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Abstract

Broadly speaking, the research presented in this thesis is centered around the study of

the Soliton Resolution Conjecture (SRC) for the wave maps equation in dimension 2+1,

which is rooted in a belief held by the physics community since the 1970’s predicting that

for a large class of non-linear dispersive/hyperbolic evolution equations in mathematical

physics (of which wave maps are an example), the solution should decompose into a

decoupled sum of rescaled solitons plus a regular term, up to an error of asymptotically

vanishing energy, as one evolves towards its maximal time of existence.

To be more precise, we consider large energy wave maps as in the resolution of

the threshold conjecture by Sterbenz and Tataru [29, 30], but more specifically into

the unit Euclidean sphere Sn−1 ⊂ Rn with n ≥ 2 (although parts of our argument

work for general targets). We prove that, on a suitably chosen sequence of time slices

approaching maximal existence, there is a decomposition of the map, up to an error with

asymptotically vanishing energy, into a decoupled sum of rescaled solitons concentrating

in the interior of the light cone and a term having asymptotically vanishing energy

dispersion norm. For the latter, we further describe it as a linear gauge co-variant

wave, concentrating on the null boundary and converging to a constant locally in the

interior of the cone, in the energy space.

Similar and stronger results have been recently obtained in the equivariant setting by

several authors [4, 5, 2, 3, 15], where better control on the dispersive term concentrating

on the null boundary of the cone is provided and in some cases the asymptotic decom-

position is shown to hold for all time. Here however, we do not impose any symmetry

condition on the map itself and our strategy follows the one from bubbling analysis of

harmonic maps into spheres in the supercritical regime due to Lin and Rivière [20, 21],

which we make work here in the hyperbolic context of [30]. A large part of the work

presented in this thesis has appeared in author’s [12].
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Chapter 1

Introduction: the Wave Maps

Equation

1.1 Wave maps

We start by explaining some important facts about smooth wave maps into compact

Riemannian manifolds. For a broad introduction to the subject, we shall refer the

interested reader to the monograph of Shatah and Struwe [26]. Our exposition will

however be self-contained.

1.1.1 The basic definition

In this thesis, we will work with closed Riemannian manifolds N equipped with an

isometric embedding into some Euclidean space. If thinking about applications to

mathematical General Relativity, it is important to consider the broader class of non-

compact manifolds such as the hyperbolic space. However, as we will elaborate in

the next section, for the particular case of the hyperbolic space the questions we are

addressing here have been already completely resolved seven years ago. Also, it is

interesting to point out that from the analytical perspective, having the manifold N
embedded into Rn enables us to use techniques form harmonic and Fourier analysis

with ease. Moreover, the boundedness of the map will be quite helpful for both the

arguments upon which we will rely, and those which we will present.

Let us denote by S = (S ij`) the second fundamental form corresponding to the

embedding N ↪→ Rn. Wave maps are smooth maps φ : I × R2 → Rn, defined on some
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CHAPTER 1. INTRODUCTION: THE WAVE MAPS EQUATION 6

time interval I ⊂ R, with the evolution:

φ[t0] := (φ(t0), ∂tφ(t0)), t0 ∈ I,

taking values in the tangent bundle TN of the manifold N , so that

Sji`(φ)∇t,xφ
j = 0, (1.1.1)

with φ[t] also required to belong to the Sobolev space C0
t (I ; Ḣ1

x) ∩ C1
t (I ;L2

x) and gov-

erned by the following semi-linear wave equation:

�φi = −S ij`(φ)∂αφ
`∂αφj. (1.1.2)

Here, the D’Alembertian is given by � := ∂α∂
α = −∂2

t + ∆x. Note our convention: we

are summing over repeating indices, where α is running from 0 to 2, with ∂0 = ∂t and

∂0 = −∂t as we will be always raising the indices with respect to the Minkowski metric

µ = −dt⊗2 + dx⊗2
1 + dx⊗2

2 on R2+1 unless clearly stated otherwise.

Using the identities (1.1.1), we can rewrite the wave maps equation in a more geo-

metric form:

�φ+ Ωα∂
αφ = 0, (1.1.3)

where Ωα is an so(n) connection matrix defined by:

(Ωα)ij :=
[
S ij`(φ)− Sji`(φ)

]
∂αφ

`.

One of the main benefits of taking this point of view lies in the fact that given a change

of gauge, i.e. change of moving frame on Rn:

∇t,xφ 7−→ U∇t,xφ,

for a smooth field U with values in SO(n), the gauge, equation (1.1.3) transforms

naturally after application of the latter:

(
∂α + ΩU

α

)
U∂αφ = 0, (1.1.4)

where we have the usual definition ΩU
α = ∂αUU

†+UΩαU
†. This extra degree of freedom

introduces the need of choosing the right gauge to do analysis in. As we will discuss

later, several possibilities have been constructed by various authors. However, as far
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as this thesis is concerned, the issue of choosing the right gauge will not be present for

most of the arguments we advance.

1.1.2 Important examples

The most interesting example for us would be when the target manifold is chosen to

be the Euclidean sphere Sn−1 ⊂ Rn. We should remark that all of the results we claim

in this thesis do extend to the slightly more general case of homogeneous Riemannian

manifolds, but for the sake of mathematical clarity we will focus on Sn−1 – being the

simplest yet fully representative situation. In this case, the evolution taking values in

the tangent bundle TSn−1 leads to the following geometric identities:

φ†φ = 1, φ†∇t,xφ = 0. (1.1.5)

The wave maps equation itself takes the following nice form:

�φ = −φ∂αφ†∂αφ. (1.1.6)

A further special case of the above example, that we would like to single out in our

presentation, is the one of equivariant wave maps. Those have the two-sphere as target

(certainly more general surfaces of revolution can be considered here, but we leave it

to the references in [26]) and take the following form:

φ(t, r, θ) =

 sinψ(t, r) cos `θ

sinψ(t, r) sin `θ

cosψ(t, r)

 , (1.1.7)

with (r, θ) standing for spatial polar coordinates. The integer ` = 1, 2, . . . is the equiv-

ariance class of the map, and the function ψ(t, r) solves the following semi-linear wave

equation on R× R+:

−∂2
t ψ + ∂2

rψ +
1

r
∂rψ −

`2 sinψ cosψ

r2
= 0.

We will say a bit more about this set-up in the next section, as this is the one other

authors have been considering.
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1.1.3 Conservation laws

Let us now discuss some important properties that wave maps have. First of all,

symmetries: we recall that equation (1.1.2) is invariant with respect to the scaling:

φ(t, x) 7−→ φ(λt, λx),

for any λ > 0, and also any space-time translation. Moreover, a few important con-

servation laws are associated to the wave map evolution. Firstly, the energy of a wave

map at time t0 ∈ I, scale invariant in dimension 2+1, is given by:

E [φ](t0) :=
1

2

∫
R2

|∂tφ(t0)|2 + |∇xφ(t0)|2 dx =
1

2
‖∇t,xφ(t0)‖2

L2
x
,

and a conservation of energy law holds:

E [φ](t0) = E [φ](t1), (1.1.8)

for any t0, t1 ∈ I.

Secondly, restricting ourselves to the case N = Sn−1 and using the identities (1.1.5),

it is simple to see that equation (1.1.6) is equivalent to the following conservation law:

∂α(φ∂αφ
† − ∂αφφ†) = 0. (1.1.9)

The use of this identity means however, that some of our arguments do not directly

generalize to the case when one has an arbitrary closed Riemannian manifold as a

target.

A more geometric perspective on (1.1.9) would be to argue through Noether’s the-

orem and the abundance of Killing vector fields on the Euclidean sphere (and similarly

for other homogeneous Riemannian manifolds but, as mentioned before, we shall focus

on the sphere in the thesis). For, one has to note that wave maps are formally critical

points of the Lagrangian:

L(φ) :=

∫
R2+1

∂αφ†∂αφdtdx, (1.1.10)

of which (1.1.2) is the Euler-Lagrange equation. The reader interested in this formalism

is invited to have a look at the beautiful monograph of Hélein [13].

Going back to a general target N , there is another consequence of the variational
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point of view and Noether’s theorem worth mentioning. In fact, smooth wave maps

have the stress energy tensor:

Tαβ[φ] := ∂αφ
†∂βφ−

1

2
µαβ∂

γφ†∂γφ, (1.1.11)

being divergence free:

∂αTαβ[φ] = 0. (1.1.12)

Note that this conservation law can be deduced directly from identities (1.1.1) and

equation (1.1.2), without appealing to Noether’s theorem.

The energy conservation law (1.1.8) is actually obtained by contracting T [φ] with ∂t

and using (1.1.12) with Stokes’ theorem in [t0, t1]×R2. As we shall see later, many other

monotonicity and Morawetz type estimates, very important in the blow-up analysis of

large energy wave maps, are obtained in this way.

Finally, closing our presentation of wave maps, we remark that the Lagrangian L is

invariant under Lorentz transformations of R2+1, which implies that, after composition

with Lorentz transformations, the map still solves equation (1.1.2) and in particular, if

we target the Euclidean sphere, the conservation law (1.1.9) also stays true.

1.2 From the Threshold Theorem to the Soliton

Resolution Conjecture

1.2.1 Some basic notation

Before presenting our main results, let us set up some notation. As usual, for two

quantities A and B we will be writing A . B if A ≤ C · B for some implicit constant

C > 0 whose dependence should be clarified when necessary. We also write A ∼ B

whenever the additional estimate B . A holds. Similarly, for the O-notation, we set

A = O(B) if |A| ≤ C ·B.

Regarding the asymptotic notation, arising in various statements of the soliton

decomposition below, we write fν = oX(A), as ν → +∞ in the background with X

some Banach space (typically a Sobolev space), for a sequence of elements fν ∈ X with

‖fν‖X ≤ cν · A where cν ↓ 0. In the same spirit, we will write Aν � Bν whenever

Aν/Bν → 0 holds.

By Br0(x0) ⊂ R2 we will be always referring to a spatial open ball of radius r0 > 0

and center x0 ∈ R2. In space-time our basic domains should be light cones. We denote
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the forward light cone by:

C := {(t, x) : 0 ≤ t, r ≤ t} , r := |x| ,

and the restriction to some time interval I, as well as time sections, by:

CI := C ∩ (I × R2), St0 := C ∩ ({t0} × R2),

respectively. We let ∂CI := {(t, x) : t ∈ I, r = t} standing for the lateral boundary, to

which we usually refer as the null boundary. Given some δ > 0, it will be convenient

also to set Cδ := (δ, 0) + C, with the convention that C0 stands for ∪δ>0C
δ, the open

interior of C. Accordingly, we have Cδ
I := CI ∩ Cδ, Sδt0 := St0 ∩ Cδ and if δ > 0, ∂Cδ

I

for the lateral boundary of Cδ
I .

1.2.2 Well-posedness versus blow-up

We recall now the set-up from [30], which holds for any closed Riemannian manifold N
as target. By the finite speed of propagation, translation and scaling invariance proper-

ties, we shall restrict ourselves to the forward light cone C on which it is convenient to

study at the same time both scenarios: the finite time blow-up at the tip of the cone,

as well as the problem of scattering as t→ +∞.

We pause here to note that, classically, one says that a wave map scatters at infinity

if φ[t] is equal to a linear wave up to an error term which has asymptotically vanishing

energy as t → +∞. In reality, because the wave maps equation transforms naturally

under change of gauge, see (1.1.4), one can obtain such a behavior only by constructing a

suitable gauge. Therefore, we should always state precisely what we mean by scattering

in each concrete situation.

With this understood, we can assume that we are given a wave map φ on C, smooth

up to but not necessarily including the origin (0, 0), and satisfying the energy bound:

ESt0 [φ] :=
1

2
‖∇t,xφ‖2

L2(St0 ) ≤ E , ∀t0 ∈ [0,∞), (1.2.1)

where E is an arbitrarily large but fixed for the rest of the thesis bound on which most

of our constants will depend. Let us introduce here the notation for the energy of the
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wave map φ over some domain U ⊂ R2+1 at the time slice {t = t0} setting:

EU [φ](t0) :=
1

2

∫
U∩{t=t0}

|∇t,xφ(t0)|2 dx =
1

2
‖∇t,xφ(t0)‖2

L2(U∩{t=t0}) ,

or simply EU [φ] when there is no ambiguity, as for example with ESt0 [φ] above. For the

latter quantity, we recall the important monotonicity property:

ESt0 [φ] ≤ ESt1 [φ] for t0 ≤ t1.

It is obtained, as the conservation of energy law (1.1.8), contracting the stress energy

tensor T [φ] with ∂t and using (1.1.12) with Stokes’ theorem, this time however applied

in C[t0,t1], giving:

ESt1 [φ] = F[t0,t1][φ]+ESt0 [φ], F[t0,t1][φ] :=

∫
∂C[t0,t1]

(
1

4
|Lφ|2 +

1

2

∣∣r−1∂θφ
∣∣2) dA. (1.2.2)

The quantity F[t0,t1][φ] is called the flux of the wave map from t1 to t0, and L is part of

the null frame:

L := ∂t + ∂r, L := ∂t − ∂r.

The monotonicity property and the global bound (1.2.1) enable us to define the

limits:

E0 := lim
t↓0
ESt [φ], E∞ := lim

t↑∞
ESt [φ],

and imply that F[t0,t1][φ] ↓ 0 as t0, t1 both tend to zero or infinity. The latter can be

used, together with the angular part of F[t0,t1][φ] from (1.2.2), to construct, given any

ε > 0, an extension of φ outside the cone C on (0, t0] for t0 = t0(ε) small enough,

and on [t∞,∞) for t∞ = t∞(ε) large enough, solving the wave maps equation (which is

possible by finite speed of propagation, hence we shall slightly abuse notation denoting

those extensions by φ) such that:

E [φ](t)− ESt [φ] ≤ εE , ∀t ∈ (0, t0] ∪ [t∞,∞).

The details of this construction can be found in Sections 6.1 and 6.2 of [30], and a

similar argument is presented here in Section 3.2.

By the small energy theorem of Tao [32], that we explain carefully in Section 2.2, if

E [φ](t0) can be chosen small enough, then E0 = 0 and φ can be extended to a smooth

wave map for all time. This guarantees also that the above extensions are smooth
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everywhere except possibly (0, 0), even if ESt [φ] is large, provided ε > 0 was chosen

small enough initially.

Moreover, via a continuity-iteration-renormalization argument, φ is proved in [32]

to belong to a space S ⊂ C0
t (I ; Ḣ1

x) ∩ C1
t (I ;L2

x), implying control in all the Strichartz

spaces amongst others, in which well-posedness for the Cauchy problem (1.1.6) can be

established. We discuss this more precisely with further references later in Section 2.2.

Following the terminology of Sterbenz and Tataru [30], we will say that scattering

holds if:

φ ∈ S,

noting that, strictly speaking, this means that φ behaves like a linear wave as t →
±∞ after passing to frequency localization and applying the microlocal gauge (if small

energy, see [32]) or the diffusion gauge (necessary if large energy, see [29]). We refer the

reader to the structure theorem of Sterbenz and Tataru in [29], and Section 3.2 in this

thesis for further information. Therefore, if E [φ](t∞) could be chosen small enough for

some extension we consider the scattering problem for φ as t→ +∞ resolved.

Let us take the opportunity here to remark that, if the target manifold is a hyperbolic

Riemann surface, then scattering in the classical sense was established by Krieger and

Schlag [17] for wave maps in the Coulomb gauge. For the hyperbolic spaces, this was

achieved by Tao [33] using the caloric gauge. Those works were considering wave maps

with initial data of arbitrarily large energy, without any further assumptions. Therefore,

as we explain below, they obtain the proof of the full Soliton Resolution Conjecture for

those targets, see Section 1.2.4.

Once energy gets large, blow-up can occur and the first examples of finite time

singularity for equivariant wave maps into S2 were constructed by Krieger, Schlag and

Tataru [18], as well as Rodnianski and Sterbenz [24] and also Raphaël and Rodnianski

[22], where, as for the harmonic map heat flow, the mechanism behind the singular

behavior was concentration of a non-trivial harmonic map.

More generally, the wave map φ could have concentrated at the origin at least one

soliton: these are defined to be finite energy smooth maps ω : R2+1 → N solving the

wave maps equation (1.1.2) and satisfying:

Xω = 0,

for some constant time-like vector field X on R2+1. In particular, precomposing ω with

a Lorentz transformation Ψ that takes ∂t to X, we obtain a finite energy harmonic
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map from R2 steady in the time direction which, upon extending over spatial infinity

using the removable singularity theorem of Sacks and Uhlenbeck [25], gives a harmonic

two-sphere ω ◦ Ψ : R × S2 → N familiar from the bubbling analysis of harmonic

maps and heat flows. Let us note here that this last point of view enables us to set

ω(∞) := lim|x|→∞ ω(t, x), which is well-defined and independent of time t chosen.

The Threshold Conjecture, resolved by Sterbenz and Tataru [29, 30] (for closed

Riemannian manifolds), Krieger and Schlag [17] (for hyperbolic surfaces) and Tao [33]

(for hyperbolic spaces of any dimension), predicts that concentration of solitons is the

essential mechanism behind blow-up. That is if E0, E∞ are less than the energy threshold

below which every harmonic two-sphere is constant, then one has regularity at t = 0

and scattering as t→ +∞.

One of the central difficulties in establishing this conjecture, in the general non-

symmetric situation, was that relying only on standard Morawetz type estimates ob-

tained from the stress energy tensor, it was not possible to get a non-trivial amount of

energy concentrating within the light cone required to produce a non-constant soliton.

As far as the program of Sterbenz and Tataru is concerned, the breakthrough was made

in [29], where they obtain that, on top of concentrating energy, the map must concen-

trate a non-trivial amount ε(E ,N ) > 0 of the BMO type energy dispersion norm. That

is if:

sup
k
‖Pkφ‖L∞t,x((0,t0]∪[t∞,∞)) < ε(E ,N ), (1.2.3)

where Pk stands for the Littlewood-Paley projection (see Section 2.1), then:

φ ∈ S((0, t0] ∪ [t∞,∞)),

and the map extends smoothly to a neighborhood of t = 0 (we shall state a slightly

more precise version of this theorem in Section 2.2). This is a large data result and is

proved in [29] via an induction on energy argument.

Let us note here, as an aside, that the program of Krieger and Schlag [17], as well

as the one of Tao [33], proceeded via a different induction on energy argument and

without any smallness assumption as (1.2.3). As there are no non-constant solitons for

the targets considered there, one obtains global regularity and scattering for arbitrarily

large data in those cases. We point out on the other hand, that the concentration-

compactness techniques used in [17] can also lead to a fruitful study of the formation of

solitons, as was demonstrated so far for equivariant wave maps in [4, 5, 2, 3, 15]. In the

present work however, we shall adopt a more direct approach staying closer to [29, 30],
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see Section 1.3 for a detailed summary of our strategy.

In Section 3.2, we will briefly discuss results from [30] that convert concentration

of energy dispersion into concentration of a non-trivial amount of time-like energy, as

this is how, arguing by contradiction, we get the energy dispersion norm of the term

concentrating on the null boundary asymptotically vanishing. On the other hand, the

fact that arguments in [30] give that only some energy is prevented from escaping into

the null boundary at a finite time singularity, is a serious obstacle to controlling null

concentration further. In fact, techniques dealing with this phenomenon would have

to strengthen [29, 30] considerably in this situation, if not giving a wholly alternative

proof to the threshold conjecture (which we shall not attempt in this thesis).

Theorem 1.2.1. (Threshold Theorem of Sterbenz and Tataru [29, 30]). Suppose that

the wave map φ is singular at (0, 0), respectively φ /∈ S[t∞,∞) for any extension as

discussed above, then there exists a sequence λ0
ν ↓ 0, respectively λ∞ν ↑ ∞, the so-called

final rescaling, such that setting:

φν(·) := φ(λ0
ν ·), respectively φ(λ∞ν ·),

we can find a sequence of concentration points (tν , xν) ∈ C
1
2

[1,O(1)] and scales rν ↓ 0, for

which:

φν(tν + rνt, xν + rνx) −→ ω(t, x) in (H1
t,x)loc([−

1

2
,
1

2
]× R2),

for some non-constant soliton ω.

We shall describe in detail the final rescaling φν at the beginning of Chapter 3, see

Lemma 3.0.1.

1.2.3 Statement of the main results

In our main theorems, we study the above sequence φν of Theorem 1.2.1 further, car-

rying out a blow-up analysis for it and establishing an analogue of the energy identity

from the bubbling analysis of harmonic maps and heat flows (and many other geometric

variational problems), see for example the works [6, 36, 19] and the references therein

for the critical regime, and for a supercritical situation the papers of Lin and Rivière

[20, 21], which are of closer flavor to the arguments presented in this thesis.

Below, Theorems 1.2.2 and 1.2.3 hold for a general target N as considered in The-

orem 1.2.1.
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Theorem 1.2.2. (Blow-up analysis for asymptotically self-similar sequences of wave

maps). Upon passing to a subsequence for the wave maps {φν}ν∈N obtained in Theorem

1.2.1, or abstractly those satisfying the conclusions of Lemma 3.0.1, the following holds.

There exists a non-trivial finite collection of time-like geodesics %1, . . . , %I , emanat-

ing from the origin in Minkowski space R2+1, along which the maps concentrate some

threshold εs > 0 of energy:

lim inf
ν→∞

EBr(%i(t))[φν ] > εs ∀t ∈ [1, 2], ∀r > 0, i = 1, . . . , I,

where we are writing %i(t) := %i ∩ St, and the maps converge locally to a constant away

from %i in the interior of the light cone:

φν −→ const. on C0
[1,2] \ ∪i%i,

locally in C0
t (H1

x) ∩ C1
t (L2

x).

In our next theorem, we consider the parts of the maps φν that get concentrated on

the null boundary ∂C.

Theorem 1.2.3. (Dispersive property for null-concentration). Given the set up from

Theorem 1.2.2, fix a small distance to the null boundary:

δ0 :=
1

10
dist(∪i%i, ∂C[1,2]).

The maps φν on C[t0−δ0,t0+δ0] \ C2δ0
[t0−δ0,t0+δ0] admit extensions $t0,ν to [t0 − δ0, t0 +

δ0]×R2, for each t0 ∈ [1 + δ0, 2− δ0], solving the wave maps equation on this short, but

independent of ν, time interval and converging to a constant away from ∂C:

∇t,x$t0,ν −→ 0 in C0
t (L2

x)loc
(
([t0 − δ0, t0 + δ0]× R2) \ ∂C[t0−δ0,t0+δ0]

)
;

with a decay for the angular and the null L = ∂t + ∂r energy:

sup
t∈[t0−τ,t0+τ ]

(‖L$t0,ν(t)‖L2
x

+
∥∥r−1∂θ$t0,ν(t)

∥∥
L2
x
) −→ 0.

Moreover, the maps $t0,ν admit a uniform dispersive bound:

‖$t0,ν‖S[t0−δ0,t0+δ0] . 1,

for any t0 ∈ [1 + δ0, 2 − δ0], and we can extract the following asymptotic structure for
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them:

$t0,ν =
∑
k∈Z

ψν,k + oL∞t (Ḣ1
x×L2

x)[t0−δ0,t0+δ0](1), (1.2.4)

where each ψν,k solves a gauge co-variant linear wave equation:{ (
�+ 2A

(k,ν)
α ∂α

)
ψν,k = 0

ψν,k[t0] = Pk$t0,ν [t0]
,

with A
(k,ν)
α ∈ so(n) given by:

(A(k,ν)
α )ij = P≤k−mν

[
S ij`($t0,ν)− S

j
i`($t0,ν)

]
P≤k−mν

[
∂α$

`
t0,ν

]
,

for a sequence of integers mν −→ +∞.

Our final theorem is the heart of this thesis and requires the full machinery of com-

pensation theory that we develop in Section 2.3 which relies on the crucial conservation

law (1.1.9) not available for general targets.

Theorem 1.2.4. (Quantization of time-like energy for wave maps into spheres). Con-

sider the set up from Theorems 1.2.2 and 1.2.3 with N = Sn−1. We can find a sequence

of time slices:

{tν}ν∈N ⊂ [1 + δ0, 2− δ0],

on which there exists a non-trivial collection of J = J({tν}ν∈N) .E 1 sequences of points

ajν ∈ R2, |ajν | < tν − 5δ0, with associated scales λjν ↓ 0 for j = 1, . . . , J , satisfying the

orthogonality conditions:

λiν
λjν

+
λjν
λiν

+
|aiν − ajν |2

λiνλ
j
ν

−→∞

as ν → +∞ for distinct i 6= j, such that:

φν(t, x) =
J∑
j=1

(
ωj

(
t− tν
λjν

,
x− ajν
λjν

)
− ωj(∞)

)
+$tν ,ν(t, x) + oḢ1

x×L2
x
(1) on Stν ,

where ωj : R2+1 → Sn−1 are solitons for which:

φν(tν + λjνt, a
j
ν + λjνx) −→ ωj(t, x) on R2+1 \ ∪q%jq, (1.2.5)

locally in C0
t (H1

x) ∩ C1
t (L2

x), for a finite collection, q = 1, . . . , q(ωj, E), of parallel time-
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like geodesics %jq.

In other words, we have Energy Quantization in the interior of the light cone for

wave maps into spheres.

1.2.4 Towards the Soliton Resolution Conjecture

Our Theorems 1.2.2, 1.2.3 and 1.2.4 represent a little first step towards understanding

the Soliton Resolution Conjecture for the (2+1)-dimensional wave maps equation with

target Sn−1. It states that in addition, such a decomposition should be unique holding

for all time and that $t0,ν should have asymptotically vanishing energy in the case of

finite time blow-up, or correspond to the scattering part of the wave map in the case

of global existence.

We mention here that the soliton resolution conjecture has recently been shown to

hold for the 1-equivariant wave maps into S2 ⊂ R3 (see equation (1.1.7) from Section

1.1.2) with initial data having topological degree one and energy strictly less than 3

times 4π (note that 4π is the energy threshold) by Côte, Kenig, Lawrie and Schlag at

finite time singularity in [4], and in [5] for the case of global existence (more general

surfaces of revolution are also considered). Note that in this situation, one knows a

priori the uniqueness of the possible configurations of solitons that can be concentrated

(in fact there is only one of them and it is the unique equivariant degree one harmonic

map). The conjecture is also established for the examples constructed by Krieger,

Schlag and Tataru [18], as well as Raphaël and Rodnianski [22].

Without this restriction on the initial data, the soliton resolution along a sequence

of times was obtained in the 1-equivariant setting by Côte [2, 3] building upon [4, 5],

and more generally for the `-equivariant case for any integer ` ≥ 1 by Jia and Kenig [15]

relying on a method different from [4, 5, 2] (in both works, the finite time singularity

and the global existence case have been considered). We refer the reader to [15] for more

references and an overview with some history of the various beautiful techniques used

to tackle the soliton resolution conjecture in the radial/equivariant cases for a variety

of non-linear wave equations initiated by Duyckaerts, Kenig and Merle, see for example

[8]. We also note that those techniques have been very recently applied to prove the

sequential soliton resolution conjecture without any symmetry assumptions for some

focusing semi-linear wave equations by Duyckaerts, Jia, Kenig and Merle [14, 7, 9].

The strategy of the present thesis will have a very different flavor though. An outline

can be found in Section 1.3.
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It is worth mentioning here that our theorems give an alternative proof for some of

the results obtained in [4, 2, 15]. For, we have to recall the following self-similar energy

decay estimate for equivariant wave maps due to Christodoulou and Tahvildar-Zadeh

[1], as well as Shatah and Tahvildar-Zadeh [27] from the early 90’s.

Theorem 1.2.5. (Self-similar energy decay [1, 27]). For an equivariant wave map

φ : C → S2, given any constant 0 < λ < 1, we have:

EC [φ](t)− EλC [φ](t) −→ 0 as t ↓ 0.

Combined with the above result, Theorems 1.2.2, 1.2.3 and 1.2.4 immediately imply

the sequential version of SRC in the case of finite time blow-up for equivariant wave

maps. For the case of global existence, one has to rely on [5] to extract the scattering

profile of the map before applying our quantization result. We should, however, abstain

from reporting on this further here.

To close this section, let us say that the techniques we use to establish the above

theorems leave completely open the question of uniqueness of the set of solitons. In

fact, as suggested by an example of Topping [36] for the harmonic map heat flow, this,

and therefore the soliton resolution conjecture, could fail for certain targets (in view

of the work of Simon [28] however, such pathologies are believed to be excluded when

working with real analytic targets like Sn−1). Therefore, there is a notoriously difficult

and long way from Theorem 1.2.4 to the full soliton resolution conjecture as one should

expect the quantization result to hold for any closed Riemannian manifold as a target

and the only place where we use the fact that our target is a sphere is when relying on

the conservation law (1.1.9) in the proof of the compensation estimates in Section 2.3.

Establishing the analogue of those estimates for general targets is an important open

question even in the elliptic theory, see the work of Rivière [23] for a further discussion.

1.3 Discussion of the strategy and overview of the

argument

We should close the introduction by outlining the proofs of Theorems 1.2.2, 1.2.3 and

1.2.4, which are contained in Section 3.

Firstly, Theorem 1.2.2 is obtained in Section 3.1. For the sequence of wave maps

{φν}ν∈N at the final rescaling, Sterbenz and Tataru [30] obtain a decay estimate along
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the scaling vector field ∂ρ = 1
(t2−r2)1/2 (t∂t + r∂r):∫ ∫

C
ε

1
2
ν

[ςν ,ς
−1
ν ]

1

(t2 − r2)
1
2

|∂ρφν |2 dxdt −→ 0,

for some sequences ςν ↓ 0, ε
1
2
ν � ςν , see Lemma 3.0.1. If one uses a local version of the

latter, by contracting the stress energy tensor (1.1.11) with ϕ∂ρ, for some compactly

supported cut-off ϕ on the unit hyperbolic plane H2, it is possible to spread a given

energy control on some ball Br0(x0) b S0
1 , at the time slice t = 1 say, along the flow

of the vector field ∂ρ for any finite amount of time; in other words the wave maps φν

would have small energy, uniformly in ν, on the whole of:

{λz : λ ∈ [1, 2], z ∈ {t = 1} ×Br0(x0)} ,

provided they did so initially at t = 1. This is a simple analogue of the fact, from

the blow-up analysis of supercritical harmonic maps, that one must have the tangent

Radon measures monotone under scaling (see the work of Lin [20], and Lemma 3.1.1

here).

This way, relying as well on concentration-compactness at t = 1 and the small energy

compactness result under control of a time-like direction due to Sterbenz and Tataru

[30], see Lemma 2.2.2 here, we are able to obtain a subsequence for {φν}ν∈N which

converges on C0
[1,2], away from a finite set of time-like rays passing through the origin,

to a regular self-similar wave map φ. By homogeneity and the singularity removable

theorem of Sacks and Uhlenbeck [25], the map φ extends to a smooth wave map on the

whole of the open forward light cone C0 (the details of this argument are contained in

Lemma 3.1.2). We note that similar arguments give also the convergence to solitons

statement (1.2.5) claimed in Theorem 1.2.2 (see Lemma 3.3.1 for this point). We recall,

however, that self-similar wave maps of finite energy must be constant. This is a well-

known result, the proof of which can be found in [30] (see also Proposition 3.1.3 here

for a precise statement).

On the other hand, another crucial property of the wave maps at the final scaling

of Sterbenz and Tataru [30], is that a non-trivial amount of energy is uniformly held

at a fixed distance away from the null boundary. Hence, our configuration of time-like

rays, along which the wave maps concentrate, must be non-trivial. At this stage, this

yields the proof of Theorem 1.2.2.

Because only some time-like energy is obtained in [30] (as some of the total energy
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can be consumed by the linear part of the map if one considers the non-scattering

problem for example), our second result, Theorem 1.2.3 treated in Section 3.2, tries to

address the issue of null concentration. By cutting the parts of the map concentrating

at the time-like geodesics, we are able to solve the wave maps equation for a uniform

amount of time, even though the energy of the initial data is a priori large (thanks to

the finite speed of propagation property and the fact the configuration of time-like rays

was fixed initially). Running the arguments of Sterbenz and Tataru [30] backwards,

yields then the claimed control for the energy dispersion norm (see Lemma 3.2.1), as

well as decay for the angular and L null energy. Finally, the decomposition (1.2.4)

claimed in Theorem 1.2.3 is a consequence of the theory developed in [32, 29].

Up until now, all of our arguments were valid for any closed Riemannian manifold N
as target. For our last result, we have to restrict ourselves to the case when N = Sn−1,

the Euclidean sphere.

The construction of the asymptotic decomposition and the proof of the energy quan-

tization, Theorem 1.2.4, is contained in Section 3.3. Upon choosing a suitable sequence

of time slices {t(1)
ν }ν∈N ⊂ (1, 2) and scales δν ↓ 0, we study the wave maps:

φi,ν(·) := φν(t
(1)
ν + δν ·, %i(t(1)

ν ) + δν ·) on [−1, 1]×B1,

for each geodesic %i, from Theorem 1.2.2. The maps φi,ν converge to the constant cφ

corresponding to the self-similar wave map φ mentioned previously, locally in L∞t (H1
x×

L2
x) away from %i, and in fact strongly in L∞t (L2

x). The time slices {t(1)
ν }ν∈N have been

chosen such that:

Xiφi,ν −→ 0 in L2
t,x,

for the constant time-like vector field Xi pointing in the direction of the ray %i. The

concentration scales {δν}ν∈N have been chosen decaying slowly enough, to avoid losing

energy in the process:

lim
ν→∞

sup
t∈[1,2]

ESδνt \∪iBδν (%i(t))
[φν ] = 0.

From there, we appeal to the compensation type estimates from Section 2.3 (the

only place where we use the fact that our target is the sphere Sn−1), decomposing the

gradient as:

∇t,xφi,ν = Θi,ν + Ξi,ν ,

with Θi,ν −→ 0 in L2
t,x and

∑
k∈Z

‖PkΞi,ν‖L1
t (L

2
x) . 1,
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which is obtained in Proposition 2.3.1. To construct Θi,ν , we rely essentially on the

time-like decay above, and for Ξi,ν the div-curl type structure of the non-linearity:

Ωi,ν
α ∂

αφi,ν , where Ωi,ν
α := φi,ν∂αφ

†
i,ν − ∂αφi,νφ

†
i,ν ,

coming from the conservation law (1.1.9). Furthermore, we obtain a decomposition for

the higher order time-like derivatives of φi,ν :

X2
i φi,ν = Γi,ν + Πi,ν ,

where the first term is a linear combination of:∑
k∈Z

Pk∇x[Ω
i,ν
x (P>k+10φi,ν)],

∑
k∈Z

Pk[Ω
i,ν
x (P≤k+10∇xφi,ν)], and Ωi,ν

t,x∇t,xφi,ν , (1.3.1)

that we note being local in time and quadratic in the gradient, and the second one

satisfies a favorable decay estimate:

∑
k∈Z

2−2k ‖PkΠi,ν‖2
L2
t,x[−1,1] −→ 0.

This is obtained in Lemma 2.3.2 of Section 2.3, relying crucially on the conservation

law (1.1.9) again, and plays an important role in the proof of the Besov decay estimate

for wave maps on neck domains of Lemma 3.3.3 in Section 3.3, to which we come in

few moments here.

We proceed then by constructing the soliton decomposition for the wave maps φi,ν ,

up to terms called necks in the literature on harmonic maps, which are given by φi,ν

restricted to a finite collection of conformally degenerating annuli:

[−
rki,ν
2
,
rki,ν
2

]×
(
BRki,ν

(xki,ν) \Brki,ν
(xki,ν)

)
⊂ [−1, 1]×B1 with rki,ν � Rk

i,ν

and k = 1, . . . , Ki(E), satisfying the local energy decay estimate:

sup
2−`rki,ν≤r≤2`Rki,ν

sup
t∈[− r

2
, r
2

]

EB2r(xki,ν)\Br(xki,ν)[φi,ν ](t) −→ 0, (1.3.2)

for any positive integer ` ∈ N. This is the content of Lemma 3.3.1, and represents

essentially a standard argument of concentration-compactness. The whole of Theorem

1.2.4 is then reduced to showing that those necks have asymptotically vanishing energy.
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In doing so, upon picking up suitable time slices {t(2)
ν }ν∈N ⊂ (−1

2
, 1

2
) before applying

Lemma 3.3.1, and taking the fastest concentrating scale λmin,ν := mini{λiν}, we consider

the maps:

φν,xki,ν (t, x) := φi,ν(t
(2)
ν + λmin,νt, x

k
i,ν + λmin,νx) on [−1, 1]× R2,

together with:

Θν,xki,ν
(t, x) :=λmin,νΘi,ν(t

(2)
ν + λmin,νt, x

k
i,ν + λmin,νx),

Ξν,xki,ν
(t, x) :=λmin,νΞi,ν(t

(2)
ν + λmin,νt, x

k
i,ν + λmin,νx),

Πν,xki,ν
(t, x) :=λ2

min,νΠi,ν(t
(2)
ν + λmin,νt, x

k
i,ν + λmin,νx),

and {t(2)
ν }ν∈N was chosen in such a way that:∥∥∥Θν,xki,ν

(0)
∥∥∥
L2
x

+
∥∥∥Xiφν,xki,ν (0)

∥∥∥
L2
x

+
∑
k∈Z

2−2k
∥∥∥PkΠν,xki,ν

(0)
∥∥∥2

L2
x

−→ 0.

We use then the second and third items of the decay statement above, to write for

the gradient of φν,xki,ν on the neck domain:

∇t,xφν,xki,ν = Υν,xki,ν
on [−1, 1]× (Bλ−1

min,νR
k
i,ν
\Bλ−1

min,νr
k
i,ν

),

with the RHS supported on [−1, 1]× (B2λ−1
min,νR

k
i,ν
\B2−1λ−1

min,νr
k
i,ν

) and satisfying:

∥∥∥Υν,xki,ν

∥∥∥
L∞t (L2

x)[−1,1]
. 1, sup

k∈Z

∥∥∥PkΥν,xki,ν
(0)
∥∥∥
L2
x

−→ 0.

This is proved in Lemma 3.3.3 using the decay for Xiφν,xki,ν , localizing to the neck

region the already obtained favorable estimate for Πν,xki,ν
, and relying on the local

energy control (1.3.2) to get a weak Ḃ−1,2
∞ decay estimate for the non-linear terms at

high frequency, which are quadratic in the gradient of the map φν,xki,ν such as (1.3.1)

left over from Lemma 2.3.2.

Finally, we are brought to the following control for the energy of φν,xki,ν on the neck
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domain at time t = 0:∥∥∥∇t,xφν,xki,ν (0)
∥∥∥2

L2
x(B

λ−1
min,ν

Rk
i,ν
\B

λ−1
min,ν

rk
i,ν

)

. (sup
k∈Z

∥∥∥PkΥν,xki,ν
(0)
∥∥∥
L2
x

)
∑
k∈Z

∥∥∥PkΞν,xki,ν
(0)
∥∥∥
L2
x

+
∥∥∥Υν,xki,ν

(0)
∥∥∥
L2
x

∥∥∥Θν,xki,ν
(0)
∥∥∥
L2
x

+ o(1),

and this gives the desired energy collapsing result.



Chapter 2

Technical results and Compensation

Theory

In this section we gather some of the technical results, mainly restricted to the regularity

theory of wave maps, that we will be using in Section 3 to establish our Main Theorems.

The crucial compensation estimate is proved in Section 2.3.

2.1 Some harmonic analysis

2.1.1 Fourier Analysis and Littlewood–Paley theory

We will be mainly relying on the spatial Fourier transform. For φ(t, x) ∈ S(R2), a

Schwartz function on R2 at some fixed time t, we define:

φ̂(t, ξ) :=

∫
R2

e−2πix·ξφ(t, x)dx,

together with the inverse transform given by:

ϕ̌(t, x) =

∫
R2

e2πix·ξϕ(t, ξ)dξ,

for a Schwartz function ϕ(t, ξ) on the frequency space. The space-time Fourier trans-

form:

Fψ(τ, ξ) =

∫
R2

∫
R
e−2πi(tτ+x·ξ)ψ(t, x)dtdx, ψ ∈ S(R× R2),

with inverse denoted by F−1, will however appear in Section 2.3 while treating high

modulations.

24
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The use of Littlewood–Paley theory will be quite beneficial to our analysis and

general references for it are the monographs of Taylor [35] and Grafakos [11]. We shall

rely on the discrete version here only: the Littlewood--Paley projection P≤k, with k ∈ Z,

is defined to be a Fourier multiplier with symbol m≤k(ξ) := m≤0(2−k |ξ|), i.e. via the

convolution:

P≤kφ(t, x) := 22k

∫
R2

m̌≤0

(
2k(x− y)

)
φ(t, y)dy, (2.1.1)

for some radial non-negative function m≤0(|ξ|) in frequency space, identically 1 on

|ξ| ≤ 1 and 0 for |ξ| ≥ 2.

We also set Pk to be a multiplier with symbol mk(ξ) := m0(2−k |ξ|), where m0(|ξ|) :=

m≤0(|ξ|) − m≤0(2 |ξ|), and the operators P<k, Pk1≤·≤k2 , P≥k, etc. are then defined in

the usual way. Note that LP-projections make sense for functions defined only at some

given time t, or restricted to any time interval, and more generally commute with

time cut-offs. Furthermore they are disposable multipliers, i.e. have the distributional

convolution kernels of bounded mass, even when considered on the whole of space-time

which in practice means that they are bounded on any translation-invariant Banach

space of functions on R×R2 and therefore can be discarded from the estimates as one

wishes.

Two elementary but important facts about LP-projections that we would like to

mention here are the finite band property that states:

‖∇xP≤kφ‖Lpx . 2k ‖P≤kφ‖Lpx , (2.1.2)

and further:

‖∇xPkφ‖Lpx ∼ 2k ‖Pkφ‖Lpx , (2.1.3)

for any 1 ≤ p ≤ ∞, as well as Bernstein’s inequality :

‖Pkφ‖Lpx . 22k( 1
q
− 1
p) ‖Pkφ‖Lqx , (2.1.4)

for any 1 ≤ q ≤ p ≤ ∞. The latter is especially useful converting integrability into

regularity at low frequencies.

We can decompose any Schwartz function using LP-projections, and as we typically

consider maps taking values in the sphere, we will be considering affinely (i.e. upon

adding a constant) Schwartz functions, obtaining:

φ = P≤0φ+
∑
k>0

Pkφ = const.+
∑
k∈Z

Pkφ in S(R2). (2.1.5)
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While working with the gradient ∇t,xφ, this will make no difference of course. By

duality, the above decompositions hold also for tempered distributions and are used to

define various Besov and Triebel-Lizorkin spaces, see [11]. Let us present here some

examples important for our argument.

In this thesis, we will be mainly working with the Besov spaces Bs,p
q (R2), for s ∈

R and 1 ≤ p, q ≤ ∞, together with the homogeneous versions Ḃs,p
q (R2), defined as

completions with respect to the norms:

‖φ‖q
Bs,pq

:= ‖P≤0φ‖qLpx +
∑
k>0

2qsk ‖Pkφ‖qLpx , ‖φ‖
q

Ḃs,pq
:=
∑
k∈Z

2qsk ‖Pkφ‖qLpx ,

and taking the `∞ norm if q =∞ instead, of subspaces of S(R2) for which those norms

are finite. We remark that the case p, q = 2 corresponds to the familiar Sobolev spaces

Hs
x, and their homogeneous versions Ḣs

x respectively.

We introduce also the local Hardy space H1
loc(R2) with its homogeneous counterpart

H1(R2), as Triebel-Lizorkin spaces F 0,1
2 (R2) = H1

loc(R2) and Ḟ 0,1
2 (R2) = H1(R2) (this

characterization is obtained in [11]), both subspaces of L1
x, defined as the completion

of Schwartz functions with respect to the norms:

‖φ‖F 0,1
2

:= ‖P≤0φ‖L1
x

+ ‖ (
∑
k≥1

|Pkφ|2)1/2 ‖L1
x
, ‖φ‖Ḟ 0,1

2
:=‖ (

∑
k∈Z

|Pkφ|2)1/2 ‖L1
x
,

and which admit the local and homogeneous BMO spaces as a duals, (H1
loc)
′ = bmo and

(H1)′ = BMO respectively. Although the latter does not admit a Littlewood-Paley type

characterization, the former does via the Triebel-Lizorkin space F 0,∞
2 = bmo, which is

defined to be the Banach space of all tempered distributions ϕ ∈ S ′(R2) having the

following norm finite:

‖ϕ‖F 0,∞
2

:= inf
{ϕk}⊂L∞

{‖P≤0ϕ0‖L∞ + ‖ (
∑
k≥1

|Pkϕk|2)1/2 ‖L∞ : ϕ = P≤0ϕ0 +
∑
k≥1

Pkϕk},

the series above required to hold in S ′, see the monograph of Taylor [35] for further

information. Hardy spaces are especially useful in estimating paraproducts (see below),

and let us mention here, with this in mind, that H1 embeds into a Besov space with

lower regularity but better summability:

Ḟ 0,1
2 (R2) ⊂ Ḃ−1,2

1 (R2). (2.1.6)
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This fact, that we will exploit in the proof of Proposition 2.3.1 later, is taken from

Lemma 7.19 of Krieger and Schlag [17] (page 250). For a related result in the Lorentz

space setting see the monograph of Hélein [13] (Theorem 3.3.10 and also the references

mentioned there).

2.1.2 The Littlewood–Paley trichotomy

Littlewood-Paley decompositions are also very useful in studying non-linear expressions,

and one central example is the product θϑ of two Schwartz functions θ and ϑ ∈ S.

Applying the decomposition (2.1.5), we can write:

Pk (θϑ) = Pk
∑
k1,k2

(Pk1θ)(Pk2ϑ),

but recalling that the Fourier transform of a product is a convolution leads to the

so-called Littlewood-Paley trichotomy decomposition (also called paraproduct decom-

position), which simplifies the above double sum into:

Pk (θϑ) =Pk[
∑

k1,k2≥k−6:|k1−k2|≤O(1)

(Pk1θ)(Pk2ϑ)

+ (P≤k−7θ)(Pk−3≤·≤k+3ϑ)

+ (Pk−3≤·≤k+3θ)(P≤k−7ϑ)],

•the high-high interactions : both θ and ϑ have Fourier support well above the scale

|ξ| ∼ 2k, but the only way the sum of two annuli at larger scales |ξ| ∼ 2k1 , 2k2 with

k1, k2 ≥ k + 6 can intersect the small annulus at |ξ| ∼ 2k, is if they are approximately

at the same scale, we should have |k1 − k2| ≤ 3.

•the low-high interactions : if θ has Fourier support in the ball of radius 2k−6, it will

contribute to the frequency scale |ξ| ∼ 2k if it is multiplied by ϑ frequency localized to

the annuli |ξ| ∼ 2k2 with k − 3 ≤ k2 ≤ k + 3. The rougher components of ϑ bring up

the low frequency parts of θ. The sum in k of the low-high interactions is sometimes

called a paraproduct in the literature. By symmetry, we have the same picture with the

roles of θ and ϑ interchanged: these are the high-low interactions.

We are then left only with the contribution of θk1ϑk2 where both terms are frequency

localized at 2k1 , 2k2 ∼ 2k, these are the low-low interactions and in our case it will be

often convenient to incorporate them in the high-high interactions.
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2.1.3 Tools for analysis in space-time

Finally, let us set up here the notation for some space-time function spaces and related

tools that we use. We define the Sobolev spaces Hs
t,x = Hs

t,x(R × R2), for s ∈ R, by

using the space-time Fourier transform and taking the completion of S(R × R2) with

respect to the norm:

‖ψ‖Hs
t,x

:=
∥∥(1 + τ 2 + |ξ|2)

s
2Fψ(τ, ξ)

∥∥
L2
t,x
.

We define the modulation projections Q≤j and Qj for j ∈ Z to be the Fourier multipliers

with symbols:

m0(| |τ | − |ξ|
2j

|) and m(| |τ | − |ξ|
2j

|),

respectively (and similarly for Q<j, Qj1≤·≤j2 and Q≥j). We note that those are not

disposable so that one needs to be careful when discarding them off from the estimates

in general, but as their symbols are bounded and smooth, they are directly seen to be

bounded on L2
t,x by Plancherel. Otherwise, we have the following lemma due to Tao

(Lemmata 3 and 4 in [32]).

Lemma 2.1.1. The operators PkQj, PkQ≤j, P≤kQ≤j and P≤kQj are disposable for

any pair of integers j and k with j ≥ k + O(1). Moreover, for any 1 ≤ p ≤ ∞ and

j, j1, j2 ∈ Z, the operators Q≤j, Qj1≤·≤j2 and Qj are bounded on the spaces Lpt (L
2
x).

Using the modulation projections Qj, we define following Tao [32] the homogeneous

Ẋs,b,q
k spaces associated to the cone {|τ | = |ξ|} at the spatial frequency scale k, for any

fixed integer k ∈ Z and some given real b ∈ R, to be the completion of the space of

Schwartz functions ψ on R× R2 with respect to the norm:

‖ψ‖Ẋs,b,q
k

:= 2sk

[∑
j

2qbj ‖QjPkψ‖qL2
t,x

] 1
q

,

provided the latter is finite for ψ, and adopting the usual convention if q is infinite.

For q = 1 we obtain an atomic space. As our methods here have more of an elliptic

rather than dispersive character in the end, we shall not use those spaces directly (other

than stating the estimates from regularity theory). However, the distinction between

the high modulations regime PkQ>k+10, and the one of frequency space-like PkQ≤k+10,

is absolutely crucial for our analysis.

To close this section, let us recall here the convention that function spaces over

domains are defined via minimal extensions. For example, we shall write X(I), where
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X is a function space over R × R2 and I some time interval, for the Banach space of

functions f in I × R2 admitting an extension f ′ to the whole of R× R2 and set:

‖f‖X(I) := inf
{
‖f ′‖X : f ′ ∈ X, f ′ = f on I × R2

}
.

2.2 Regularity theory for wave maps

2.2.1 Small data well-posedness theory

We shall not give here the full definition of the spaceDS, and its undifferentiated version

S, used in the iteration arguments of the proofs of well-posedness for the wave maps

equation, referring to [32] Section 10 or [29] Section 5.2, but we will briefly summarize

here some characteristic properties.

At a given frequency scale k ∈ Z, the space DS is defined as an intersection of

several different spaces and for us it will be enough to note that we have the control:

‖Pkψ‖L∞t (L2
x) + ‖Pkψ‖

Ẋ
0, 12 ,∞
k

+ sup
(q,r): 1

q
+ 1

2r
≤ 1

4

2( 1
q

+ 2
r
−1)k ‖Pkψ‖Lqt (Lrx) ≤ ‖Pkψ‖DS , (2.2.1)

for any Schwartz function ψ on R × R2 (under frequency localization, for the space

S we have Pkφ ∈ S if ∇t,xPkφ ∈ DS for a Schwartz φ). The first component is the

natural energy component on which we should mainly rely in this work. The second

one is the dispersive component to be used only indirectly here but being important

in gaining extra regularity for the part of the wave map that has Fourier support away

from the light cone. The latter observation is exploited by Sterbenz and Tataru [30] in

their compactness result that we discuss below. The third component represents the

standard Strichartz spaces.

We note that, for the regularity theory, the Q0-null structure in the non-linearity

of equation (1.1.2) is crucial and the components mentioned above are not enough

by themselves to exploit it so that one needs to introduce further suitable null frame

Strichartz spaces. However, as this structure will not play any direct role in our argu-

ments we should not elaborate more on this point here. Let us simply remark in the

end that DS contains the atomic Fourier restriction space:

‖Pkψ‖DS . ‖Pkψ‖
Ẋ

0, 12 ,1

k

, (2.2.2)

referring to Lemma 8 in Tao’s paper [32] for the proof of this fact, ideas from which we
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will actually use later in the proof of Lemma 2.3.2.

By default in [29], the authors define the spacesDS and S as completions of Schwartz

functions in R× R2 with respect to the norms obtained by `2-summing the control on

the LP-projections and adding the L∞ norm for S:

‖ψ‖2
DS :=

∑
k∈Z

‖Pkψ‖2
DS , ‖φ‖

2
S := ‖φ‖2

L∞t,x
+
∑
k∈Z

‖∇t,xPkφ‖2
DS . (2.2.3)

In practice however, it is sometimes convenient to replace the `2 summation in (2.2.3)

with a control with respect to a frequency envelope. Following Sterbenz and Tataru [29],

we call a sequence c := {ck}k∈Z ∈ `2 of positive numbers ck > 0 a (σ0, σ1)-admissible

frequency envelope if 0 < σ0 < σ1 and for any k0 < k1 we have:

2−σ0(k1−k0)ck1 ≤ ck0 ≤ 2σ1(k1−k0)ck1 .

Given some smooth initial data φ[0] = (φ(0), ∂tφ(0)) we can naturally attach to it an

admissible frequency envelope by setting:

c2
k =

∑
k0<k

2−2σ1(k−k0) ‖Pk0∇t,xφ(0)‖2
L2
x

+
∑
k1≥k

2−2σ0(k1−k) ‖Pk1∇t,xφ(0)‖2
L2
x
, (2.2.4)

for which we note that:(∑
k∈Z

22σc2
k

) 1
2

∼ ‖∇t,xφ(0)‖Ḣσ
x
, −σ0 < σ < σ1, (2.2.5)

so that given any function ψ on R2, ‖Pkψ‖L2
x
. ck implies:

‖ψ‖Ḣσ
x
. ‖∇t,xφ(0)‖Ḣσ

x
, −σ0 < σ < σ1,

which is very useful in controlling the regularity of an evolution like the wave map.

Well-posedness theory for the wave maps equation with small energy initial data is

due to Tao [32] for the Euclidean sphere as target, and Tataru [34] for general closed

Riemannian manifolds, and also Krieger [16] who considered the hyperbolic plane as

target. We will be using here a local version that we state below appearing as Theorem

1.3 in [34].

Theorem 2.2.1. (Tao [32], Tataru [34]). There exists a constant ε0 := ε0(N ) > 0 such

that:
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• Regularity: given some smooth initial data φ[0] ∈ TN at time t = 0 constant

outside a compact domain with energy:

E [φ](0) < ε0,

there exists a unique smooth wave map φ defined on the whole of Minkowski space R2+1

such that:

‖Pkφ‖S . ck, (2.2.6)

taking the frequency envelope c from (2.2.4) for φ[0] and where σ0 = σ0(N ) is some

fixed small positive constant but σ1 can be chosen arbitrarily large;

• Continuous dependence on initial data and rough solutions: given a sequence of

smooth tuples φν [0] ∈ TN of initial data equal to a fixed constant outside some fixed

compact domain, with energy:

E [φν ](0) < ε0,

and converging strongly in H1
x×L2

x to some φ[0], there exist smooth wave maps φν with

the properties as stated in the first point above and a map:

φ ∈ S,

solving weakly the wave maps equation (1.1.6), to which φν converge in C0
t (H1

x)∩C1
t (L2

x)

on bounded time intervals, and further for 0 < s < σ0:

∇t,xφν → ∇t,xφ in DS ∩ L∞t (Ḣ−sx )(R2+1).

2.2.2 A compactness result under time-like control

We state now a compactness result due to Sterbenz and Tataru [30] for a sequence

of small energy wave maps which become constant in the direction of some smooth

time-like vector field. The absence of such a result in the general small energy case is

precisely what makes the study of wave maps near the null boundary of the light cone a

very challenging affair, requiring global non-linear techniques going beyond the present

article. We mention that the arguments in [30] rely on the elliptic flavor given to the

situation by the assumption that the sequence is asymptotically constant along a time-

like vector field, the use of the Fourier restriction component of DS to gain compactness

and regularity for the limiting map, as well as the small energy weak stability theory

developed by Tataru [34] (which we have presented in the second point of Theorem
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2.2.1 here).

Lemma 2.2.2. (Sterbenz and Tataru [30]). Consider a sequence of smooth wave maps

φν in [−3, 3]×B3 with small energy:

sup
t∈[−3,3]

EB3 [φν ](t) ≤ εs, (2.2.7)

where εs > 0 depends only on ε0 from Theorem 2.2.1, and such that:

‖Xφν‖L2
t,x([−3,3]×B3) −→ 0, (2.2.8)

for some smooth time-like vector field X. Then there exists a wave map:

φ ∈ H
3
2
−ε

t,x ([−1, 1]×B1), (2.2.9)

for any 0 < ε < 1
2
, satisfying:

Xφ = 0 on [−1, 1]×B1,

to which the maps φν converge in C0
t (H1

x)∩C1
t (L2

x) after passing to a subsequence, and

further:

∇t,xφν −→ ∇t,xφ in DS({t ∈ [−1, 1], r ≤ 2− |t|}). (2.2.10)

Remark 2.2.3. The proof of this lemma can be found in Proposition 5.1 of [30] and we

remark that convergence in H1
t,x(U) for any domain U b (−3, 3) × B3 only is claimed

there. But the stronger statement (2.2.10), to be understood in terms of minimal

extensions, can be obtained as follows. Let us fix U = [−5
2
, 5

2
]×B5/2, then upon passing

to a further subsequence we would have:

‖φν(t)− φ(t)‖2
L2
x(B 5

2
) + ‖∇t,xφν(t)−∇t,xφ(t)‖2

L2
x(B 5

2
) −→ 0 for a.e. t , (2.2.11)

therefore φν converge strongly to φ in (H1
x × L2

x)(B5/2) for almost every t that we can

fix as close to 0 as we wish. Hence, assuming that εs was chosen small enough initially,

by the pigeonhole principle we have for σ ∈ (2, 5
2
):∫

∂Bσ

|∇t,xφ(t)|2 dθ . εs,

away from a set of measure 1
10

say. Fixing such a σ, we would have φ(t, ∂Bσ) contained



CHAPTER 2. TECHNICAL RESULTS AND COMPENSATION THEORY 33

in a single chart of N of diameter O(
√
εs) around a point c ∈ N . Moreover, upon

passing to a further subsequence, by the strong convergence (2.2.11) we can choose

σ ∈ (2, 5
2
) such that φν(t)|∂Bσ → φ(t)|∂Bσ in the Hölder space Cα(∂Bσ) with α ∈ (0, 1

2
),

using Morrey’s inequality. Hence, we would have φν(t, ∂Bσ) contained in the chart

around c ∈ N of diameter O(
√
εs) as well, for all ν ∈ N large enough. Therefore, we

can construct extensions φ′ν [t] ∈ TN of φν [t]|Bσ , smooth as the latter are, with the

energy bound:

E [φ′ν ](t) . εs,

by smoothly interpolating between φν [t]|∂Bσ and (c, 0) ∈ TN on B3 \Bσ. By construc-

tion, we obtain φ′ν [t] strongly convergent in H1
x × L2

x to some map φ′[t] agreeing with

φ[t] on B2. In the end, setting the constant εs > 0 small enough and the time t close

enough to 0, the convergence statements are justified by the continuous dependence on

the initial data part of Theorem 2.2.1 and the finite speed of propagation property.

In particular, the assumption (2.2.8) gets upgraded to:

Xφν −→ 0 in C0
t (L2

x) ([−1, 1]×B1) ,

and going further, the regularity theory of Theorem 2.2.1 tells us that in fact we have:

φ ∈ C0
t ([−1, 1] ;H

3
2
−ε

x (B1)) ∩ C1
t ([−1, 1] ;H

1
2
−ε

x (B1)),

for any 0 < ε < 1
2

improving upon (2.2.9), although it is unfortunately impossible to

obtain convergence in such a stronger space without further assumptions, especially

regarding the decay (2.2.8).

2.2.3 Energy dispersed wave maps

Let us close this section by mentioning the result of Sterbenz and Tataru [29], see both

Theorem 1.3 and Proposition 3.9 there, which relaxes the assumption of small energy

in the work of Tao [32] and Tataru [34] to small energy dispersion. This represents a

crucial technical ingredient in the proof by Sterbenz and Tataru [30] of the threshold

conjecture. Let us consider an open interval I = (t0, t1), which can be unbounded.

Theorem 2.2.4. (Sterbenz and Tataru [29]). Given an energy bound E > 0, there exist

constants 0 < ε(N , E)� 1 and 1� F (N , E) such that for any smooth wave map φ on
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(t0, t1) with energy bounded by E and ∇t,xφ spatially Schwartz, if we have:

sup
k
‖Pkφ‖L∞t,x(t0,t1) ≤ ε(N , E),

then

‖φ‖S(t0,t1) ≤ F (N , E).

Moreover, considering an admissible frequency envelope c attached to some φ[t] for

t0 < t < t1, as in (2.2.4) and σ0 as in Theorem 2.2.1, we obtain:

‖Pkφ‖S(t0,t1) . ck,

and the map φ extends to a smooth wave map on a neighborhood of the time interval

(t0, t1).

2.3 Compensation type estimates

We prove here two compensation estimates for wave maps into spheres with a good

bound in the direction of some constant time-like vector field, relying on the conser-

vation law (1.1.9) to treat high-high frequency interactions (this phenomena goes back

essentially to Henry Wente, see the references in [13]). These estimates will play a key

role in the proof of no loss of energy in formation of solitons, and as in the case of

higher dimensional harmonic maps considered by Lin and Rivière [21], this is the only

place where we use the fact that our target manifold is Sn−1.

2.3.1 The hyperbolic version of the div-curl lemma

Proposition 2.3.1. Let φ : [−1, 1] × R2 → Sn−1 be a smooth wave map equal to a

constant c outside a compact domain in space, with energy bounded by some positive

E > 0:

‖∇t,xφ‖2
L∞t (L2

x)[−1,1] ≤ E , (2.3.1)

and X a constant time-like vector field, that we may take to be:

X = cosh(ζ)∂t + sinh(ζ)∂x1 , (2.3.2)
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for some rapidity constant ζ ≥ 0. Denote by χ = χ(t) ∈ C∞0 (−1, 1) a smooth time

cut-off function, then there exists a decomposition holding in S(R× R2):

χ∇t,xφ = ΘX + ΞX , (2.3.3)

satisfying:

‖ΘX‖L2
t,x
. ‖Xφ‖L2

t,x[−1,1] + ‖φ− c‖L∞t (L2
x)[−1,1] (2.3.4)

and ∑
k∈Z

‖PkΞX‖L1
t (L

2
x) . 1, (2.3.5)

with the implicit constants depending only on n the dimension of Rn, the energy bound

E, the rapidity constant ζ and the cut-off χ (most notably on ‖∂tχ‖L∞t ).

Proof. We start by noting that, expressing ∂t as a linear combination of X and ∂x1 via

(2.3.2), it suffices to consider the spatial gradient χ∇xφ.

For low frequencies, we proceed claiming immediately:

‖χP≤0∇xφ‖L2
t,x
. ‖φ− c‖L∞t (L2

x)[−1,1] , (2.3.6)

which simply follows from the finite band property (2.1.2), passing to L∞t (L2
x) as nec-

essary. This is an acceptable contribution.

For high modulations, we claim:∥∥∥∥∥∑
k∈Z

Q≥k+10Pk[χ∇xφ]

∥∥∥∥∥
L2
t,x

. ‖Xφ‖L2
t,x[−1,1] + ‖φ− c‖L∞t (L2

x)[−1,1] , (2.3.7)

and the idea here, as in [30], is to note that the vector field X being time-like, the

Fourier multiplier X−1∇xQ≥k+10P̃k, where P̃k = Pk−1≤·≤k+1, has symbol smooth and

bounded uniformly in k ∈ Z. By Plancherel in L2
t,x, this gives rise to the favorable

elliptic estimate:

‖Q≥k+10Pk[χ∇xφ]‖L2
t,x
. ‖χPkXφ‖L2

t,x
+ ‖(∂tχ)Pkφ‖L2

t,x
, (2.3.8)

and so (2.3.7) follows square-summing in k the above and dropping the cut-off. This is

again acceptable.

The main term to consider is Q<k+10Pk(χ∇xφ) with k > 0, and for this we rely

on the wave maps equation (1.1.6), that we rewrite to make the vector X to appear,
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introducing the operator:

∆x,β := (1− β2)∂2
x1

+ ∂2
x2
, β := tanh(ζ) ∈ [0, 1), (2.3.9)

which is elliptic in the frequency region considered. So, using (2.3.2), together with

(1.1.5), we rewrite the wave maps equation (1.1.6) as:

∆x,β(χφ) =− χ(φ∂αφ
† − ∂αφφ†)∂αφ (2.3.10)

+ sech2(ζ)(X − 2sinh(ζ)∂x1)(χXφ)− sech(ζ)(∂tχ)Xφ,

and inverting ∆x,β we have:

P>0χ∇xφ =
∇x

∆x,β

P>0(∆x,β(χφ)),

holding in S(R× R2), hence let us treat each term in (2.3.10) one by one.

Considering the second line in (2.3.10), we control the first two terms by claiming,

for any k ∈ Z: ∥∥∥∥∇x
∇t,x

∆x,β

Q<k+10Pk(χXφ)

∥∥∥∥
L2
t,x

. ‖PkXφ‖L2
t,x[−1,1] , (2.3.11)

which follows immediately discarding, via Plancherel in L2
t,x, the Fourier multiplier

∇x∇t,x∆
−1
x,βQ<k+10P̃k of symbol bounded uniformly in k ∈ Z, and dropping the time

cut-off χ. For the third term, we have, for any k ∈ Z:∥∥∥∥ ∇x

∆x,β

Q<k+10Pk[(∂tχ)Xφ]

∥∥∥∥
L2
t,x

. 2−k ‖∂tχ‖L∞t,x ‖PkXφ‖L2
t,x[−1,1] , (2.3.12)

where we discarded by Plancherel in L2
t,x the Fourier multiplier 2k∇x∆

−1
x,βQ<k+10P̃k,

having here again the symbol bounded uniformly in k ∈ Z. Therefore, square-summing

over k > 0, both (2.3.11) and (2.3.12) lead to acceptable contributions.

We consider now the non-linear term on the first line of (2.3.10). Let us introduce

some notation for the connection matrices:

Ωα := φ∂αφ
† − ∂αφφ†, with ∂αΩα = 0 and ‖Ωα‖L∞t (L2

x)[−1,1] . 1, (2.3.13)

by (1.1.9), respectively the global energy bound (2.3.1) and the boundedness of the
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wave map. We claim then the following compensation estimate:

∑
k>0

∥∥∥∥ ∇x

∆x,β

Q<k+10Pk(χΩα∂
αφ)

∥∥∥∥
L1
t (L

2
x)

. 1. (2.3.14)

Thanks to the conservation law, the term Ωα∂
αφ exhibits a div-curl type structure,

and we should treat this using the Littlewood-Paley trichotomy in very much the same

standard way as the actual div-curl structure, see Taylor’s monograph [35]. We start

by writing:

Pk (χΩα∂
αφ) =Pk[(∂tχ)

∑
k1,k2≥k−6:|k1−k2|≤O(1)

Ωα,k1φk2 (2.3.15)

+ ∂α
∑

k1,k2≥k−6:|k1−k2|≤O(1)

χΩα,k1φk2

+ χΩα,≤k−7∂
αφk−3≤·≤k+3

+ χΩα,k−3≤·≤k+3∂
αφ≤k−7],

where Ωα,k1 := Pk1Ωα and similarly for φk2 , Ωα,≤k1 , etc. We are going to prove claim

(2.3.14) for each of the terms in (2.3.15) separately. Note that the Fourier multipliers:

∇x∇t,x

∆x,β

Q<k+10P̃k and
2k∇x

∆x,β

Q<k+10P̃k, (2.3.16)

are disposable, which is essentially contained in Lemma 2.1.1 (precomposing, for ex-

ample, with the space-time LP-projections to |τ | + |ξ| ∼ 2k that we do not use here

otherwise). This justifies the fact that we can work with the space L1
t (L

2
x) instead of

L2
t,x (on which, of course, (2.3.16) are bounded by Plancherel).

Let us start with the high-high interactions on the first and second lines of (2.3.15),

for which we control (2.3.14), discarding the multipliers (2.3.16) and dropping 2−k∂tχ

for the first term, by:

∑
k>0

∥∥∥∥∥∥Pk
∑

k1,k2≥k−6:|k1−k2|≤O(1)

Ωα,k1φk2

∥∥∥∥∥∥
L1
t (L

2
x)[−1,1]

(2.3.17)

. sup
t∈[−1,1]

∑
k>0

2k
∑

k1,k2≥k−6:|k1−k2|≤O(1)

‖Ωα,k1(t)φk2(t)‖L1
x
,

where we applied Bernstein’s inequality (2.1.4), commuted the sum
∑

k>0 with L1
t and
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discarded Pk. Using Cauchy-Schwarz in L1
x and recalling the finite band property (2.1.3)

for φk2 , we can bound the contribution of (2.3.17) via:

sup
t∈[−1,1]

∑
k>0

∑
k1,k2≥k−6:|k1−k2|≤O(1)

2−(k2−k) ‖Ωα,k1(t)‖L2
x
‖∇xφk2(t)‖L2

x
,

and summing this over k > 0, letting i := k1 − k2 and j := k2 − k, we obtain:

sup
t∈[−1,1]

∑
i=O(1)

∑
j≥O(1)

2−j
∑
k>0

‖Ωα,k+j+i(t)‖L2
x
‖∇xφk+j(t)‖L2

x

. sup
t∈[−1,1]

 ∑
k1≥O(1)

‖Ωα,k1(t)‖2
L2
x

 1
2
 ∑
k2≥O(1)

‖∇xφk2(t)‖2
L2
x

 1
2

,

where we have used Cauchy-Schwarz in k. By the global energy bound, we get that

high-high interactions make an acceptable contribution to (2.3.14).

Finally, let us consider the contribution of the paraproducts from lines three and

four in (2.3.15), and we focus on the latter as the former is treated in the same way

by symmetry (or in fact, could have already been absorbed in the argument for high-

high interactions). Here, the div-curl structure is not playing any role, and is actually

counter-productive. Hence, discarding the second multiplier from (2.3.16) and com-

muting the discrete sum
∑

k>0 with L1
t as previously, it suffices control:

sup
t∈[−1,1]

∑
k>0

2−k ‖Pk[Ωα,k−3≤·≤k+3(t)∂αφ≤k−7(t)]‖L2
x
.

Recalling the embedding (2.1.6) we are reduced to showing:

sup
t∈[−1,1]

∥∥∥∥∥∑
k>0

Pk[Ωα,k−3≤·≤k+3(t)∂αφ≤k−7(t)]

∥∥∥∥∥
F 0,1

2 (R2)

. 1.

Using the duality (F 0,1
2 )′ = F 0,∞

2 , as discussed in section 2.1, we take an arbitrary

ϕ ∈ F 0,∞
2 together with a representation ϕ =

∑
k≥0 ϕk in S ′x such that each ϕk has

Fourier support in |ξ| ∼ 2k (|ξ| . 1 for ϕ0) and:

‖ (
∑
k≥0

|ϕk|2)1/2 ‖L∞x ≤ 2 ‖ϕ‖F 0,∞
2

.
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Then, recalling the fact that LP-projections are self-adjoint, we must show that:

∑
j=O(1)

∑
k≥0

∫
|Ωα,k−3≤·≤k+3(t)∂αφ≤k−7(t)ϕk+j| dx . ‖ϕ‖F 0,∞

2
,

with the convention that ϕk with k negative simply stands for ϕ0. Using Cauchy-

Schwartz we bound this via:∥∥∥∥∥(
∑
k≥0

|Ωα,k−3≤·≤k+3(t)|2)1/2

∥∥∥∥∥
L2
x

∥∥∥∥sup
k∈Z
|P≤k∇t,xφ(t)|

∥∥∥∥
L2
x

∑
j=O(1)

∥∥∥∥∥(
∑
k≥0

|ϕk+j|2)1/2

∥∥∥∥∥
L∞x

.

It is a well-known fact from harmonic analysis, to which we shall refer as the Little-

wood–Paley square-function estimate, see e.g. [35] (Section 2 of Chapter 1), that:

‖ (
∑
k∈Z

|Ωα,k(t)|2)1/2 ‖L2
x
. ‖Ωα(t)‖L2

x
,

‖ sup
k∈Z
|P≤k∇t,xφ(t)| ‖L2

x
. ‖∇t,xφ(t)‖L2

x
.

Hence, by the global energy bound, the contribution of the paraproducts is acceptable.

Therefore we have shown the compensation estimate (2.3.14).

Proposition 2.3.1 is proved.

2.3.2 Controlling the second order time-like derivatives

We present now a compensation estimate for higher order time-like derivatives of wave

maps as considered in the previous proposition. It holds up to a non-linear bulk,

essentially quadratic in the gradient and local in time, that we shall consider on neck

regions later in the proof of the weak Besov Ḃ1,2
∞ decay estimate in Lemma 3.3.3. Parts

of this estimate are non-linear, and will be established via a duality argument in the

spirit of the energy collapsing result itself.

As for Proposition 2.3.1, the conservation law (1.1.9) is absolutely crucial, and so

our arguments do not generalize directly to the case of a general target beyond the

Euclidean sphere Sn−1.

Lemma 2.3.2. Consider a wave map φ : [−1, 1]× R2 → Sn−1 with the same set-up as

in Proposition 2.3.1, then we have the following decomposition holding in S(R × R2),



CHAPTER 2. TECHNICAL RESULTS AND COMPENSATION THEORY 40

using notation from (2.3.13) and recalling that β = tanh(ζ):

sech2(ζ)χX2φ =−
∑
k∈Z

Pk
[
χ((1− β2)∂x1Ωx1 + ∂x2Ωx2)(P>k+10φ)

]
(2.3.18)

+ sech2(ζ)χ (−ΩXXφ+ sinh(ζ)(ΩX∂x1φ+ Ωx1Xφ))

+ ΠX ,

the error term satisfying:∑
k∈Z

2−2k ‖PkΠX‖2
L2
t,x[−1,1] (2.3.19)

. (1 + ‖Xφ‖L2
t,x[−1,1] + ‖φ− c‖L∞t (L2

x)[−1,1])(‖Xφ‖L2
t,x[−1,1] + ‖φ− c‖L∞t (L2

x)[−1,1]),

with the same dependence as for the implicit constant as in Proposition 2.3.1.

Let us note here, for later use in Lemma 3.3.3, that we can rewrite the decomposition

(2.3.18) as follows. Introducing the notation:

Ωx,β := (1− β2)Ωx1dx1 + Ωx2dx2,

we can write:

sech2(ζ)χX2φ− χΩα∂
αφ =−

∑
k∈Z

χPk [∇x · (Ωx,βP>k+10φ) + Ωx,β · P≤k+10∇xφ]

+ ΠX .

To obtain this equation, one should rely on the conservation law (1.1.9), making the

vector X appear through (2.3.2) and adding up on both sides some low-high interactions

- see the proof below for more details.

Proof. Let us start with the frequency space-like region, that we can treat directly and

for which we claim the stronger estimate:

2−k
∥∥PkQ<k+10(χX2φ)

∥∥
L2
t,x[−1,1]

. ‖PkXφ‖L2
t,x[−1,1] , (2.3.20)

for any k ∈ Z. To see this, we simply commute X with the time cut-off χ, getting:

2−k
∥∥PkQ<k+10(χX2φ)

∥∥
L2
t,x[−1,1]

. ‖Pk(χXφ)‖L2
t,x

+ 2−k ‖PkQ<k+10(∂tχXφ)‖L2
t,x[−1,1] ,
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where for the first term we discarded the multiplier 2−kXP̃kQ<k+10 using Plancherel in

L2
t,x. Regarding the second one, passing to L∞t (L2

x), which is possible as we are working

over a bounded time interval in (2.3.20), we can apply the inversion formula for the

space-time Fourier transform F , to get:

2−k ‖PkQ<k+10(∂tχXφ)‖L∞t (L2
x) . 2−k ‖FPkQ<k+10(∂tχXφ)‖L1

τ (L2
ξ)
,

combining Minkowski’s inequality and then Plancherel in L2
x. But the integrand on the

RHS has τ -support of length O(2k), hence we can bound this simply via:

‖FPk(∂tχXφ)‖L∞τ (L2
ξ)
. ‖Pk(∂tχXφ)‖L1

t (L
2
x) . ‖∂tχ‖L2

t (L
∞
x ) ‖PkXφ‖L2

t,x[−1,1] ,

where we applied the inversion formula for F−1 this time (note that this argument is

essentially a manifestation of Bernstein’s one dimensional inequality). This gives claim

(2.3.20) as desired.

For high modulations, we use the wave maps equation as in (2.3.10). Following the

Littlewood-Paley trichotomy (passing to the convention φk := Pkφ, etc. as before), we

write:

PkQ≥k+10(sech2(ζ)χX2φ) =PkQ≥k+10

[
∆x,β(χφ) + 2 sech2(ζ) sinh(ζ)χ∂x1Xφ

+ sech2(ζ)χ (−ΩXXφ+ sinh(ζ)(ΩX∂x1φ+ Ωx1Xφ))

+ χΩx,β · ∇xφ≤k+10 + χ∇x · (Ωx,βφ>k+10)

− χ(∇x · Ωx,β)(φ>k+10)] ,

where we set:

ΩX := cosh(ζ)Ωt + sinh(ζ)Ωx1 .

From there, we add and subtract the frequency space-like part of the terms on second

and last lines above, and use the conservation law (1.1.9), that we rewrite as:

∇x · Ωx,β = sech2(ζ)(XΩX − sinh(ζ)(∂x1ΩX +XΩx1)).
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This yields the following decomposition:

PkQ≥k+10(sech2(ζ)χX2φ) =PkQ≥k+10 [∆x,β(χφ) (2.3.21)

+ 2 sech2(ζ) sinh(ζ)χ∂x1Xφ
]

+ sech2(ζ)χPk [−ΩXXφ+ sinh(ζ)(ΩX∂x1φ+ Ωx1Xφ)]

+ sech2(ζ)Q<k+10[ψ
(1)
k + ψ

(2)
k + ψ

(3)
k + ψ

(4)
k ]

+Q≥k+10[ϕ
(1)
k + ϕ

(2)
k ]− Pk [χ(∇x · Ωx,β)(φ>k+10)] ,

where we define:

ψ
(1)
k :=χPk [ΩXXφ≤k+10 − sinh(ζ)(ΩX∂x1φ≤k+10 + Ωx1Xφ≤k+10)] ,

ψ
(2)
k :=Pk [(Xχ)(−ΩX + sinh(ζ)Ωx1)φ>k+10]

ψ
(3)
k :=Pk [[X − sinh(ζ)∂x1 ](χΩXφ>k+10)] ,

ψ
(4)
k :=Pk [−sinh(ζ)X(χΩx1φ>k+10)] ,

as well as:

ϕ
(1)
k :=Pk [χΩx,β · ∇xφ≤k+10] ,

ϕ
(2)
k :=Pk [χ∇x · [Ωx,βφ>k+10]] .

We proceed proving the estimate (2.3.19) for the first line of (2.3.21) and each of

the ψ
(i)
k and ϕ

(i)
k separately.

For the Laplacian, inverting X, we have the stronger estimate:

2−k ‖PkQ≥k+10∆x,β(χφ)‖L2
t,x[−1,1] . ‖PkXφ‖L2

t,x[−1,1] + ‖Pkφ‖L2
t,x[−1,1] ,

that follows immediately by discarding, via Plancherel in L2
t,x, the Fourier multiplier

2−kX−1∆x,βP̃kQ≥k+10 having symbol bounded uniformly in k ∈ Z, which leads to an

acceptable contribution.

For the second term on the RHS of (2.3.21) we immediately have:

2−k ‖PkQ≥k+10[χ∂x1Xφ]‖L2
t,x
. ‖PkXφ‖L2

t,x[−1,1] ,

by the finite band property (2.1.3), which is acceptable.

Regarding ψ
(1)
k , we remark that it has a paraproduct structure and so at least one

of the factors will be frequency localized to |ξ| ∼ 2k, which is favorable for square-
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summing. More precisely, discarding Q<k+10 before dropping the cut-off χ, and using

Bernstein’s inequality (2.1.4) to pass to L2
t (L

1
x), it is enough to note that for any 1 ≤

p, q, r ≤ n and any time slice t ∈ [−1, 1]:∑
k∈Z

∑
k′=k+O(1)

(
‖(φpXφq∇t,xφ

r
k′)(t)‖

2
L1
x

+ ‖(φp∇t,xφ
qXφrk′)(t)‖

2
L1
x

+ ‖(Pk′ [φp∇t,xφ
q]Xφr)(t)‖2

L1
x

+ ‖(Pk′ [φpXφq]∇t,xφ
r)(t)‖2

L1
x

)
. ‖∇t,xφ(t)‖2

L2
x
‖Xφ(t)‖2

L2
x
,

by Cauchy-Schwarz. Upon integrating in time, this is an acceptable contribution by

the energy bound (2.3.1).

For the expression ψ
(2)
k , it is already convenient to proceed via a duality argument:

∑
k∈Z

2−2k
∥∥∥Q<k+10ψ

(2)
k

∥∥∥2

L2
t,x

.
∑
k∈Z

∥∥∥ψ(2)
k

∥∥∥
L1
t,x

2−k
∥∥∥Q<k+10ψ

(2)
k

∥∥∥
L∞t (L2

x)

.

(∑
k∈Z

2k
∥∥∥ψ(2)

k

∥∥∥
L1
t,x

)(
sup
k∈Z

∥∥∥ψ(2)
k

∥∥∥
L1
t,x

)
,

where we used Bernstein (2.1.4) for the first factor, and for the second one we pro-

ceeded as for the frequency space-like term (2.3.20), using time frequency localization

to estimate it via the Fourier inversion formula:

2−k
∥∥∥Q<k+10ψ

(2)
k

∥∥∥
L∞t (L2

x)
.
∥∥∥ψ(2)

k

∥∥∥
L1
t (L

2
x)
.

The first factor is universally bounded for us, as for any 1 ≤ p, q, r ≤ n:∑
k∈Z

2k
∥∥Pk[(∂tχ)(φp∇t,xφ

q)φr>k+10]
∥∥
L1
t,x
. ‖∂tχ‖L1

t (L
∞
x ) ‖∇t,xφ‖2

L∞t (L2
x)[−1,1] ,

which follows directly from the analogous treatment of high-high interactions in the

proof of Proposition 2.3.1. On the other hand, the second factor is controlled via:

∥∥Pk[(∂tχ)(φp∇t,xφ
q)φr>k+10]

∥∥
L1
t,x
. ‖∂tχ‖L1

t (L
∞
x ) ‖∇t,xφ‖L∞t (L2

x)[−1,1] ‖φ− c‖L∞t (L2
x)[−1,1] ,

which yields an acceptable contribution to the non-linear part of (2.3.19).
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Regarding ψ
(3)
k , it is a linear combination of:∑

k∈Z

2−2k ‖Q<k+10Pk∇t,x(χΩXφ>k+10)‖2
L2
t,x

.

∥∥∥∥∥∥
∑
k∈Z

∑
k1,k2≥k+O(1):|k1−k2|≤O(1)

2−(k2−k) ‖χΩX,k1(t)‖L2
x
‖∇xφk2(t)‖L2

x

∥∥∥∥∥∥
2

L2
t

,

where we discarded via Plancherel in L2
t,x the Fourier multiplier 2−k∇t,xQ<k+10P̃k having

bounded symbol, passed from `2 to `1 summation in k after commuting time integration

with the discrete sum
∑

k, and applied Bernstein (2.1.4) with Cauchy-Schwarz. This

contribution is directly seen to be bounded by O(‖Xφ‖2
L2
t,x[−1,1] ‖∇t,xφ‖2

L∞t (L2
x)[−1,1]) as

required.

The terms ψ
(4)
k , ϕ

(1)
k and ϕ

(2)
k are similar and require a duality argument relying

heavily on their compensated structure to obtain estimate (2.3.19) at `2 modulation.

First for ψ
(4)
k , using the self-adjointness of Q<k+10 and then commuting

∑
k with

time integration, we have:

∑
k∈Z

2−2k
∥∥∥Q<k+10ψ

(4)
k

∥∥∥2

L2
t,x

.

∥∥∥∥∥∑
k∈Z

2−k
∥∥∥(Q2

<k+10ψ
(4)
k )(t)

∥∥∥
L2
x

∥∥∥∥∥
L2
t

·
∥∥∥∥sup
k∈Z

2−k
∥∥∥ψ(4)

k (t)
∥∥∥
L2
x

∥∥∥∥
L2
t [−1,1]

.

For the first factor, we claim that it is universally bounded due to its compensated

structure. Indeed, passing to the Hardy space on each time slice via the embedding

(2.1.6), we estimate it by:∥∥∥∥∥(
∑
k∈Z

|Q2
<k+10ψ

(4)
k |

2)
1
2

∥∥∥∥∥
L2
t (L

1
x)

.

∥∥∥∥∥(
∑
k∈Z

|2kPk[χΩx1φ>k+10]|2)
1
2

∥∥∥∥∥
L2
t (L

1
x)

,

where we relied on the Calderón-Zygmund theory for the Littlewood-Paley square func-

tion and the vector valued operator (2−kXQ2
<k+10P̃k)k∈Z, precomposing with the space-

time LP-projections to |τ |+ |ξ| ∼ 2k as necessary. From there, proceeding as previously,

we immediately bound the latter by O(‖∇xφ‖2
L∞t (L2

x)[−1,1]) as required.

The set-up is similar for ϕ
(1)
k and ϕ

(2)
k . Here however, being at high modulations,

we start by inverting the time-like vector X for one of the factors. Then, using the

skew-adjointness of 2kX−1Q≥k+10, but proceeding identically to the above otherwise,
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we obtain:∑
k∈Z

2−2k

∫ ∫
(Q≥k+10ϕ

(i)
k )(

X

X
Q≥k+10ϕ

(i)
k )dxdt

.

∥∥∥∥∥∑
k∈Z

2−k
∥∥∥∥(

2k

X
Q2
≥k+10ϕ

(i)
k )(t)

∥∥∥∥
L2
x

∥∥∥∥∥
L2
t

·
∥∥∥∥sup
k∈Z

2−2k
∥∥∥Xϕ(i)

k (t)
∥∥∥
L2
x

∥∥∥∥
L2
t [−1,1]

. sup
j≥10

∥∥∥∥∥(
∑
k∈Z

|2
k+j

X
Qk+jQ̃k+jϕ

(i)
k |

2)
1
2

∥∥∥∥∥
L2
t (L

1
x)

·
∥∥∥∥sup
k∈Z

2−2k
∥∥∥Xϕ(i)

k (t)
∥∥∥
L2
x

∥∥∥∥
L2
t [−1,1]

.

∥∥∥∥∥(
∑
k∈Z

|ϕ(i)
k |

2)
1
2

∥∥∥∥∥
L2
t (L

1
x)

·
∥∥∥∥sup
k∈Z

2−2k
∥∥∥Xϕ(i)

k (t)
∥∥∥
L2
x

∥∥∥∥
L2
t [−1,1]

,

where Q̃k+j = Qk+j−1≤·≤k+j+1 is the slightly enlarged modulation projection, and we

relied as previously on Calderón-Zygmund theory to discard the vector valued operator

(2k+jX−1Qk+jQ̃k+jP̃k)k∈Z, precomposing with the space-time LP-projections to |τ | +
|ξ| ∼ 2k+j as necessary, for any integer j ≥ 10.

From there, we note that the first factor is bounded by O(‖∇xφ‖2
L∞t (L2

x)[−1,1]) as

required. This follows essentially from the arguments used to treat the high-high inter-

actions and the paraproducts, for ϕ
(1)
k and ϕ

(2)
k respectively, in the proof of Proposition

2.3.1 that we shall not reproduce here.

Given this, to prove estimate (2.3.19) for the terms ψ
(4)
k , ϕ

(1)
k and ϕ

(2)
k , it is enough

by (2.1.3) and (2.1.4) to establish the following couple of weak estimates:

2−k ‖XPk[(χφp∇xφ
q)(P≤k+10∇xφ

r)](t)‖L1
x
. ‖Xφ(t)‖L2

x
+ ‖(φ− c)(t)‖L2

x
, (2.3.22)

2−k
∥∥XPk[χφp(∇xφ

q)(φr>k+10)](t)
∥∥
L2
x
. ‖Xφ(t)‖L2

x
+ ‖(φ− c)(t)‖L2

x
, (2.3.23)

for any 1 ≤ p, q, r ≤ n and any time slice t ∈ [−1, 1].

Consider (2.3.22). For convenience, let us suppress the time t from the notation.

Moving X inside the bracket, we first differentiate the time cut-off getting by Cauchy-

Schwarz:

2−k ‖(∂tχ)(φp∇xφ
q)(P≤k+10∇xφ

r)]‖L1
x
. ‖φ‖L∞x ‖∇xφ‖L2

x
‖φ− c‖L2

x
,

where we relied on the finite band property (2.1.2) for φr, which is a permissible bound

for (2.3.22).
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Next, if X falls on φp, then we have:

2−k ‖χXφp∇xφ
q(P≤k+10∇xφ

r)]‖L1
x
. ‖Xφp‖L2

x
‖χ∇xφ

q‖L2
x
‖φr‖L∞x ,

with again the finite band property (2.1.2) applied to φr, but this time in L∞x , and this

is an acceptable bound.

When X falls on ∇xφ
q, we shall first insert the projection P≤k+O(1) in front of

φpX∇xφ
q, which is possible by the localization of ∇xφ

r
≤k+10, and untangle the high-

high interactions:

P≤k+O(1)(φ
pX∇xφ

q) =P≤k+O(1)[φ
p
≤k+O(1)X∇xφ

q
≤k+O(1)

+
∑

k1,k2≥k+O(1):|k1−k2|≤O(1)

φpk1
X∇xφ

q
k2

].

Given this decomposition, we have for the low frequency interactions:

2−k
∥∥∥χφp≤k+O(1)(X∇xφ

q
≤k+O(1))(∇xφ

r
≤k+10)

∥∥∥
L1
x

. ‖φp‖L∞x ‖Xφ
q‖L2

x
‖∇xφ

r‖L2
x
,

where we used the finite band property (2.1.2) for φq, and this is acceptable. For the

high-high frequency interactions:∑
k1,k2≥k+O(1):|k1−k2|≤O(1)

2−k
∥∥χφpk1

(X∇xφ
q
k2

)(∇xφ
r
≤k+10)

∥∥
L1
x

. ‖φr‖L∞x
∑

k1,k2≥k+O(1):|k1−k2|≤O(1)

∥∥∇xφ
p
k1

∥∥
L2
x

∥∥Xφqk2

∥∥
L2
x
,

where we have used the finite band property (2.1.2) for φr in L∞x , and transferred

the spatial gradient from φq to φp by relying on (2.1.3) this time and the fact that

|k1 − k2| ≤ O(1). This control is acceptable applying the discrete Cauchy-Schwarz

inequality in k1 = k2 +O(1).

The last case we need to consider, in order to finish with (2.3.22), is when X falls

on φr. This follows however at once, applying (2.1.2) to the latter:

2−k ‖χφp(∇xφ
q)(P≤k+10∇xXφ

r)]‖L2
t (L

1
x) . ‖φ

p‖L∞t,x ‖∇xφ
q‖L∞t (L2

x)[−1,1] ‖Xφ
r‖L2

t,x[−1,1] ,

which is certainly acceptable and gives (2.3.22).
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The estimate (2.3.23) is very much similar to (2.3.22). As previously, we move X

into the bracket, first estimating the term when the derivative falls on the time cut-off,

passing initially to L1
x via Bernstein’s inequality (2.1.4):

∥∥(∂tχ)(φp∇xφ
q)(φr>k+10)

∥∥
L1
x
. ‖φ‖L∞x ‖∇xφ‖L2

x
‖φ− c‖L2

x
,

simply noting that P>k+10φ = P>k+10(φ − c) and then discarding the LP-projection.

When X differentiates φp, we pass again to L1
x, and then immediately get:

∥∥χ(Xφp)(∇xφ
q)(φr>k+10)

∥∥
L1
x
. ‖Xφp‖L2

x
‖∇xφ

q‖L2
x
‖φr‖L∞x .

Both estimates are acceptable for (2.3.23).

We consider now the term with X falling on φq, and untangling the high-high

interactions in the product we should regroup together φp and φr, obtaining:

Pk[(φ
pX∇xφ

q)(φr>k+10)] =Pk[P≤k+O(1)(φ
pφr>k+10)X∇xφ

q
≤k+O(1)∑

k1,k2≥k+O(1):|k1−k2|≤O(1)

Pk1(φpφr>k+10)X∇xφ
q
k2

].

Now, given this decomposition, we control the first term directly by applying the finite

band property (2.1.2) to φq :

2−k
∥∥∥χP≤k+O(1)(φ

pφr>k+10)X∇xφ
q
≤k+O(1)

∥∥∥
L2
x

.
∥∥φpφr>k+10

∥∥
L∞x
‖Xφq‖L2

x
,

which is acceptable by the boundedness of wave maps. For the high-high interactions

we proceed as for (2.3.22) above, passing initially to L1
x via Bernstein’s inequality (2.1.4)

and transferring the spatial gradient∇x from φq to φpφr>k+10 via the finite band property

(2.1.3), which gives: ∑
k1,k2≥k+O(1):|k1−k2|≤O(1)

∥∥χPk1(φpφr>k+10)X∇xφ
q
k2

∥∥
L1
x

.
∑

k1,k2≥k+O(1):|k1−k2|≤O(1)

∥∥Pk1∇x(φ
pφr>k+10)

∥∥
L2
x

∥∥Xφqk2

∥∥
L2
x
,

and using the discrete Cauchy-Schwarz, we can bound this by:

(‖∇xφ
p‖L2

x
‖φr‖L∞x + ‖φp‖L∞x ‖∇xφ

r‖L2
x
) ‖Xφq‖L2

x
,
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which is certainly acceptable.

Lastly, if X differentiates φr, we pass to L1
x and this immediately yields the desired

control:

‖χφp(∇xφ
q)(P>k+10Xφ

r)‖L1
x
. ‖φp‖L∞x ‖∇xφ

q‖L2
x
‖Xφr‖L2

x
,

hence we have (2.3.23).

Lemma 2.3.2 is proved.



Chapter 3

Proof of the Main Theorems:

Bubbling Analysis

We prove our main Theorem 1.2.2 in Section 3.1, Theorem 1.2.3 in Section 3.2 and

Theorem 1.2.4 in Section 3.3. We start by recording, in the lemma just below, some of

the important properties of the wave map φ, we were considering in the statement of

the Threshold Theorem 1.2.1, at the final rescaling obtained by Sterbenz and Tataru

in Section 6.6 of [30].

Lemma 3.0.1. (Sterbenz and Tataru [30]). The maps {φν}ν∈N from Theorem 1.2.1

represent a sequence of smooth wave maps of bounded energy on increasingly large

domains of the forward light cone C:

φν : C[ςν ,ς
−1
ν ] −→ N , ESt [φν ] ≤ E ∀t ∈ [ςν , ς

−1
ν ], (3.0.1)

where ςν ↓ 0 as ν →∞, with the following properties:

• There exists a sequence εν ↓ 0, with ε
1
2
ν � ςν, such that:

F[ςν ,ς
−1
ν ][φν ] < ε

1
2
ν E ; (3.0.2)

• A decay to the self-similar mode holds:∫ ∫
C
ε

1
2
ν

[ςν ,ς
−1
ν ]

1

ρ
|∂ρφν |2 dxdt . |log εν |−

1
2 E , (3.0.3)

where ρ = (t2 − r2)
1
2 and ∂ρ = 1

ρ
(t∂t + r∂r) is the scaling vector field which we recall is

uniformly time-like µ(∂ρ, ∂ρ) = −1;

49
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• There is a uniform amount of energy Ec > 0 getting concentrated by the maps φν

in the interior of the light cone:

1

2

∫
|x|<γct0

|∇t,xφν(t0)|2 dx ≥ Ec ∀t0 ∈ [ςν , ς
−1
ν ], (3.0.4)

for some 0 < γc < 1.

Let us write here a few lines of comments regarding the above lemma, referring the

reader to [30] for more details. Given a sequence of concentration points (tν , xν) for the

energy dispersion norm:

2−kν |Pkν∇t,xφ(tν , xν)| > ε(N , E),

with tν → 0 in the case of a finite time blow-up, or tν → +∞ in a non-scattering

scenario, the sequence εν ↓ 0 is chosen such that:

F[ενtν ,tν ][φ] < ε
1
2
ν E .

In [30], Sections 6.3 and 6.4, the authors use the above lower bound to prove that there

is a non-trivial amount of time-like energy concentrating on the time slice Stν . As we

shall later rely on those results in Section 3.2, we gathered them in Lemma 3.2.1 here.

From there, a weighted energy estimate (see Lemma 3.4 in [30]) propagates this energy

backwards in time, leading to (3.0.4) for any t ∈ [ε
1/2
ν tν , ε

1/4
ν tν ].

In parallel to this, a Morawetz type estimate (see Lemma 3.3 in [30]) and the

pigeonhole principle enable Sterbenz and Tataru to find a sequence of time intervals

[τν , Nντν ] ⊂ [ε
1/2
ν , ε

1/4
ν ], withNν = exp(

√
|log εν |), such that the following decay estimate

holds: ∫ ∫
Cεν

[τν ,Nντν ]

1

ρ
|∂ρ[φ(tνt, tνx)]|2 dxdt . |log εν |−

1
2 E ,

see section 6.6 in [30]. Then for the final rescaling, the authors in [30] choose tντν

for the scales λ0
ν (or λ∞ν ), obtaining a sequence of wave maps φ(λ0

ν ·) with the desired

properties on the growing cones C[1,Nν ]. In our case, it will be more convenient (for

notational purposes mainly, as to respect the CMC foliation in Section 3.1 below), to

asymptotically cover all of the forward light cone C0, so we should simply fix any:

tντν � λ0
ν , λ

∞
ν � Nνtντν ,
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and choose then ςν ↓ 0 decaying slowly enough, for Lemma 3.0.1 to hold.

Finally, we bring the reader’s attention here to our convention that, in any of the

results stated in this last section, we assume (3.0.1)-(3.0.4) holding without mentioning

it. In fact, one might directly consider those as the assumptions under which claims of

Theorem 1.2.2 are made.

3.1 Blow-up analysis for asymptotically self-similar

sequences of wave maps

We start the proof of Theorem 1.2.2 with a study of the energy concentration sets.

Our approach here will be close in spirit to the work of Freire, Müller and Struwe [10].

We will rely on a monotonicity lemma for asymptotically self-similar wave maps, see

Lemma 3.1.1 below, which is a rough analogue of part (ii) from Lemma 1.7 in Lin’s work

[20], but mainly parallels the computations in the proof of Morawetz type estimates

from section 3 of [30]. Note that we do not use here the fact that our target manifold

is a sphere.

3.1.1 An asymptotic monotonicity formula

It will be convenient to use hyperbolic coordinates, also known as CMC foliation of

the (forward) light cone C0, where we recall that C0 denotes the open interior of the

forward light cone, C0 = C \ (∂C ∪ {(0, 0)}). Those are defined by:

t = ρ cosh(y), r = ρ sinh(y) and θ.

Associated to those coordinates, we recall the expression for the volume element:

dV := rdtdrdθ = ρ2sinh(y)dρdydθ,

and for the hyperbolic planes H2
ρ0

= {ρ = ρ0} the area element:

dAρ0 := ρ2
0 sinh(y)dydθ,

with respect to the Minkowski metric µ on R2+1. These formulae will be useful below in

applying Stokes’ theorem in the hyperbolic annulus {ρ1 ≤ ρ ≤ ρ2}. Let us also record
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here that, using the identities:

∂t =
t

ρ
∂ρ −

r

ρ2
∂y, ∂r =

t

ρ2
∂y −

r

ρ
∂ρ,

one computes, for a smooth map φ into Sn−1:

∂γφ†∂γφ = − |∂tφ|2 + |∂rφ|2 +
1

r2
|∂θφ|2

= − |∂ρφ|2 +
1

ρ2
|∇H2φ|2 , (3.1.1)

where ∇H2 denotes the gradient on the unit hyperboloid H2 := H2
1:

|∇H2φ|2 = |∂yφ|2 +
1

sinh2(y)
|∂θφ|2 .

For every given ρ0 > 0, let us define the Radon measures:

σν,ρ0 :=

(
|∂ρφν |2 +

1

ρ2
|∇H2φν |2

)
dAρ0 ∈ R(H2

ρ0
).

We can naturally view them as measures on the unit hyperbolic plane H2 since for any

given test function ϕ on H2, that we should view as a function ϕ(y, θ) independent of

ρ on the whole of the light cone C0, we have:∫
ϕdσν,ρ0 =

∫
H2

(
|∂ρφν(ρ0)|2 +

1

ρ2
0

|∇H2φν(ρ0)|2
)
ϕ(y, θ)ρ2

0 sinh(y)dydθ.

Using the decay (3.0.3) to a self-similar mode, we can establish the following asymp-

totic monotonicity property for the family {σν,ρ}ρ>0 ⊂ R(H2).

Lemma 3.1.1. For every pair ρ2 > ρ1 > 0 and every λ > 0, we have the decay:∫ ρ2

ρ1

(∫
ϕdσν,ρ0

)
dρ0 −

∫ ρ2+λ

ρ1+λ

(∫
ϕdσν,ρ0

)
dρ0 −→ 0, (3.1.2)

holding as ν → +∞ for any test function ϕ ∈ C∞0 (H2).

Proof. Given a continuously differentiable vector field ψ = ψβ∂β compactly supported

in (y, θ), contracting the stress-energy tensor T [φν ] with ψ, we obtain the associated

Noether current:
(ψ)Pα = Tαβ[φν ]ψ

β.
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Hence, if we set:

D{ρ′≤ρ≤ρ′′}(ψ) :=

∫
{ρ′≤ρ≤ρ′′}

∂α
(

(ψ)Pα
)
dV =

∫
{ρ′≤ρ≤ρ′′}

Tαβ[φν ]∂
αψβdV,

where we relied on the conservation law (1.1.12), and:

Bρ̃(ψ) :=

∫
{ρ=ρ̃}

(ψ)P (∂ρ)dAρ̃ =

∫
{ρ=ρ̃}

Tαβ[φν ]
xα

ρ̃
ψβdAρ̃,

where our convention follows x0 := t and x0 = −t, so that xα = µαγxγ, applying Stokes’

theorem over the region {ρ0 ≤ ρ ≤ ρ0 + λ} leads to the identity:

D{ρ0≤ρ≤ρ0+λ}(ψ) = Bρ0(ψ)−Bρ0+λ(ψ). (3.1.3)

Taking ψ = ϕ(y, θ)∂ρ, we compute using the expression (1.1.11) for Tαβ[φν ]:

D{ρ0≤ρ≤ρ0+λ}(ψ) =

∫
{ρ0≤ρ≤ρ0+λ}

(
1

ρ
|∂ρφν |2 ϕ+ ∂ρφ

†
ν∂αφν∂

αϕ

)
dV,

and for the boundary terms:

Bρ̃(ψ) =

∫
{ρ=ρ̃}

(
|ρ̃∂ρφν |2 + ρ̃2 1

2
∂γφ†ν∂γφν

)
ϕ

ρ̃2
dAρ̃

=
1

2

∫
ϕdσν,ρ̃,

where to pass to the second line we have used the identity (3.1.1). Therefore, plugging

the above back into (3.1.3) we obtain:∫
ϕdσν,ρ0 −

∫
ϕdσν,ρ0+λ = 2

∫
{ρ0≤ρ≤ρ0+λ}

(
1

ρ
|∂ρφν |2 ϕ+ ∂ρφ

†
ν∂αφν∂

αϕ

)
dV.

Integrating over ρ0 ∈ [ρ1, ρ2] and using Cauchy-Schwarz for the second term on RHS

above, appealing to the decay (3.0.3) and the global energy bound (3.0.1), we obtain

(3.1.2). Hence Lemma 3.1.1 is proved.

3.1.2 The concentration-compactness argument

From now on we restrict ourselves to the time interval 1 ≤ t ≤ 2. We will study

there the sets in space-time where our wave maps concentrate a non-trivial amount
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of energy as in the work of Freire, Müller and Struwe [10], where some general state-

ments about the structure of energy concentration loci can be found (for instance, it

is shown in Proposition 4.1 and Theorem B.1 of [10] that, upon passing to a suitable

subsequence, the concentration set of an energy threshold will be contained in a finite

union of Lipschitz curves). Our assumptions however enable us to go beyond [10] via

more elementary arguments and prove that picking a suitable subsequence will lead

to an energy concentration set which is in fact given by a finite collection of time-like

geodesics, relying on Lemmata 2.2.2 and 3.1.1.

To use the latter, we remark that for a fixed open domain U with closure U ⊂ C0
[ 1
2
,3]

,

we have:
1

C
|∇t,xφν |2 ≤ |∂ρφν |2 +

1

ρ2
|∇H2φν |2 ≤ C |∇t,xφν |2 on U, (3.1.4)

with C := C(dist(U, ∂C[ 1
2
,3])), and this will enable us to transfer control back and

forward between the Radon measures σν,ρ and the energy densities |∇t,xφν |2 dxdt of

which we want to study the concentration sets (with the small energy compactness

Lemma 2.2.2 enabling us to obtain some uniformity in time).

Lemma 3.1.2. There exists a subsequence of {φν}ν∈N restricting to which, without

changing notation, we can find a finite collection of time-like geodesics %1, . . . , %I passing

through the origin in Minkowski space such that defining the energy concentration set

by:

Σ :=
{

(t, x) ∈ C0
[1,2] : lim inf

ν→∞
EBr(x)[φν ](t) > εs ∀r > 0

}
,

we have:

Σ = C0
[1,2] ∩

I⋃
i=1

%i,

and away from Σ, there exist a wave map φ satisfying:

∂ρφ = 0 on C0
[1,2] \ Σ with φ ∈ (H

3
2
−ε

t,x )loc
(
C0

[1,2] \ Σ
)
,

for any 0 < ε < 1
2
, of finite energy on C0

[1,2], ES0
t
[φ] ≤ E ∀t ∈ [1, 2], such that:

φν −→ φ on
(
C0
t (H1

x) ∩ C1
t (L2

x)
)
loc

(
C0

[1,2] \ Σ
)
, (3.1.5)

as dictated by Lemma 2.2.2.

Proof. In view of the asymptotic monotonicity provided by Lemma 3.1.1, let us denote
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for a set U ⊂ St=1 the cone over U by:

C(U) := {λ(t, x) : λ > 0, x ∈ U at t = 1} ,

and by CI(U) := C(U) ∩ CI the corresponding truncation to a time interval I.

Considering the time slice S0
1 , given the global energy bound (3.0.1) we can pass

to a subsequence for {φν}ν∈N, without changing notation, such that for some Radon

measure ι ∈ R(S0
1) we have:

|∇t,xφν(1)|2 dx ⇀ ι in R(S0
1), (3.1.6)

from where we also see that there exist only finitely many points {xi}Ii=1 ⊂ S0
1 such

that:

{xi}Ii=1 =
{
x ∈ B1 : lim

ν→∞
EBr(x)[φν ](1) > εs ∀r > 0

}
, (3.1.7)

and we set %i := C({xi}).
Let us start by showing that:

Σ ⊂ C0
[1,2] ∩

I⋃
i=1

%i, (3.1.8)

obtaining on the way claim (3.1.5). Fix any point x0 ∈ S0
1 \Σ, then there exists a radius

r1 = r1(x0) > 0 such that for all ν ∈ N:

EBr1 (x0)[φν ] ≤ εs,

hence by the energy-flux identity (1.2.2), shrinking r1 to r2 > 0 as necessary, we obtain

that:

sup
t∈[1−3r2,1+3r2]

EB3r2 (x0)[φν ](t) ≤ εs.

By the decay assumption (3.0.3), we can apply the compactness Lemma 2.2.2 obtaining

that on a subsequence {φν′}ν′∈N we have convergence in C0
t (H1

x) ∩ C1
t (L2

x) to a wave

map φ in [1− r2, 1 + r2]×Br2(x0), satisfying ∂ρφ = 0 and having regularity as dictated

by (2.2.9) there.

Hence, given any positive constant η > 0 there exist a radius rη > 0 such that:

sup
ν′∈N

sup
t∈[1−rη ,1+rη ]

EC(Brη (x0))[φν′ ](t) ≤ η.
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Therefore, using (3.1.4) we get for any test function ϕ(y, θ) on the hyperboloid H2,

having support in C(Brη(x0)) ∩H2 and satisfying 0 ≤ ϕ ≤ 1, the bound:

sup
ν′∈N

1

ρ2 − ρ1

∫ ρ2

ρ1

(∫
ϕdσν′,ρ

)
dρ . η,

for some suitably chosen 0 < ρ1 < ρ2. The implicit constant here does not depend on

the parameter η, and in fact depends only on the distance of the point (1, x0) to the

null boundary.

Recalling Lemma 3.1.1, we obtain by (3.1.2) for every fixed λ > 0 the estimate:

lim sup
ν′→∞

1

ρ2 − ρ1

∫ ρ2+λ

ρ1+λ

(∫
ϕdσν′,ρ

)
dρ . η.

Given this, shrinking r2 to r3 = r3(x0, η) > 0 and picking a suitable cut-off function

ϕ on H2 as necessary, we can rely on the other inequality in (3.1.4) this time and the

energy-flux identity (1.2.2) to find, arguing via the pigeonhole principle, a finite cover

of:

C[1,2](Br3(x0)) ⊂
N⋃
j=1

[tj − sj, tj + sj]×Bsj(yj)

with N = N(x0, η) ∈ N satisfying:

N⋃
j=1

[tj − 3sj, tj + 3sj]×B3sj(yj) ⊂ C[ 1
2
,3](Br3(x0)),

and such that:

lim sup
ν′→∞

sup
t∈[tj−3sj ,tj+3sj ]

EB3sj
(yj)[φν′ ](t) . η, j = 1, . . . , N,

where the implicit constant is independent of η. Hence, choosing η > 0 small enough

we can claim:

lim sup
ν′→∞

sup
t∈[tj−3sj ,tj+3sj ]

EB3sj
(yj)[φν′ ](t) ≤

1

2
εs, j = 1, . . . , N,

with N = N(x0) and r3 = r3(x0) now.

Proceeding this way for a countable dense set of points x0 ∈ S0
1 \ Σ, we obtain

ultimately a countable cover of C0
[1,2]\∪i%i that we can use together with the compactness
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Lemma 2.2.2 to construct a subsequence for {φν}ν∈N via the diagonal process, to which

we restrict ourselves without changing notation this time, such that (3.1.5) hold for

a wave map φ ∈ (H
3/2−ε
t,x )loc(C

0
[1,2] \ ∪i%i) with ∂ρφ = 0. By construction, it can be

seen immediately that the obtained map φ has energy bounded by E and we note the

argument also yields (3.1.8) as desired.

To finish the proof of the lemma, we need to get the reverse inclusion to (3.1.8). This

follows however from a simple argument by contradiction: suppose that there exists a

point (si, yi) ∈ %i which is not contained in Σ. We can then run the above proof with

(si, yi) instead of (1, x0) and obtain that the full ray %i is not contained in Σ, but that

contradicts the definition of xi from (3.1.7). Lemma 3.1.2 is therefore proved.

3.1.3 Ruling out self-similar behavior

To close the proof of the first part of Theorem 1.2.2 it is enough now to prove that the

wave map φ obtained above must in fact be constant. For this point, we will rely on a

folklore fact that finite energy self-similar wave maps do not exist in dimension 2 + 1

which we state in Proposition 3.1.3 below. A self-contained proof of this proposition

can be found in the work of Sterbenz and Tataru [30] (see section 4 there).

Proposition 3.1.3. Let φ be a smooth wave map in the interior of the forward light

cone C0, having finite energy, ES0
t
[φ] . 1 ∀t > 0, and satisfying the self-similarity

condition ∂ρφ = 0. Then φ must be constant.

Consider the wave map φ from Lemma 3.1.2. By homogeneity, we can extend it to:

φ : C0 \
I⋃
i=1

%i −→ N ,

with finite energy ES0
t
[φ] ≤ E ∀t > 0, locally in H

3
2
−ε

t,x and satisfying ∂ρφ = 0. Let us

note here that we were considering the unit time interval [1, 2] in (3.1.5) just in order

to simplify the task of keeping track of the dependence of implicit constants. It is easy

to see that the arguments above lead to local convergence of the sequence φν to the

map φ on all of C0 \ ∪i%i. This is however a purely qualitative statement.

Restricting φ to the unit hyperbolic plane H2 gives rise to a harmonic map of locally

finite energy, by (3.1.4), defined away from a finite set of points given by H2∩
⋃I
i=1 %i. By

the regularity theory due to Hélein [13], we obtain in fact a smooth harmonic map away

from the above collection of points. But then, by the removable singularity theorem of
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Sacks and Uhlenbeck [25] we can extend φ to a smooth harmonic map on the whole of

the hyperbolic plane H2, which in turn means that, by homogeneity again, we could

have extended φ across the rays %i to a smooth finite energy self-similar wave map on

C0. By Proposition 3.1.3, φ has to be a constant.

Theorem 1.2.2 is therefore established, given that Σ must be non-trivial by the

concentration of time-like energy assumption (3.0.4).

3.2 Dispersive property for null-concentration

This section is devoted to the description of the parts of the sequence that escape into

the null boundary. We will prove Theorem 1.2.3.

3.2.1 Cutting the bubbles off the body of the map

We proceed first, borrowing arguments from Section 6.1 of [30], by constructing ex-

tensions for the maps φν outside the light cone with asymptotically vanishing energy

there (we note that, if considering the non-scattering problem, those have been already

constructed in Section 6.2 of [30]).

Relying on the flux decay estimate (3.0.2) and using the angular part of F[ςν ,ς
−1
ν ][φν ],

see the expression in (1.2.2), we can find by the pigeonhole principle a sequence τν ∈
[2, 3] such that: ∫

∂Sτν

∣∣r−1∂θφν(τν)
∣∣2 dθ . ε

1
2
ν .

Hence, as in Remark 2.2.3, we get that φν(∂Sτν ) is contained in a chart of radius

O(ε
1/4
ν ) and so we can build smooth spatial extensions φ′ν [τν ] ∈ TN of φν [τν ], satisfying

the energy control:

E [φ′ν ](τν)− ESτν [φν ] . ε
1
2
ν .

We solve then the wave maps equation with initial data φ′ν [τν ] backwards in time for

t ∈ [ςν , τν ]. By the finite speed of propagation property, the solution agrees with φν on

C[ςν ,τν ], hence let us denote it by φν (abusing notation slightly). Moreover, relying again

on the assumption (3.0.2) and using the conservation of energy law (1.1.8) together

with the energy-flux identity (1.2.2), we propagate to all of the time interval [ςν , τν ] the

smallness of the energy exterior to the light cone:

sup
t∈[ςν ,τν ]

(E [φν ](t)− ESt [φν ]) . ε
1
2
ν ,
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which in particular guarantees smoothness of the extension on all of [ςν , τν ]× R2.

Another consequence of the flux decay estimate (3.0.2) that we record here, is the

following weighted control:

sup
t∈[1,2]

∫
St

1

(t− |x|+ εν)
1
2

(
|Lφν(t)|2 +

∣∣r−1∂θφν(t)
∣∣2) dx . 1, (3.2.1)

a direct consequence of Lemma 3.2 in [30], and constitutes an important ingredient in

the elimination of sharp pockets of null energy (see section 6.3 of [30]).

Regarding the interior of the cone, by the previous section we can pick a monoton-

ically decreasing sequence of scales δν ↓ 0, starting with δ0 := 1
10

dist(∪i%i, ∂C[1,2]), such

that:

lim
ν→∞

sup
t0∈[1,2]

ESδνt0 \∪iBδν (%i(t0))[φν ] = 0, (3.2.2)

which are in some sense the slowest concentration scales, i.e. have the property that:

φν(t0 + δνt, %i(t0) + δνx) −→ cφ ∈ N on ([−4, 4]×B4) \ %i, (3.2.3)

locally in C0
t (H1

x)∩C1
t (L2

x), where the constant cφ corresponds to the wave map φ from

(3.1.5), for any given t0 ∈ (1, 2) and i = 1, . . . , I. This can be obtained upon taking δν

tending slower to 0, which will not break condition (3.2.2). Hence, by pigeonholing, we

can choose a sequence of radii σν = σν(t0, i) ∈ (3, 4) such that:∫
∂Bσν

|∇t,x [φν(t0 + δνt, %i(t0) + δνx)]|2 dθ −→ 0,

which enables us, as before, to construct extensions into Bσν that have asymptotically

vanishing energy. That is we cut off the bubbles from the body of the map. More

precisely, we choose a sequence of maps ($i,t0,ν , ∂t$i,t0,ν) ∈ TN defined on Bσν such

that:

∇t,x

[
φν(t0 + δν ·, %i(t0) + δν ·)|{t=0}×B4\Bσν +$i,t0,ν(·)

]
−→ 0 in L2

x(B4),

and performing this surgery for each i = 1, . . . , I, we obtain smooth maps:

$t0,ν [t0] := φν [t0]|R2
x\∪iBδνσν (%i(t0)) +

I∑
i=1

($i,t0,ν ,
1

δν
∂t$i,t0,ν)

(
x− %i(t0)

δν

)
,
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satisfying by construction:

∇t,x$t0,ν(t0) −→ 0 in (L2
x)loc

(
R2 \ {r = t0}

)
. (3.2.4)

3.2.2 Decay for the energy dispersion norm

Fixing t0 ∈ [1 + δ0, 2− δ0], we can naturally view $t0,ν [t0] as defined on the time slice

St0 , and solve the wave maps equation with initial data $t0,ν [t0] obtaining a smooth

solution on [t0− δ0, t0 + δ0] provided we work with ν large enough, relying on the finite

speed of propagation property (which tells us that $t0,ν agrees with φν near and beyond

the null boundary, at least away from C2δ0
[t0−δ0,t0+δ0]), and the small energy regularity via

(3.2.4). The choice of δ0 is not the most optimal one, but here we are rather concerned

with its independence from ν. It is immediate then that,

∇t,x$t0,ν −→ 0 in C0
t (L2

x)loc
(
([t0 − δ0, t0 + δ0]× R2) \ ∂C[t0−δ0,t0+δ0]

)
,

as desired in Theorem 1.2.3. Furthermore, the weighted estimate (3.2.1) is inherited by

the maps $t0,ν :

sup
t∈[t0−τ,t0+τ ]

∫
St

1

(t− |x|+ εν)
1
2

(
|L$t0,ν(t)|

2 +
∣∣r−1∂θ$t0,ν(t)

∣∣2) dx . 1. (3.2.5)

This immediately implies the desired decay for the angular and the L null energy, as

required in Theorem 1.2.3.

This whole construction opens us the possibility to apply the following lemma of

Sterbenz and Tataru from [30] (see Sections 6.3 and 6.4 there), which forces the energy

dispersion norm of $t0,ν to asymptotically vanish:

lim sup
ν→∞

sup
k

(
2−k ‖Pk∇t,x$t0,ν‖L∞t,x[t0−δ0,t0+δ0]

)
= 0.

Lemma 3.2.1. (Sterbenz and Tataru [30]). Consider tuples {(ϕν , ∂tϕν)}ν∈N of Schwartz

functions on R2 satisfying, for some sequence εν ↓ 0 and a bound E > 0:

‖∇t,xϕν‖2
L2
x
. E , ‖∇t,xϕν‖2

L2
x(R2\B1) . ε

1
2
ν E ,∫

B1

1

(1− |x|+ εν)
1
2

(
|Lϕν |2 +

∣∣r−1∂θϕν
∣∣2) dx . E ,
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such that for some given ε > 0:

sup
k

(
2−k ‖Pk∇t,xϕν‖L∞x

)
> ε.

Then, there exist constants 0 < γ(ε, E) < 1 and ε(ε, E) > 0 for which:∫
Bγ(ε,E)

|∇t,xϕν |2 dx ≥ ε(ε, E), ∀ν ∈ N.

As immediate consequence of the decay of the energy dispersion norm and Theorem

2.2.4 of Sterbenz-Tataru from Section 2.2, we obtain the uniform bound:

‖$t0,ν‖S[t0−δ0,t0+δ0] . 1,

claimed in Theorem 1.2.3.

3.2.3 Extracting the gauge co-variant linear wave

Because, by construction, the maps $t0,ν converge to a constant strongly in L∞t (L2
x),

their low frequencies P≤0$t0,ν are not interesting. The purpose of this section is to

extract some structure, as ν → +∞, for the high frequencies of $t0,ν . For, without

losing generality, we will consider abstractly a sequence of wave maps:

$ν : [−1, 1]× R2 −→ N with εν := sup
k
‖Pk$ν‖L∞t,x −→ 0. (3.2.6)

We will present here the main points from the theory developed by Terence Tao in

[32], and later refined by Sterbenz and Tataru in [29], that leads to the decomposition

(1.2.4) claimed in Theorem 1.2.3.

Before we start, let us adopt the convention, for this section only, that all function

spaces we work with are to be understood as restricted to the time interval [−1, 1], even

if the notation does not reflect this directly. We shall not mention this further.

Let us introduce the space N , companion to the space S in iteration arguments

establishing various well-posedness results for wave maps, like those in [32, 16, 34, 29,

17]. As with S, we are not going to give the full definition referring the reader to

Section 5 of [29]. But we mention that N is built upon atomic spaces Nk, one for each

frequency level k ∈ Z, by `2 summing in k or also conveniently relying on frequency

envelopes.
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Spaces Nk contain several kind of atoms. For example, we have the typical en-

ergy/Strichartz type atoms satisfying

‖F‖L1
t (L

2
x) ≤ 1,

with F frequency localized to |ξ| ∼ 2k, or the ones based on Fourier restriction spaces

having

‖F‖
Ẋ

0,− 1
2 ,1

k

≤ 1,

again |ξ| ∼ 2k for F . There are also the null frame atoms, which are absolutely crucial

for dealing with the Q0-null form present in the non-linearity of the wave maps equation

(1.1.2). However, those are complicated enough for us to avoid reporting on them, as

we actually did with the angular Strichartz spaces for S. But the reader is reassured

that those spaces are not going to arise directly in any of the arguments in this thesis.

It might be helpful to think of N as a partial dual to S via the estimate:∣∣∣∣∫ ∫ φPkF dxdt

∣∣∣∣ . 2−k ‖φ‖S ‖PkF‖Nk ,

for Schwartz functions φ and N , see Section 10 in [32]. However, their main relationship

is dictated by the following energy estimate, proved by Terence Tao in [32] (Section 11

there):

‖Pkφ‖S . ‖Pkφ[0]‖Ḣ2
x×L2

x
+ ‖�Pkφ‖Nk .

Now, one certainly imagines how the iteration argument proceeds: its main aim is

to suitably estimate the non-linearity of equation (1.1.2) in N . In fact, with this in

mind, Tao developed a whole range of bi-linear and tri-linear estimates in [32] for the

spaces N and S, which later got refined by Tataru [34] and Sterbenz-Tataru [29].

As one can imagine, looking at the papers cited above, this story is pretty long and

complicated and reporting on it simply does not find its place in this thesis. What we

shall do is to state the relevant outcome, that the interested reader can immediately

obtain by combining Propositions 3.6 and 3.9 from [29] as black boxes.

For wave maps as in (3.2.6), there exists a positive constant δ1 = δ1(N ) > 0 such

that setting:

T iν,k := (A(k,ν)
α )ij Pk

[
∂α$j

ν

]
− Pk

[
S ij`($ν)∂α$

`
ν∂

α$j
ν

]
,

where
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(A(k,ν)
α )ij := P≤k−mν

[
S ij`($ν)− Sji`($ν)

]
P≤k−mν

[
∂α$

`
ν

]
,

for mν = δ
1/2
1 |log εν | which degenerates as ν → +∞, we have:∑

k∈Z

‖Tν,k‖2
Nk
. ε2δ1

ν . (3.2.7)

Perhaps, at this level of exposition, an important take-away point from the above

estimate, is the fact that such a result cannot be true when considering, in the definition

of Tν,k, the first term alone. Those are the infamous low-low-high frequency interactions

which cause breakdown of well-posedness for critical semi-linear wave equations of this

class.

That not everything was lost, and well-posedness under suitable smallness assump-

tions was still achievable for the wave maps equation (1.1.2), which we rewrite with the

above notation under frequency localization as:

(
�+ 2A(k,ν)

α ∂α
)
Pk$ν = Tν,k,

is consequence of the fact that A
(k,ν)
α ∈ so(n). This anti-symmetric property is geometric

in nature, and is obtained thanks to the identities (1.1.2) for the second fundamental

form.

Tao’s breakthrough in [31, 32] was to invent a gauge transformation for the above

gauge co-variant wave equation which turned the difficult low-low-high interactions

into high-low-high ones, amenable to the multi-linear estimates such as the ones used

to establish (3.2.7). This gauge, called by Tao the microlocal gauge, was constructed

under the assumption of smallness of energy for the wave map. However, the construc-

tion turned out to be so robust that it was with little pain that Sterbenz and Tataru

generalized it to arbitrary energy levels in [29], coining the name diffusion gauge.

We will not attempt to report on the details of this whole construction. We will

simply content ourselves with extracting the result that leads to the decomposition

(1.2.4) in Theorem 1.2.3. The reader should arrive at the same conclusions combining

Propositions 3.1, 3.2 and 3.9 from [29]. An analogous result was proved in [17].

Under assumptions (3.2.6) and choices of integers mν and matrices A
(k,ν)
α as above,

the Cauchy problem: { (
�+ 2A

(k,ν)
α ∂α

)
ψ = P̃kF

ψ[0] = P̃kϕ[0]
, (3.2.8)
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given a Schwartz space-time function F and a tuple of initial data ϕ[0] = (ϕ, ∂tϕ),

admits a unique solution ψ satisfying:

‖Pk′ψ‖S . 2−δ0|k
′−k|
(∥∥∥P̃kϕ[0]

∥∥∥
Ḣ2
x×L2

x

+
∥∥∥P̃kF∥∥∥

Nk

)
, (3.2.9)

for some universal δ0 > 0. The projections P̃k stand for enlarged LP-projections to

|ξ| ∼ 2k.

In the end, to obtain Theorem 1.2.3, it suffices to consider (3.2.8) with F = 0 and

ϕ[0] = $ν [0], which gives us the linear gauge co-variant wave ψν,k. The difference

Pk$ν − ψν,k solves then (3.2.8) with F = Tν,k and ϕ[0] = 0. Finally, square-summing

the estimates (3.2.9) for Pk$ν −ψν,k in k ∈ Z and applying Minkowski’s inequality, we

have:∥∥∥∥∥∑
k∈Z

∇t,x(Pk$ν − ψν,k)

∥∥∥∥∥
L∞t (L2

x)

.

∑
k′∈Z

∥∥∥∥∥∑
k∈Z

∇t,xPk′(Pk$ν − ψν,k)

∥∥∥∥∥
2

L∞t (L2
x)

1/2

.

(∑
k′,k∈Z

‖∇t,xPk′(Pk$ν − ψν,k)‖2
DS

)1/2

.

(∑
k′,k∈Z

2−2δ0|k′−k| ‖Tν,k‖2
Nk

)1/2

,

recalling the definitions of spaces S and DS from Section 2.2. The tri-linear estimate

(3.2.7) leads then to the desired result, and Theorem 1.2.3 is proved.
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3.3 Quantization of time-like energy for wave maps

into spheres

In this whole section, we restrict ourselves to the case N = Sn−1.

To prove our last result, Theorem 1.2.4, we have to carry out the bubbling analysis

for our sequence of wave maps {φν}ν∈N near the set of time-like energy concentration:

(∪iBδν (%i)) ∩ C0
[1,2] ⊂ Cδ0 , (3.3.1)

recalling the set-up from Section 3.2, where δ0 > 0 controls the distance to the null

boundary ∂C of the light cone, on which dependence of our constants will be considered

universal.

3.3.1 Choosing suitable time slices

The dynamics of the maps φν near distinct rays %i are completely disjoint and to get

the claimed asymptotic decomposition from Theorem 1.2.4 we will have to select the

time slices tν rather carefully.

To start, in order to obtain from the decay assumption (3.0.3) the asymptotic sta-

tionarity at all scales for some suitably chosen time slices, we consider a sequence of

positive functions on the time interval [1, 2] defined by:

ζν(t) :=

∫
S
δ0
t

|∂ρφν(t)|2 dx,

so that ‖ζν‖L1
t [1,2] → 0 by (3.0.3). Then, looking at the corresponding Hardy-Littlewood

maximal functions:

Mζν(s) := sup
r>0

1

r

∫ s+r

s−r
ζν(t)dt,

the well-known maximal inequality of Hardy-Littlewood tells us that for any λ > 0:

|{Mζν > λ}| . 1

λ
‖ζν‖L1

t
.

Therefore taking a sequence λν ∼ ‖ζν‖1/2

L1
t
↓ 0 decaying slowly enough compared to

‖ζν‖L1
t
, we can select a sequence of time slices {tν}ν∈N ⊂ (1 + δ0, 2− δ0) such that:

Mζν(tν) −→ 0. (3.3.2)
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We should note here that this will not be quite the final sequence of time slices we will

claim the soliton resolution on as we might need to perturb it a little at scales δν .

From there, we have to study for each i = 1, . . . , I, a sequence of wave maps obtained

from φν , upon translating by (tν , %i(tν)) and rescaling by δν , which gives us by (3.2.3):

φ̃i,ν(·) := φν(tν + δν ·, %i(tν) + δν ·) −→ cφ on ([−4, 4]×B4) \ %i, (3.3.3)

locally in C0
t (H1

x) ∩ C1
t (L2

x). Moreover from (3.3.2), denoting by Xi the unit constant

time-like vector field pointing in the direction of the line %i, we have:∥∥∥Xiφ̃i,ν

∥∥∥
L2
t,x([−4,4]×B4)

−→ 0. (3.3.4)

Proceeding as in Remark 2.2.3, we interpolate smoothly between φ̃i,ν [0] and the

constant initial data (cφ, 0) ∈ T (Sn−1) on B4 \ B3, replacing the map φ̃i,ν with a wave

map φi,ν agreeing with the latter on [−3
2
, 3

2
]×B3/2 and constant outside B6 (at most) for

t ∈ [−3
2
, 3

2
] by finite speed of propagation. This introduces an error of asymptotically

vanishing energy on this time interval, safely by (3.3.3). In fact, from the construction

it is immediate that:

φi,ν − cφ −→ 0 in C0
t (L2

x)[−
3

2
,
3

2
], (3.3.5)

which improves to locally in C0
t (H1

x)∩C1
t (L2

x) away from %i, and we still have decay in

a time-like direction:

‖Xiφi,ν‖L2
t,x[− 3

2
, 3
2

] −→ 0. (3.3.6)

Let us fix a smooth time cut-off χ(t) ∈ C∞0 (−3
2
, 3

2
), identically 1 on [−1, 1], so that

we get now in position to apply Proposition 2.3.1, obtaining from (2.3.3) the following

decomposition:

χ∇t,xφi,ν = Θi,ν + Ξi,ν , with :

‖Θi,ν‖L2
t,x
. ‖Xiφi,ν‖L2

t,x[− 3
2
, 3
2

] + ‖φi,ν − cφ‖L∞t (L2
x)[− 3

2
, 3
2

] , (3.3.7)∑
k∈Z

‖PkΞi,ν‖L1
t (L

2
x) . 1. (3.3.8)

Furthermore, applying Lemma 2.3.2, we get from (2.3.18) a decomposition for second

order time-like derivative of φi,ν :

χX2
i φi,ν = Γi,ν + Πi,ν ,
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where the first item is a linear combination of:∑
k∈Z

Pk∇x[Ω
i,ν
x (P>k+10φi,ν)],

∑
k∈Z

Pk[Ω
i,ν
x (P≤k+10∇xφi,ν)], and Ωi,ν

t,x∇t,xφi,ν ,

with Ωi,ν
α := φi,ν∂αφ

†
i,ν − ∂αφi,νφ

†
i,ν ,

while the second one satisfies (2.3.19):∑
k∈Z

2−2k ‖PkΠi,ν‖2
L2
t,x[− 3

2
, 3
2

] (3.3.9)

. (1 + ‖Xiφi,ν‖L2
t,x[− 3

2
, 3
2

]) ‖Xiφi,ν‖L2
t,x[− 3

2
, 3
2

]

+ (1 + ‖φi,ν − cφ‖L∞t (L2
x)[− 3

2
, 3
2

]) ‖φi,ν − cφ‖L∞t (L2
x)[− 3

2
, 3
2

] .

We note that the implicit constants, including the factors in the linear combination

for Γi,ν , depend only on the energy bound E from (2.3.1) and the distance δ0 to the

null boundary ∂C from (3.3.1), hence can be considered universal for the rest of the

argument.

With this understood, we define non-negative functions ϑi,ν , ξi,ν , ζ i,ν , and πi,ν for

i = 1, . . . , I and t ∈ [−1, 1], setting:

θi,ν(t) := ‖Θi,ν(t)‖2
L2
x

with ‖θi,ν‖L1
t
−→ 0,

ξi,ν(t) :=
∑
k∈Z

‖PkΞi,ν(t)‖L2
x

with ‖ξi,ν‖L1
t

=
∑
k∈Z

‖PkΞi,ν(t)‖L1
t (L

2
x) . 1,

ζi,ν(t) := ‖Xiφi,ν(t)‖2
L2
x
, so that ‖ζi,ν‖L1

t
−→ 0,

as well as:

πi,ν(t) =
∑
k∈Z

2−2k ‖PkΠi,ν(t)‖2
L2
x
, where ‖πi,ν‖L1

t
=
∑
k∈Z

2−2k ‖PkΠi,ν(t)‖2
L2
t,x
−→ 0,

by (3.3.7) and (3.3.8), (3.3.4) and (3.3.5), and finally (3.3.9).

We will now choose a sequence of time slices where we uniformly control θi,ν and

have all of the other functions above asymptotically decaying. This will be used to

prove decay of the weak Besov norm Ḃ1,2
∞ on the neck regions, and ultimately get the

energy collapsing there via the control on θi,ν . At the same time, to start this argument,

we shall build first the weak bubble tree decomposition. To do so, one relies on the
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small energy compactness result from Lemma 2.2.2 (which, for example, enables one

to extract solitons from the standard concentration-compactness procedure). Hence,

for that reason, we will need to control the maximal function Mζi,ν corresponding to

‖Xiφi,ν(t)‖2
L2
x

as well.

Let us take λθiν ∼ ‖θi,ν‖
1/2

L1
t
↓ 0, (λξiν )−1 ‖ξi,ν‖L1

t
< ε for some arbitrarily small ε >

0 to be fixed according to (3.3.10) below, as well as λζiν ∼ ‖ζi,ν‖
1/2

L1
t
↓ 0 and λπiν ∼

‖πi,ν‖1/2

L1
t
↓ 0. Hence, applying Chebyshev’s inequality and the maximal inequality of

Hardy-Littlewood for Mζi,ν , we get:

I∑
i=1

(∣∣{θi,ν > λθiν
}∣∣+

∣∣{ξi,ν > λξiν
}∣∣+

∣∣{ζi,ν > λζiν
}∣∣+ |{πi,ν > λπiν }| (3.3.10)

+
∣∣{Mζi,ν > λζiν

}∣∣) < 1

10
.

Therefore, we can choose a sequence of time slices {tν}ν∈N ⊂ [−1
2
, 1

2
], that we may

assume simply to be tν = 0 upon translating the maps φi,ν by (tν , %i(tν)) without

changing notation for φi,ν (and working on [−1
2
, 1

2
]× B6), such that for all i = 1, . . . , I

we have the following control:

θi,ν(0) −→ 0, ξi,ν(0) . 1, ζi,ν(0) −→ 0, πi,ν(0) −→ 0, (3.3.11)

and Mζi,ν(0) −→ 0.

These are the final time slices that we will consider and obtain the asymptotic decom-

position on, as claimed in our main theorem. We start doing bubbling analysis on them

just below. Here we just add the remark that, upon working in (3.3.10)-(3.3.11) with

the maximal functions for θi,ν , ξi,ν and πi,ν as well, it should be clear by end of the

argument that we can also get the energy collapsing result for almost every time slice

strictly within the lifespan of the fastest concentrating solitons.

3.3.2 The weak bubble tree decomposition

In the following lemma we present a preliminary version of the soliton decomposition.

It is essentially the one that we aim towards from Theorem 1.2.2, but it contains errors

that we shall call necks - those are wave maps on conformally degenerating annuli such

that once localized in space they converge to a constant, but when considered on the

whole annulus they might a priori carry a non-trivial amount of energy. Ruling out
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such a scenario will be the last step in the proof of the main theorem.

We note that the proof of this lemma relies on a covering argument which goes

back to at least Ding and Tian [6] and today is pretty standard in the literature on

bubbling analysis of harmonic maps (and related areas, where some authors refer to it

as weak bubble tree convergence). The lemma of course holds for any closed Riemannian

manifold as a target.

Lemma 3.3.1. Passing to a subsequence, there exists for each i = 1, . . . , I a collection

of Ji .E 1 solitons ωj,i, j = 1, . . . , Ji, with corresponding concentration points aji,ν ∈ B1

converging to the origin, and scales λji,ν ↓ 0 satisfying the orthogonality relations:

λji,ν

λj
′

i,ν

+
λj
′

i,ν

λji,ν
+
|aji,ν − a

j′

i,ν |2

λji,νλ
j′

i,ν

−→∞, (3.3.12)

as ν →∞ for j and j′ distinct, such that:

φi,ν(λ
j
i,νt, a

j
ν + λji,νx) −→ ωj,i(t, x) on R2+1 \ ∪q%j,iq ,

locally in C0
t (H1

x)∩C1
t (L2

x) for a collection of at most Ji−1 time-like geodesics %i,jq with

direction Xi. Moreover, setting for any fixed positive constant C > 0:

λmin,ν := C ·min
i,j

{
λji,ν
}
, ν ∈ N,

we have the following asymptotic decomposition holding for t ∈ [−λmin,ν , λmin,ν ]:

φi,ν(t, x)− cφ =

Ji∑
j=1

(
ωj,i

(
t

λji,ν
,
x− aji,ν
λji,ν

)
− ωj,i(∞)

)
+Ni,ν(t, x) + oL∞t (Ḣ1

x×L2
x)(1),

(3.3.13)

where Ni,ν stands for the wave map φi,ν restricted to a collection of Ki .E 1 sequences

of degenerating annuli:

[−
rki,ν
2
,
rki,ν
2

]×
(
BRki,ν

(xki,ν) \Brki,ν
(xki,ν)

)
⊂ [−1

2
,
1

2
]×B3 with λmin,ν � rki,ν � Rk

i,ν ,

(3.3.14)

such that we have:

sup
rki,ν≤r≤

1
2
Rki,ν

sup
t∈[− r

2
, r
2

]

EB2r(xki,ν)\Br(xki,ν)[φi,ν ](t) −→ 0, (3.3.15)
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holding for each k = 1, . . . , Ki.

Proof. Let us fix i = 1, . . . , I, and suppress this subscript in the argument below to

lighten the notation. In the same spirit, we also never change notation here whenever

passing to a subsequence for {φν}ν∈N while using Lemma 2.2.2 as it will be clear from

the construction that we obtain in the end a countable cover of a suitable neighborhood

of {t = 0}×B3 on which we can rely to build via the diagonal process a final subsequence

that satisfies the claims of Lemma 3.3.1.

Pick a sequence of points a1
ν ∈ B1 with radii λ1

ν ↓ 0 such that:

EB
2λ1
ν

(a1
ν)[φν ](0) = εs. (3.3.16)

Note that such a concentration point is guaranteed to exist by the results of Section 3.1

and the compactness Lemma 2.2.2, and that by (3.3.3) any energy concentration point

would have to converge to the origin.

Consider the sequence of balls B2kλ1
ν
(a1
ν) with k a positive integer, and choose the

lowest K0 = K0({a1
ν}ν∈N) ∈ N such that the functions:

rν : B2K0−1(a1
ν) −→ R>0

x 7−→ rν(x) := sup
{
r > 0 : EBr(x)[φν(λ

1
ν ·, a1

ν + λ1
ν ·)](0) ≤ εs

}
, (3.3.17)

which are continuous as the wave maps φν are smooth, admit a collective positive lower

bound r′ := lim infx,ν rν(x) > 0 (assuming K0 exists, the case when it does not is

treated later when we describe convergence to solitons at infinity). As a preliminary

step, relying on (3.3.11) and the compactness Lemma 2.2.2, we can obtain for the

rescalings of the maps φν at a1
ν , upon passing to a subsequence, that:

φν(λ
1
νt, a

1
ν + λ1

νx) −→ ω1(t, x) on [−r
′

3
,
r′

3
]×B2K0−1 ,

in C0
t (H1

x) ∩ C1
t (L2

x) for some wave map ω1 with regularity as in (2.2.9) and satisfying

Xω1 = 0, with X standing for the constant time-like vector field Xi from (3.3.4).

Therefore, the map ω1 is part of a soliton.

The time interval [− r′

3
, r
′

3
] for the convergence above will be improved considerably

below by recalling the methods from Section 3.1, see the proof of (3.3.20). Now, we

shall proceed instead describing further ω1 in space. Slightly abusing terminology, let

us refer to ω1 as a soliton already from here, bearing in mind that we will prove it is

one shortly.
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By construction, we can find at least one sequence of concentration points:

a2
ν ∈ B2K0λ1

ν
(a1
ν) \B2K0−1λ1

ν
(a1
ν), (3.3.18)

bubbling off on the top of the soliton ω1 in the sense that:

EB
2λ2
ν

(a2
ν)[φν ](0) = εs, λ

2
ν � λ1

ν , (3.3.19)

where it is quite important to note that we have an equality above, a fact that must

hold by the compactness Lemma 2.2.2.

Let us consider a new sequence of concentration points satisfying (3.3.18) and

(3.3.19) like {a2
ν}ν∈N, in other words forming itself above the scales λ1

ν and converg-

ing, upon passing to a subsequence, in the closure of B2K0λ1
ν
(a1
ν), so that it suffices

to work in B2K0+1λ1
ν
(a1
ν). There are of course uncountably many of those, given the

existence of a single one, {a2
ν}ν∈N, but we are going to consider equivalent all those for

which the orthogonality condition (3.3.12) holds and pick only one representative per

equivalence class. That is, if a sequence {a′ν}ν∈N satisfies (3.3.18) and (3.3.19) but in

addition also has λ′ν ∼ λ2
ν with:

|a2
ν − a′ν |
λ2
ν

. 1,

then one can see that the maps φν(λ
2
νt, a

2
ν + λ2

νx) and φν(λ
′
νt, a

′
ν + λ′νx) would converge

on [−2−1, 2−1]× B2−1 , upon passing to a subsequence directly by Lemma 2.2.2, to the

same soliton up to translation that we should denote by ω2 as it was initially obtained

from a2
ν once the procedure we are describing now for the soliton ω1 is completed and

applied to the soliton ω2. Hence the sequence {a′ν}ν∈N should be discarded keeping

{a2
ν}ν∈N.

Given the orthogonality relations (3.3.12) holding between any two sequences of

concentration points as above, we note that we are left with only finitely many possi-

bilities, say {ajν}ν∈N with j = 2, . . . , J ′. This follows from the fact we are considering a

sequence of functions {∇t,xφν}ν∈N ⊂ L2
x, bounded by the global energy control assump-

tion (2.3.1), and with ∇t,xφν concentrating definite amounts of its L2
x norm, namely

√
εs, note the equality in (3.3.19), at different frequency and/or spatial scales so that

we can conclude that, since L2
x is a Hilbert space, we should have:

J ′ .
1

εs
E ,
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which is a universal bound for us as desired.

The collection {ajν}ν∈N, j = 2, . . . , J ′, gives rise to solitons ωj, one for each j, by the

same procedure as described for ω1 and so from now on we should be running for each

of them the same construction as we are currently considering for ω1.

From the point of view of ω1, we can subdivide the above collection of sequences

of energy concentration points into disjoint families by considering the limit points

b1
q ∈ B2K0λ1

ν
(a1
ν) \ B2K0−1λ1

ν
(a1
ν), indexed by q = 1, . . . , Q′ for some integer Q′ ≤ J ′, to

which the sequences converge once rescaled by λ1
ν . So for any r > 0 small but fixed, we

have by Lemma 2.2.2:

φν(λ
1
νt, a

1
ν + λ1

νx) −→ ω1(t, x) on [−r
′

3
,
r′

3
]×
(
B2K0 \ ∪qBr(b

1
q)
)
,

in C0
t (H1

x) ∩ C1
t (L2

x) since the functions rν from (3.3.17) extended to B2K0 \ ∪qBr(b
1
q)

admit a collective lower bound r′ := lim infx,ν rν(x) > 0 (provided r > 0 is fixed of

course as r′ depends on it). Understanding the behavior of the maps φν as r ↓ 0 is

linked to the convergence of φν to solitons at the spatial infinity and this is when the

neck domains enter into our picture. We shall discuss this straight after we finish the

construction of the soliton ω1 (and so for the other ones, ωj above, in parallel).

Considering the annuli B2K0+kλ1
ν
(a1
ν)\B2K0+k−1λ1

ν
(a1
ν) one after the other and studying

as above whether there are new sequences of concentration points satisfying (3.3.19),

upgrading the collection {ajν}ν∈N, j = 2, . . . , J ′, accordingly upon checking the orthogo-

nality relation (3.3.12) holds for each new member (we should not change the notation

for the upgraded version), we must a reach an integer K1 = K1({a1
ν}ν∈N, εs, E) ∈ N such

that for any k ≥ K1 the functions rν from (3.3.17) once considered on B2k(a1
ν)\B2k−1(a1

ν)

would admit a positive collective lower bound there. Note that this situation could have

occurred without passing by the previous bubbling analysis induced by the existence

of the integer K0, e.g. if we would have picked up the fastest concentrating soliton

initially for ω1.

From there, we let k →∞ with r ↓ 0 and fully construct the soliton ω1 in the sense

that we claim:

φν(λ
1
νt, a

1
ν + λ1

νx) −→ ω1(t, x) on R2+1 \ ∪q%1
q, (3.3.20)

locally in C0
t (H1

x) ∩ C1
t (L2

x) for a finite collection of geodesics %1
q, q = 1, . . . , Q′, each

passing through the corresponding point b1
q, all with direction X, and such that Xω1 = 0

there. To prove (3.3.20), we note that by (3.3.11), used already above, we have for any
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fixed bounded time interval the following decay estimate:∫ s

−s

∫
R2

∣∣X[φν(λ
1
νt, a

1
ν + λ1

νx)]
∣∣2 dxdt = o(s), (3.3.21)

and so denoting by Ψ the Lorentz boost taking ∂t to X, if one considers the foliation

induced by {Ψ({t} × R2)}t∈R on the whole of Minkowski space R2+1 instead of the CMC

foliation in the interior of the forward light cone as in Lemmata 3.1.1 and 3.1.2, the

very same arguments would lead to the convergence claimed in (3.3.20). Let us present

some details, setting ϕν = φν(λ
1
ν ·, a1

ν + λ1
ν ·).

Working on Ψ−1(R2+1) we denote the coordinates there by xᾱ, or (t̄, x̄1, x̄2), and

writing ϕ̄ν := ϕν ◦ Ψ we get by the Lorentz invariance of smooth wave maps that

the associated stress energy tensor Tᾱβ̄[ϕ̄ν ] enjoys the conservation law ∂ᾱTᾱβ̄[ϕ̄ν ] = 0.

So, contracting T [ϕ̄ν ] with the vector field χ(x̄)∂t̄, for some continuously differentiable

test function χ with ∂t̄χ = 0, and integrating the divergence of the Noether current

∂ᾱ((χ(x̄)∂t̄)Pᾱ) over the strip t̄ ∈ [t, t + λ] for any t ∈ R and positive constant λ > 0

(similar considerations apply when λ < 0), we get by Stokes’ theorem and the mentioned

conservation law: ∫
{t̄=t+λ}

|∇t̄,x̄ϕ̄ν |2 χdx̄−
∫
{t̄=t}
|∇t̄,x̄ϕ̄ν |2 χdx̄

= −2

∫
[t,t+λ]×R2

x̄

∂t̄ϕ̄
†
ν(∂x̄1ϕ̄ν∂x̄1χ+ ∂x̄2ϕ̄ν∂x̄2χ)dt̄dx̄.

Hence, integrating the above identity over t ∈ [t0, t1] for given t0, t1 ∈ R, using the

decay (3.3.21) we obtain:∫
[t0,t1]×R2

x̄

|∇t̄,x̄ϕ̄ν |2 χdt̄dx̄−
∫

[t0+λ,t1+λ]×R2
x̄

|∇t̄,x̄ϕ̄ν |2 χdt̄dx̄ −→ 0, (3.3.22)

analogously to (3.1.2) from Lemma 3.1.1. To use this asymptotic monotonicity formula

to propagate small energy control, we note that we have |∇t̄,x̄ϕ̄ν | ∼ |∇t,xϕν | with

the implicit constant depending only on X, which is constant and fixed. Therefore,

proceeding as in Lemma 3.1.2, given any point y ∈ R2 \ ∪qb1
q and a positive constant

η > 0, there exists a radius r1 = r1(y, η) > 0 such that:

sup
ν∈N

sup
t∈[−r1,r1]

EBr1 (y)[ϕν ](t) ≤ η,
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which leads to the control:

sup
ν∈N

1

r1

∫
[−r1,r1]×Br1 (y)

|∇t,xϕν |2 dtdx . η,

that in turn gives us, precomposing with Ψ and shrinking suitably the radius to r1 >

r2 & r1:

sup
ν∈N

1

r2

∫
[−r2+s̄,r2+s̄]×Br2 (ȳ)

|∇t̄,x̄ϕ̄ν |2 dt̄dx̄ . η,

where (s̄, ȳ) := Ψ−1(0, y). By the decay estimate (3.3.22), we get that given any λ ∈ R:

lim sup
ν∈N

1

r2

∫
[−r2+s̄+λ,r2+s̄+λ]×Br2 (ȳ)

|∇t̄,x̄ϕ̄ν |2 dt̄dx̄ . η,

and so going back to ϕν by precomposing with Ψ−1, shrinking further the radius to

r2 > r3 & r2 we obtain by the pigeonhole principle, using the energy flux identity

(1.2.2), the estimate:

lim sup
ν∈N

‖∇t,xϕν‖L∞t (L2
x)(([−r3,r3]×Br3 (y))+λX) . η,

for any given λ ∈ R, viewing naturally X ∈ R2+1. All the implicit constants above being

independent of η (and of λ, the dependence on which of our construction is hidden in

the limsup), we can choose η small enough obtaining the small energy control for any

fixed λ ∈ R:

lim sup
ν∈N

‖∇t,xϕν‖L∞t (L2
x)(([−r3,r3]×Br3 (y))+λX) ≤

1

2
εs, (3.3.23)

with the radius r3 = r3(y). Therefore, picking suitable collections of points y ∈ R2\∪qb1
q

and constants λ ∈ R, we construct a countable cover of R2+1 \ ∪q%1
q such that relying

on the estimates (3.3.21) and (3.3.23) we can apply Lemma 2.2.2 to get a subsequence

via the diagonal process for which the local convergence claim (3.3.20) holds a desired.

Note that by construction ω1 has energy bounded by E , and so precomposing it

with the Lorentz boost Ψ we get a steady in time finite energy harmonic map from R2

minus a finite set of points (note that the energy of this harmonic map will be smaller

or equal to E [ω1], nothing travels faster than light!). By the regularity theory of Hélein

[13] the latter has to be smooth and by the removable singularity theorem of Sacks and

Uhlenbeck [25], it extends smoothly across the singular points. The outcome of this

argument is therefore that ω1 is a smooth finite energy wave map defined on the whole

of R2+1 with Xω1 = 0, i.e. a genuine soliton as desired.
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The same holds of course for the solitons ωj, j = 2, . . . , J ′, but note that those

do not of course constitute all the members of the decomposition (3.3.13) as parts of

the maps φν can get lost a priori at spatial infinity and in between the solitons we are

considering. We shall address this issue now.

Consider the scales {λ1
ν}ν∈N corresponding to the soliton ω1. Fix an arbitrary small

0 < ε < εs, then by the pigeonhole principle there exist an integer K(ε) ≥ K1 such that

for any k ∈ N fixed:

EB
2K(ε)+kλ1

ν
(a1
ν)\B

2K(ε)+k−1λ1
ν

(a1
ν)[φν ](0) < ε, (3.3.24)

for all ν large enough. Suppose that there exist a sequence of smallest integer kν(ε) ≥
K(ε), as ν gets large, such that the above inequality fails:

EB
2kν (ε)+1λ1

ν
(a1
ν)\B

2kν (ε)λ1
ν

(a1
ν)[φν ](0) ≥ ε,

and note that by construction we must have kν(ε) → ∞; then we have found a new

soliton on the top of which our previous ω1 is concentrating, that we should denote by

ωJ ′+1 so that setting λJ
′+1
ν := 2kν(ε)−1λ1

ν we can apply directly Lemma 2.2.2, by the

choice of kν(ε) and (3.3.24), to get:

φν(λ
J ′+1
ν t, a1

ν + λJ
′+1
ν x) −→ ωJ ′+1(t, x) in C0

t (H1
x) ∩ C1

t (L2
x)([−

1

4
,
1

4
]× (B1 \B 1

2
)),

with EB4\B2 [φν(λ
J ′+1
ν ·, a1

ν + λJ
′+1
ν ·)](0) ≥ ε,

and the analysis we carried for ω1 so far should also be applied to ωJ ′+1 now.

It should be clear that if no kν(ε) as above exist, i.e. (3.3.24) is not violated for

any k ∈ N for ν large, then choosing 0 < ε < εs small enough initially, by equality in

(3.3.16) we must have been working with ω1 and there should exist then a sequence of

integers k′ν such that 2k
′
νλ1

ν ∼ 1 and (3.3.24) holding for any k = 1, . . . , k′ν −K(ε), with

any 0 < ε′ < ε for larger k ≥ k′ν −K(ε) by (3.3.3) as ν →∞. The map ωJ ′+1 would be

standing for the constant cφ in this case.

For the other solitons ωj, with j ≥ 2, kν(ε) must exist and we could of course end

up with ω1, or also a constant (to which some authors refer to as a ghost bubble, i.e.

a soliton on the top of which two or more non-constant solitons are concentrating but

itself is constant) in which case we obviously do not consider this as a new soliton. This

brings us to the final steps in the proof of Lemma 3.3.1.

In fact, in the above construction the constant ε > 0 could be arbitrarily small but
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was initially fixed and we would like now to let it degenerate to 0. We claim that in fact

we can put ourselves in a situation when for any smaller 0 < ε′ < ε the choice of the

integers kν(ε
′) ∈ N is uniform in the sense that there exist positive integers L(ε′) ∈ N

independent of ν such that kν(ε
′) = kν(ε)− L(ε′), that is:

sup
K(ε′)≤k≤kν(ε)−L(ε′)

EB
2k+1λ1

ν
(a1
ν)\B

2kλ1
ν

(a1
ν)[φν ](0) < ε′, (3.3.25)

for ν large enough. If this were to fail for some ε′ > 0, we could find a sequence of

scales, that we denote by λJ
′+2
ν , such that:

EB
2λJ
′+2
ν

(a1
ν)\B

λJ
′+2
ν

(a1
ν)[φν ](0) > ε′ and λJ

′+1
ν � λJ

′+2
ν � λ1

ν , (3.3.26)

and that would give rise to new non-constant solitons at scale λJ
′+2
ν or above, in which

case we have to redefine ε as ε′. Note that we can have only finitely many non-constant

solitons forming by the global energy bound (3.0.1) since those cannot have arbitrary

small energy as this is not possible for harmonic 2-spheres, and by (3.3.26) they are

asymptotically orthogonal in Ḣ1
x × L2

x. Hence our procedure, applied to every single

soliton we have found so far, detects all of the solitons in the claimed decomposition

(3.3.13) and we are just left to characterize the regions in-between the domains of

convergence to solitons as neck regions, but this can be obtained directly from (3.3.25)

as follows.

Upon changing notation, by the above remarks we can assume that (3.3.25) holds.

Now, we simply choose sequences 0 < r1
ν ≤ R1

ν tending to 0 slowly enough so that for

any ε > 0 small enough:

EB
r1ν

(a1
ν)\B

2K(ε)λ1
ν

(a1
ν)[φν ](0) −→ ER2\B

2K(ε) (0)[ω1](0) and

EB
λJ
′+1
ν

(a1
ν)\B

R1
ν

(a1
ν)[φν ](0) −→ EB1\{0}[ωJ ′+1](0),

then by (3.3.25) there exits a sequence ε1
ν = ε1

ν(r
1
ν , R

1
ν) ↓ 0 such that:

sup
r1
ν≤r≤ 1

2
R1
ν

sup
t∈[− r

2
, r
2

]

EB2r(a1
ν)\Br(a1

ν)[φν ](t) < ε1
ν .

If we know a priori that r1
ν ∼ R1

ν , then we can immediately absorb this part of the wave

map φν into the error term oL∞t (Ḣ1
x×L2

x)(1) in the decomposition (3.3.13) and there is no

loss of energy between the considered solitons. Otherwise we should have r1
ν � R1

ν , i.e.
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the annulus is conformally degenerating, and this is precisely a neck in our terminology,

as required. To prove Theorem 1.2.2 we must show that those terms can also be

absorbed into oḢ1
x×L2

x
(1) upon picking a suitable time slice, but that is the next and

final step of the whole argument. So far we have established Lemma 3.3.1.

Remark 3.3.2. We note here that our techniques cannot say anything more about the

decomposition beyond the scales {O(λmin,ν)}ν∈N, which is a central issue to address if

one were to try understanding the full soliton resolution conjecture.

Let us also remark that there is also quite some freedom in fixing the radii Rk
i,ν and

rki,ν defining the neck domain, as for any positive integer ` ∈ N which can be arbitrarily

large but fixed, we still have:

sup
2−`rki,ν≤r≤2`Rki,ν

sup
t∈[− r

2
, r
2

]

EB2r(xki,ν)\Br(xki,ν)[φi,ν ](t) −→ 0,

which follows directly from the characterization (3.3.25) in the proof of Lemma 3.3.1

above.

3.3.3 Decay in the weak Besov norm for neck regions

Our aim now is to show energy collapsing for the necks Ni,ν , that is a decay to zero

for the L2
x norm of ∇t,xφν as ν → +∞ on the degenerating annuli (3.3.14). We shall

start by obtaining a decay in the weaker Besov Ḃ1,2
∞ norm for Ni,ν , as consequence of

the property (3.3.15), up to an error whose Ḣ1
x norm is controlled by the L2

x norm of

Xφν for some time-like vector field X that we will fix according to (3.3.11) later. This

is the content of the following lemma.

Lemma 3.3.3. Consider a sequence of smooth wave maps of bounded energy:

φν : [−2Nν+O(1), 2Nν+O(1)]× R2 −→ Sn−1, ‖∇t,xφν‖2
L∞t (L2

x) ≤ E , (3.3.27)

obtained from Lemma 3.3.1 up to translating and rescaling, where we are given two

sequences of positive integers nν , Nν → +∞, nν � Nν, such that the neck property

holds on B2Nν \B2nν :

sup
nν≤`±O(1)≤Nν

‖∇t,xφν‖L∞t (L2
x)([−2`−1,2`−1]×(B

2`+1\B2`
)) −→ 0. (3.3.28)

Moreover, we assume the maps are asymptotically steady in the direction of a constant
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time-like vector field X, standing for one of the Xi’s from (3.3.4) which we can take to

be given by (2.3.2):

‖Xφν(0)‖L2
x
−→ 0, (3.3.29)

and the second order time-like derivatives satisfy:

ΠX,ν := sech2(ζ)X2φν − Ων
α∂

αφν

+
∑
k∈Z

Pk
[
∇x · (Ων

x,βP>k+10φν) + Ων
x,β · P≤k+10∇xφν

]
,

∑
k∈Z

2−2k ‖PkΠX,ν(0)‖2
L2
x
−→ 0, (3.3.30)

setting Ων
α := φν∂αφ

†
ν−∂αφνφ†ν and Ων

x,β := (1−β2)Ων
x1
dx1 +Ων

x2
dx2. Both assumptions

are justified by (3.3.11).

Then on the neck region, we can write for the map φν:

∇t,xφν = Υν on [−1, 1]× (B2Nν \B2nν ),

see (3.3.36) in the proof, with Υν(t) ∈ C∞0 (B2Nν+1 \ B2nν−1) for t ∈ [−1, 1] being of

bounded energy ‖Υν‖2
L∞t (L2

x)[−1,1] . E, and satisfying the following weak decay estimate

on t = 0:

sup
k∈Z
‖PkΥν(0)‖L2

x
−→ 0.

The strategy of our argument is roughly to replace, by using the decay in the

direction of the time-like vector field X, the sequence of wave maps on neck domains

under consideration with another one, differing by an error of vanishing energy and

converging locally to a constant on the neck domain with more regularity than Ḣ1
x×L2

x

for φν . However, because we need to obtain estimates that are uniform in time, working

on very short intervals, we should not rely on the small energy regularity theory from

Theorem 2.2.1 and the direct use of Fourier restriction spaces, as in the proof of the

compactness result by Sterbenz and Tataru [30] (Proposition 5.1 there), but proceed

directly via the wave maps equation (1.1.6) proving a weak Ḃ−1,2
∞ decay estimate for

its quadratic structure in the gradient at high frequency (without any null-structure

involved, hence having target Sn−1 is not specifically necessary for this part of the

argument), and then using Lemma 2.3.2 to control the second order time-like derivatives

(the latter though does involve the conservation law (1.1.9) for wave maps into spheres).

Proof. As usual, having the required control in a time-like direction, it is enough to
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consider the spatial gradient only. Now working on the domain [−1, 1]× (B2Nν \B2nν ),

we note it being arbitrarily rough in time as nν , Nν → +∞ degenerates. This is

an additional difficulty, to be dealt with in the present proof, in comparison to the

analogous estimate for harmonic maps, where ε-regularity is used on the domains

[−2`−1, 2`−1] × (B2`+1 \ B2`) instead, see for the example the paper of Lin and Rivière

[21] on page 188.

Before taking the main line of the argument, let us start with some preliminaries,

fixing the decay rates for the assumptions of Lemma 3.3.3, that is sequences ιν ↓ 0,

σν ↓ 0 and εν ↓ 0 for which: ∑
k∈Z

2−2k ‖PkΠX,ν(0)‖2
L2
x
≤ ι2ν , (3.3.31)

‖Xφν(0)‖L2
x
≤ σν , (3.3.32)

sup
nν≤`±O(1)≤Nν

‖∇t,xφν‖L∞t (L2
x)([−2`−1,2`−1]×(B

2`+1\B2`
)) ≤ εν , (3.3.33)

corresponding to (3.3.30), (3.3.29) and (3.3.28) respectively. Next, we consider, for an

arbitrary choice of integers `ν between nν and Nν , the sequence of wave maps:

φν,`ν (·) := φν(2
`ν ·) : [−2−4, 2−4]× (B23 \B2−3) −→ Sn−1. (3.3.34)

We build an extension ψν,`ν of φν,`ν , as in Remark 2.2.3, by smoothly interpolating on

(B2−2 \B2−3) ∪ (B22 \B22−1) between φν,`ν [0] and (c`ν , 0) ∈ T (Sn−1), for some suitably

chosen sequence of constants c`ν = c`ν (φν,`ν ), solving the wave maps equation for ψν,`ν

with initial data of ψν,`ν [0], such that scaling back and setting ψ`νν (·) := ψν,`ν (2
−`ν ·), we

have (denoting by 1`ν the characteristic function of B2`ν+1 \B2`ν−1 over the time interval

[−2`ν−3, 2`ν−3]): ∥∥∇t,xψ
`ν
ν

∥∥
L∞t (L2

x)
. εν and 1`νφν = 1`νψ

`ν
ν , (3.3.35)

by (3.3.33) and the finite speed of propagation property respectively.

From there, we construct a partition of unity over [−1, 1]× (B2Nν \B2nν ) paralleling

the Littlewood-Paley decomposition in frequency space. For the spatial directions, we

recall the non-negative radial bump functions m0 and m≤0 used in the definition of

the LP-projections P0 and P≤0, but which this time, we will use on the physical space

setting:

m̄0(t, x) := m0(|x|), m̄`(t, x) := m̄0(2−`t, 2−`x),
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m̄≤0(t, x) := m≤0(|x|), m̄≤`(t, x) := m̄≤0(2−`t, 2−`x).

We get then the following “physical LP-decomposition”:

Υν := (m̄≤Nν − m̄≤nν−1)η∇xφν =
Nν∑

`ν=nν

ηm̄`ν∇xφν . (3.3.36)

where η(t) stands for the rough cut-off to the time interval [−1, 1], and of course it is

immediate that ‖Υν‖2
L∞t (L2

x)[−1,1] . E . Moreover we note that, recalling the extensions

(3.3.35), we have ηm̄`νφν = ηm̄`νψ
`ν
ν .

Writing φcν := φν − c`ν , for an arbitrary sequence of maps corresponding to (3.3.34),

and similarly for φcν,`ν , together with the extensions ψ`ν ,cν and ψcν,`ν from (3.3.35) which

become compactly supported by construction, we consider the commutator (denoting

the cut-off functions by χ`ν := ηm̄`ν ):

χ`ν∇xφν = ∇x(χ`νφ
c
ν)− (∇xχ`ν )φ

c
ν , (3.3.37)

and start by treating the second term, for which we claim:

‖Pk[(∇xχ`ν )φ
c
ν ]‖L∞t (L2

x) . 2−|k+`ν |εν , (3.3.38)

for any k ∈ Z. To see this, we rescale by 2`ν . For high frequency scales 2k & 1, we can

use the extra regularity, the spatial derivative falling on the cut-off instead of the map,

available from:

∥∥∇x[(∇xm̄0)φcν,`ν ]
∥∥
L∞t (L2

x)
.
∥∥(∇2

xm̄0)ψcν,`ν
∥∥
L∞t (L2

x)
+ ‖(∇xm̄0)∇xφν,`ν‖L∞t (L2

x) ,

introducing the extensions ψcν,`ν , so that applying Poincaré’s inequality in L2
x for the

first term, given the spatial localization of ψcν,`ν at any given time slice in the support

of η`ν (·) := η(2`ν ·), we get by the finite band property (2.1.3) and the bound (3.3.35):

∥∥η`νPk[(∇xm̄0)ψcν,`ν ]
∥∥
L∞t (L2

x)
. 2−kεν ,

as desired. For low frequency scales 2k . 1, by Cauchy-Schwarz and Poincaré’s inequal-

ities, we have: ∥∥η`ν (∇xm̄0)ψcν,`ν
∥∥
L∞t (L1

x)
. ‖η`ν∇xψν,`ν‖L∞t (L2

x) ,

dropping ∇xm̄0, and so using Bernstein’s inequality (2.1.4) we obtain here an exponen-
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tial gain as well: ∥∥η`νPk[(∇xm̄0)ψcν,`ν ]
∥∥
L∞t (L2

x)
. 2kεν ,

by the energy bound (3.3.35). Hence, claim (3.3.38) follows.

We remark that, by the same argument, we get also control for the low frequencies

of the first term ∇x(χ`νφ
c
ν) in the commutator:

‖Pk∇x(χ`νφ
c
ν)‖L∞t (L2

x) . 2k+`νεν , k ≤ −`ν +O(1), (3.3.39)

and so it remains to treat now the main terms, that is the LHS above when `ν ≥ −k,

for which we should rely on the wave maps equation, the time-like control assumption

(3.3.32), as well as the favorable decay (3.3.31) we already have.

Recalling the expression for the operator (2.3.9), we compute then:

∆x,β(χ`νφ
c
ν) =(∆x,βχ`ν )φ

c
ν + 2(1− β2)(∂x1χ`ν )(∂x1φν) + 2(∂x2χ`ν )(∂x2φν) (3.3.40)

− 2χ`ν sech2(ζ)sinh(ζ)∂x1Xφν

+ χ`ν (sech2(ζ)X2φν − Ων
α∂

αφν).

Let us treat first the smooth terms on the first line of (3.3.40), of which there are two

types, (∇2
xχ`ν )ψ

`ν ,c
ν and ∇xχ`ν∇t,xψ

`ν
ν , the cut-off differentiated in a spatial direction,

claiming for both the control:∥∥∥∥ ∇x

∆x,β

Pk[(∇2
xχ`ν )ψ

`ν ,c
ν +∇xχ`ν∇t,xψ

`ν
ν ]

∥∥∥∥
L∞t (L2

x)

. 2−(k+`ν)εν , k ≥ −`ν . (3.3.41)

To show this, relying on Plancherel in L2
x, we discard the Fourier multiplier 2k∇x∆

−1
x,βP̃k

(where P̃k = Pk−1≤·≤k+1), having symbol bounded uniformly in k ∈ Z. Rescaling by 2`ν

we are brought to estimate for k ≥ O(1):

2−k
∥∥η`ν [(∇2

xm̄0)ψcν,`ν +∇xm̄0∇t,xψν,`ν ]
∥∥
L∞t (L2

x)
,

where the second term is directly seen to have the desired control by (3.3.33), whereas

for the first one, given the spatial support of the extension ψcν,`ν , we apply Poincaré’s

inequality in L2
x as before, which allows us to conclude by (3.3.35).

The second line of (3.3.40) is an error term controlled thanks to the time-like decay
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(3.3.32) we have. We first write:

χ`ν∇xXφν = ∇x(χ`νXφν)− (∇xχ`ν )Xψ
`ν
ν ,

and note that the second term here was already treated in (3.3.41), and so we just need

to show: ∥∥∥∥∥∥ ∇
2
x

∆x,β

Pk

Nν∑
`ν=max(−k,nν)

(χ`νXφν)(0)

∥∥∥∥∥∥
L2
x

. σν , (3.3.42)

but this follows at once by Plancherel in L2
x, as the Fourier multiplier ∇2

x∆
−1
x,βPk has a

bounded symbol, dropping the cut-offs and relying on (3.3.32).

Finally, we shall consider the delicate second order time-like derivatives and the

non-linear terms on the third line of (3.3.40). As was already required for (3.3.42), we

restrict ourselves from now on to work exclusively over the time slice t = 0. And to

lighten the notation, we shall not mention this explicitly anymore.

Thanks to the assumption (3.3.31), we have already partial control on them through

ΠX,ν , which however we need to localize to the neck region B2Nν+1 \ B2max(−k,nν )−1 . In

doing so, we first note that since m̄≤0 was initially fixed spatially Schwartz, we have:

‖∇xm̃k,Nν‖L2
x
. 1, where m̃k,Nν := m̄≤Nν − m̄≤max(−k,nν)−1,

given that the above norm is scale invariant. Hence applying the Littlewood-Paley

trichotomy to m̃k,NνΠX,ν , we get:

Pk(m̃k,NνΠX,ν) =Pk[(P≤k−7m̃k,Nν )(Pk−3≤·≤k+3ΠX,ν)

+ (Pk−3≤·≤k+3m̃k,Nν )(P≤k−7ΠX,ν)

+
∑

k1,k2≥k−6:|k1−k2|≤O(1)

(Pk1m̃k,Nν )(Pk2ΠX,ν)].

From there, using (3.3.31), we estimate the low-high interactions by:

2−k ‖(P≤k−7m̃k,Nν )(Pk−3≤·≤k+3ΠX,ν)‖L2
x
. ‖m̃k,Nν‖L∞x ιν ,

the high-low ones by:

2−k

∥∥∥∥∥(Pk−3≤·≤k+3m̃k,Nν )(
∑

k1≤k−7

Pk1ΠX,ν)

∥∥∥∥∥
L2
x

. ‖m̃k,Nν‖L∞x
∑

k1≤k−7

2−(k−k1)ιν ,
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whereas for the high-high cascade we have:∑
k1,k2≥k−6:|k1−k2|≤O(1)

2−k ‖η(Pk1m̃k,Nν )(Pk2ΠX,ν)‖L2
x
. (
∑
k1

22k1 ‖Pk1m̃k,Nν‖
2
L2
x
)

1
2 ιν ,

where we have used Bernstein’s inequality (2.1.4) passing to L1
x, and then Cauchy-

Schwarz with the fact that k1 = k2 +O(1).

Putting those estimates together we get the required control for m̃k,NνΠX,ν :∥∥∥∥∥∥ ∇x

∆x,β

Pk

Nν∑
`ν=max(−k,nν)

χ`νΠX,ν

∥∥∥∥∥∥
L2
x

. ιν , (3.3.43)

by discarding the multiplier 2k∇x∆
−1
x,βP̃k and relying on the bounds for the cut-offs

m̃k,Nν discussed above.

We treat now the non-linear bulk left from Lemma 2.3.2, decomposing it into:

Bν
1 :=

∑
k∈Z

Pk∇x · (Ων
x,βφ

>k+10
ν ),

Bν
2 :=

∑
k∈Z

Pk(Ω
ν
x,β · ∇xφ

≤k+10
ν ),

introducing the convenient notation φkν := Pkφν (also later φkν,`ν := Pkφν,`ν for the

rescaled maps), etc. We want to treat this term perturbatively, as in elliptic regularity

theory, and so we proceed claiming first the following Ḃ−1,2
∞ estimate:

∥∥∥∥∥∥ ∇x

∆x,β

Pk

Nν∑
`ν=max(−k,nν)

χ`νB
ν
i

∥∥∥∥∥∥
2

L2
x

(3.3.44)

.
∑
≥0

2−
∑
`

‖χ`νBν
i ‖L1

x
‖χ`ν+B

ν
i ‖L1

x
,

where the sums are such that both `ν and `ν +  range between max(−k, nν) and Nν .

Discarding the Fourier multiplier 2k∇x∆
−1
x,βP̃k via Plancherel in L2

x, we note the

Littlewood-Paley projection Pk in front of the sum in (3.3.44) is crucial to handle the

remaining factor 2−k. But frequency localization induces spreading for the physical

support by the uncertainty principle. And so, we are not allowed to use a square-

summing trick relying on the finitely overlapping supports of χ`νB
ν
i . On the other
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hand, this leakage is very much controllable given the fact that k ≥ −`ν +O(1), which

corresponds to high frequency here.

More precisely, let us bound the LHS of (3.3.44) via:

2−2k
∑
µν≥`ν

∣∣∣∣∫
R2

[Pk(χ`νB
ν
i )] [Pk(χµνB

ν
i )] dx

∣∣∣∣ ,
with both `ν and µν ranging between max(−k, nν) and Nν . By the self-adjointness of

Pk, the summand above can be estimated by:

∥∥[P 2
k (χ`νB

ν
i )
]
χµνB

ν
i

∥∥
L1
x

≤
∥∥P 2

k (χ`νB
ν
i )
∥∥
L∞x ({|x|∼2µν }) ‖χµνB

ν
i ‖L1

x
.

Now, looking at the convolution kernel for P 2
k , analogue to (2.1.1), we can estimate the

first factor on the RHS above by:

∥∥P 2
k (χ`νB

ν
i )
∥∥
L∞x ({|x|∼2µν }) . 22k2−(µν−`ν) ‖χ`νBν

i ‖L1
x
,

for µν ≥ `ν ≥ −k, a refined version of Bernstein’s inequality (2.1.4). Hence, this leads

us to estimate the LHS of (3.3.44) by:∑
µν≥`ν

2−(µν−`ν) ‖χ`νBν
i ‖L1

x
‖χµνBν

i ‖L1
x
,

as required.

Given (3.3.44), we remark that summing one of the factors we get a universal bound.

This follows from the global energy control (3.3.27) since, by the finitely overlapping

supports of χ`νB
ν
i : ∑

`ν

‖χ`νBν
i ‖L1

x
. ‖Bν

i ‖L1
x
,

and in fact we have the stronger control:

∑
k∈Z

‖PkBν
1‖L1

x
+

∥∥∥∥∥(
∑
k∈Z

|PkBν
2 |2)

1
2

∥∥∥∥∥
L1
x

. E , (3.3.45)
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where for the former we have:

‖PkBν
1‖L1

x
.

∑
k1,k2≥k+5:|k1−k2|≤O(1)

2−(k2−k)
∥∥Pk1Ων

x,β

∥∥
L2
x

∥∥∇xφ
k2
ν

∥∥
L2
x
,

applying initially the finite band property (2.1.3), and then once again for φk2
ν , and this

can be summed over k ∈ Z using discrete Cauchy-Schwarz in k1 = k2 +O(1). Whereas

for the latter, we note that by the Littlewood-Paley trichotomy:

Pk(Ω
ν
x,β · ∇xφ

≤k+10
ν ) =Pk[P≤k−7(Ων

x,β) · ∇xφ
k−3≤·≤k+3
ν

+ Pk−3≤·≤k+3(Ων
x,β) · ∇xφ

≤k−7
ν

+
∑

k1,k2∼k

Pk1(Ων
x,β) · ∇xφ

k2
ν ],

and so the first two terms correspond to paraproducts, already localized to |ξ| ∼ 2k,

and therefore their sum in k ∈ Z lies in the homogeneous Hardy space Ḟ 0,1
2 with bound

O(E), and for the last term the stronger estimate in Ḃ0,1
1 with bound O(E) as for Bν

1

holds, since the sum under Pk is finite and we can apply the discrete Cauchy-Schwarz

inequality.

Hence, rescaling by 2`ν and setting Bν,`ν
i (·) = 22`νBν

i (2`ν ·), to obtain decay for

(3.3.44) it suffices to prove:

sup
nν≤`ν≤Nν

∥∥∥m̄0B
ν,`ν
i

∥∥∥
L1
x

≤ o(E). (3.3.46)

This is a direct manifestation of the perturbative nature of quadratic non-linearities

on neck regions, thanks to the local energy decay (3.3.33). In our case, the argument

is however slightly more involved because our product structure is non-local. This

represents however a minor technicality only, and we shall treat this analogously to the

previous instances of physical support leakage.

Let us introduce two auxiliary parameters. Setting Ων,`ν
x,β (·) := 2`νΩν

x,β(2`ν ·), by the

local energy estimate (3.3.33), we can find sequences κν → +∞ and ε̃ν ↓ 0 such that:∥∥∥m̄−10≤·≤κνΩ
ν,`ν
x,β

∥∥∥
L2
x

≤ ε̃ν ,

where we use the convention m̄k1≤·≤k2 := m̄≤k2 − m̄≤k1−1, and similarly for m̄≥k1 :=

1− m̄≤k1−1. Let us first treat the annulus determined so, and then the outer and inner

regions separately.
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For the annulus we can discard the cut-off m̄0. Regarding Bν,`ν
1 , we have:∑

k∈Z

∥∥∥Pk∇x · (m̄−10≤·≤κνΩ
ν,`ν
x,β φ

>k+10
ν,`ν

)
∥∥∥
L1
x

.
∑
k∈Z

∑
k1,k2≥k+5:|k1−k2|≤O(1)

2−(k1−k)
∥∥∥Pk1(m̄−10≤·≤κνΩ

ν,`ν
x,β )

∥∥∥
L2
x

∥∥∇xφ
k2
ν

∥∥
L2
x
,

where we have used the finite band property (2.1.3) as usual, and we control this by

O(ε̃νE
1
2 ) relying on the discrete Cauchy-Schwarz and k1 = k2+O(1), which is acceptable

for (3.3.46). For Bν,`ν
2 , we use Littlewood-Paley trichotomy as previously to get:∥∥∥∥∥∑

k∈Z

Pk(m̄−10≤·≤κνΩ
ν,`ν
x,β · ∇xφ

≤k+10
ν,`ν

)

∥∥∥∥∥
L1
x

.

∥∥∥∥sup
k1∈Z
|P≤k1−7(m̄−10≤·≤κνΩ

ν
x,β)|

∥∥∥∥
L2
x

·

∥∥∥∥∥(
∑
k2∈Z

|∇xφ
k2−3≤·≤k2+3
ν,`ν

|2)
1
2

∥∥∥∥∥
L2
x

+

∥∥∥∥∥(
∑
k1∈Z

|Pk1−3≤·≤k1+3(m̄−10≤·≤κνΩ
ν
x,β)|2)

1
2

∥∥∥∥∥
L2
x

·
∥∥∥∥sup
k2∈Z
|∇xφ

≤k2−7
ν,`ν

|
∥∥∥∥
L2
x

+
∑
k∈Z

∑
k1,k2∼k

∥∥Pk1(m̄−10≤·≤κνΩ
ν
x,β)
∥∥
L2
x
·
∥∥∇xφ

k2
ν,`ν

∥∥
L2
x
,

and relying on the Littlewood-Paley square function estimate for the first two terms, and

simply the discrete Cauchy-Schwarz for the last, we can bound the above by O(ε̃νE
1
2 )

again. Therefore this is a permissible contribution to (3.3.46).

Now we treat the error terms. First, let us consider the outer region defined by the

cut-off m̄>κν . Writing:∥∥∥∥∥m̄0

∑
k∈Z

PkB

∥∥∥∥∥
L1
x

. ‖m̄0‖L1
x

∑
k∈Z

‖PkB‖L∞x ({2−1≤|x|≤2}) , (3.3.47)

we proceed, first for:

B :=
∑
k∈Z

Pk∇x · (m̄>κνΩ
ν,`ν
x,β φ

>k+10
ν,`ν

),

by considering the convolution kernel for the Fourier multiplier ∇xPkPk′ , with k =

k′ +O(1), which gives:

‖PkB‖L∞x ({2−1≤|x|≤2}) .N
23k

(1 + 2k2κν )N

∥∥∥m̄>κνΩ
ν,`ν
x,β φ

>k′+10
ν,`ν

∥∥∥
L1
x

,
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for any positive integerN ∈ N, bearing in mind the physical support of m̄>κνΩ
ν,`ν
x,β φ

>k+10
ν,`ν

.

Using this estimate, for high frequency scales, we choose N = 3, getting the following

bound for the sum in k ≥ 0 from (3.3.47) :

2−3κν
∑
k≥0

2−k
∥∥∥m̄>κνΩ

ν,`ν
x,β

∥∥∥
L2
x

∑
k1>k+10

2−(k1−k)
∥∥∇xφ

k1
ν,`ν

∥∥
L2
x
,

by the finite band property (2.1.3) for φν,`ν . This is immediately seen to be o(E) as

κν → +∞, hence this contribution is acceptable. For the low frequency scales, if we

set N = 1 above, we have for the sum over k < 0 in (3.3.47):

2−κν
∑
k<0

2k
∥∥∥m̄>κνΩ

ν,`ν
x,β

∥∥∥
L2
x

∑
k1>k+10

2−(k1−k)
∥∥∇xφ

k1
ν,`ν

∥∥
L2
x
. o(E),

as desired, so the contribution of the outer region is controlled for Bν,`ν
1 . Regarding

Bν,`ν
2 , we have to control (3.3.47) with:

B :=
∑
k∈Z

Pk(m̄>κνΩ
ν,`ν
x,β · ∇xφ

≤k+10
ν,`ν

).

Proceeding similarly to the above, we look at the convolution kernel of PkPk′ , with

k = k′ +O(1), and given the spatial support of m̄>κνΩ
ν,`ν
x,β φ

≤k+10
ν,`ν

, we get the analogous

estimate for N ∈ Z:

‖PkB‖L∞x ({2−1≤|x|≤2}) .N
22k

(1 + 2k2κν )N

∥∥∥m̄>κνΩ
ν,`ν
x,β · ∇xφ

≤k′+10
ν,`ν

∥∥∥
L1
x

,

so that choosing N = 3 when k ≥ 0, and N = 1 if k < 0 as previously, yields the

control for (3.3.47):

2−κν (
∑
k∈Z

2−|k|)
∥∥∥m̄>κνΩ

ν,`ν
x,β

∥∥∥
L2
x

‖∇xφν,`ν‖L2
x
. o(E),

as desired, and this completes the treatment of the contribution to (3.3.46) of the outer

region.

Finally, we need to study the contribution of the interior region defined by the

support of m̄<−10, that we note being at a definite amount of distance from the support

of m̄0. First, we remark that we have:∥∥∥m̄<−10Ων,`ν
x,β

∥∥∥
H−1
x

−→ 0, (3.3.48)
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and to see this, we start by getting an extension ϕν of φν,`ν |B1 , equal to a suitably

chosen constant c = c({φν,`ν}ν∈N), such that by the construction of the sequence of

wave maps and the covering in Lemma 3.3.1, we have ϕcν := ϕν − c vanishing strongly

in supercritical spaces:

‖ϕcν‖Hs
x
−→ 0, s < 1. (3.3.49)

To establish (3.3.48) it is enough to consider ϕ̃ν∇xϕν , where ϕ̃ν := m̄<−10ϕν . For low

frequencies:

‖P≤0(ϕ̃ν∇xϕν)‖L2
x
. ‖ϕ̃ν‖L∞x

∥∥P≤O(1)ϕ
c
ν

∥∥
L2
x

+
∑

k1,k2≥O(1):|k1−k2|≤O(1)

‖∇xPk1ϕ̃ν‖L2
x
‖Pk2ϕ

c
ν‖L2

x
,

where for the first term we have used (2.1.2) to discard ∇x, and for the second we

passed initially to L1
x applying (2.1.4), and then transferred∇x from ϕcν to ϕ̃ν via (2.1.3).

Both items are acceptable by (3.3.49). For high frequencies, we apply precisely the same

argument, but with a slightly more refined Littlewood-Paley trichotomy decomposition:

2−k ‖Pk(ϕ̃ν∇xϕν)‖L2
x
. ‖P≤k−7ϕ̃ν‖L∞x ‖Pk−3≤·≤k+3ϕ

c
ν‖L2

x

+ ‖Pk−3≤·≤k+3∇xϕ̃ν‖L2
x
‖P≤k−7ϕ

c
ν‖L2

x

+ 2−
k
2

∑
k1,k2≥k−6:|k1−k2|≤O(1)

‖∇xPk1ϕ̃ν‖L2
x

2
k2
2 ‖Pk2ϕ

c
ν‖L2

x
,

where for the first term we applied (2.1.2) and for the other two we passed first to L1
x

via (2.1.3), then used Cauchy-Schwarz, from where for the second term we used (2.1.2)

for P≤k−7ϕ
c
ν and (2.1.3) for ϕ̃ν transferring ∇x from one to the other, whereas for the

third term this transfer of ∇x happened at once via (2.1.3) since k1 = k2 + O(1), and

then multiplied Pk2ϕ
c
ν simply by 2−k2/22k2/2 which led to the exponential gain 2−k/2 in

front of the sum since k2 ≥ k +O(1). Square-summing the above estimate over k > 0,

and applying discrete Cauchy-Schwarz for the third item, gives an acceptable bound by

(3.3.49), therefore we have claim (3.3.48).

With this understood, we can control the contribution of the inner region to (3.3.46)
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for the low frequencies. Given any positive integer K > 0, we have regarding Bν,`ν
1 :∑

k≤K

∥∥∥Pk∇x · (m̄<−10Ων,`ν
x,β φ

>k+10
ν,`ν

)
∥∥∥
L1
x

.
∑
k≤K

2k
∑

k1,k2≥k+5:|k1−k2|≤O(1)

2−k2

∥∥∥Pk1(m̄<−10Ων,`ν
x,β )

∥∥∥
L2
x

∥∥∇xφ
k2
ν

∥∥
L2
x

.
∑

k≤O(1)

 ∑
k+5≤k1,k2≤O(1):|k1−k2|≤O(1)

2−(k2−k)
∥∥∥Pk1(m̄<−10Ων,`ν

x,β )
∥∥∥
L2
x

∥∥∇xφ
k2
ν

∥∥
L2
x


+ 2K

∑
k1,k2≥O(1):|k1−k2|≤O(1)

2−k1

∥∥∥Pk1(m̄<−10Ων,`ν
x,β )

∥∥∥
L2
x

∥∥∇xφ
k2
ν

∥∥
L2
x
,

which is o(E) for the first term and oK(E) for the second by (3.3.48). Analogously,

looking at Bν,`ν
2 we get:

∥∥∥∥∥∑
k≤K

Pk(m̄<−10Ων,`ν
x,β · ∇xφ

≤k+10
ν,`ν

)

∥∥∥∥∥
L1
x

.

∥∥∥∥∥∑
k≤K

Pk[P≤K+O(1)(m̄<−10Ων
x,β) · ∇xφ

k−3≤·≤k+3
ν,`ν

]

∥∥∥∥∥
L1
x

+

∥∥∥∥∥∑
k≤K

Pk[Pk1−3≤·≤k1+3(m̄<−10Ων
x,β) · ∇xφ

≤k2−7
ν,`ν

]

∥∥∥∥∥
L1
x

.
∥∥P≤K+O(1)(m̄<−10Ων

x,β)
∥∥
L2
x
·

∥∥∥∥∥(
∑
k2≤K

|∇xφ
k2−3≤·≤k2+3
ν,`ν

|)
1
2

∥∥∥∥∥
L2
x

+

∥∥∥∥∥(
∑
k1≤K

|Pk1−3≤·≤k1+3(m̄<−10Ων
x,β)|2)

1
2

∥∥∥∥∥
L2
x

·
∥∥∥∥ sup
k2≤K

|∇xφ
≤k2−7
ν,`ν

|
∥∥∥∥
L2
x

,

and this is again controlled by oK(E) via (3.3.48). Therefore, for both contributions, we

can choose a sequence of integers Kν → +∞, together with decaying constants ςν ↓ 0,

such that:

∑
k≤Kν

∥∥∥Pk∇x · (m̄<−10Ων,`ν
x,β φ

>k+10
ν,`ν

)
∥∥∥
L1
x

+

∥∥∥∥∥∑
k≤Kν

Pk(m̄<−10Ων,`ν
x,β · ∇xφ

≤k+10
ν,`ν

)

∥∥∥∥∥
L1
x

≤ ςν ,

and this yields the decay of slowly growing frequencies for the inner region, as desired.

Note that the cut-off m̄0 has not played any role in the above argument. However,
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for the high frequencies k > Kν , having m̄0 will be crucial as we are going to pass by

(3.3.47) as before, first with:

B :=
∑
k>Kν

Pk∇x · (m̄<−10Ων,`ν
x,β φ

>k+10
ν,`ν

).

Considering the convolution kernel for ∇xPkPk′ , with k = k′ + O(1), as previously, we

estimate:

‖PkB‖L∞x ({2−1≤|x|≤2}) .
23k

(1 + 2k)3

∥∥∥m̄<−10Ων,`ν
x,β φ

>k′+10
ν,`ν

∥∥∥
L1
x

,

noting the fixed positive distance of the physical support of m̄<−10Ων,`ν
x,β φ

>k+10
ν,`ν

to the

annulus {2−1 ≤ |x| ≤ 2}. Using this, we can bound (3.3.47) in this case by:∑
k>Kν

2−k
∥∥∥m̄<−10Ων,`ν

x,β

∥∥∥
L2
x

∑
k1>k+10

2−(k1−k)
∥∥∇xφ

k1
ν,`ν

∥∥
L2
x
. 2−KνE ,

which is certainly acceptable, given that Kν → +∞. Finally, the last contribution to

treat is when:

B :=
∑
k>Kν

Pk(m̄<−10Ων,`ν
x,β · ∇xφ

≤k+10
ν,`ν

),

in (3.3.47), and here we proceed in complete analogy to the above, getting the following

estimate:

‖PkB‖L∞x ({2−1≤|x|≤2}) .
22k

(1 + 2k)3

∥∥∥m̄<−10Ων,`ν
x,β · ∇xφ

≤k′+10
ν,`ν

∥∥∥
L1
x

,

by looking at the convolution kernel of PkPk′ , with k = k′ + O(1), and the location of

spatial support of m̄<−10Ων,`ν
x,β · ∇xφ

≤k+10
ν,`ν

with respect to the annulus {2−1 ≤ |x| ≤ 2}.
This in turn, yields the following control for (3.3.47):∑

k>Kν

2−k
∥∥∥m̄<−10Ων,`ν

x,β

∥∥∥
L2
x

‖∇xφν,`ν‖L2
x
. 2−KνE ,

which, as noted above, is permissible. That concludes the treatment of the contribution

of the inner region, and therefore we have obtained claim (3.3.46).

In the end, going back to the physical Littlewood-Paley decomposition (3.3.36) and

expressing the time derivative ∂t via X and ∂x1 using expression (2.3.2), we have for
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any k ∈ Z:

‖Pk[(m̄≤Nν − m̄≤nν−1)∇t,xφν ](0)‖L2
x
.
∑
`∈Z

2−|k+`|εν + σν + ιν + o(E) −→ 0,

where the first sum arises from the low frequencies (3.3.39) and the regular part involv-

ing spatial derivatives falling on the cut-offs from (3.3.38) and (3.3.41), the second term

comes from errors having good time-like control (3.3.42), the third arises from treating

the higher-order time like derivative in (3.3.43), and finally the last term is due to the

perturbative Ḃ−1,2
∞ estimate of the non-linearity for the wave maps equation at high

frequency (3.3.44), combined with (3.3.45) and (3.3.46).

Lemma 3.3.3 is proved.

3.3.4 Completion of the proof

We are now at the concluding stage of the proof of Theorem 1.2.4, for which, going back

to the weak bubble tree decomposition (3.3.13), we must show that the energy of the

necks Ni,ν is asymptotically vanishing as ν → +∞. Recall that those are provided with

corresponding neck domains, that is the conformally degeneration annuli from (3.3.14),

so that setting:

φν,xki,ν (t, x) := φi,ν(λmin,νt, x
k
i,ν + λmin,νx),

we can apply Lemma 3.3.3, by (3.3.15) and (3.3.11), to write:

∇t,xφν,xki,ν = Υν,xki,ν
on [−1, 1]× (Bλ−1

min,νR
k
i,ν
\Bλ−1

min,νr
k
i,ν

),

where Υν,xki,ν
is supported on [−1, 1]× (B2λ−1

min,νR
k
i,ν
\B2−1λ−1

min,νr
k
i,ν

) with

∥∥∥Υν,xki,ν

∥∥∥
L∞t (L2

x)[−1,1]
. 1,

and satisfying the decay:

sup
k∈Z

∥∥∥PkΥν,xki,ν
(0)
∥∥∥
L2
x

−→ 0.

Recalling (3.3.11), we also have:∥∥∥Θν,xki,ν
(0)
∥∥∥
L2
x

−→ 0,
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where Θν,xki,ν
(t, x) := λmin,νΘi,ν(λmin,νt, x

k
i,ν + λmin,νx), together with:

∑
k∈Z

∥∥∥PkΞν,xki,ν
(0)
∥∥∥
L2
x

. 1,

where Ξν,xki,ν
(t, x) := λmin,νΞi,ν(λmin,νt, x

k
i,ν + λmin,νx).

From there, we can estimate the energy at time t = 0 on a neck region by:∥∥∥∇t,xφν,xki,ν (0)
∥∥∥2

L2
x(B

λ−1
min,ν

Rk
i,ν
\B

λ−1
min,ν

rk
i,ν

)
.

∣∣∣∣∫
R2

Υν,xki,ν
(0)Ξν,xki,ν

(0)dx

∣∣∣∣
+

∣∣∣∣∫
R2

Υν,xki,ν
(0)Θν,xki,ν

(0)dx

∣∣∣∣+ o(1),

which we bound by:

(sup
k∈Z

∥∥∥PkΥν,xki,ν
(0)
∥∥∥
L2
x

)
∑
k∈Z

∥∥∥PkΞν,xki,ν
(0)
∥∥∥
L2
x

+
∥∥∥Υν,xki,ν

(0)
∥∥∥
L2
x

∥∥∥Θν,xki,ν
(0)
∥∥∥
L2
x

+ o(1),

and by the previous estimates this tends to 0 as ν → +∞. Theorem 1.2.4 is proved.



Chapter 4

Conclusion: Future directions

We close the thesis with some thoughts and reflections about some of the challenges

lying on the road towards the full Soliton Resolution Conjecture, that the author is

most interested in. For the sake of simplicity, we will restrict our discussion to the case

of finite time blow up.

The most immediate question that arises, of course, is regarding the phenomena of

null concentration. In fact, taking the comparison to the parabolic counterpart of the

theory, the harmonic map heat flow treated by Ding and Tian [6], the analogue of our

results would be weaker as we move away from the equivariant set up. Nevertheless, the

techniques to deal with this concentration and the whole strategy are actually already

there. Let us say a few words about this now.

In fact, the analogue of our results would also be weaker than those of Duyckaerts,

Jia, Kenig and Merle [7], who treated the critical focusing wave equation �u = u5 on

R3+1. In this work, null concentration was proved to vanish in the energy space. The

argument advanced by the authors there seems to give not only hope, but also the

ingredients.

They argued by contradiction. Assuming that some energy was escaping into the

null boundary, away from the solitons, they could construct a whole “channel of energy”,

going backward along the null boundary up to the initial data. The latter of course being

fixed, concentration of energy was excluded, and that led to the desired contradiction.

The channel of energy itself is in reality only proved to exist for free waves with initial

data well concentrated on a boundary of a disc, with the angular and the L null energy

sufficiently small. This is precisely the initial data we construct in Theorem 1.2.3. After

the authors obtain decay in a suitable dispersive norm for the part of the solution that

approaches the boundary of light cone, analogously to what we do in Section 3.2, they
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get the latter arbitrarily close to the free wave in the energy space, and this then leads

to the desired construction.

As one guesses now, this is precisely what we were trying to mimic with our de-

composition (1.2.4). However, the perturbation theory for the focusing wave equation

is considerably easier than for wave maps (partly because of the bi-linear structure in

the gradient in the non-linearity, and partly because of the gauge fixing issues). We

hit therefore two important obstacles. The first one is that we cannot work with a

free wave as our basis, but with a gauge co-variant one. So in particular, the channels

of energy (or at least some approximated version of them) must be extended to that

case. In that regard, having the frequency support degenerating for the anti-symmetric

matrices should help. And secondly, one needs to be able to extend the solution well

beyond the interval we are working on currently, all the way up to the initial data.

That is our challenge for now!

There are a couple of other problems related to SRC, that the author would love

to carry on thinking about. One concerns building examples of winding behavior and

non-uniqueness of bubbles, as was beautifully achieved by Peter Topping in [36] for the

harmonic map heat flow. This is an ongoing project which, however, requires a lot of

background, as developed in the ground breaking work of Raphaël and Rodnianski [22],

going well beyond techniques we have mastered so far.

Finally, there is the mysterious problem of obtaining compensation type estimates

for wave maps, and more basically for harmonic maps, into general closed Riemannian

manifolds. We have in fact spent the largest part of our DPhil thinking about that...

but maybe that’s a good point to stop the story there, as far as this thesis is concerned.
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