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Almost Calabi-Yau m-folds

An almost Calabi-Yau m-fold
(M, J, g,2) is a compact
complex m-fold (M, J) with a
Kahler metric g with Kahler
form w, and a nonvanishing
holomorphic (m,0)-form €2,
the holomorphic volume form.
It is a Calabi-Yau m-fold if
Q|2 = 2™. Then VQ = 0,
the holonomy group Hol(g) C
SU(m), and g is Ricci-flat.
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Special Lagrangian m-folds

Let (M, J, g,2) be an almost
Calabi-Yau m-fold. Let N be
a real m-submanifold of M.
We call N special Lagrangian
(SL) Ifw\N =Im Q‘N = 0, and
SL with phase €Y if w|y =
(cosfIm Q2—sind Re )|y = 0.
If (M, J,qg,2) is a Calabi-Yau
m-fold then Re 2 is a calibra-
tion on (M,qg), and N is an
SL m-fold iff it is calibrated
with respect to Re (2.




Let (M, J,g,2) be an almost
Calabi—Yau m-fold and N a
compact SL m-fold in M. Let
My be the moduli space of
Sl deformations of N. We ask:
1. Is M a manifold, and of
what dimension?

2. Does N persist under
deformations of (J,g,2)7

3. Can we compactify My
by adding a ‘boundary’ of sin-
gular SL m-folds? If so, what
are the singularities like?




These questions concern the
deformations of SL m-folds,
obstructions to their existence,
and their singularities.
Questions 1 and 2 are fairly
well understood, and we shall
discuss them in the first half
of this lecture. Question 3
IS an active area of research,
and will be discussed in the
second half, and next lecture.



The answer to Question 1,
on deformations of SL m-folds,
was given by MclLean in 1990
(in the Calabi-Yau case).
Theorem. Let (M, J, g,2) be
an almost Calabi—Yau m-fold,
and N a compact SL m-fold
in M. Then the moduli space
M of SL deformations of N
Is a smooth manifold of
dimension b1 (N), the first
Betti number of N.



Here is a sketch of the proof.
Let v — N be the normal bun-
dle of N in M. Then J iden-
tifies v = T'N and g identifies
TN =T*N. Sov=T*N. We
can identify a small tubular
neighbourhood 1T of N in M
with a neighbourhood of the
zero section in v, identifying
w on M with the symplectic
structure on T*N.

Let 7 :T' — N be the obvious
projection.



Then graphs of small 1-forms
a on N are identified with sub-
manifolds N’ in T C M close
to N. Which o correspond to
SL m-folds N'?

Well, N’ is special Lagrangian
T w\N/ = Im Q‘N’ = 0.

Now x| N7 : N' — N is a diffeo-
morphism, so this holds iff
W*(w‘N/) — W*(Im QlN’) = 0.
We regard m«(w|pr) and
m+(Im €| 5v) @s functions of a.
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Calculation shows that
7T*<W‘N/) — da and

m+(Im Q| nv) = F(e, Va),
where F' I1s nonlinear. Thus,
My is locally the set of small
1-forms o« on N with da=0
and F'(a,Va) = 0. Now
F(a,Va) ~ d(x«a) for small a.
So My is locally approximately
the set of 1-forms a with da=
d(xa) =0. But by Hodge the-
ory this is the de Rham group
HI(N,R), of dimension b1 (N).
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Question 2, on obstructions
to the existence of SL m-folds,
can locally be answered using
the same methods.
Theorem. Let M;:t € (—¢,¢)
be a family of almost Calabi—
Yau m-folds, and Ng a com-
pact SL m-fold of My.

If [wi|ny] = [ImQ|n,] = 0 in
H*(Ng,R) for all t, then Np
extends to a family Ny : t €
(—6,0) of SL m-folds in Mg,
for 0 <o < e.
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Singular SL m-folds
General singularities of SL m-
folds may be very bad, and
difficult to study. Would like
a class of singular SL m-folds
with nice, well-behaved sin-
gularities to study in depth.
Would like these to occur of-
ten in real life, i1.e. of finite
codimension in the space of
all SL m-folds. SL m-folds
with isolated conical singular-
ities (ICS) are such a class.
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Let NV be an SL m-fold in M
whose only singular points are
x1,...,Tn. Near x; we can iden-
tifty M with C™ = T, M, and
N near x; approximates an SL
m-~fold in C™ with singularity
at 0. We say N has isolated
conical singularities if near x;
it converges with order O(r#i)
for u; > 1 to an SL cone Cj in
C™ nonsingular except at O.
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SL m-folds with ICS have a
rich theory.

e Examples. Many examples
of SL cones C; in C" have
been constructed. Rudiments
of classification for m = 3.

e Regularity near zq1,...,xn.
Let + : N — M be the inclu-
sion. If V¥, converges to C,
near z; with order O(rti—k)
for Kk = 0,1 then it does soO
for all £k > 0.
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e Deformation theory. The
moduli space My of defor-
mations of N is locally home-
omorphic to ®~1(0), for
smooth & : 7 — O and fin.
dim. vector spaces 7,0 with
7 the image of HL(N',R) in
HI(N' R), N=N\{z1,...,zn},
and dimO = X_;s-ind(C;).
Here s-ind(C;) € N is the sta-
bility index, the obstructions
from C;. If s-ind(C;) = 0O for
all = then M is smooth.
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e Desingularization. Let C
be an SL cone in C™, non-
singular except at 0. A non-
singular SL m-fold L in C" is
Asymptotically Conical (AC)
C' if L converges to C at infin-
ity with order O(r") for v < 1.
Then tL converges to C as
t — O‘l—' ThUS, AC SL m-
folds model how families of
nonsingular SL m-folds develop
singularities modelled on C'.
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If N is an SL m-fold with ICS
at x1,...,xn and cones C}, and
Lq,..., Ly are AC SL m-folds
in C'" with cones Cj;, then un-
der cohomological conditions
we can construct a family of
compact nonsingular SL m-
folds Nt for small t > 0 con-
verging to N ast — 0O, by glu-
ing tL; into N at z;, all s.

16



Here is how this works. Let
B¢(0) be an open ball of small
radius e > 0 in C"™, and choose
a local diffeomorphism T, :
BE(O) — M with TZ(O) — Xy,
that identifies C; in C"™ with
the tangent cone to N at z;,
and T¥(w) = wqg, for w the
Kahler form on M and wg the
Hermitian form on C". Write
2, = C; N S2m—1  Then L;
(o,7) — rois a diffeomorphism
Lj - 2_; X (0,00) — CZ\{O}
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For 0 < € < € small there is
a unique ¢; : X, x (0,¢) —
C™ such that Im(7T; o ¢;) co-
incides with N \ {x;} near «;,
and (¢; — ¢;)(o,r) is perpen-
dicular to 1TysC; in C™ for all
(o,7) € X, x (0,€). These
are distinguished coordinates
on N near x;. Regard ¢; — (;
as a small closed 1-form on
C;. Regularity theory gives
VE(p;—1;) = O(r*i—k) as r—0
for some u; >1 and all £>0.
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Similarly, for R > 0 there is a
unique v; : >, X (R, 00) — C™
such that Im; coincides with
L; near oo, and (¢; — ¢;)(o, 1)
IS perpendicular to TysC; In
C™ for all (o,r) € Z; x (R, 00).
T hese are distinguished coor-
dinates on L; near co. Regu-
larity gives VFE(, — ;) =
O(r¥%—%) as r — oo for some
v; <1 and all k> 0. We as-
sume v; < —1 for no obstruc-
tions, or y,=—1 and m<6.
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Fix 7 € (0,1). Let ¢t > 0 with
2t < € and t7 > tR. De-
fine a compact, nonsingular
Lagrangian Nt in M to be N
outside T; o ¢;(Z; x (0,2t7))
for all ¢z, to be T, (tL;) outside
wa(Zz X (tT_l,OO)> in L;, and
to interpolate smoothly be-
tween these on X; x [t7, 2t7].
On X; x [t7,2t"] we have

o;(o,r) = ;(0, 7)+O(tH*T) and
th;(o,t71r) = 1;(o,r)FO (T DT,
SO |¢;(o,7) —ty;(o, t~1r)| is small.
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This Nt is approximately spe-
cial Lagrangian, as w|at =0
and Im 2|5+ is small. Banach
norms of Im 2|t measure the
‘error’, e.g. ||ImQ2ytllc0 =
Ot~y 4 o(#(vi—1)(7=1))
for small t. But also, NU is
nearly singular for small ¢, with
second fundamental form
|B||-0 = O(™ 1), Riemann
curvature  ||R(g|yt)llco =
O(t—2) and injectivity radius
5(g)y1) = O(2).
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We show using analysis that
we can deform N to a nearby
SL m-fold Nt. We must solve
the nonlinear elliptic p.d.e.
Q(Nt) = Im Qth = 0. We
Mmake the solution as the Iimit
of a series of Lagrangians
(N})Z 5 with Nj = Nt, which
roughly inductively satisfy
dQ‘Nt(Nli—l—l_le) = —1Im Q‘Né-
The series converges if the
initial ‘error’ Is small enough,
in terms of || B[ o, [R(g]nt)l o,

5(g\Nt), c e en
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T hree things can go wrong in
this proof:

(A) For the ‘error’ to be small
and the series to converge,
we need 7 =~ 1 and y; < —1 for
all 2, or yy = —1 and m < 6.
(B) To make the Lagrangian
Nt we join N\{z1,...,zn} and
Y(tLy),...,T(tLy). Effectively
we must find a closed 1-form
on >, x [t7,2t"] interpolating
between small closed 1-forms
o;(o,r) —1;(o,7) and

t; (o, t—1r) — ;i (o, 7).
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Now ¢,(o,r)—;(o,7) is exact,
and t, (o, t71r)—;(o,7) is ex-
act if vy < —1, but iIf v > —1
then we can have [ty, (o, t~1r)—
Li(o,m)] = 0in HI(Z; R). This
IS a global topological obstruc-
tion to making Nt Lagrangian.
To overcome it, we modify
N'= N\{z1,...,zn} by a small
closed 1-form a! whose coho-
mology class [al] € HI(N' R)
satisfies [af]|s, = [ty;(o,t71r)—
Li(o,r)] in HY(Z;, R) for all i.
Such a! need not exist.
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(C) Suppose N is connected,
but N = N\ {z1,...,zn} has
[ > 1 connected components,
which meet at z1,...,xn. Then
the Laplacian A! on functions
on Nt has | — 1 small eigen-
values of size O(t™~2). The
corresponding eigenfunctions
are approximately constant on
each component of N’ and
change on the ‘necks’ T (tL;).
The linearization dQ|yt of Q

at N'is basically At. So small
eigenvalues of A! can cause
the series (N})$2 4 to diverge.
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To overcome this, the com-
ponents of Nf — N in the di-
rections of the [ — 1 eigen-
functions with small eigenval-
ues must remain small for all
k> 0. Thereis a global coho-
mological obstruction to do-
INg this, that there should be
a small closed (m — 1)-form
Bt on N’ whose cohomology
class [BY] € H™ 1(N' R) sat-
isfies 8|5, = [*(tio, t~1r)—
(o)) in H™1(Z, R) for all
i. Such B! need not exist.
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We understand obstructions
(B),(C) using relative coho-
mology. AS “"Nt = Im Q|Nt —
0, we have classes [w], [Im 2]
in Hf(M, Nt:R) for k = 2, m.
Also we have [wg], [Im 2] in
H&(C™ L[.:R). An exact se-
quence gives HF(C™, L,;R) =
H*=1(L.:R), and as &, is the
‘boundary’ of L; we restrict
to H*1(Z,: R). So [wp], [Im 2]
induce classes in HF—1(L.;: R)
for all 2, which must lie in the
image of HF—1(N':R).
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