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Chapter 1

Introduction

In this chapter, we discuss the basic concepts of holonomy groups, and introduce
the origin of our problem of finding compact Riemannian manifolds of holonomy
Spin(7).

1.1 Holonomy Groups

Let M be a C∞, connected and simply-connected n-dimensional oriented Rie-
mannian manifold with Riemannian metric g. Let ∇ be the Levi-Civita con-
nection associated to g. For x, y ∈ M , parallel transport along a smooth path γ
between x and y using the connection ∇ gives rise to an isometry between TxM
and TyM .

Definition 1.1.1 For x ∈ M , let Hol(x, g) be the group of isometries of TxM
generated by parallel transport around piecewise smooth loops based at x. It’s
clear that Hol(x, g) is conjugate to Hol(y, g) for any x, y ∈ M . Therefore,
it makes sense to define Hol(g) to be the holonomy group of (M, g), where
Hol(g) ⊂ SO(n). Hol(g) is defined up to conjugation in SO(n).

In fact, the notion of holonomy group can be defined for much more general
objects than Riemannian manifold, e.g. a principal bundle equipped with a
connection. However, general connections don’t have the nice property of being
torsion-free as Levi-Civita connection of Riemannian metrics, which is essential
in classification of possible holonomy groups. Throughout this article, we will
only consider connected and simply-connected Riemannian manifolds.

Holonomy group is intimately connected to curvature by definition. In fact,
the Lie algebra of Hol(x, g) ⊂ SO(TxM ), hol(x, g), is the subalgebra of so(TxM )
generated by τ (λ)−1R(τ (λ)v, τ (λ)w)τ (λ) for all v, w ∈ TxM , and τ (λ) a parallel
transport along a path λ from x ∈ M to all points y ∈ M . This is the Ambrose-
Singer theorem. Furthermore, in analytic case, hol(x, g) is generated by the set
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of all covariant derivatives of the curvature tensor evaluated at x. The Bianchi
identities therefore impose various restrictive conditions on the holonomy group.
In particular, if the holonomy representation on the tangent space is reducible,
it has to be a direct sum representation.

The work of Elie Cartan pinpointed the beautiful connection between Rie-
mannian geometry and the representation of Lie groups. For the curvature
tensor R on (M, g), the covariant derivative ∇R is zero if and only if there ex-
ists x ∈ M and a (3, 1)-type curvature-like tensor on TxM invariant under the
holonomy representation. So, Ambrose-Singer implies that the holonomy repre-
sentation of a manifold whose Riemann curvature tensor has vanishing covariant
derivative must leave the curvature tensor invariant.

Definition 1.1.2 Let R be the Riemann curvature tensor of the manifold
(M, g). If DR = 0, then M is called a symmetric space. Equivalently, symmetric
spaces are complete Riemannian manifolds for which the geodesic symmetry
around any point is a well-defined isometry.

The study of irreducible symmetric spaces, i.e. complete manifolds whose
holonomy Hol(g) is irreducible and DR = 0, is then reduced by Cartan to
the study of irreducible linear representations of Lie groups, in particular, the
classification of real forms of simple Lie algebras.

Berger’s work led to the classification of holonomy for non-symmetric spaces.

Theorem 1.1.3 [4] Let (M, g) be a non-symmetric simply-connected Rieman-
nian manifold of dimension n whose holonomy representation is irreducible, then
the holonomy group Hol(g) is one of the following

(i) Hol(g) = SO(n)
(ii) n = 2m and Hol(g) = U (m) (Kähler) or SU (m) (Ricci-flat and Kähler)

for m ≥ 2
(iii) n = 4m and Hol(g) = Sp(m) (hyperkähler) or Sp(1)Sp(m) (quaternionic

Kähler) for m ≥ 2
(iv) n = 16 and Hol(g) = Spin(9)
(v) n = 8 and Hol(g) = Spin(7)

(vi) n = 7 and Hol(g) = G2

From the Bianchi identities and the Ambrose-Singer theorem, one can deduce
that manifolds with holonomy contained in G2 or Spin(7) are Ricci-flat [24]
Proposition 12.5.

Since then, Alekseevskii [2] concluded that Spin(9) can not occur as a non-
symmetric holonomy group. Bryant [5] showed the local existence of met-
rics with holonomy G2 and Spin(7). Bryant and Salamon [6], in addition,
constructed complete metrics of holonomy G2 and Spin(7). Recently, Joyce
[11, 12, 13] found compact 7− and 8− manifolds of holonomy G2 and Spin(7).
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1.2 Basics of Spin(7)

In this article, we will only study compact 8-manifolds of the exceptional holon-
omy Spin(7). One should note that some techniques involved in the studying of
compact manifolds of holonomy Spin(7) and G2 can be quite similar.

Let R8 have coordinates (x1, . . . , x8). Define a 4-form on R8 by

Ω0 = dx1 ∧ dx2 ∧ dx5 ∧ dx6 + dx1 ∧ dx2 ∧ dx7 ∧ dx8 + dx3 ∧ dx4 ∧ dx5 ∧ dx6

+ dx3 ∧ dx4 ∧ dx7 ∧ dx8 + dx1 ∧ dx3 ∧ dx5 ∧ dx7 − dx1 ∧ dx3 ∧ dx6 ∧ dx8

− dx2 ∧ dx4 ∧ dx5 ∧ dx7 + dx2 ∧ dx4 ∧ dx6 ∧ dx8 − dx1 ∧ dx4 ∧ dx5 ∧ dx8

− dx1 ∧ dx4 ∧ dx6 ∧ dx7 − dx2 ∧ dx3 ∧ dx5 ∧ dx8 − dx2 ∧ dx3 ∧ dx6 ∧ dx7

+ dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8. (1.1)

The subgroup of GL(8,R) preserving Ω0 is exactly Spin(7), which is a compact,
semisimple, 21-dimensional Lie group. It is a subgroup of SO(8) and preserves
the orientation and standard Euclidean metric on R8. It is clear that Ω0 is
self-dual under the Hodge ∗ operation. Spin(7)-structures on an 8-manifold M
correspond bijectively to the sections of the subbundle of 4-forms on M , Ω, that
are identified with Ω0 under suitable isomorphism of R8 and the tangent spaces
of M . Therefore, a Spin(7)- structure Ω on M induces a natural metric g on
M via the inclusion of Spin(7) into SO(8), as well as a 4-form Ω such that the
tangent space of M admits an isomorphism with R8 identifying Ω and g with
Ω0 and the Euclidean standard metric on R8 respectively. By abuse of notation,
we shall identify the Spin(7)-structure with its associated 4-form Ω.

The 4-form Ω0 is the Cayley calibration on the octonions O[10]. On a
Riemannian manifold M, a closed exterior p-form φ with the property that
φ|ξ ≤ volξ for all oriented tangent p-plane ξ on M is called a calibration, M with
a calibration is called a calibrated manifolds. Further, any p-dimensional sub-
manifold N of M with φ|N = volN is called a φ-submanifold, it is homologically
volume minimizing, i.e. N has the minimal volume among all the submanifolds
N ′ homologous to N and ∂N = ∂N ′. For example, the complex submanifolds
of a Kähler manifold are homologically volume minimizing. This calibration of
complex Hermitian manifold by powers of Kähler form is classically known. Har-
vey and Lawson[10] gave new examples of calibrated geometries such as special
Lagrangian calibration (real n-form defined on a 2n-dimensional manifold with
holonomy contained in SU (n).) and exceptional calibrations including Cayley
calibration. As Cayley calibration is a four form defined on an 8-dimensional
manifold with holonomy contained in Spin(7), and the construction of compact
8-manifolds of holonomy Spin(7) is a recent result due to Joyce, one might hope
that Harvey and Lawson’s work on calibrated geometry would be carried further
in this new testing ground of compact holonomy Spin(7) manifolds.

An oriented 4-plane N’ in ∧4O is with Ω0(N ′) = 1 is called a Cayley 4-
plane, and an oriented 4-dimensional submanifold N of O ' R8 is called a
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Cayley submanifold if the tangent plane to N at each point is a Cayley 4-plane.
The geometry of Cayley 4-folds in O is most intriguing, it is invariant under
the 8-dimensional representation of Spin(7) as the form Ω is fixed by Spin(7).
Cayley submanifolds are clearly volume minimizing. Further, every Cayley 4-
fold carries a natural 21-dimensional family of anti-self-dual SU2 Yang-Mills
fields[10].

The k-forms on R8, ∧k(R8)∗, split into a direct sum of orthogonal repre-
sentations of Spin(7). Let ∧k

l denote the component of l-dimensional Spin(7)
irreducible representation in ∧kT ∗M . By [24] Proposition 12.5 and Hodge star
operation, we have

Proposition 1.2.1 Let M be an oriented 8-manifold with Spin(7)-structure.
Then ∧kT ∗M is split into orthogonal components of irreducible Spin(7) repre-
sentations as follows: ∧1T ∗M = ∧1

8, ∧2T ∗M = ∧2
7 ⊕ ∧2

21, ∧3T ∗M = ∧3
8 ⊕ ∧3

48,
∧4T ∗M = ∧4

+T ∗M ⊕ ∧4
−T ∗M , ∧4

+T ∗M = ∧4
1 ⊕ ∧4

7 ⊕ ∧4
27, ∧4

−T ∗M = ∧4
35,

∧5T ∗M = ∧5
8 ⊕ ∧5

48, ∧6T ∗M = ∧6
7 ⊕ ∧6

21, ∧7T ∗M = ∧7
8.

Let AM be the subbundle of ∧4T ∗M of 4-forms which are identified with the
canonical 4-form Ω0 under some isomorphism of R8 and TxM . The fibre of AM
is GL(8,R)/Spin(7) of dimension 64 − 21 = 43. So AM is of codimension 27
in ∧4T ∗M . Given the splitting in the proposition above, we see that TΩAM '
∧4

1 ⊕ ∧4
7 ⊕ ∧4

35. Smooth sections of AM are called admissable 4-forms, and are
essentially Spin(7)-structures on M .

By [5], g has holonomy contained in Spin(7) and Ω is the associated Spin(7)-
structure if and only if Ω is torsion-free, i.e. ∇Ω = 0 on M , where ∇ is the
Levi-Civita connection of g. By [24] Lemma 12.4, ∇Ω = 0 if and only if dΩ = 0.

The technique employed by Joyce in proving the existence of torsion-free
Spin(7)-structures Ω is both analytic and topological. It starts off with a
Spin(7)-structure Ω on a compact 8-manifold with small torsion, constructed
in the same spirit as the Kummer construction of metrics of holonomy SU (2)
on K3 surfaces, then the Ω is deformed to a one that is torsion-free via ana-
lytic means, and the associated metric is seen to be of holonomy Spin(7) by
topological considerations, namely Â-genus of M .

Theorem 1.2.2 [13] Let (M, g) be a compact, connected and simply connected
8-manifold with torsion-free Spin(7)-structure Ω. The Â-genus of M is

24Â(M ) = −1 + b1 − b2 + b3 + b4
+ − 2b4

−. (1.2)

The holonomy group Hol(g) is determined by Â(M ) as follows

(i) Hol(g) =Spin(7) if and only if Â(M ) = 1
(ii) Hol(g) = SU (4) if and only if Â(M ) = 2

(iii) Hol(g) = Sp(2) if and only if Â(M ) = 3
(iv) Hol(g) = SU (2) × SU (2) if and only if Â(M ) = 4
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Furthermore, if M has holonomy Spin(7), the moduli space of metrics with
holonomy Spin(7) on M up to diffeomorphisms isotopic to the identity, is a
smooth manifold of dimension 1 + b4

−(M ).

We will discuss the above in more detail in the next chapter.

1.3 Kummer Construction and Eguchi-Hanson

Metric

Suppose M is a compact complex n-manifold with Kähler metric g and Kähler
form ω. In the case c1 = 0, as a special case of the Calabi conjecture, M
admits a Ricci-flat Kähler metric with holonomy in SU (n). K3 surfaces are
by definition compact, simply-connected, complex surfaces with c1 = 0. By
Calabi-Yau, they admit a 58-dimensional family of metrics of holonomy SU (2).
However, although these metrics exist, they are so far not known explicitly and
exceedingly difficult to describe.

Page [18] developed a good description of some of these Calabi-Yau met-
rics based on the Kummer construction. Let T 4 be a 4-torus with coordi-
nates (x1, x2, x3, x4), with xi ∈ R/Z. Let −1 act on T 4 by (x1, x2, x3, x4) 7−→
(−x1,−x2,−x3,−x4). T 4/{±1} becomes a singular 4-manifold with 16 singular
points, {(x1, x2, x3, x4)|xi ∈ {0, 1

2}}. Regard T 4 as a complex manifold, and let
Y be the blow-up of T 4/{±1} at the 16 singular points. As

b0(T 4) = 1, b1(T 4) = 4, b2
+(T 4) = 3, b2

−(T 4) = 3, b3(T 4) = 4, b4(T 4) = 1,

b0(T 4/{±1}) = 1, b1(T 4/{±1}) = 0, b2
+(T 4/{±1}) = 3, b2

−(T 4/{±1}) = 3,

b3(T 4/{±1}) = 0, b4(T 4/{±1}) = 1.

Blowing up at each singular point of T 4/{±1} changes the Betti numbers by
adding 1 to b2

− and nothing else. Hence,

b0(Y ) = 1, b2
+(Y ) = 3, b2

−(Y ) = 3 + 16 = 19, b4(Y ) = 1, b1(Y ) = b3(Y ) = 0.

It is well-known that Y is a K3 surface.
The blow-ups of these singular points are modelled on the Eguchi-Hanson

spaces [8]. Let C2 have complex coordinates (z1, z2), and consider the action
of −1 : (z1, z2) 7−→ (−z1,−z2). Let X be the blow-up of C2/{±1}, X is then
biholomorphic to T ∗CP1, π1(X) = 1, and H2(X,R) = R. We shall find ex-
plicitly a hyperkähler structure (i.e. a metric with holonomy in SU (2)) on
X. A hyperkähler 4-manifold is by definition Ricci-flat and self-dual, and its
metric is Kähler with respect to each of the three anti-commuting complex struc-
tures. More explicitly, we can describe a hyperkähler structure on an oriented
4-manifold M by a triple (ω1, ω2, ω3) of smooth, closed 2-forms on M . Given
an oriented orthonormal basis of T ∗

x M {dx1, dx2, dx3, dx4}, we have
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ω1 = dx1 ∧ dx2 + dx3 ∧ dx4,

ω2 = dx1 ∧ dx3 − dx2 ∧ dx4,

ω3 = dx1 ∧ dx4 + dx2 ∧ dx3.

Now, the closed, holomorphic 2-form dz1 ∧ dz2 on C2 descends to C2/{±1}
and lifts to X in turn. We define closed 2-forms ω2, ω3 on X by ω2 + iω3 =
dz1 ∧ dz2, i.e. ω2 = dx1 ∧ dx3 − dx2 ∧ dx4, ω3 = dx1 ∧ dx4 + dx2 ∧ dx3 where z1

and z2 are represented by real coordinates (x1, x2) and (x3, x4) respectively.
Furthermore, the function u = |z1|2 + |z2|2 on C2 descends to C2/{±1} and

lifts to X in turn. Let t ≥ 0, and define a function ft on X by

ft =
√

u2 + t4 + t2 log u − t2 log(
√

u2 + t4 + t2). (1.3)

Then ft extends to a Kähler potential for ω1 on X. Namely, define a 2-form
ωt on X by ωt = 1

2 i∂∂̄ft. For t > 0, ωt is the Kähler form of a Kähler metric
on X. ωt together with ω2 and ω3 defined above form the triplet of smooth
closed 2-forms on X determining the hyperkähler structure on X and giving
the so-called Eguchi-Hanson metric with holonomy SU (2). When t = 0, h0 is
just the pullback to X of the Euclidean metric on C2\{±1}. The smaller t is
the closer ht and h are. Furthermore, the Eguchi-Hanson metric is asymptotic
to the flat metric h0 at infinity. Thus Eguchi-Hanson space is an asymptotically
locally Euclidean (ALE) space.

Page proposed to glue 16 copies of the Eguchi-Hanson space described above
in small neighborhoods of the singular points of T 4/{±1} to produce a metric
on the K3 surface which is approximately hyperkähler depending on how small
t is.

An ALE space is a complete Riemannian manifold with one end modelled
upon the end of Rn/G, where G is a nontrivial finite subgroup of SO(n) acting
freely on Rn\{0}. Note that n must be even if G is to act fixed point freely, as
any nontrivial element of SO(n) has to act with fixed points for n odd.

In fact, later results [25][16] show that the K3 surface does admit hyperkähler
metrics using Page’s construction when t is small.
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Chapter 2

Existence and Construction
of Compact 8-manifolds
with Holonomy Spin(7)

In this chapter, we discuss D. Joyce’s work generalizing the Kummer construc-
tion to prove the existence and construct compact 8-manifolds with holonomy
Spin(7).

2.1 Motivation

Page’s construction of hyperkähler structure on K3 surfaces obtained by gluing
16 Eguchi-Hanson spaces to the singular neighborhoods of T 4/{±1} is general-
ized by Joyce to construct compact 8-manifolds by resolving T 8/G, where G is
some finite group.

Given Page’s construction of hyperkähler structure on the resolution K3 of
T 4/{±1}, we can produce immediately T 4×K3 as a resolution of T 8/Z2 = T 4×
(T 4/{±1}) and K3 × K3 as a resolution of T 8/Z2

2 = (T 4/{±1}) × (T 4/{±1}).
These two compact manifolds have holonomy groups {1}×SU (2) and SU (2)×
SU (2), both are subgroups of Spin(7). So T 4 × K3 and K3 × K3 both have
torsion-free Spin(7)-structure. Similar to the Page’s method, we can approxi-
mate torsion-free Spin(7)-structures on T 4 × K3 and K3 × K3 by piecing to-
gether the flat Spin(7)-structure on T 8/Z2 and T 8/Z2

2 with the Eguchi-Hanson
metrics.

We shall then look for more general orbifolds T 8/G whose singularities are
modelled upon the singularities of the above two examples. Resolving these
singularities carefully, we might obtain resolutions that have Spin(7)-structure
and holonomy Spin(7).
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2.2 Resolution of Certain Orbifolds

As usual, let Ω be a flat Spin(7)-structure with zero torsion on T 8, then Ω gives
rise to a flat metric on T 8. Let G be a finite subgroup of isometries of T 8

preserving Ω, i.e. G ⊂ Spin(7). For g ∈ G, let Sg be the image in T 8/G of the
fixed points of g in T 8. and S be the union of Sg as g 6= e ranges in G in T 8/G.
Let X be the Eguchi-Hanson space described in Chapter 1. Namely, there is a
surjective map, π : X → C2/{±1}. Let B4

ζ be the open ball of radius ζ (ζ is
sufficiently small) around 0 in C2 ' R4. Then there is an open subset U of X
and a map π : U → B4

ζ /{±1} which resolves the singularity of B4
ζ /{±1} at 0.

In [13] section 3.1, Joyce introduced five types of nice orbifold models T with
singularities which have resolutions R, π : R → T as follows.

(i) T = T 4 × (B4
ζ /{±1}), S = T 4 × {0}, and R = T 4 × U , where the map

π : U → B4
ζ /{±1} gives rise to the resolving map π : R → T .

The resolution fixes b1, and increases b2 by 1, b3 by 4, b4
+ by 3, and b4

− by
3. This can be easily seen using the Kunneth formula.

(ii) T = (T 4/{±1})×(B4
ζ /{±1}), S = (T 4/{±1})×{0}, and R = (T 4/{±1})×

U with obvious resolving map π.
The resolution fixes b1 and b3, and increases b2 by 1, b4

+ by 3, and b4
− by 3.

(iii) T = (B4
ζ /{±1}) × (B4

ζ /{±1}), S = {0 × 0}, and R = U × U with obvious
resolving map π.
The resolution fixes b1, b2, b3, and b4

−, and increases b4
+ by 1. Here, in

the resolution, one effectivly put in S2 × S2 in place of the singular point,
which is the intersection of type ii and type v singularities. Obviously b4

increases by 1, but b2 remains fixed, because in resolving type ii and type
v singularities, we will have already accounted for the increase of b2 there.

(iv) T = (T 4 × (B4
ζ /{±1}))/〈σ〉, where σ is an isometric involution of T 4 ×

(B4
ζ /{±1}) given by for example

σ : (x1, x2, x3, x4, y1, y2, y3, y4) 7−→ (
1
2

+ x1, x2,−x3,−x4, y1, y2,−y3,−y4)

and S = (T 4 × {0})/〈σ〉, R = (T 4 × U )/〈σ〉.
Then σ acts on T 4 by (x1, x2, x3, x4) 7−→ (1

2 + x1, x2,−x3,−x4), and σ
acts on U by an isometric involution of U that projects to the action
(y1, y2, y3, y4) 7−→ (y1, y2,−y3,−y4) on B4

ζ /{±1}, with obvious resolving
map π.
There are two possible actions of σ on U . Let (z1, z2) be the complex
coordinates on B4

ζ giving U a complex structure: the involution (z1, z2) 7−→
(z1,−z2) induces a holomorphic involution of U ; the involution (z1, z2) 7−→
(z̄1, z̄2) induces an antiholomorphic involution of U . A rational curve CP1

in U generates H2(U,R). The first involution leaves the homology class
generated by CP1 invariant, while the second involution changes its sign.
Therefore, we get two topologically distinct resolutions R of T .
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The first resolution fixes b1, and increases b2 by 1, b3 by 2, b4
+ by 1 and b4

−
by 1.
The second resolution fixes b1 and b2, and increases b3 by 2, b4

+ by 2 and
b4
− by 2.

(v) T = (T 4/{±1} × B4
ζ /{±1})/〈σ〉, σ is defined as above.

S = (T 4/{±1} × {0})/〈σ〉, R = ((T 4/{±1}) × U )/〈σ〉.
The two possible actions of σ on U give rise to two topologically distinct
resolutions R, π.
The first resolution fixes b1 and b3, and increases b2 by 1, b4

+ by 1 and b4
−

by 1.
The second resolution fixes b1, b2, and b3 , and increases b4

+ by 2 and b4
−

by 2.

If all the singular points of T 8/G are of one of the five types above, we can
then obtain a compact, non-singular 8-manifold M by resolving the singularities
accordingly. For each singularity T , we remove the subset T from T 8/G and
replace it with the corresponding resolution R just as in Page’s resolution with
Eguchi-Hanson spaces.

We should remark that the singular points of type (iii) are not isolated,
rather they are transverse intersections of two submanifolds of singularities of
type (ii) or (v). In resolving T 8/G, we must be careful to combine all three
types of resolution for type (ii), (iii) and (v) singularities all at once.

One should also note that the resolution π : U → B4
ζ /{±1} does not change

the fundamental group. So π1(M ) ' π1(T 8/G).

2.3 Existence of Torsion Free Spin(7) Structures

Having obtained resolutions M of T 8/G, using analytic tools, Joyce in [13]
section 4 then shows first, there exists Spin(7)-structures Ω on M with small
torsion, and second, these Ω can be deformed to one that is torsion-free. The
analytic techniques involved in showing the existence of torsion-free Spin(7)-
structure are quite lengthy and sophisticated. We shall not discuss this here.

2.4 Topology of Compact Riemannian Manifolds
with Holonomy Spin(7)

Let M be a compact 8-manifold with metric g such that Hol(g) ⊂ Spin(7).
Then M is a spin manifold. Let ∆ = ∆+ ⊕ ∆− be the spin bundle of M . We
have on ∆ Dirac operators D+ and D−, where

D+ : C∞(∆+) → C∞(∆−), and D− : C∞(∆−) → C∞(∆+).
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By the Atiyah-Singer index theorem,

ind(D+) = dimKerD+ − dimKerD− = Â(M ).

In particular, when dim(M ) = 8, 45 × 27Â(M ) = 7p1(M )2 − 4p2(M ).
Since Hol(g) ⊂Spin(7), g must be Ricci-flat, and hence has vanishing scalar

curvature. Lichnerowicz’s Weitzenbock formula implies that any harmonic spinor
must be constant, i.e. KerD± contain only constant positive and negative
spinors. Hol(g) determines the constant spinors, and therefore ind(D+). For
any subgroup G of Spin(7), KerD± are simply the G-invariant subbundles of
∆±, so ind(D+) is the dimension of the G-invariant part of ∆+ minus the
dimension of the G -invariant part of ∆−. Also [13] formula (69) gives

24Â(M ) = −1 + b1 − b2 + b3 + b4
+ − 2b4

−

Now given Berger’s list and the fact that Hol(g) ⊂ Spin(7), we see that
Hol(g) is either Spin(7), SU (4), Sp(2), or SU (2)×SU (2). [26] gives the dimen-
sions of the spaces of parallel spinors for various holonomy groups. Therefore,
we can distinguish the holonomy groups of g by the Â-genus. Namely,

Hol(g) =





Spin(7) iff Â(M ) = 1
SU (4) iff Â(M ) = 2
Sp(2) iff Â(M ) = 3
SU (2) × SU (2) iff Â(M ) = 4

Further, if a compact Riemannian 8-manifold M has holonomy Spin(7), it
must be Ricci-flat; by the Cheeger-Gromoll splitting theorem, M must have
finite fundamental group. Let M̃ be the universal cover of M , and d the degree
of covering. Then Â(M ) = Â(M̃ )/d. As Â(M̃ ) must be 1, we see that d = 1.
So M is simply-connected.
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Chapter 3

New Examples of Compact
8-Manifolds of Holonomy
Spin(7)

In [13], Joyce found a series of examples of compact 8-manifolds with holonomy
group Spin(7). The basic strategy is to find finite subgroups G acting on T 8 such
that the singularities are of the 5 types described in section 2.3. Joyce found
altogether at least 95 topologically distinct examples of compact 8-manifolds of
holonomy Spin(7). We will carry out the search a little further, to find another
class of examples.

In [13], the two families of group action on T 8 are Z4
2 and Z5

2, their action
on T 8 is chosen carefully to preserve the Spin(7)-structure, i.e. the associated
4-form Ω defined in chapter 1.

Let (x1, . . . , x8) be coordinates on T 8 = R8/Z8, where xi ∈ R/Z.
Let α, β, γ, δ, ε, η be the involutions of T 8 defined by

α((x1, . . . , x8)) = (−x1,−x2,−x3,−x4, x5, x6, x7, x8)
β((x1, . . . , x8)) = (x1, x2, x3, x4,−x5,−x6,−x7,−x8)
γ((x1, . . . , x8)) = (c1 − x1, c2 − x2, x3, x4, c5 − x5, c6 − x6, x7, x8)
δ((x1, . . . , x8)) = (d1 − x1, x2, d3 − x3, x4, d5 − x5, x6, d7 − x7, x8)

ε((x1, . . . , x8)) = (c1 + x1, c2 + x2, x3,
1
2

+ x4, c5 + x5, c6 + x6, x7,
1
2

+ x8),

(3.1)

as in [13] section 3.2, where ci and di take values in {0, 1
2}. We will see later how

η is defined. In addition, in order for the singular points to be of the specified
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types, one had to require that

(c1, c2) 6= (0, 0) (c5, c6) 6= (0, 0) (d1, d3) 6= (0, 0)
(d5, d7) 6= (0, 0) (c1, c5) 6= (d1, d5) (d3, d7) 6= (0, 0) (3.2)

It is clear that all these six elements preserve the 4-form Ω which defines the
Spin(7)-structure. Also α2 = β2 = γ2 = δ2 = ε2 = 1, and all these ele-
ments mutually commute. Joyce worked with the abelian groups 〈α, β, γ, δ〉
and 〈α, β, γ, δ, ε〉. These groups are certainly automorphisms of T 8 preserving
the Spin(7) structure Ω.

The 95 examples Joyce found using the actions defined above have the
property that b3 = 4, 8, or 16, and that 2b2 + b4 = 150, 158 or 174 respec-
tively. Furthermore, they all satisfy the relations that b4

+ = 103 − b2 + b3 and
b4
− = 39− b2 + b3.

Looking at the example more closely, we see that the examples arising from
the group 〈α, β, γ, δ〉 all have b3 = 16. In these examples, Sαβ = Sα ∩ Sβ is
a set of 256 singular points, which yield the only 64 singularities of type (iii),
Sα and Sβ yield singularities of type (ii) or (v). The example arising from the
group 〈α, β, γ, δ, ε〉 have b3 = 4 or b3 = 8. Here, Sαβ and Sαβε each yield 32
singularities of type (iii). Sαβ = Sα ∩ Sβ , and Sαβε = Sγ ∩ Sαβγε. Sα, Sβ , Sγ ,
and Sαβγε yield singularities of type (ii) or (v). Other singular sets, e.g. Sδ

yield singularities of type (i) or (iv), which contribute to b3.
Given the above observation, we might try to add another generator η to

form group G = Z6
2, so that the singular sets would contain Sαβη and Sαβεη

in addition to Sαβ and Sαβε. Each of these four sets would yield 16 singular-
ities of type (iii). It also turns out that none of the singular sets arising from
〈α, β, γ, δ, ε, η〉 yields singularities of type (i) or (iv), hence b3 must be 0.

To define η, we look at how Sαβη and Sαβεη could arise from singular sets
which contain type (ii) or (v) singularities. There are two possibilities. Firstly,
Sαβη = Sβ ∩ Sαη , and Sαβεη = Sδ ∩ Sαβδεη . Second possibility is that Sαβη =
Sδ ∩ Sαβδη , and Sαβεη = Sβ ∩ Sαεη.

In the case Sαβη = Sβ ∩ Sαη and Sαβεη = Sδ ∩ Sαβδεη, we deduce that η
must be of the following form

η((x1, x2, x3, x4, x5, x6, x7, x8)) = (e1 +x1, e2 +x2, e3+x3, e4 +x4, x5, x6, x7, x8)
(3.3)

where ei ∈ {0, 1
2} for i ∈ {1, 2, 3, 4}. Furthermore, we need to impose further

constraints in addition to the ones in Lemma 3.2.1 and Lemma 3.3.1 of [13].
In order for Sαβ, Sαβε, Sαβη, and Sαβεη to be singularities of type (iii) which
we can resolve using the method in [13], we need Sαβ to be fixed by α and β
only, Sαβε to be fixed by γ and αβγε only, Sαβη to be fixed by β and αη only,
and Sαβεη to be fixed by δ and αβδεη only. Thus Sαβ, Sαβε, Sαβη, Sαβεη each
contributes 16 singularities of type (iii). From these, we see that

d1 = c1 + e1, d3 = e3 =
1
2
, d5 = c5 =

1
2
, d7 = 0,
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e1 =
1
2
, and (c1 6= e1 or c2 6= e2).

In order that the only singular sets possible are Sα, Sβ , Sγ , Sδ, Sαβ, Sαβε,
Sαβη, Sαβεη , Sαη, Sαβγε, and Sαβδεη , we must have in addition that

d1 + e1 =
1
2
, e4 =

1
2
, c2 + e2 6= 0, and e2 =

1
2
.

Hence
(c1, c2, c5) = (

1
2
, 0,

1
2
), (d1, d3, d5, d7) = (0,

1
2
,
1
2
, 0),

(e1, e2, e3, e4) = (
1
2
,
1
2
,
1
2
,
1
2
), c6 = 0 or

1
2
.

In the case Sαβη = Sδ ∩ Sαβδη and Sαβεη = Sβ ∩ Sαεη, we deduce that η
must be of the following form

η((x1, x2, x3, x4, x5, x6, x7, x8)) = (d1+x1, e2+x2, d3+x3, e4+x4, c5+x5, c6+x6, x7,
1
2
+x8),

(3.4)
where ei ∈ {0, 1

2} for i ∈ {2, 4}. Again, we need to impose further constraints
in addition to the ones in [13] Lemma 3.2.1 and Lemma 3.3.1 as in the previous
case. In order that the Sαβ, Sαβγ , Sαβη , and Sαβεη are singularities of the right
type, we must have

c5 = d5 =
1
2
, d7 = 0, d3 =

1
2
, and c1 6= d1.

In order that the only singular sets possible are Sα, Sβ , Sγ , Sδ , Sαβ , Sαβε, Sαβη,
Sαβεη, Sαεη, Sαβγε, and Sαβδη and nothing else, the following must also hold:

e2 =
1
2
, e4 = 0, c2 = 0, c1 =

1
2
.

Hence
(c1, c2, c5) = (

1
2
, 0,

1
2
), (d1, d3, d5, d7) = (0,

1
2
,
1
2
, 0),

(e2, e4) = (
1
2
, 0), c6 = 0 or

1
2
.

The reason that we only allow the 11 elements specified above in G to have
fixed points is that if more elements in G have fixed point set, namely, 16 T 4’s,
the singular sets will intersect with each other in some T 2’s. But we don’t know
yet how to resolve this within holonomy Spin(7).

From above, we found two classes of orbifolds T 8/Z6
2 such that using the

resolutions discussed in [13] they become compact 8-manifolds with holonomy
Spin(7) .

Example 1 Consider the first possibility of η defined by equation (3.3). Put
(c1, c2, c5, c6) = (1

2
, 0, 1

2
, 0), (d1, d3, d5, d7) = (0, 1

2
, 1

2
, 0), and (e1, e2, e3, e4) =

(1
2 , 1

2 , 1
2 , 1

2).
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(i) The fixed point set of α Fα consists of 16 T 4’s. β acts as -1 on each T 4 but
fixes the set Fα, 〈γ, δ, ε, η〉 acts freely on Fα. So Sα contains 1 singularity
of type (ii).

(ii) The fixed point set of β Fβ consists of 16 T 4’s. α fixes the set Fβ, and acts
as -1 on each T 4. η, γδ fixes Fβ, and acts as fixed point free involution σ
on each T 4. 〈γ, ε〉 acts freely on Fβ. So Sβ contains 4 singularities of type
(v).

(iii) The fixed point set of γ Fγ consists of 16 T 4’s. αβε fixes Fγ , and acts as -1
on each T 4. αδ fixes Fγ , and acts as fixed point free involution σ on each
T 4. 〈α, β, η〉 acts freely on Fγ . So Sγ contains 2 singularities of type (v).

(iv) The fixed point set of δ Fδ consists of 16 T 4’s. αβεη fixes Fδ, and acts as -1
on each T 4. βγε fxes Fδ, and acts as fixed point free involution σ on each
T 4. 〈α, β, γ〉 acts freely on Fδ. So Sδ contains 2 singularities of type (v).

(v) The fixed point set of αβ Fαβ consists of 256 singular points. α fixes Fαβ,
and 〈γ, δ, ε, η〉 acts freely on each point. So Sαβ contains 16 singularities of
type (iii).

(vi) The fixed point set of αβε Fαβε consists of 256 singular points. γ fixes Fαβε,
and 〈α, β, δ, η〉 acts freely on each point. So Sαβε contains 16 singularities
of type (iii).

(vii) The fixed point set of αβη Fαβη consists of 256 singular points. β fixes Fαβη,
and 〈α, γ, δ, ε〉 acts freely on each point. So Sαβη contains 16 singularities
of type (iii).

(viii) The fixed point set of αβεη Fαβεη consists of 256 singular points. δ fixes
Fαβεη, and 〈α, β, γ, ε〉 acts freely on each point. So Sαβεη contains 16 sin-
gularities of type (iii).

(ix) The fixed point set of αη Fαη consists of 16 T 4’s. β fixes Fαη, and acts as
-1 on each T 4. 〈α, γ, δ, ε〉 acts freely on Fαη. So Sαη contains 1 singularity
of type (ii).

(x) The fixed point set of αβγε Fαβγε consists of 16 T 4’s. γ fixes Fαβγε, and acts
as -1 on each T 4. αδη fxes Fαβγε, and acts as fixed point free involution σ
on each T 4. 〈α, β, δ〉 acts freely on Fαβγε. So Sαβγε contains 2 singularities
of type (v).

(xi) The fixed point set of αβδεη Fαβδεη consists of 16 T 4’s. δ fixes Fαβδεη,
and acts as -1 on each T 4. αγ fxes Fαβδεη, and acts as fixed point free
involution σ on each T 4. 〈α, β, ε〉 acts freely on Fαβδεη. So Sαβδεη contains
2 singularities of type (v).

So we have altogether 2 singularities of type (ii), 64 singularities of type (iii),
and 12 singularities of type (v). Let k1 singularities in Sβ have the resolution
of the first type, and 4− k1 singularities in Sβ have the resolution of the second
type; let k2 singularities in Sγ have the resolution of the first type, and 2 − k2

singularities in Sγ have the resolution of the second type; let k3 singularities in
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Sδ have the resolution of the first type, and 2 − k3 singularities in Sδ have the
resolution of the second type; let k4 singularities in Sαβγε have the resolution
of the first type, and 2 − k4 singularities in Sαβγε have the resolution of the
second type; let k5 singularities in Sαβδεη have the resolution of the first type,
and 2 − k5 singularities in Sαβδεη have the resolution of the second type. Let
k = k1 + k2 + k3 + k4 + k5.

Computing Betti numbers according to the rule in section 2.2, we have

b0 = 1, b1 = 0, b2 = 2 + k, b3 = 0, b4
+ = 101 − k, b4

− = 37 − k

Looking at the intersection product on the cohomology of M ,
⋂

i,j

: Hi(M,R) × Hj(M,R) → Hi+j(M,R)

we discover that for k2, k3, k4, k5, the group of permutations on the indices
generated by (24), (35), and (23)(45) leaves invariant the properties of

⋂
i,j. In

fact, let χ(x) = 1 if x 6= 0 and 0 if x = 0, then

dim(Im
⋂

2,2

) = 2 +
5∑

i=1

χ(ki) + 4χ(k1)k1 + χ(k2)χ(k4)k2k4 + χ(k3)χ(k5)k3k5

The numbers of manifolds distinguishable from dim(Im
⋂

2,2) for 0 ≤ k ≤ 12
are listed as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12
1 2 5 8 13 15 17 15 13 8 5 2 1

Example 2 Consider the second case when η is defined by (3.4). Put (c1, c2, c5, c6)
= (1

2
, 0, 1

2
, 0), (d1, d3, d5, d7) = (0, 1

2
, 1

2
, 0), and (e2, e4) = (1

2
, 0). We have similar

to Example 1, the following categorization of singular sets:

(i) Sα contains 1 singularity of type (ii).
(ii) Sβ contains 4 singularities of type (v).

(iii) Sγ contains 2 singularities of type (v).
(iv) Sδ contains 2 singularities of type (v).
(v) Sαβ contains 16 singularities of type (iii).

(vi) Sαβε contains 16 singularities of type (iii).
(vii) Sαβη contains 16 singularities of type (iii).

(viii) Sαβεη contains 16 singularities of type (iii).
(ix) Sαεη contains 2 singularities of type (v).
(x) Sαβγε contains 2 singularities of type (v).
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(xi) Sαβδη contains 2 singularities of type (v).

So we have altogether 1 singularity of type (ii), 64 singularities of type (iii),
and 14 singularities of type (v). Let j1 singularities in Sβ have the resolution
of the first type, and 4− j1 singularities in Sβ have the resolution of the second
type; j2 singularities in Sγ have the resolution of the first type, and 2 − j2
singularities in Sγ have the resolution of the second type; j3 singularities in
Sδ have the resolution of the first type, and 2 − j3 singularities in Sδ have the
resolution of the second type; j4 singularities in Sαεη have the resolution of the
first type, and 2 − j4 singularities in Sαεη have the resolution of the second
type; j5 singularities in Sαβγε have the resolution of the first type, and 2 − j5
singularities in Sαβγε have the resolution of the second type; j6 singularities in
Sαβδη have the resolution of the first type, and 2−j6 singularities in Sαβδη have
the resolution of the second type. Let j = j1 + j2 + j3 + j4 + j5 + j6.

Computing Betti numbers according to the rule in section 2.2, we have

b0 = 1, b1 = 0, b2 = 1 + j, b3 = 0, b4
+ = 102 − j, b4

− = 38 − j

Again, by looking at the intersection product on the cohomology of M ,
we discover that the group of permutations on the indices of j2, j3, j5, and j6
generated by (23), (56), and (25)(36) leaves the properties of

⋂
2,2 invariant. In

fact,

dim(Im
⋂

2,2

) = 1+
6∑

i=1

χ(ji)+2χ(j1)j1+χ(j1)χ(j4)j1j4+χ(j2)χ(j5)j2j5+χ(j3)χ(j6)j3j6

The numbers of manifolds distinguishable from dim(Im
⋂

2,2) for 0 ≤ k ≤ 14
are listed as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 3 8 15 26 36 45 47 45 36 26 15 8 3 1

The manifolds constructed from these two examples may not all be topo-
logically distinct. So far, we have not yet been able to find all the necessary
topological invariants to distinguish them.

All the known examples thus far have Euler characteristic 144, equivalently,
b4
+ = 103 − b2 + b3, and b4

− = 39 − b2 + b3. This might due the particular
Eguchi-Hanson construction we use in deriving the known examples. There may
exist other interesting relations or equalities for the Betti numbers of compact
8-manifolds of holonomy Spin(7). We also notice that all known examples of
Calabi-Yau manifolds of holonomy SU (4) have Euler characteristics divisible by
24, eg. 24, 48, 72, and the Euler characteristic of the known Spin(7) manifolds
is 144, divisible by 24 again.

We have exhausted all possible orbifolds of T 8 by actions of the groups
Z4

2, Z5
2, and Z6

2, whose generators are very carefully chosen to preserve Ω and
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to generate good singularities of the five types which can be resolved using
Eguchi-Hanson spaces. Furthermore, by looking at the 14 4-forms in Ω that
need to be preserved, we can’t produce more orbifolds of T 8 whose resolution
would be of holonomy Spin(7) by expanding the abelian group G with more
translational involution or even non-fixed-point-free involutions. We haven’t
checked several other possible actions which are essentially isometric to the
ones already considered, our guess is that they don’t generate anything new.
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Chapter 4

Finite Subgroups of Spin(7)
acting on R

8

Our method of constructing compact 8-manifolds with Spin(7) structure has
been resolving orbifolds using the Eguchi-Hanson space. The Eguchi-Hanson
space is an example of an ALE space. One direction to generalize and look
for further examples of compact 8-manifolds with holonomy Spin(7) would be
to generalize Eguchi-Hanson. In other words, we want to look for some finite
subgroup G ⊂ SO(l), such that Rl/G has a resolution π : X → Rl/G, where
X is a complete Riemannian manifold with one end asymptotic to Rl/G. Such
a space X is called an asymptotically locally Euclidean manifold. Such an ALE
space has a metric g which is asymptotic to the Euclidean metric on Rl/G.
Namely, the resolution π : X → Rl/G is continuous and surjective, smooth and
injective except at the origin, and π−1(0) is connected and simply-connected,
also a finite union of compact submanifolds of X. π induces a diffeomorphism
from X\π−1(0) to (Rl\{0})/G. g approximates the Euclidean metric h on Rl/G
means that

π∗(g) − h = O(r−k), ∂π∗(g) = O(r−k−1), ∂2π∗(g) = O(r−k−2)

for k ≥ 2 an integer, r large, r being the distance from the origin in Rl/G, and
∂ the flat connection on Rl/G.

Suppose the singularities of an orbifold are of the type Rl/G, let the reso-
lution of these singularities be obtained by replacing the singular points with
the ALE space X described above. The holonomy group of X must then be a
subgroup of the holonomy group of the manifold obtained by resolving the orb-
ifold in such a fashion. ALE spaces obtained from R4/G and R6/G have been
studied and well understood, one can consult for example [15] [21][22]. There-
fore, in order to further generalize the Kummer construction to obtain compact
8-manifolds with holonomy Spin(7) from orbifolds, it is a good first step to find
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out what the finite subgroups of Spin(7) are, which act linearly without fixed
points on R8\{0}.

4.1 Zassenhaus’ Classification

Here, we want to find finite subgroups G ⊂ Spin(7) , s.t. G acts on R8\{0}
linearly and without fixed points.

First, we want to establish the fact that G has the structure of Frobenius
complement[7][19].

Definition 4.1.1 [19] Let G be a group acting transitively on a finite set A,
assume that Ga, the stabilizer of a ∈ A in G is non-trivial. Since G acts
transitively on A, all the Ga’s are conjugates as a ranges in A. Assume also
that Ga is semi-regular, i.e. the stabilizer of a and b for a 6= b in A, Ga,b

is {e}, then G is called a Frobenius group, and Ga is called a Frobenius
complement.

Zassenhaus has completely determined the structure of Frobenius comple-
ments.

Theorem 4.1.2 [19](Theorem 18.1) Let G be a Frobenius complement, and let
p, q be distinct primes. Then

(i) G contains no subgroup of type (p,p), i.e. a direct product of two cyclic
groups of order p.

(ii) Every subgroup of G of order pq is cyclic.
(iii) If |G| is even, then G contains a unique element of order 2 which is therefore

central.
(iv) If p > 2, then the Sylow p-subgroups of G are cyclic. If p = 2, the Sylow

2-subgroups of G are cyclic or quaternion.
(v) G has a faithful irreducible Q̄-representation ρ such that for any non-trivial

element g ∈ G, ρ(g) has no eigenvalue equal to 1.

Theorem 4.1.3 Zassenhaus[19](Theorem 18.2) If G is a solvable Frobenius
complement, then G has a normal subgroup G0, s.t. G/G0 is isomorphic to a
subgroup of S4 and G0 is a Z-group (i.e. all its Sylow subgroups are cyclic).
Further, we can write G0 = 〈x, y|xn = 1, ym = 1, x−1yx = yr〉, where (r −
1, m) = (n, m) = 1, and rn/n′ ≡ 1 mod m, and n′ = product of distinct prime
factors in n.

Theorem 4.1.4 Zassenhaus[19](Theorem 18.6) If G is a non-solvable Frobe-
nius complement, then G has a normal subgroup G0 with [G : G0] = 1 or 2, and
G0 = SL(2, 5) × M , where M is a Z-group of order coprime to 2, 3 and 5.
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In order to show that our finite group G ⊂ Spin(7) , and more generally,
GL(8), with a fixed point free representation ρ : G → GLn(C) is a Frobenius
complement, we must pass down to a representation over a finite field, as the
concept of Frobenius complement only makes sense for finite action.

First we can replace the C by Q̄, the algebraic closure of Q, and then replace
Q̄ by some number field K with [K : Q] < ∞. Finally, we can replace K by
the localization of the ring of algebraic integers of K at a prime ideal. We get a
representation ρ̃ : G → GLn(Fq) over a finite field of finite characteristic p. For
almost all prime p, this representation induced is fixed-point free.

Let G̃ = Fn
q >/ G, where for (v, g), (v′, g′) ∈ G̃, (v, g)(v′, g′) = (v + gv′, gg′).

G̃ acts on Fn
q via (v, g)(w) = v + gw. This is clearly a transitive action -

just let g = e, (v, e)(w) = v + w. G̃0, the stabilizer of 0 ∈ Fn
q in G̃, is just G.

G̃0,w, the stablizer of 0 and w ∈ Fn
q in G̃, is {g ∈ G|gw = w}, which must be

{e}, since G acts without fixed points.
Therefore, by abuse of notation our G = G̃0 is a Frobenius complement.

4.2 G as a Non-Solvable Frobenius Complement

Let’s first assume that G is a non-solvable Frobenius complement. So by Theo-
rem 4.1.3, G has a normal subgroup G0 of index 1 or 2, s.t. G0 = SL(2, 5)×M ,
where M is a Z-group of order coprime to 2, 3 and 5.

Proposition 4.2.1 [19](Lemma 12.8, Proposition 12.11) If M is a Z-group,
then M is solvable. Furthermore, M = 〈x, y|xn = 1, ym = 1, x−1yx = yr〉, and
(r − 1, m) = (n, m) = 1, rn ≡ 1 mod m.

Proposition 4.2.2 If M is a Z-group of order coprime to 30, and M has a
fixed point free irreducible complex representation of dimension d ≤ 4, then M
must be cyclic.

Proof. By the previous proposition, M = 〈x, y|xn = 1, ym = 1, x−1yx = yr〉,
and (r − 1, m) = (n, m) = 1, rn ≡ 1 mod m. Consider the normal subgroup of
M, 〈y〉, generated by y. y has a d-dimensional representation inherited from M ,
and it can be diagonalized to




ξe1

ξe2

. . .
ξed




where ξ is a primitive m-th root of unity. Since the d-dimensional irreducible
representation of M is fixed point free, all of the eigenvalues of y must be
primitive m-th root of unity, i.e. (ei, m) = 1 for all i. WLOG, let e1 = 1.
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Since x−1yx = yr , amongst {ξ, ξr, ξr2
, · · · , ξrd}, at least two are equal. So

ri ≡ 1 mod m for i ≤ d.
Since n divides the order of M , and the order of M is coprime to 30, so

2 and 3 can not divide n. For j ∈ {1, 2, · · ·, d}, where d ≤ 4, (j, n) = 1. In
particular, ∃λ, µ s.t. 1 = λi + µn. Hence r ≡ rλi+µn = (ri)λ(rn)µ ≡ 1 mod m.
As ri ≡ 1 mod m, and rn ≡ 1 mod m, we have r ≡ 1 mod m. So, M is abelian.
But (n, m) = 1, so M must be cyclic.

Since M is cyclic, the Frobenius-Schur indicator of any irreducible repre-
sentation χ of M of order > 2, Sχ(M ) = 1

|M |
∑

g∈M χ(g2) = 0, as χ must be
1-dimensional. So, M has no real representations, and its irreducible characters
can’t be defined over R by the Frobenius-Schur criterion, namely

Sρ =





1 the character of ρ is defined over R and ρ can be realized in R
−1 the character of ρ is defined over R and ρ can’t be realized in R
0 the character of ρ can’t be defined over R

Now we look at the group SL(2, 5). We observe that A5 ' PSL(2, 5). From
the character table of a group, we can tell whether each irreducible representa-
tion can be defined over reals from the Frobenius-Schur indicator.

number 1 1 30 20 20 12 12 12 12
order 1 2 4 3 6 5 5 10 10

1 1 1 1 1 1 1 1 1
3 3 -1 0 0 −α −β −α −β

3 3 -1 0 0 −β −α −β −α
4 4 0 1 1 -1 -1 -1 -1
5 5 1 -1 -1 0 0 0 0

φ1 2 -2 0 -1 1 α β −α −β

φ2 2 -2 0 -1 1 β α −β −α
4 -4 0 1 -1 -1 -1 1 1
6 -6 0 0 0 1 1 -1 -1

Character Table of SL(2, 5)
where α = e2π

√
−1/5 + e−2π

√
−1/5, β = e4π

√
−1/5 + e−4π

√
−1/5.

We can also tell from the character table whether an irreducible representa-
tion is fixed point free or not. For example, let ej be the number of eigenvalues of
an element of order 3 which equal e2π

√
−1j/3 for j = 0, 1, 2 in a chosen irreducible

representation. Then
∑2

j=0 ej is the dimension of the irreducible representation.
The cyclotomic field Q[e2π

√
−1/3] has degree 2 over Q. So the trace (i.e. the

sum of conjugate elements) of e2π
√
−1j/3 is −1 if j 6= 0 and 2 if j = 0. Hence

2e0−(e1 +e2) = Trace (character of the element in the chosen conjugacy class).
This irreducible representation is fixed point free if and only if e0 = 0.

From the character table of SL(2, 5), we see that the only irreducible repre-
sentations of SL(2, 5) that is fixed point free are the 2 2-dimensional complex
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irreducible representations φ1 and φ2 which have characters over R but can’t
themselves be defined over reals.

As φ1 and φ2 can’t be defined over R, by taking 2φ1, 2φ2, or φ1 + φ2, we
see SL(2, 5) has fixed point free embedding in SU (4,C) ⊆ SO(8,R).

Given that our group G is a non-solvable Frobenius complement, G has a
normal subgroup G0 of index 1 or 2, s.t. G0 = SL(2, 5) × M , where M is a
cyclic group of order, say, m. We know that SL(2, 5) has 2 2- dimensional fixed
point free irreducible complex representations φ1 and φ2 which are only defined
over C. Given an irreducible representation χi of M = Cm, we can construct
ρ = φi1 ⊗ χ1 ⊕ φi2 ⊗ χ2 as a representation of G0 in U (4), where i1, i2 = 1 or 2.
By making χ2 = χ−1

1 , ρ becomes a representation of G0 in SU (4), as we see from
the character table that the representations φi all have determinant 1. Since
SU (4) ⊂ Spin(7) ⊂ SO(8,R), U (4)∩Spin(7) = SU (4), ρ = φi1 ⊗χ⊕φi2 ⊗χ−1

for i1, i2 = 1 or 2 gives an embedding of G0 in Spin(7), here χ is an irreducible
representation of M = Cm. Using Frobenius-Schur, we see that φi ⊗ χ can only
be defined over C.

As G0 = SL(2, 5) × Cm is a normal subgroup of G of index 1 or 2. We
see that G must be generated by G0 and an involution τ = τ1 × τ2, i.e. G =
{(h, α, β) ∈ H × Dm1 × Cm2 |sgn(h) = sgn(α)} for [G : G0] = 2, m = m1m2.

Here, H = S̃5 = 〈SL(2, 5),
[

0 3
√

2
−
√

2 0

]
〉. The involution τ1 acts on SL(2, 5)

by conjugation of SL(2, 5) by
[

0 3
√

2
−
√

2 0

]
, τ2 acts on Cm1 as an involution

and on Cm2 as an identity, such that Dm1 = 〈x2 = ym1 = 1|xyx−1 = y−1〉.
τ2 = (−1, 1, 1). We have on H × Dm1 a canonical sign function such that
sgn(H/SL(2, 5)) ' {±1}, sgn(Dm1 /Cm1) ' {±1}.

Fixed point free representations of G in SU (4) arise as induced representa-
tions from G0. It is easy to see that since the only fixed point free representa-
tions of G0 in SU (4) are φi ⊗ χ for i = 1, 2, which are 2 complex dimension,
for the representation of G induced from φi to be in SU (4), m2 has to be 1, i.e.
m1 = m.

From the character table of S̃5 below, we see that it only has one fixed point
free irreducible representation φ which restricts to φ1 or φ2, representation of
SL(2, 5).
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number 1 1 30 20 20 24 24 20 30 30 20 20
order 1 2 4 3 6 5 10 4 8 8 6 6

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 -1 -1 -1 -1 -1
6 6 -2 0 0 1 1 0 0 0 0 0
4 4 0 1 1 -1 -1 2 0 0 -1 -1
4 4 0 1 1 -1 -1 -2 0 0 1 1
5 5 1 -1 -1 0 0 1 -1 -1 1 1
5 5 1 -1 -1 0 0 -1 1 1 -1 -1

φ 4 -4 0 -2 2 -1 1 0 0 0 0 0
4 -4 0 1 -1 -1 1 0 0 0

√
−3 −

√
−3

4 -4 0 1 -1 -1 1 0 0 0 −
√
−3

√
−3

6 -6 0 0 0 1 -1 0
√
−2 −

√
−2 0 0

6 -6 0 0 0 1 -1 0 −
√
−2

√
−2 0 0

The induced representation IndG
G0

(φi ⊗ χ) is irreducible since τ1(φi) 6= φi,
and τ2(χ) 6= χ. WLOG, let ρ = φ1 ⊗ χ be the representation of G0, The
representation ρ̃ of G is as follows:

For g ∈ G0, ρ̃(g) =
[

ρ(g) 0
0 ρ(τ (g))

]
=

[
φ1 ⊗ χ(g) 0

0 φ2 ⊗ χ−1(g)

]
.

For g =
[

0 3
√

2
−
√

2 0

]
×x ∈ G\G0, ρ̃(g) =

[
0 1

ρ(−1 × 1) 0

]
=




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


.

In summary, we have

Theorem 4.2.3 If G is a non-solvable Frobenius complement that has a rep-
resentation ρ : G → Spin(7) → SO(8) which is fixed point free, then ρ factors
through SU (4) ⊂ Spin(7), and ρ as a representation of G is one of the follow-
ing:

(i) G = SL(2, 5)×Cm where (m, 30) = 1. ρ = φi⊗χ⊕φj ⊗χ−1 for i, j = 1, 2.
φ1 and φ2 are the two 2-dimensional irreducible complex representations of
SL(2, 5), χ is a faithful character of Cm.

(ii) G = {(h, α) ∈ H × Dm|sgn(h) = sgn(α)}, (m, 30) = 1. G0 = SL(2, 5) ×
Cm. ρ = IndG

G0
(φ1 ⊗ χ), φ1, χ are as in the above case. H = 〈SL(2, 5),[

0 3
√

2
−
√

2 0

]
〉 ' S̃5.

Note that S̃5 is a special case of the second possibility for G.
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4.3 G as a Solvable Frobenius Complement

Now let’s assume that G is a solvable Frobenius complement. By Theorem 4.1.3,
G has a normal subgroup G0 such that G/G0 is isomorphic to a subgroup of
S4 and G0 is a Z-group, G0 = 〈x, y|xn = 1, ym = 1, x−1yx = yr 〉, where
(r − 1, m) = (n, m) = 1, and rn/n′ ≡ 1 mod m, and n′ = product of distinct
prime factors in n.

If 2, 3, 5, 7 do not divide n
n′ , and G0 has an 8-dimensional real representation,

then a similar argument to the proof for Proposition 4.2.2 implies that G0 must
be cyclic.

G0 is not cyclic if r is not 1 mod m in the presentation of G0. Suppose
r2 ≡ 1 mod m, and r 6= 1 mod m. Then by presentation of G0, 2| n

n′ , so 4|n,
(2, m) = 1, i.e. m is odd. x−1yx = yr . In this case, we find one class of
G0 which can have an 4-dimensional fixed point free complex representation
which can’t be realized over the reals. Now suppose r4 ≡ 1(m), and 4 is the
least positive integer with this property. Then we find one class of G0 which
can have 4-dimensional fixed point free complex representation which can’t be
realized over the reals. In the case r8 ≡ 1(m), and 8 is the least positive integer
with this property, we have that G0 has an 8-dimensional complex fixed point
free irreducible representation which can’t be realized over reals, so G0 can’t be
represented in SO(8). If rk ≡ 1 mod m for k 6= 2, 4, 8, it can be shown easily
that G0 can’t have fixed point free representation in SU (4). Therefore G0 is
one of the following:

(i) G0 = 〈x, y|xn = ym = 1, x−1yx = yr〉 where (n, m) = (r − 1, m) = 1,
r2 ≡ 1(m) implies r = m − 1. 2| n

n′ , so 4|n. G0 has a 2-dimensional fixed
point free complex irreducible representation which can’t be realized over
the reals, as follows.

y =
[

ξ 0
0 ξr

]
, x =

[
0 ω
1 0

]
,

where ξ is a primitive m-th root of 1 and ω is a primitive n
2
-th root of

1. Since we want the direct sum of two copies of this representation to be
in SU (4), so det(x) = −ω = ±1, 4|n, so ω = −1 and n = 4. Using the
Frobenius-Schur indicator, we find that this representation can’t be realized
over reals.

(ii) G0 = 〈x, y|xn = ym = 1, x−1yx = yr〉 where (n, m) = (r − 1, m) = 1, and
r4 ≡ 1(m). 4| n

n′ , so 8|n. G0 has a 4-dimensional fixed point free complex
irreducible representation which can’t be realized over the reals, as follows.

y =




ξ 0 0 0
0 ξr 0 0
0 0 ξr2

0
0 0 0 ξr3


 , x =




0 0 0 ω
1 0 0 0
0 1 0 0
0 0 1 0


 ,
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where ξ is a primitive m-th root of 1 and ω is a primitive n
4 -th root of 1. For

this representation to be in SU (4), det(x) = −ω = 1, so ω = −1 and n = 8.
Using the Frobenius-Schur indicator, we find that this representation can’t
be realized over the reals.

These are the only possibilities for G0 with the property that G0 has a fixed
point free real 8-dimensional irreducible representation.

As G0 is a normal subgroup of G such that G/G0 is isomorphic to a subgroup
of S4, to obtain G, it’s helpful to look at Aut(G0).

For the first possibility, where G0 = 〈x, y|x4 = ym = 1, x−1yx = yr〉, and
(4, m) = (r − 1, m) = 1, r2 ≡ 1(m) and r = m − 1. For σ ∈ Aut(G0), sup-
pose that σ(x) = xαyβ , and σ(y) = yγ , where α ∈ (Z/4Z)∗, β ∈ (Z/mZ),
and γ ∈ (Z/mZ)∗, then Aut(G0) = (Z/4Z)∗ × (Z/mZ) >/ (Z/mZ)∗, where
(α, β, γ)(α′, β′, γ′) = (αα′, β + β′γ, γγ′). Inn(G0), the group of inner automor-
phisms of G0 generated by conjugation by elements of G0 forms the subgroup
of Aut(G0) generated by (1, 2b, ra) corresponding to the action of conjugation
by xayb. So Out(G0) = {1, 3}× {0} >/ ((Z/mZ)∗/{1, r}).

For the case G0 = 〈x, y|x8 = ym = 1, x−1yx = yr〉 where (8, m) = (r −
1, m) = 1, r4 ≡ 1(m). G0 has a 4-dimensional irreducible fixed point free
complex representation. We see that Aut(G0) = ((Z/8Z)∗

⋂
{4k + 1|k ≥ 0}) ×

(Z/mZ) >/ (Z/mZ)∗, where (α, β, γ)(α′, β′, γ′) = (αα′, β + β′γ, γγ′), Inn(G0)
is generated by (1, b(1 − r), ra) corresponding to the conjugation by xayb, so
Out(G0) = {1, 5} × {0} >/ ((Z/mZ)∗/{1, r, r2, r3}).

The possible subgroups of S4 are {e}, Z2, Z3, Z4, Klein 4-group K, S3, D8,
A4, and S4.

If G0 is cyclic of order m, then Aut(G0) = (Z/mZ)∗, so {e}, Z2, Z3,
Z4, and the Klein 4-group K can embed in Aut(G0) as a subgroup. If G0

is one of the two possibilities described above generated by two elements, i.e.
Aut(G0) = (Z/4Z)∗ × (Z/mZ) >/ (Z/mZ)∗, or Aut(G0) = ((Z/8Z)∗ ∩ {4k +
1|k ≥ 0}) × (Z/mZ) >/ (Z/mZ)∗. Again, it turns out that {e}, Z2, Z3, Z4,
Klein 4-group are the only groups that can embed in Aut(G0).

Now, since G/G0 ' {e},Z2,Z3,Z4 or K, to obtain G, we just need to
induce the irreducible representation from G0 by elements of Out(G0). We
obtain the following possible G for [G : G0] 6= 1 such that G has a fixed point
free representation in R8:

(i) G0 ' Cm, G/G0 ' Z2, then G = Dm1 ×Cm2 where m1m2 = m. Since G is
a Frobenius complement, it has no subgroup of type (p, p), so (m1, m2) 6= 1
and (m2, 2) = 1.

(ii) G0 ' Cm, G/G0 ' Z2, for the largest k such that 2k|m, if k ≥ 2, then
G = Qk+1×Cm′ , where m′ = m

2k , Qk+1 is the generalized quaternion group
of order 2k+1.

(iii) G0 ' Cm, G/G0 ' K, then G = Dm1 ×Dm2 × Cm3 , where m1m2m3 = m.
Since G contains a subgroup of type (p, p), it’s not a Frobenius complement
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(a Frobenius complement has no subgroup of type (p, p)). So this G is
excluded.

(iv) G0 ' Cm, G/G0 ' K, for the largest k such that 2k|m, if k ≥ 4, let
k = k1 + k2 such that k1, k2 ≥ 2, then G = Qk1+1 × Qk2+1 × Cm′ , where
m′ = m

2k . As G contains a subgroup of type (2, 2), it’s not a Frobenius
complement, so it’s excluded.

(v) G0 ' Cm, G/G0 ' K, for the largest k such that 2k|m, if k ≥ 2, let
k = k1+k2 such that k1 ≥ 2, then G = Qk1+1×Dk2 ×Cm′ , where m′ = m

2k .
Again, G contains a subgroup of type (2, 2), so it’s excluded here as well.

(vi) G0 = 〈x, y|x4 = ym = 1, x−1yx = yr〉 where (4, m) = (r − 1, m) = 1,
r2 ≡ 1(m) implies r = m − 1. G0 has a 2-dimensional fixed point free
complex irreducible representation ρ which can’t be realized over the reals
as follows.

ρ(y) =
[

ξ 0
0 ξr

]
, ρ(x) =

[
0 −1
1 0

]

where ξ is a primitive m-th root of 1.
Given σ = (α, β, γ) ∈ Out(G0) = (Z/4Z)∗ × {0} >/ ((Z/mZ)∗/{1, r}), we
first note that σ2 = (α2, β(1 + γ), γ2) must belong to Inn(G0) = {1} ×
(Z/mZ) >/ {1, r = m − 1}). So α2 ≡ 1(4) and γ2 ≡ ±1 mod m.
Let G = 〈G0, σ〉, G has induced representation ρ̃ s.t.

ρ̃(x) =
[

ρ(x) 0
0 ρ(σ(x))

]
=

[
ρ(x) 0

0 ρ(xα)

]

ρ̃(y) =
[

ρ(y) 0
0 ρ(σ(y))

]
=

[
ρ(y) 0

0 ρ(yγ )

]

ρ̃(σ) =
[

0 ρ(σ2)
1 0

]
=

[
0 ρ(xδ)
1 0

]

where δ is even (resp. odd) if γ2 = 1(resp. − 1)(m).

It turns out that the problem of finding finite subgroups of Rl which act
without fixed points has investigated in [27](part III) with regard to the prob-
lem of spherical space form. This is communicated to us by the thesis examiners.
The classification of fixed point free groups in [27] is more detailed and general
than what is presented here, but less explicit as a trade-off of generality. The
techniques Wolf used also involve much group and represetation theoretic re-
sults. We have checked that Wolf’s results indeed coincide with ours. The
two classes of non-solvable fixed point free finite subgroups of Spin(7) and their
representations correspond to Wolf’s type V and VI groups and their represen-
tations. The presentation and representation of non-cyclic fixed point free finite
solvable subgroups of Spin(7) presented in this section correspond to those of
Wolf’s type I and II groups. Wolf has in addition type III and IV groups which
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are of odd order, they don’t appear in our classification of fixed point free fi-
nite subgroups with possible 8-dimensional real representation, because these
groups must have even order (as one can see from the groups analysis earlier in
the chapter)!
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Chapter 5

Finite Subgroups of Spin(7)
acting on T 8

In [13], Spin(7) manifolds are constructed by resolving T 8/G for various finite
subgroups G of Spin(7). It is a natural to determine all finite groups of Spin(7)
which act on T 8 and such that the resolution of the orbifold would be a manifold
of holonomy Spin(7). The classification of such groups is still quite daunting
at this stage; furthermore, even if we were able to obtain an exhaustive list of
subgroups of Spin(7) which preserve the lattice defining T 8, there still remain
the greater problem of resolving the quotient singularities. Here, we can only
scratch the surface of these problems.

5.1 Analysis on Elements of Spin(7) fixing T 8

For g ∈ G ⊂ Spin(7) where g fixes the lattice determining the torus, we see
that some conjugate of g by elements of GL(8,Q) must be an element of
SL(8,Z). Thus the characteristic polynomial of g must have integral coeffi-
cients and det(g) = 1. Suppose the order of g is n, then for g’s characteristic
polynomial g(t) to be in Z[t] with deg(g) = 8 and det(g) = g(0) = 1, the
minimal polynomial (i.e. the integral polynomial with g as a root of minimal
degree) must divide g(t). The degree of minimal polynomial of g is at least φ(n),
the Euler φ function which counts the number of integers mod n which are co-
prime to n. Since the minimal polynomial divides g(t) of degree 8, φ(n) ≤ 8.
Calculating φ(n) for integers n, we see that the order of g must lie in the set
S = {1, 2, 3, 4,5,6, 7, 8,9,10,12,14,15,16,18,20,24}.

Let M be the diagonal matrix with entries ω1, · · · , ωφ(n)/2 on the diagonal,
where ωi is a primitive n-th root of 1 for all i, such that M ∈ U (φ(n)/2) if
φ(n) < 8 and M ∈ SU (4) if φ(n) = 8. Let g be an element in SL(φ(n),Z)
conjugate to M (more precisely, M ⊕ M̄ ), then, the eigenvalues of g (i.e. ωi, ω̄i
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for all i) are all the roots of the minimal polynomial of the primitive n-th root
of 1.

Consider the f(t) = tn + an−1t
n−1 + · · ·+ a0 ∈ Z[t], using elementary linear

algebra, we see that the characteristic polynomial for the matrix



0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

. . .
0 0 · · · 1 −an−1




is simply f(t).
Therefore, for M defined above to be conjugate to some element in SL(φ(n),

Z), we see that either ω or ω−1 for each ω a primitive n-th root of 1 must appear
as one of the ωi’s on the diagonal of M . This significantly reduces the number
of possible representations of the cyclic group generated by M ∈ U (φ(n)/2) for
φ(n) < 8 (respectively M ∈ SU (4) for φ(n) = 8) which is conjugate to some
element of SL(φ(n),Z) fixing the torus lattice.

In particular, for each n ∈ S, let ω be a primitive n-th root of one,

M =




ωe1 0 0 0
0 ωe2 0 0

.. .

0 0 0 ω
e φ(n)

2


 ,

the above discussions reveal that (e1, e2, · · · , eφ(n)/2) must be the following for
different n’s.

(i) n = 2, (e1) = (1).
(ii) n = 3, (e1) = (1) or (2).

(iii) n = 4, (e1) = (1) or (3).
(iv) n = 5, (e1, e2) = (1, 2), (3, 4), (1, 3), or (2, 4).
(v) n = 6, (e1) = (1) or (5).

(vi) n = 7, (e1, e2, e3) = (1, 2, 4),(3, 5, 6), (1, 2, 3), (4, 5, 6), (1, 3, 5), (2, 4, 6),
(2, 3, 6) or (1, 4, 5).

(vii) n = 8, (e1, e2) = (1, 3), (1, 5), (3, 7) or (5, 7).
(viii) n = 9, (e1, e2, e3) = (1, 2, 4), (5, 7, 8), (1, 2, 5), (4, 7, 8), (1, 4, 7), (2, 5, 8),

(2, 4, 8) or (1, 5, 7).
(ix) n = 10, (e1, e2) = (1, 3), (1, 7), (3, 9) or (7, 9).
(x) n = 12, (e1, e2) = (1, 5), (1, 7), (5, 11) or (7, 11).

(xi) n = 14, (e1, e2, e3) = (1, 3, 5), (9, 11, 13), (1, 3, 9), (5, 11, 13), (1, 5, 11),
(3, 9, 13), (3, 5, 13) or (1, 9, 11).
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(xii) n = 15, (e1, e2, e3, e4) = (1, 2, 4, 8) or (7, 11, 13, 14).
(xiii) n = 16, (e1, e2, e3, e4) = (1, 3, 5, 7) or (9, 11, 13, 15).
(xiv) n = 18, (e1, e2, e3) = (1, 5, 7), (11, 13, 17), (1, 5, 11), (7, 13, 17), (1, 7, 13),

(5, 11, 17), (5, 7, 17) or (1, 11, 13).
(xv) n = 20, (e1, e2, e3, e4) = (1, 3, 7, 9) or (11, 13, 17, 19).

(xvi) n = 24, (e1, e2, e3, e4) = (1, 5, 7, 11) or (13, 17, 19, 23).

We only require M ∈ U (φ(n)/2) rather than SU (φ(n)/2) for φ(n) < 8
because taking an appropriate direct sum of those M’s we can get a subgroup of
SU (4) to act on C4 as we wished. In what follows, by using the M ’s described
above as building blocks, we give an exhaustive list of finite cyclic subgroups G
of SU (4) which have diagonal action on C4 such that it fixes the lattice defining
the torus T 8.

(i) G = Z2, the diagonal G action is generated by M = (−1,−1,−1,−1) or
(−1,−1, 1, 1).

(ii) G = Z3, the diagonal G action is generated by M = (ω, ω2, ω, ω2), (ω, ω, ω, 1),
(ω, ω2, 1, 1), or (ω2, ω2, ω2, 1), where ω = 1

1
3 .

(iii) G = Z4, the diagonal G action is generated by M = (ω, ω3, ω, ω3), (ω, ω,−1,
1), (ω, ω3, 1, 1), (ω, ω, ω, ω), (ω, ω3,−1,−1), (ω3, ω3,−1, 1), or (ω3, ω3, ω3,

ω3), where ω = 1
1
4 .

(iv) G = Z5, the diagonal G action is generated by M = (ω, ω2, ω3, ω4), where
ω = 1

1
5 .

(v) G = Z6, the diagonal G action is generated by M = (ω, ω5, ω, ω5), (ω, ω, ν2,
1), (ω5, ω5, ν, 1), (ω5, ω5, ν2, ν2), (ω, ω, ν, ν), (ω, ω5,−1,−1), (ω, ω, ω,−1),
(ω5, ω5, ω5,−1), (ω, ω5, 1, 1), (ω, ω5, ν, ν2), (ω, ν,−1, 1), (ω5, ν2,−1, 1), or
(ν, ν2,−1,−1), where ω = 1

1
6 and ν = 1

1
3 .

(vi) G = Z7, the diagonal G action is generated by M = (ω, ω2, ω4, 1) or
(ω3, ω5, ω6, 1), where ω = 1

1
7 .

(vii) G = Z8, the diagonal G action is generated by M = (ω, ω3, ω5, ω7),
(ω, ω3, ω, ω3), (ω5, ω7, ω5, ω7), (ω, ω3, δ, δ), (ω5, ω7, δ3, δ3), (ω, ω3,−1, 1),
(ω5, ω7,−1, 1), (ω, ω3, δ3, δ3), (ω5, ω7, δ, δ), (ω, ω5, δ3,−1), (ω3, ω7, δ,−1),
(ω, ω5, δ, 1), or (ω3, ω7, δ3, 1), where ω = 1

1
8 and δ = 1

1
4 .

(viii) G = Z9, the diagonal G action is generated by M = (ω1, ω4, ω7, δ2) or
(ω2, ω5, ω8, δ), where ω = 1

1
9 and δ = 1

1
3 .

(ix) G = Z10, the diagonal G action is generated by M = (ω, ω3, ω7, ω9),
(ω, ω3, δ, δ2), (ω7, ω9, δ3, δ4), (ω, ω7, δ2, δ4), or (ω3, ω9, δ, δ3), where ω =
1

1
10 , and δ = 1

1
5 .

(x) G = Z12, the diagonal G action is generated by M = (ω, ω5, ω7, ω11),
(ω, ω5, ω, ω5), (ω7, ω11, ω7, ω11), (ω, ω5,−1, 1), (ω7, ω11,−1, 1), (ω, ω5, δ, δ),
(ω7, ω11, δ3, δ3), (ω, ω5, ν, η), (ω7, ω11, ν2, η5), (ω, ω7, ν, 1), (ω5, ω11, ν2, 1),
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(ω, ω7, ν2, ν2), (ω5, ω11, ν, ν), (ω, ω7, η, η), (ω5, ω11, η5, η5), (η, η5, δ, δ3), or
(δ, δ3, ν, ν2), where ω = 1

1
12 , δ = 1

1
4 , ν = 1

1
3 , η = 1

1
6 .

(xi) G = Z14, the diagonal G action is generated by M = (ω3, ω5, ω13,−1) or
(ω, ω9, ω11,−1), where ω = 1

1
14 .

(xii) G = Z15, the diagonal G action is generated by M = (ω, ω2, ω4, ω8) or
(ω7, ω11, ω13, ω14), where ω = 1

1
15 .

(xiii) G = Z16, the diagonal G action is generated by M = (ω, ω3, ω5, ω7) or
(ω9, ω11, ω13, ω15), where ω = 1

1
16 .

(xiv) G = Z18, the diagonal G action is generated by M = (ω, ω5, δ2, 1), (ω13, ω17,

δ, 1), (ω, ω7, ω13, η5), or (ω5, ω11, ω17, η), where ω = 1
1
18 , η = 1

1
6 , and

δ = 1
1
3 .

(xv) G = Z20, the diagonal G action is generated by M = (ω, ω3, ω7, ω9) or
(ω11, ω17, ω13, ω19), where ω = 1

1
20 .

(xvi) G = Z24, the diagonal G action is generated by M = (ω, ω5, ω7, ω11),
(ω13, ω17, ω19, ω23), (ν, ν5, µ, µ3), (ν7, ν11, µ5, µ7), (ν, ν5, µ5, µ7), or (ν7, ν11,

µ, µ3), where ω = 1
1
24 , µ = 1

1
12 , and µ = 1

1
8 .

5.2 Resolution of Singularities using Toric Ge-

ometry

Having obtained the representation of finite cyclic subgroups G of SU (4) on C4

which fixes some integral lattice defining T 8, we hope to look at the problem of
resolving C4/G.

While resolving cyclic quotient singularity, e.g. C4/Zn, seems to be a very
natural problem, it is nevertheless still not completely solved as of yet. However,
quotient singularities of C2 and C3 by finite subgroups of SU (2) and SU (3) have
been studied extensively and resolved using toric geometry.

Here, we give a brief discussion of singularities and their resolutions based
on [20].

Definition 5.2.1 A variety X (which we will assume to be normal and quasi-
projective and defined over C) has canonical singularities if some positive in-
tegral multiple of the Weil divisor rKX is Cartier; furthermore, if f : Y → X
is a resolution of X, and {Ei} a family of exceptional prime divisors of f , then
rKY = f∗(rKX)+

∑
aiEi, where ai ≥ 0. If all the ai’s are greater than 0, then,

X is said to have terminal singularities.

Using toric geometry, there is a even more explicit criterion for canonical and
terminal singularities. In particular, in the case of cyclic quotient singularities,
i.e. Cn/Zm, where the generator of the group acts by the diagonal matrix with
entries ωe1 , · · · , ωen , ω a primitive m-th root of 1, we say that Cn/Zm is a cyclic
quotient singularity of type 1

m (e1, · · · , en). This singularity is said to be terminal
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(resp. canonical) if and only if all the weights (to be discussed in the next
chapter) defined by αk = 1

m

∑
j kej are > 1 (resp. ≥ 1) for k = 1, 2, · · · , m − 1,

here kej denote the integer modulo m.
With this criterion, we see immediately that for n ∈ S defined at the begin-

ning of this chapter, the cyclic quotient singularities C4/Zn must be terminal for
n = 5 ∈ S and can be non-terminal for n ∈ {2, 3, 4, 6,7,8, 9, 10, 12, 14, 15, 16, 18,
20, 24} ⊂ S. Here, C4/Zn is terminal if in all the representations of Zn in SU (4)
which are conjugate to some element in SL(8, Z) (i.e. fixing some integral lat-
tice defining T 8), all elements have weight greater than 1. We remark that for
n = 9 or n = 14, even though the generator M described in the last section has
weight > 1, there is some non-generator in the group Zn with weight 1 making
C4/Zn non-terminal. We shall see later on by explicit examples why terminal
singularities are terminal using this criterion.

Definition 5.2.2 A birational morphism f : Y → X between normal varieties
is called crepant (or minimal) if KY = f∗KX . A crepant partial resolution
of a variety X with canonical singularities is the one which pulls out only the
exceptional divisors Ei with ai = 0.

Unfortunately, crepant partial resolutions are not unique, so the concept
of minimal resolution is not defined. Algebraic geometers have studied and
classified canonical singularities for C2/G and C3/G for G a finite abelian group.
However, for dimension greater than 3, no such classification work has been
pursued due to its difficulty. As our main goal is to study resolutions related to
Spin(7)-manifolds obtained by resolving T 8/G, we shall only hope to investigate
what is needed for this problem and nothing more.

Example The most classical example is surface singularities. One can show
that surface canonical singularities are the nonsingular points and the so called
Du Val surface singularities, which are the hypersurface singularities given by
the equations

(i) An : x2 + y2 + zn+1 = 0 for n ≥ 1.
(ii) Dn : x2 + y2z + zn−1 = 0 for n ≥ 4.

(iii) E6 : x2 + y3 + z4 = 0.
(iv) E7 : x2 + y3 + yz3 = 0.
(v) E8 : x2 + y3 + z5 = 0.

They are classical, since they were classfied by Klein in the 19th century in
his work on invariant theory of regular solids in R3, and these singularities
are called A-D-E type singularities due to Klein. Each of these hypersurface
singularities admit a resolution f : Y → X, such that Ky = f∗KX , and the
exceptional locus of f is a collection of (−2)-curves (i.e. P1) whose intersection
matrix corresponds to its associated Dynkin diagram.
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For 3-folds C3/G with canonical singularities, it can be shown that there
exists a crepant partial resolution f : Y → X such that Y only has terminal
singularities, which have been classified by algebraic geometers.

There are some general notions of quotient singularities which one encounters
in the literature that we summarize here briefly. If G is a finite subgroup of
GL(n,C) acting on Cn, Cartan proved that singularities of Cn/G are normal.
In particular, the singular sets of Cn/G have codimension at least 2. Usually,
one’s only interested in the case that Cn/G is Gorenstein, which is a technical
algebraic geometry notion that the dualizing sheaf of Cn/G is trivial. Watanabe
established that Cn/G is Gorenstein if and only if G ⊂ SL(n,C). As our
groups are all finite subgroups of SU (4), we can assume from now on that all
our singularities are Gorenstein.

The importance of crepant resolution is that the resolution Y of X has trivial
canonical bundle if X has trivial canonical bundle. From results on Calabi-Yau
space M, i.e. compact complex manifold admitting Kähler-Einstein metric with
zero Ricci curvature, we know that c1(M ) = 0, furthermore, the canonical
bundle has finite order in the Picard group of M . As we are looking for Spin(7)
space by resolving T 8/G, since SU (4) = U (4)∩ Spin(7), by Calabi-Yau, the
canonical bundle is trivial (i.e. c1(Y ) = 0) if and only if there is a crepant
resolution of T 8/G, so locally, we want C4/Zn for the action classified in the
previous section to have crepant resolution. Since our X = T 8/G has trivial
canonical bundle, for its resolution Y to have trivial canonical bundle KY where
KY = f∗KX +

∑
aiEi, then X certainly can’t have terminal singularities.

Toric geometry gives an explicit recipe for determining whether Cn/G has
a smooth crepant resolution with trivial canonical bundle.
Notations: Let Rn be the vector space with standard basis {e1, · · · , en}, its
dual basis is {f1, · · · , fn}. Suppose G is a finite diagonal group acting on the
vector space Cn such that the singular set of each nontrivial element in G has
codim at least 2. Further, suppose G acts freely on (C∗)n, then the quotient
(C∗)n/G has the structure of an algebraic n-torus T defined over C, and Cn/G
becomes a toric variety with the following structure[21]. Let N = Hom(C∗, T )
be the group of 1-parameter subgroups of T , M = Hom(T,C∗) be the group
of characters of T. M and N are free abelian groups of rank n and there is a
canonical nonsingular pairing M × N → Z. Define the maps

exp : Rn → Cn,




x1

...
xn


 7→




e2π
√
−1x1

...
e2π

√
−1xn


 ,

tr : Rn → R,




x1

...
xn


 7→

n∑

i=1

xi.
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In our case for Cn/G, N is the lattice generated by exp−1(g) for g ∈ G
in Rn. N contains the standard lattice

∑n
i=1 Zei, and in fact N/

∑n
i=1 Zei is

isomorphic to G. As a toric variety, Cn/G is isomorphic to the affine variety
XC , where C is the cone {

∑n
i=1 xie

i|xi ≥ 0} in Rn. The T-invariant divisors
Di are in one-to-one correspondence with all the 1-dimensional faces R+ei of
C of 1 ≤ i ≤ n. Let ∆ = {x ∈ Rn|tr(x) = 1} ∩ C. A desingularization Y
of XC corresponds to subdividing the cone C into a fan, i.e. a set of cones
σi, such that ∪σi = C and each σi is generated by a subset of a Z-basis of N.
Furthermore, the canonical bundle of the desingularization Y is trivial if and
only if there exists a u ∈ M such that < u, vi >= −1 for all the vi’s, which are
the first integral lattice point on the edges of the subdivided C[21][9]. In other
words, the canonical bundle is trivial if and only if each σi in the fan obtained
from subdivision is a simplicial cone generated by vectors in ∆ ∩ N .

Now we can see how the singularities classified in the previous section can be
resolved in algebraic geometry using rather combinatorial toric geometric tools.
Here, we are only interested in finite diagonal group G acting on Cn such that
G acts freely on on (C∗)4. So, some of the singularity types which have at least
one eigenvalue 1 are not studied here. In fact, as we remarked before, singulari-
ties of the form C2/G and C3/G for finite groups G ⊂ SU (2) or SU (3) respec-
tively have been studied and resolved completely[21][17]. In what follows, we let
a, b, c, d denote the points in C4 of coordinates (1, 0, 0, 0), (0,1,0, 0), (0,0, 1, 0)
and (0, 0, 0, 1) respectively. Let dk be the number of k-dimensional cones in a
fan ∆. If the toric variety X(∆) is nonsingular and projective, then the Betti
numbers bi of X(∆) are determined by

b2k =
n∑

i=k

(−1)i−k( i
k

)dn−i,

bj = 0 for j odd. [9]

(i) G = Z2, generator g acts diagonally by (−1,−1,−1,−1). N = 〈e1, · · · , e4,
1
2 (e1+· · ·+e4)〉, M = {

∑4
i=1 λifi|λi ∈ Z,

∑4
i=1 λi ≡ 0(2)}. C = {

∑4
i=1 xie

i|
xi ≥ 0}. Since ∆ ∩ N = {e1, · · · , e4}, and it doesn’t form a Z-basis for N,
so C4/G can’t be resolved. In fact, as the weight of all elements in G is 2,
C4/G is a terminal singularity which can’t be resolved.

(ii) G = Z3, generator g acts diagonally by (ω, ω2, ω, ω2), where ω = 1
1
3 . N =

〈e1, · · · , e4,
1
3e1 + 2e2 + e3 + 2e4〉, M = {

∑4
i=1 λifi|λi ∈ Z, λ1 + λ3 ≡

λ2 + λ4(3)}. ∆ ∩ N = {e1, · · · , e4}, and it doesn’t form a Z-basis for N.
Again, all elements of G have weight 2, C4/G is a terminal singularity
which can’t be resolved.

(iii) G = Z4, generator g acts diagonally by (ω, ω, ω, ω), where ω = 1
1
4 . N =

〈e1, · · · , e4,
1
4
(e1 + · · ·+ e4)〉, M = {

∑4
i=1 λifi|λi ∈ Z,

∑4
i=1 λi ≡ 0(4)}. Let

u = −(f1 + · · ·+ f4), then adding the vertex e = 1
4
(e1 + · · ·+ e4), we can
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subdivide C into a fan of 4 simplicial 4-cones abce, abde, acde, bcde, each
generated by a Z-basis of N, and < u, v >= −1 for all the minimal integral
edges in this fan. d0 = 1, d1 = 5, d2 = 10, d3 = 10, d4 = 4. Calculating the
Betti number using the formula, we see that bi = 1 for i = 2, 4, 6, 8 and
bi = 0 otherwise. We note finally that C4/G is not a terminal singularity for
the g action, as weight of g is 1; the singularity can be resolved. However,
T 8/G can not be resolved since it has R8/ ± 1 singularities which are not
resolvable. Note however, if g acts by (ω, ω3,−1,−1) or (ω, ω3, ω, ω3), then
C4/G is a terminal singularity with no resolution.

(iv) G = Z5, the generator g acts diagonally by (ω, ω2, ω3, ω4), where ω = 1
1
5 .

Since the singularity C4/G is terminal, ∆∩N = {e1, · · · , e4}, the singularity
is not resolvable.

(v) G = Z6, generator g acts diagonally by (ω, ω, ν, ν), or (ω, ω, ω,−1), where
ω = 1

1
6 and ν = 1

1
3 , then the singularity C4/G is non- terminal and has

a resolution. In the first case, let e = 1
6 (1, 1, 2, 2), and f = 1

2 (1, 1, 0, 0),
then C can be partitioned into 6 simplicial 4-cones, acde, bcde, acef, adef,
bcef, bdef, each generated by a Z basis of N. In the second case, let e =
1
6
(1, 1, 1, 3), and f = 1

3
(1, 1, 1, 0), then C can be partitioned into 6 simplicial

4-cones, abde, acde, bcde, acef, bcef, abef, each generated by a Z basis of
N. In both cases, d0 = 1, d1 = 6, d2 = 14, d3 = 15, d4 = 6, and b0 =
0, b2 = 1, b4 = 2, b6 = 2, b8 = 1. But T 8/G is not resolvable since it
has singularities of type C4/Z2 or C4/Z3 which are not resolvable. For
other possible representation of G, C4/G is terminal singularity with no
resolution.

(vi) G = Z7, there is no action of G ⊂ SU (4) on C4 such that it’s free on (C∗)4.
G can act on C3 with 0 as the only singularity, and this singularity is easily
desingularized[17] [21].

(vii) G = Z8, generator g acts diagonally by (ω, ω3, ω, ω3) or (ω, ω3, δ, δ), where
ω = 1

1
8 and δ = 1

1
4 , the singularity C4/G is non-terminal, and it is re-

solvable in the first case but non-resolvable in the second case using toric
geometry. In the first case, let e = 1

8 (1, 1, 3, 3), and f = 1
8 (3, 3, 1, 1), then

C can be partitioned into 8 simplicial 4-cones, abcf, abdf, acde, bcde, acef,
adef, bcef, bdef, each generated by a Z basis of N. Here, d0 = 1, d1 =
6, d2 = 15, d3 = 18, d4 = 8, and b0 = 0, b2 = 2, b4 = 3, b6 = 2, b8 = 1. In the
second case, e = 1

8 (1, 2, 2, 3), and f = 1
2(1, 0, 0, 1), there are only 6 possible

4-cones that are generated by some Z basis of N, i.e. bcde, abef, acef, bcef,
bdef, cdef, and they don’t partition C. T 8/G is not resolvable since it has
singularities which are not resolvable. For other possible representation of
G, C4/G is terminal singularity with no resolution.

(viii) G = Z9, the only possible action of G ⊂ SU (4) on C4 is generated by
(ω, ω4, ω7, ω6), where ω = 1

1
9 . Although C4/G is a non-terminal singularity

since g3 has weight 1, the 4 simplicial cones in the fan generated by the
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elements {e1, · · · , e4,
1
3 (e1+e2+e3)} are not generated by a subset of the Z-

basis of N = 〈e1, · · · , e4,
1
9(e1+4e2+7e3+6e4)〉. So C4/G is not resolvable.

(ix) G = Z10, generator g acts diagonally by (ω, ω3, δ, δ2), where ω = 1
1
10 and

δ = 1
1
5 , the singularity C4/G is non-terminal and non-resolvable using

toric geometry. Let e = 1
10

(1, 2, 3, 4), and f = 1
2
(1, 0, 1, 0), there are only 4

possible 4-simplices generated by a Z basis of N, bcde, adef, bdef, cdef, and
they don’t partition C. A fortiori, T 8/G is not resolvable. For other possible
representation of G, C4/G is terminal singularity with no resolution.

(x) G = Z12, generator g acts diagonally by (ω, ω5, ω, ω5), or (ω, ω5, δ, δ), or
(ω, ω5, ν, η), or (ω, ω7, η, η), where ω = 1

1
12 , δ = 1

1
4 , ν = 1

1
3 , and η =

1
1
6 . Then C4/G is a non-terminal singularity, we have checked that it is

only resolvable using toric geometry in the first representation of G but
not the other ones. In the first representation, let e = 1

12(1, 1, 5, 5), f =
1
4 (1, 1, 1, 1), and g = 1

12(5, 5, 1, 1), then C can be partitioned into 12 4-
simplices, acde, bcde, abcg, abdg, acef, bcef, adef, bdef, acfg, bcfg, adfg,
bdfg, each generated by a Z basis of N. Here, d0 = 1, d1 = 7, d2 = 20, d3 =
26, d4 = 12, and b0 = 0, b2 = 3, b4 = 5, b6 = 3, b8 = 1. In the next three
fixed point free representation of G in C4, we have checked that there isn’t
a partition of C by simplicial 4-cones. Finally, T 8/G is not resolvable. For
other possible representation of G, C4/G is terminal singularity with no
resolution.

(xi) G = Z14, the possible action of G ⊂ SU (4) on C4 is generated by (ω3, ω5,

ω13,−1), where ω = 1
1
14 . Although C4/G is a non-terminal singularity

since g6 has weight 1. The 4 simplicial cones in the fan generated by the
elements {e1, · · · , e4,

1
14(4e1 + 2e2 + 8e3)} are not generated by a subset of

the Z-basis of N = 〈e1, · · · , e4,
1
14(3e1 +5e2 +13e3 +7e4)〉. So C4/G is not

resolvable.
(xii) G = Z15, generator g acts diagonally by (ω, ω2, ω4, ω8), where ω = 1

1
15 .

C4/G is a non-terminal singularity resolvable using toric geometry. Let
e = 1

15
(1, 2, 4, 8), f = 1

15
(2, 4, 8, 1), g = 1

15
(4, 8, 1, 2), and h = 1

15
(8, 1, 2, 4),

then C can be partitioned into 15 4-simplical cones, abcf, acdh, bcde, abdg,
bcef, bdeg, cdeh, acfh, abfg, adgh, afgh, befg, cefh, degh, and efgh, each
generated by a Z basis of N. Here, d0 = 1, d1 = 8, d2 = 24, d3 = 32, d4 = 15,
and b0 = 0, b2 = 4, b4 = 6, b6 = 4, b8 = 1. Finally, T 8/G is not resolvable as
it has singularities of non-resolvable type.

(xiii) G = Z16, generator g acts diagonally by (ω, ω3, ω5, ω7), where ω = 1
1
16 .

C4/G is a non-terminal singularity non-resolvable using toric geometry.
It’s not resolvable, as for e = 1

16
(1, 3, 5, 7) and f = 1

16
(7, 5, 3, 1), there are

only 4 4-simplicial cones bcde, abcf, cdef, and abef, that are generated by
a Z basis of N and they are not enough to partition C. A fortiori, T 8/G is
not resolvable.

(xiv) G = Z18, the possible action of G ⊂ SU (4) on C4 is generated by (ω, ω7, ω13,
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ω15), where ω = 1
1
18 . Although C4/G is a non-terminal singularit y since g3

and g6 both have weight 1. The simplicial cones in the fan generated by the
elements {e1, · · · , e4,

1
6(e1 +e2 +e3 +3e4), 1

3 (e1+e2 +e3)} are not generated
by a subset of the Z-basis of N = 〈e1, · · · , e4,

1
18(e1 + 7e2 + 13e3 + 15e4)〉.

So C4/G is not resolvable.
(xv) G = Z20, generator g acts diagonally by (ω, ω3, ω7, ω9), where ω = 1

1
20 .

C4/G is a non-terminal singularity but not resolvable using toric geometry.
The vertices determined by weight 1 elements of G are e = 1

20
(1, 3, 7, 9), f =

1
20

(3, 9, 1, 7), g = 1
20

(7, 1, 9, 3), and h = 1
20

(9, 7, 3, 1). There are 36 simplicial
4-cones generated by Z basis of N from the 8 vertices {a, b, c, d, e, f, g, h},
but there aren’t 20 of the 36 which will partition C. A fortiori, T 8/G is not
resolvable.

(xvi) G = Z24, generator g acts diagonally by (ω, ω5, ω7, ω11) or (ν, ν5, µ, µ3),
where ω = 1

1
24 , ν = 1

1
12 , and µ = 1

1
8 . C4/G is a non-terminal singularity

but not resolvable using toric geometry in either case. Since, there are not
sufficiently many 4-simplicial cones generated by a Z basis of N to partition
C. A fortiori, T 8/G is not resolvable.

Observation 5.2.3 We note that of all the examples studied above, if C4/Zn

is resolvable, then the sum of the even Betti numbers (which is also the Euler
characteristic) of the resolution is the number of conjugacy classes in Zn, which
is n.

Recently, Batyrev and Kontsevich announced that they can prove the physi-
cists’ orbifold Euler characteristic formula (to be discussed in the next chapter)
holds for the resolution of Cl/G provided that the resolution is crepant. And
indeed, our observation verifies this.

From these examples of element of SU (4) acting on T 8 fixing the torus
lattice, we see that the singularities C4/Zn (Zn acting fixed point freely on
(C∗)4)) is resolvable using toric geometry for n ∈ {4, 6, 8, 12, 15} for certain
representation of Zn in SU (4). We observe that even though C4/Zn is a non-
terminal singularity for n ∈ {9, 14, 18}, C4/Zn can’t be resolved (the generator
has weight > 1), and neither for n ∈ {10, 16, 20, 24} (even though the generator
has weight 1, since C can’t be properly partitioned). Furthermore, T 8/Zn is not
resolvable for any n, since it will always have singularities of the type C4/Zm

for some m which is terminal. Therefore, in order for us to produce more
examples of Spin(7) manifolds from torus orbifold actions, we need to go down
in dimension and use T 6/G or T 4/G instead.
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Chapter 6

Orbifold Formulas and
Topological Obstruction

For a compact manifold M and with a finite group G action, there is a well-
known physicists’ Euler characteristic formula in string theory for orbifold M/G
which admits a Calabi-Yau metric:

χ(M, G) =
1
|G|

∑

g,h∈G,gh=hg

χ(M g ∩ Mh).

In [3], physicists have since come up with string-theoretic formulae for Hodge
numbers of smooth compact Kähler complex n-manifold M with a finite group
G-action. Suppose M has a G-invariant volume form. Let C(g) = centralizer
of g in G. For x ∈ M g, the eigenvalues of g in the holomorphic tangent space
TxM are roots of unity: e2π

√
−1α1 , · · · , e2π

√
−1αn , where 0 ≤ αj < 1. M g can be

written as a disjoint union of C(g)-orbits of connected components M g
1 , · · · , M g

rg
.

Define Fi(g), the fermion shift number, to be
∑

1≤j≤n αj on M g
i . Let hp,q

C(g)(M
g
i )

be the dimension of the C(g)-invariant subspace of Hp,q(M g
i ). Let

hp,q
g (M, G) =

rg∑

i=1

h
p−Fi(g),q−Fi(g)
C(g) (M g

i )

The resolution of the orbifold M/G are predicted to have the Hodge numbers

hp,q(M, G) =
∑

{g}

hp,q
g (M, G) (6.1)

summing over the conjugacy classes of G.
[3] also conjectured a strong McKay correspondence for ALE spaces.
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Conjecture 6.0.4 (Strong McKay Correspondence)[3] Let G ⊂ SL(n,C) be
a finite group. Assume that Cn/G admits a smooth crepant desingularization
π : M̂ → Cn/G, where F = π−1(0), then

bi(F,C) = bi(M̂ ) = #{conjugacy classes {g} ⊂ G, such that wt(g) =
i

2
}
(6.2)

where wt(g) is defined as
∑n

i=1 αi, for g ∈ G with eigenvalues e2π
√
−1αi for

1 ≤ i ≤ n, αi ∈ Q ∩ [0, 1).

In this chapter, we shall give orbifold formulas for certain linear combinations
of Betti numbers of Spin(7)-manifolds based on the results of [3], these formulae
are true for SU (4) manifolds, and make sense for Spin(7)-manifolds. We also
use the topogical data derived to give a criterion for what orbifold constructions
are possible to generate manifolds of Spin(7)-structure.

6.1 Betti Numbers for Compact Spin(7)-Manifolds

In chapter 3, we showed how to construct Spin(7)-manifolds by resolving T 8/G,
for a finite group G. In resolving the singularities, we noticed that singularities
of type iv and type v admit two different resolutions, hence it is not possible to
predict the Betti number of Spin(7) manifolds obtained by resolving an orbifold.
On the other hand, for all known examples, we find that

∑
beven,

∑
bodd, and

b4
+ − b4

− are indenpendent of the resolution chosen. Based on string theory
and McKay conjectures, Batyrev-Dais[3] developed formulae to predict Hodge
numbers for smooth compact Kähler manifolds equipped with a finite group
action. Here, we can adapt their conjectures and ideas to predict formulae for
the three linear combinations of Betti number for examples of Spin(7)-manifolds
constructed using orbifold construction.

Suppose we have a connected 8-manifold M with a finite group action G

such that ˆM/G, the resolution of M/G has holonomy in Spin(7). For g ∈ G,
the possible real dimensions for M g are 0, 2, 4, or 8. dim(M g) has to be even,
otherwise, g ∈ SO(k) for some k odd would act fixed point freely, which is
impossible. dim(M g) 6= 6, else g ∈ SO(2), but this is not possible in Spin(7).

(i) dim(M g) = 8, then g = 1. So Fi(g) = 0.
(ii) dim(M g) = 4, we see that 0 < Fi(g) < 2, so Fi(g) = 1. Since Spin(7) ∩

SO(4) = SU (2), the normal bundle to M g has an SU (2)-structure. There
is an SU (2) family of SU (2)-structures on M g, thus the splitting of Hi into
Hp,q is non-canonical. So Hp,q makes no sense in this context. However,
Fi(g) is well-defined to be 1.

(iii) dim(M g) = 2, since M is not complex, M g is not a complex curve, thus has
no canonical orientation. Further, the normal bundle of M g has Spin(7) ∩
SO(6) = SU (3) structure. A choice of orientation gives 2 SU (3)- structures,
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equivalent under (z1, z2, z3) → (z̄1, z̄2, z̄3). We see that 0 < Fi(g) < 3. The
two SU (3) structures give Fi(g) = 1 or 2 respectively. So Fi(g) is not
determined uniquely.

(iv) dim(M g) = 0, 0 < Fi(g) < 4. Here (z1, z2, z3, z4) → (z̄1, z̄2, z̄3, z̄4) on the
normal bundle of a fixed point sends Fi(g) to 4 − Fi(g). If Fi(g) = 2, then
it’s well-defined. However, if Fi(g) = 1, then it’s undetermined. The two
SU (4) structures give Fi(g) = 1 or 3.

From the above discussion and the physicists’ orbifold Hodge number for-
mula, and the fact that the Fermion shift Fi(g) doesn’t affect the even or odd
part of cohomology, let rg be the number of C(g)-orbits of connected compo-
nents of M g, we predict that

∑
beven =

4∑

k=0

∑

{g} conjugacy classes

rg∑

i=1

dim((H2k−2Fi(g)(M g
i ))C(g)) (6.3)

∑
bodd =

3∑

0

∑

{g} conjugacy classes

rg∑

i=1

dim((H2k+1−2Fi(g)(M g
i ))C(g)) (6.4)

These orbifold formulae for the sum of odd and even Betti numbers derived
from the orbifold Hodge number formula is certainly true for SU (4)-manifolds,
and it makes sense for Spin(7)-manifolds. Indeed, the quantities predicted by
these formulae are the same as the ones computed in all known examples of
compact Spin(7)-manifolds obtained by resolving T 8/G.

In particular, we see that we can predict b3 and χ for Spin(7)-manifolds.
Another important topological invariant for Spin(7)-manifolds is the signa-

ture, i.e. σ = b4
+(M, G) − b4

−(M, G). We see from Chapter 1, that ∧4
+T ∗M =

∧4
1 ⊕∧4

7 ⊕∧4
27, and ∧4

−T ∗M = ∧4
35. From [24], we see that on Kähler manifolds

b4
+ = h40 + h22 + h04 + h42 + h24 − h33 + h44 (6.5)

b4
− = h31 + h13 − h20 − h02 + h11 − h00 (6.6)

We observe that b4
+ − b4

− =
∑

p+q even(−1)pqhpq. Again, we rely on the
orbifold formula for Hodge numbers to determine contributions to b4

+(M, G) −
b4
−(M, G) arising from singularities in M/G.

(i) dimM g = 8, i.e. g = 1, b4
+,g(M, G) − b4

−,g(M, G) is dim(H4
+(M )G) −

dim(H4
−(M )G).

(ii) dimM g = 4, then Fi(g) = 1, b4
+,g(M, G) =

∑rg

j=1(h
11
C(g)(M

g
j )−h22

C(g)(M
g
j )),

and b4
−,g(M, G) =

∑rg

j=1(h
20
C(g)(M

g
j )+h02

C(g)(M
g
j )+h00

C(g)(M
g
j )). So, b4

+,g(M, G)−
b4
−,g(M, G) is just

∑rg

j=1(dim(H2
−(M g

j ))C(g) − dim(H2
+(M g

j ))C(g)).
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(iii) dimM g = 2, then Fi(g) is either 1 or 2. If Fi(g) = 1, we have b4
+,g(M, G) =∑rg

j=1 h11
C(g)(M

g
j ), and b4

−,g(M, G) =
∑rg

j=1 h00
C(g)(M

g
j ). If Fi(g) = 2, we

have b4
+,g(M, G) =

∑rg

j=1 h00
C(g)(M

g
j ) − h11

C(g)(M
g
j ), and b4

−,g(M, G) = 0. In
either case, b4

+,g(M, G) − b4
−,g(M, G) contributes 0.

(iv) dimM g = 0, then either Fi(g) = 2, or Fi(g) = 1 or 3. If Fi(g) = 2,
b4
+,g(M, G) − b4

−,g(M, G) =
∑rg

j=1 h00
C(g)(M

g
j ) = rg. If Fi(g) = 1 or 3, then

b4
+,g(M, G) − b4

−,g(M, G) =
∑rg

j=1 −h00
C(g)(M

g
j ) = −rg.

Putting these together, we can compute the signature for ˆM/G. Indeed, the
signatures predicted via these calculations correspond exactly to the results in
all known examples of compact Spin(7)-manifolds, i.e. the signature is always
64.

For all known examples of Spin(7) manifolds, we can work out their Euler
characteristics. We see that χ for all known Spin(7)-manifolds are 144. So
2(b0 − b1 + b2 − b3) + b4 = 144 and b4

+ − b4
− = 64, so b4

+ = 103 − b2 + b3 and
b4
− = 39 − b2 + b3. In fact, given Â = 1, χ and σ determine each other, namely

24Â = 24 = 3σ − χ.

6.2 Topological Data for R8/G

In chapter 4, we found all the finite subgroups G of Spin(7) which have fixed
point free representation in SO(8). The spaces R8/G are interesting, because
they are candidates for singularities which might be resolved within Spin(7)
holonomy. For this reason, we want to study the Betti numbers and signa-
ture associated to R8/G and conjecture a topological criterion for the isolated
singularity 0 in R8/G to be resolved within holonomy Spin(7).

First we observe that when G acts on R8 in a fixed point free fashion except
at the origin, we can apply the work in the previous section to the only singular
point 0. When dim(M g) = 0 for g ∈ G, we see that Fi(g) could be 1, 2, or 3
if g 6= id and 0 if g = id. Further, we note that in the Spin(7) setting, weights
1 and 3 occur in pairs, the duality corresponds to the two SU (4) structures on
on the normal bundle of the fixed point.

Given a resolution π : X → R8/G, where F = π−1(0), the conjecture of
strong McKay correspondence [3] gives the cohomology of F with coefficient C.
Since X retracts to F , so the homology of X is the same as the homology of F .
Regarding X as a manifold with boundary Y = S7/G. Hj(X) ' H8−j(X)∗ for
j 6= 0, 8, and Hj(X) ' (Hj(X))∗ for j < 8. Since dim(F ) < 8, H8(X) = 0, and
H8

c (X) = R, where H∗
c is cohomology with compact support.

From the Poincaré-Lefschetz duality theorem for manifolds with boundary,
Hj(X) ' H8−j(X; Y ) and the long exact homology sequence for (X, Y ), we see
that H0(X; Y ) = 0, H0(X) = R, H8(X; Y ) = R, and H8(X) = 0. Furthermore,
Hj(X) = Hj(X; Y ) for j 6= 0, 8. In particular, even though X is non-compact,
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bi(X) = b8−i(X) for i 6= 0, 8. The strong McKay correspondence conjecture
thus gives

b4(X) = #{conjugacy classes {g} in G with wt(g) = 2}

b2(X) = b6(X) =
1
2
#{conjugacy classes {g} in G with wt(g) = 1 or 3}

b1(X) = b3(X) = b5(X) = b7(X) = 0 (6.7)

We can also find b4
+(X) − b4

−(X) using the result from last section. As 0 is
the only singular point, b4

+(X) − b4
−(X) is just the number of conjugacy classes

{g} with wt(g) = 2 minus the number of conjugacy classes {g} with wt(g) = 1
or 3. So b4

− = half the number of conjugacy classes {g} with wt(g) = 1.
In summary, using the results on orbifold Hodge number formulae and strong

McKay conjecture for SU (4)-manifolds as is done in [3], we conjecture that for
X, a resolution of R8/G, where G acts fixed point freely except at the origin,
the topological data are:

b2 = b6 = b4
− =

1
2
(the number of conjugacy classes in G of weight 1 or 3)

b4
+ = the number of conjugacy classes in G of weight 2)

−1
2
(the number of conjugacy classes in G of weight 1 or 3)

We also have a conjecture similar to Theorem D in [13] as follows:

Conjecture 6.2.1 Suppose X admits ALE torsion-free Spin(7)-structures. The
moduli space of ALE torsion-free Spin(7)-structures is a smooth manifold of di-
mension b4

−(X).

In particular, if b4
− < 0, then R8/G admits no resolution with holonomy

Spin(7). If b4
− = 0, then the only Spin(7) structure is the flat one on R8/G.

Since given a resolution X of R8/G, X has ALE Spin(7) structure Ω, then t4Ω is
a 1-parameter family of ALE Spin(7) structures on X for t ∈ (0,∞). Either they
are all isomorphic, in which case Ω = R8/G, as nothing else can be both ALE
and homothetic to itself, or they are non-isomorphic, thus the moduli space of
such structures is at least 1 dimensional, i.e. b4

− > 1.
Now, we can calculate b4(X) and b4

+(X) − b4
−(X) for the resolution X of

R8/G for the group G found in chapter 4. We have the following result.

(i) G is a solvable Frobenius complement. G is cyclic of order n. If n = 2, 3
or 6, then in all possible fixed point free SU (4) representations of G, the
conjugacy classes have either weight 0 or 2. Hence, b4

− = 0. If n 6= 1, 2, 3
and 6, there exist fixed point free SU (4) representations of G such that
an even number of conjugacy classes have either 1 or 3, so b4

− is a positive
integer.
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(ii) G is a solvable Frobenius complement. G = Dn1 × Cn2where (n1, n2) 6= 1
and (n2, 2) = 1. There are no fixed point free irreducible representation of
Dihedral groups. So this case is excluded.

(iii) G is a solvable Frobenius complement. G = Qk+1 × Cm′ , where k is the
largest integer such that 2k|m, k ≥ 2, and m′ = m

2k . The fixed point free ir-
reducible representations of generalized quaternion groups are all 2-complex
dimensional sitting in SU (2). From the characters of these representations,
we see that the weight of each non-trivial conjugacy class of G is 2. Hence,
b4
− = 0.

(iv) G is a solvable Frobenius complement. G = 〈x, y|x4 = ym = 1, x−1yx =
yr〉, where (4, m) = (r − 1, m) = 1. r2 = 1(m), so r = m − 1.

y =
[

ξ 0
0 ξr

]
, x =

[
0 −1
1 0

]

where ξ is a primitive m-th root of 1.
m has to be odd, say m = 2l + 1, then G has 4 + 2l conjugacy classes.
Its representation in SU (4) = SO(8) must be the direct sum of two copies
of the given SU (2) representation and has the following weights: class {1}
has weight 0; class {xyk}2l

k=0 has weight 2; class {x3yk}2l
k=0 has weight 2;

class {x2} has weight 2; classes {yk, y−k} have weight 2 and {x2yk, x2y−k}
have weights 2 for 1 ≤ k ≤ 2l. So b4 = 2l + 3 = σ, so b4

− = 0.
(v) G is a solvable Frobenius complement with a normal subgroup G0 of index 2,

where G0 = 〈x, y|x4 = ym = 1, x−1yx = yr〉, where (4, m) = (r−1, m) = 1.
r2 = 1(m), so r = m−1. G = 〈G0, τ 〉, where τ is an involution. The SU (4)
representation of G is

ρ̃(x) =
[

ρ(x) 0
0 ρ(x3)

]
ρ̃(y) =

[
ρ(y) 0

0 ρ(yγ )

]

ρ̃(τ ) =
[

0 ρ(x)
1 0

]

where γ2 = −1(m), and ρ(x) =
[

0 −1
1 0

]
, ρ(y) =

[
ξ 0
0 ξr

]
, and ξ is

a primitive m-th root of 1. So G = 〈x, y, τ |x4 = ym = τ2 = 1, x−1yx =
yr , τxτ−1 = x−1, τyτ−1 = y−γ 〉.
G has 5 + m−1

2
many conjugacy classes. m = 2l + 1. Its representation

in SU (4) has the following weights: {1} has weight 0; conjugacy classes

{xyk, x3yk}2l
k=0, {τ, τx2, τyk γ+1

γ , τx2y−
k

γ−k+1 }2l
k=0, {τx, τx3, τxy

k(γ−1)
γ ,

τx3y
k

γ−k+1 }2l
k=0, the class {x2} all have weight 2. And for each 1 ≤ k ≤

m−1
4 , the m−1

2 classes {yk, y−k, yγ , y−kγ} have weight 2, classes {x2yk , x2y−k ,
x2yγ , x2y−kγ} have weight 2. So b4 = 4 + m−1

4
= σ, and b4

− = 0.
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(vi) G is a solvable Frobenius complement. G = 〈x, y|x8 = ym = 1, x−1yx =
yr〉, r4 = 1(m), (8, m) = (r − 1, m) = 1. m = 2l + 1.

y =




ξ 0 0 0
0 ξr 0 0
0 0 ξr2

0
0 0 0 ξr3


 , x =




0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0




where ξ is a primitive m-th root of 1.
G has 8 + m−1

2 conjugacy classes, its representation in SU (4) has the fol-
lowing weights: {1} has weight 0; conjugacy classes {x4}, {xyk(r−1)}2l

k=0,
{x2yk(r−1)}2l

k=0, {x3yk(r−1)}2l
k=0, {x5yk(r−1)}2l

k=0, and {x7yk(r−1)}2l
k=0 all

have weight 2. The other m−1
2 conjugacy classes are of the form {yk, ykr,

ykr2
, ykr3} and {x4yk , x4ykr , x4ykr2

, x4ykr3}, these can have weight 1, 2 or
3, depending on m. So depending on m, b4

− may be greater than 0. In fact,
for m ≤ 100, the only m’s for which in some representation b4

− is a positive
integer are listed as follows

m 15 35 39 45 51 55 65 75 85 95
b4
− 1 3 3 4 3 4 5 4 7 8

In fact, one can show that in order for b4
− to possibly be a positive integer,

m must be odd and have at least two distinct prime factors at least one of
which, say p, is such that 4|(p− 1).

(vii) G is a non-solvable Frobenius complement. G = SL(2, 5)×Cm , (m, 30) = 1,
G has SU (4) representation ρ in the form φi1 ⊗χ⊕ φi2 ⊗χ−1 where φi are
the 2 2-dimensional fixed point free SU (2) representation of SL(2, 5) and
χ is a nontrivial character of Cm. From the character table of SL(2, 5),
we see that G has 9m conjugacy classes. If i1 = i2, then these conjugacy
classes except the identity all have weight 2, so b4 = σ = 8 + 9(m − 2) and
b4
− = 0.

Now consider the case i1 6= i2, ρ = φ1 ⊗ χ⊕ φ2 ⊗ χ−1. From the character
table of SL(2, 5), we see that φ1 and φ2 have the same characters on all
conjugacy classes except the ones with order 5 or 10. The conjugacy classes
on which φi’s have the same character can all be seen to have weight 2 in the
representation ρ. Some careful computation of the weight for the conjugacy
classes of elements of order 5 or 10 yields the following result:

b4
− = 2dm − 5

10
e + 4dm − 4

10
e + 2





dm
10
e if dm

10
e ≡ 0(3)

dm
10
e − 1 if dm

10
e ≡ 1(3)

dm
10e − 1 if dm

10e ≡ 2(3), m ≡ 1, 2(5)
dm

10e if dm
10e ≡ 2(3), m ≡ 3, 4(5)

(viii) G is a non-solvable Frobenius complement, G = {(h, α) ∈ S̃5×Dm |sgn(h) =
sgn(α)}, (m, 30) = 1. G0 = SL(2, 5) × Cm. Since the representation ρ for
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G is IndG
G0

(φ1⊗χ), and ρ on G0 is φ1⊗χ⊕φ2⊗χ−1, previous computations
for ρ on G0 show that b4

− is positive. Hence, a fortiori, b4
− must be positive

for ρ on G. In fact, it’s easy to see from the character table and calculations
for the G0 case that

b4
− = d

m − 5
10

e + 2d
m − 4

10
e +





dm
10
e if dm

10
e ≡ 0(3)

dm
10
e − 1 if dm

10
e ≡ 1(3)

dm
10e − 1 if dm

10e ≡ 2(3), m ≡ 1, 2(5)
dm

10e if dm
10e ≡ 2(3), m ≡ 3, 4(5)

In summary, for the resolution X of R8/G to have b4
− > 0, i.e. for X

to admit torsion-free Spin(7)-structure, then G must either be cyclic of order
n, where n 6= 1, 2, 3 and 6; or G = 〈x, y|x8 = ym = 1, x−1yx = yr〉, where
r4 = 1(m), (2, m) = (r − 1, m) = 1, and m is odd with at least two distinct
prime factors, one of which, say p, is such that 4|(p− 1); or G is a non-solvable
Frobenius complement such that G = SL(2, 5)×Cm where (m, 30) = 1; or G is a
non-solvable Frobenius complement such that G = {(h, α) ∈ S̃5 ×Dm|sgn(h) =
sgn(α)}, (m, 30) = 1.
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