 + 2

√
5], d =

[0, 0, 0, 1+ i
√

5− 2
√

5, 1− i
√

5− 2
√

5] and e = [0, 0, 0, 1− i
√

5− 2
√

5, 1+ i
√

5− 2
√

5]. For the
first bit, we illustrate it on R2:
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e 

Figure 6.1: Sketch of 2x5 − 20x3y2 + 10xy4 − 5x2 − 5y2 + 3 = 0 on R2

The above figure gives a representation of U on R2, with five asymptotic lines {x = 0},{
y =

√
1 + 2

√
5

5 x
}
,
{
y = −

√
1 + 2

√
5

5 x
}
,
{
y =

√
1− 2

√
5

5 x
}

and
{
y = −

√
1− 2

√
5

5 x
}

corre-
sponding to the five points a, b, c, d, e in CP4 respectively. We see that the graph is connected
and contains all five ordinary double points p1, . . . , p5, and so does U .

Now we take N0 as the connected component of Fix(σ) containing p1 = [1, 1, 1, 1, 1]. Then
U ⊂ N0, and so N0 contains p1, . . . , p5 as well. Thus N0 is a singular SL 3-fold with conical
singularities p1, . . . , p5 modelled on cones of the form (6.22). As before, we need to know whether
N ′

0 = N0 \ {p1, . . . , p5} is connected or not in order to apply our desingularization theorem.
Observe from Figure 6.1 that the graph with p1, . . . , p5 removed has 15 connected components,
but we have to include the five points a, b, c, d, e “at infinity”, which implies U \ {p1, . . . , p5}
has 10 connected components. Near each singular point, N0 is modelled on the cone given by
(6.22), which is a two-sided cone on S2

(
{(x1, x2, x3, x4) ∈ R4 : x2

1 + x2
2 + x2

3 − x2
4 = 0, x4 >

0} ∪ {0} ∪ {(x1, x2, x3, x4) ∈ R4 : x2
1 + x2

2 + x2
3 − x2

4 = 0, x4 < 0}
)

such that the sign of x4

determines the side of the cone. Thus the point A is actually connected to F in N ′
0 as they lie in

the same side of the two-sided cone at p1. We now show by using an informal argument how to
connect the 10 components of U in N ′

0. From Figure 6.1, the point A is connected to F , as we
mentioned above, then F is connected to K though the infinity point c, and K is connected to
D as they lie in the same side of the two-sided cone at p4, and so on. We can then trace a path:

A→ F
d→ K → D → L

e→ G→ B → H
c→ P → E → Q

a→ I → C → J
b→ R→ A.

We see that the 10 components of U \ {p1, . . . , p5} are connected in N ′
0, and hence N ′

0 is con-
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nected, which is what we want.

To desingularize N0 we take SO(3)-invariant AC SL 3-folds in Qε in Example 5.12 and glue
them into N0 at the singular points p1, . . . , p5. Recall in that example all the AC SL 3-folds we
constructed are asymptotic to the (one-sided) cones C0, C1, C2, C3, or to unions of cones Ck ∪Cl
in Q0. The local model of N0 near each singular point is given by the two-sided cone of the form
(6.22). Thus at each pj , we can regard the cone as either the union C0 ∪ C2 or C1 ∪ C3. Let us
fix it to be C0 ∪ C2 at each pj .

(i) Im(
√
ε) > 0, Re(

√
ε) > 0

In this case, we have only one option for desingularizing N0. We glue in at each pj two
disjoint union of AC SL R3’s B1, B4, ending at the points (0, 0, 0,

√
ε), (0, 0, 0,−

√
ε) in Qε and

asymptotic to C0, C2 respectively.

(ii) Im(
√
ε) = 0, Re(

√
ε) > 0

We specify this to the case ε = 1. Again, we have only one option for desingularizing N0,
which is given by gluing in at each pj two disjoint union of AC SL R3’s A1, A4, ending at the
points (0, 0, 0, 1), (0, 0, 0,−1) in Q1 and asymptotic to C0, C2 respectively.

(iii) Im(
√
ε) < 0, Re(

√
ε) > 0

This time we have five varieties of choice for the desingularization. The options are: (1)
B′2 ∪B′3, intersecting at (0, 0, 0,

√
ε); (2) B′5 ∪B′6, intersecting at (0, 0, 0,−

√
ε); (3) disjoint union

of B′2 and B′5; (4) disjoint union of B′3 and B′6; and (5) a family of AC SL S2 ×R’s given by the
flow lines between the region bounded by B′2, B

′
3, B

′
5 and B′6. Thus at each pj , we have four

different choices of AC SL R3 ∪ R3’s corresponding to (1)-(4) to glue in, or we can choose one
out of a family of AC SL S2 × R’s given in (5) to desingularize the pj ’s in N0. As a result, we
get different possibilities for the topology of N̂t, and it would be interesting to consider how the
classes of SL 3-folds N̂t we construct vary as ε goes round the loop.
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