Singularities of special Lagrangian submanifolds

Dominic Joyce

Oxford University
recommended reading:
math.DG/0111111 math.DG/0310460

These slides available at www.maths.ox.ac.uk/~joyce/talks.html

Almost Calabi-Yau m-folds
An almost Calabi-Yau m-fold (M, J, g, Ω) is a compact complex m-fold (M, J) with a Kähler metric g with Kähler form ω, and a nonvanishing holomorphic ($m, 0$)-form Ω, the holomorphic volume form. It is a Calabi-Yau m-fold if $|\Omega|^{2} \equiv 2^{m}$. Then $\nabla \Omega=0$, the holonomy group $\operatorname{Hol}(g) \subseteq$ $\mathrm{SU}(m)$, and g is Ricci-flat.

Special Lagrangian m-folds Let (M, J, g, Ω) be an almost Calabi-Yau m-fold. Let N be a real m-submanifold of M. We call N special Lagrangian $(S L)$ if $\left.\left.\omega\right|_{N} \equiv \operatorname{Im} \Omega\right|_{N} \equiv 0$, and $S L$ with phase $e^{i \theta}$ if $\left.\omega\right|_{N} \equiv$ $\left.(\cos \theta \operatorname{Im} \Omega-\sin \theta \operatorname{Re} \Omega)\right|_{N} \equiv 0$. If (M, J, g, Ω) is a Calabi-Yau m-fold then $\operatorname{Re} \Omega$ is a calibration on (M, g), and N is an SL m-fold iff it is calibrated with respect to $\operatorname{Re} \Omega$.

Let (M, J, g, Ω) be an almost Calabi-Yau m-fold and N a compact SL m-fold in M. Let \mathcal{M}_{N} be the moduli space of SLdeformations of N. We ask: 1. Is \mathcal{M}_{N} a manifold, and of what dimension?
2. Does N persist under deformations of (J, g, Ω) ? 3. Can we compactify \mathcal{M}_{N} by adding a 'boundary' of singular SL m-folds? If so, what are the singularities like?

These questions concern the deformations of SL m-folds, obstructions to their existence, and their singularities.
Questions 1 and 2 are fairly well understood, and we shall discuss them in the first half of this lecture. Question 3 is an active area of research, and will be discussed in the second half, and next lecture.

The answer to Question 1, on deformations of SL m-folds, was given by McLean in 1990 (in the Calabi-Yau case).
Theorem. Let (M, J, g, Ω) be an almost Calabi-Yau m-fold, and N a compact SL m-fold in M. Then the moduli space \mathcal{M}_{N} of $S L$ deformations of N is a smooth manifold of dimension $b^{1}(N)$, the first Betti number of N.

Here is a sketch of the proof. Let $\nu \rightarrow N$ be the normal bundle of N in M. Then J identifies $\nu \cong T N$ and g identifies $T N \cong T^{*} N$. So $\nu \cong T^{*} N$. We can identify a small tubular neighbourhood T of N in M with a neighbourhood of the zero section in ν, identifying ω on M with the symplectic structure on $T^{*} N$.
Let $\pi: T \rightarrow N$ be the obvious projection.

Then graphs of small 1-forms α on N are identified with submanifolds N^{\prime} in $T \subset M$ close to N. Which α correspond to SL m-folds N^{\prime} ?
Well, N^{\prime} is special Lagrangian iff $\left.\left.\omega\right|_{N^{\prime}} \equiv \operatorname{Im} \Omega\right|_{N^{\prime}} \equiv 0$.
Now $\left.\pi\right|_{N^{\prime}}: N^{\prime} \rightarrow N$ is a diffeomorphism, so this holds iff $\pi_{*}\left(\left.\omega\right|_{N^{\prime}}\right)=\pi_{*}\left(\left.\operatorname{Im} \Omega\right|_{N^{\prime}}\right)=0$. We regard $\pi_{*}\left(\left.\omega\right|_{N^{\prime}}\right)$ and $\pi_{*}\left(\left.\operatorname{Im} \Omega\right|_{N^{\prime}}\right)$ as functions of α.

Calculation shows that
$\pi_{*}\left(\left.\omega\right|_{N^{\prime}}\right)=\mathrm{d} \alpha$ and
$\pi_{*}\left(\left.\operatorname{Im} \Omega\right|_{N^{\prime}}\right)=F(\alpha, \nabla \alpha)$,
where F is nonlinear. Thus,
\mathcal{M}_{N} is locally the set of small 1-forms α on N with $\mathrm{d} \alpha \equiv 0$ and $F(\alpha, \nabla \alpha) \equiv 0$. Now $F(\alpha, \nabla \alpha) \approx \mathrm{d}(* \alpha)$ for small α. So \mathcal{M}_{N} is locally approximately the set of 1 -forms α with $\mathrm{d} \alpha=$ $\mathrm{d}(* \alpha)=0$. But by Hodge theory this is the de Rham group $H^{1}(N, \mathbb{R})$, of dimension $b^{1}(N)$.

Question 2, on obstructions to the existence of SL m-folds, can locally be answered using the same methods.
Theorem. Let $M_{t}: t \in(-\epsilon, \epsilon)$ be a family of almost CalabiYau m-folds, and N_{0} a compact SL m-fold of M_{0}. If $\left[\left.\omega_{t}\right|_{N_{0}}\right]=\left[\left.\operatorname{Im} \Omega_{t}\right|_{N_{0}}\right]=0$ in $H^{*}\left(N_{0}, \mathbb{R}\right)$ for all t, then N_{0} extends to a family $N_{t}: t \in$ $(-\delta, \delta)$ of $S L$ m-folds in M_{t}, for $0<\delta \leqslant \epsilon$.

Singular SL m-folds

General singularities of SL mfolds may be very bad, and difficult to study. Would like a class of singular SL m-folds with nice, well-behaved singularities to study in depth. Would like these to occur often in real life, i.e. of finite codimension in the space of all SL m-folds. SL m-folds with isolated conical singularities (ICS) are such a class.

Let N be an SL m-fold in M whose only singular points are x_{1}, \ldots, x_{n}. Near x_{i} we can identify M with $\mathbb{C}^{m} \cong T_{x_{i}} M$, and N near x_{i} approximates an SL m-fold in \mathbb{C}^{m} with singularity at 0 . We say N has isolated conical singularities if near x_{i} it converges with order $O\left(r^{\mu_{i}}\right)$ for $\mu_{i}>1$ to an SL cone C_{i} in \mathbb{C}^{m} nonsingular except at 0 .

SL m-folds with ICS have a rich theory.

- Examples. Many examples of SL cones C_{i} in \mathbb{C}^{m} have been constructed. Rudiments of classification for $m=3$. - Regularity near x_{1}, \ldots, x_{n}. Let $\iota: N \rightarrow M$ be the inclusion. If $\nabla^{k} \iota$ converges to C_{i} near x_{i} with order $O\left(r^{\mu_{i}-k}\right)$
for $k=0,1$ then it does so for all $k \geqslant 0$.
- Deformation theory. The moduli space \mathcal{M}_{N} of deformations of N is locally homeomorphic to $\Phi^{-1}(0)$, for smooth $\Phi: \mathcal{I} \rightarrow \mathcal{O}$ and fin. dim. vector spaces \mathcal{I}, \mathcal{O} with \mathcal{I} the image of $H_{\mathrm{CS}}^{1}\left(N^{\prime}, \mathbb{R}\right)$ in $H^{1}\left(N^{\prime}, \mathbb{R}\right), N^{\prime}=N \backslash\left\{x_{1}, \ldots, x_{n}\right\}$, and $\operatorname{dim} \mathcal{O}=\sum_{i=1}^{n} \mathrm{~s}-\mathrm{ind}\left(C_{i}\right)$. Here s-ind $\left(C_{i}\right) \in \mathbb{N}$ is the stability index, the obstructions from C_{i}. If s-ind $\left(C_{i}\right)=0$ for all i then \mathcal{M}_{N} is smooth.
- Desingularization. Let C be an $S L$ cone in \mathbb{C}^{m}, nonsingular except at 0. A nonsingular $S L m$-fold L in \mathbb{C}^{m} is Asymptotically Conical (AC) C if L converges to C at infinity with order $O\left(r^{\nu}\right)$ for $\nu<1$. Then $t L$ converges to C as $t \rightarrow \mathrm{O}_{+}$. Thus, AC SL mfolds model how families of nonsingular SL m-folds develop singularities modelled on C.

If N is an SL m-fold with ICS at x_{1}, \ldots, x_{n} and cones C_{i}, and L_{1}, \ldots, L_{n} are AC SL m-folds in \mathbb{C}^{m} with cones C_{i}, then under cohomological conditions we can construct a family of compact nonsingular SL m folds \tilde{N}^{t} for small $t>0$ converging to N as $t \rightarrow 0$, by gluing $t L_{i}$ into N at x_{i}, all i.

Here is how this works. Let $B_{\epsilon}(0)$ be an open ball of small radius $\epsilon>0$ in \mathbb{C}^{m}, and choose a local diffeomorphism Υ_{i} : $B_{\epsilon}(0) \rightarrow M$ with $\Upsilon_{i}(0)=x_{i}$, that identifies C_{i} in \mathbb{C}^{m} with the tangent cone to N at x_{i}, and $\gamma_{i}^{*}(\omega)=\omega_{0}$, for ω the Kähler form on M and ω_{0} the Hermitian form on \mathbb{C}^{m}. Write $\Sigma_{i}=C_{i} \cap \mathcal{S}^{2 m-1}$ 。 Then ι_{i} : $(\sigma, r) \mapsto r \sigma$ is a diffeomorphism $\iota_{i}: \Sigma_{i} \times(0, \infty) \rightarrow C_{i} \backslash\{0\}$.

For $0<\epsilon^{\prime}<\epsilon$ small there is a unique $\phi_{i}: \Sigma_{i} \times\left(0, \epsilon^{\prime}\right) \rightarrow$ \mathbb{C}^{m} such that $\operatorname{Im}\left(\Upsilon_{i} \circ \phi_{i}\right)$ coincides with $N \backslash\left\{x_{i}\right\}$ near x_{i}, and $\left(\phi_{i}-\iota_{i}\right)(\sigma, r)$ is perpendicular to $T_{r \sigma} C_{i}$ in \mathbb{C}^{m} for all $(\sigma, r) \in \Sigma_{i} \times\left(0, \epsilon^{\prime}\right)$. These are distinguished coordinates on N near x_{i}. Regard $\phi_{i}-\iota_{i}$ as a small closed 1-form on C_{i}. Regularity theory gives $\nabla^{k}\left(\phi_{i}-\iota_{i}\right)=O\left(r^{\mu_{i}-k}\right)$ as $r \rightarrow 0$ for some $\mu_{i}>1$ and all $k \geqslant 0$.

Similarly, for $R \gg 0$ there is a unique $\psi_{i}: \Sigma_{i} \times(R, \infty) \rightarrow \mathbb{C}^{m}$ such that $\operatorname{Im} \psi_{i}$ coincides with L_{i} near ∞, and $\left(\phi_{i}-\iota_{i}\right)(\sigma, r)$ is perpendicular to $T_{r \sigma} C_{i}$ in \mathbb{C}^{m} for all $(\sigma, r) \in \Sigma_{i} \times(R, \infty)$. These are distinguished cordinates on L_{i} near ∞. Regularity gives $\nabla^{k}\left(\psi_{i}-\iota_{i}\right)=$
$O\left(r^{\nu_{i}-k}\right)$ as $r \rightarrow \infty$ for some $\nu_{i}<1$ and all $k \geqslant 0$. We assume $\nu_{i}<-1$ for no obstruclions, or $\nu_{i}=-1$ and $m<6$.

Fix $\tau \in(0,1)$. Let $t>0$ with $2 t^{\tau}<\epsilon^{\prime}$ and $t^{\tau}>t R$. Define a compact, nonsingular Lagrangian N^{t} in M to be N outside $\Upsilon_{i} \circ \phi_{i}\left(\Sigma_{i} \times\left(0,2 t^{\tau}\right)\right)$ for all i, to be $\gamma_{i}\left(t L_{i}\right)$ outside $\psi_{i}\left(\Sigma_{i} \times\left(t^{\tau-1}, \infty\right)\right)$ in L_{i}, and to interpolate smoothly between these on $\Sigma_{i} \times\left[t^{\tau}, 2 t^{\tau}\right]$. On $\Sigma_{i} \times\left[t^{\tau}, 2 t^{\tau}\right]$ we have $\phi_{i}(\sigma, r) \equiv \iota_{i}(\sigma, \tau)+O\left(t^{\mu_{i} \tau}\right)$ and $t \psi_{i}\left(\sigma, t^{-1} r\right) \equiv \iota_{i}(\sigma, r)+O\left(t^{\nu_{i}(\tau-1)+1}\right)$, so $\left|\phi_{i}(\sigma, r)-t \psi_{i}\left(\sigma, t^{-1} r\right)\right|$ is small.

This N^{t} is approximately special Lagrangian, as $\left.\omega\right|_{N^{t}} \equiv 0$ and $\left.\operatorname{Im} \Omega\right|_{N^{t}}$ is small. Banach norms of $\left.\operatorname{Im} \Omega\right|_{N^{t}}$ measure the 'error', e.g. $\left\|\left.\operatorname{Im} \Omega\right|_{N^{t}}\right\|_{C^{0}}=$ $O\left(t^{\left(\mu_{i}-1\right) \tau}\right)+O\left(t^{\left(\nu_{i}-1\right)(\tau-1)}\right)$ for small t. But also, N^{t} is nearly singular for small t, with second fundamental form $\|B\|_{C^{0}}=O\left(t^{-1}\right)$, Riemann curvature $\left\|R\left(\left.g\right|_{N^{t}}\right)\right\|_{C^{0}}=$ $O\left(t^{-2}\right)$ and injectivity radius $\delta\left(\left.g\right|_{N^{t}}\right)=O(t)$.

We show using analysis that we can deform N^{t} to a nearby SL m-fold \tilde{N}^{t}. We must solve the nonlinear elliptic p.d.e. $Q\left(\tilde{N}^{t}\right)=\left.\operatorname{Im} \Omega\right|_{\tilde{N}^{t}} \equiv 0$. We make the solution as the limit of a series of Lagrangians $\left(N_{k}^{t}\right)_{k=0}^{\infty}$ with $N_{0}^{t}=N^{t}$, which roughly inductively satisfy $\left.\mathrm{d} Q\right|_{N^{t}}\left(N_{k+1}^{t}-N_{k}^{t}\right)=-\left.\operatorname{Im} \Omega\right|_{N_{k}^{t}}$. The series converges if the initial 'error' is small enough, in terms of $\|B\|_{C^{0}},\left\|R\left(\left.g\right|_{N^{t}}\right)\right\|_{C^{0}}$, $\delta\left(\left.g\right|_{N^{t}}\right), \ldots$

Three things can go wrong in this proof:
(A) For the 'error' to be small and the series to converge, we need $\tau \approx 1$ and $\nu_{i}<-1$ for all i, or $\nu_{i}=-1$ and $m<6$. (B) To make the Lagrangian N^{t} we join $N \backslash\left\{x_{1}, \ldots, x_{n}\right\}$ and $\gamma\left(t L_{1}\right), \ldots, \gamma\left(t L_{n}\right)$. Effectively we must find a closed 1-form on $\Sigma_{i} \times\left[t^{\tau}, 2 t^{\tau}\right]$ interpolating between small closed 1-forms $\phi_{i}(\sigma, r)-\iota_{i}(\sigma, \tau)$ and $t \psi_{i}\left(\sigma, t^{-1} r\right)-\iota_{i}(\sigma, r)$.

Now $\phi_{i}(\sigma, r)-\iota_{i}(\sigma, \tau)$ is exact, and $t \psi_{i}\left(\sigma, t^{-1} r\right)-\iota_{i}(\sigma, r)$ is exact if $\nu_{i}<-1$, but if $\nu_{i} \geqslant-1$ then we can have $\left[t \psi_{i}\left(\sigma, t^{-1} r\right)-\right.$ $\left.\iota_{i}(\sigma, r)\right] \neq 0$ in $H^{1}\left(\Sigma_{i}, \mathbb{R}\right)$. This is a global topological obstruction to making N^{t} Lagrangian. To overcome it, we modify $N^{\prime}=N \backslash\left\{x_{1}, \ldots, x_{n}\right\}$ by a small closed 1-form α^{t} whose cohomology class $\left[\alpha^{t}\right] \in H^{1}\left(N^{\prime}, \mathbb{R}\right)$ satisfies $\left.\left[\alpha^{t}\right]\right|_{i}=\left[t \psi_{i}\left(\sigma, t^{-1} r\right)\right.$ $\iota_{i}(\sigma, r)$] in $H^{1}\left(\Sigma_{i}, \mathbb{R}\right)$ for all i. Such α^{t} need not exist.
(C) Suppose N is connected, but $N^{\prime}=N \backslash\left\{x_{1}, \ldots, x_{n}\right\}$ has $l>1$ connected components, which meet at x_{1}, \ldots, x_{n}. Then the Laplacian Δ^{t} on functions on N^{t} has $l-1$ small eigenvalues of size $O\left(t^{m-2}\right)$. The corresponding eigenfunctions are approximately constant on each component of N^{\prime}, and change on the 'necks' $\gamma\left(t L_{i}\right)$. The linearization $\left.\mathrm{d} Q\right|_{N^{t}}$ of Q at N^{t} is basically Δ^{t}. So small eigenvalues of Δ^{t} can cause the series $\left(N_{k}^{t}\right)_{k=0}^{\infty}$ to diverge.

To overcome this, the components of $N_{k}^{t}-N^{t}$ in the directions of the $l-1$ eigenfunctions with small eigenvaluses must remain small for all $k \geqslant 0$. There is a global cohomological obstruction to doing this, that there should be a small closed $(m-1)$-form β^{t} on N^{\prime} whose cohomology class $\left[\beta^{t}\right] \in H^{m-1}\left(N^{\prime}, \mathbb{R}\right)$ satisfies $\left.\left[\beta^{t}\right]\right|_{\Sigma_{i}}=\left[*\left(t \psi_{i}\left(\sigma, t^{-1} r\right)-\right.\right.$ $\left.\iota_{i}(\sigma, r)\right)$] in $H^{m-1}\left(\Sigma_{i}, \mathbb{R}\right)$ for all i. Such β^{t} need not exist.

We understand obstructions (B),(C) using relative cohomology. As $\left.\left.\omega\right|_{\tilde{N}^{t}} \equiv \operatorname{Im} \Omega\right|_{\tilde{N}^{t}} \equiv$ 0 , we have classes $[\omega],[\operatorname{Im} \Omega]$ in $H^{k}\left(M, N^{t} ; \mathbb{R}\right)$ for $k=2, m$. Also we have $\left[\omega_{0}\right]$, $\left[\operatorname{Im} \Omega_{0}\right]$ in $H^{k}\left(\mathbb{C}^{m}, L_{i} ; \mathbb{R}\right)$. An exact sequence gives $H^{k}\left(\mathbb{C}^{m}, L_{i} ; \mathbb{R}\right) \cong$ $H^{k-1}\left(L_{i} ; \mathbb{R}\right)$, and as Σ_{i} is the 'boundary' of L_{i} we restrict to $H^{k-1}\left(\Sigma_{i} ; \mathbb{R}\right)$. So $\left[\omega_{0}\right],\left[\operatorname{Im} \Omega_{0}\right]$ induce classes in $H^{k-1}\left(L_{i} ; \mathbb{R}\right)$ for all i, which must lie in the image of $H^{k-1}\left(N^{\prime} ; \mathbb{R}\right)$.

