Singularities of special Lagrangian submanifolds

Dominic Joyce Oxford University recommended reading: math.DG/0111111 math.DG/0310460

These slides available at www.maths.ox.ac.uk/~joyce/talks.html

Almost Calabi-Yau *m*-folds

An almost Calabi-Yau m-fold (M, J, q, Ω) is a compact complex *m*-fold (M, J) with a Kähler metric g with Kähler form ω , and a nonvanishing holomorphic (m, 0)-form Ω , the holomorphic volume form. It is a Calabi-Yau m-fold if $|\Omega|^2 \equiv 2^m$. Then $\nabla \Omega = 0$, the holonomy group $Hol(g) \subseteq$ SU(m), and g is Ricci-flat.

Special Lagrangian *m*-folds Let (M, J, g, Ω) be an almost Calabi-Yau m-fold. Let N be a real *m*-submanifold of M. We call N special Lagrangian (SL) if $\omega|_N \equiv \operatorname{Im} \Omega|_N \equiv 0$, and SL with phase $e^{i\theta}$ if $\omega|_N \equiv$ $(\cos\theta \operatorname{Im} \Omega - \sin\theta \operatorname{Re} \Omega)|_{N} \equiv 0.$ If (M, J, g, Ω) is a Calabi-Yau *m*-fold then $\operatorname{Re}\Omega$ is a *calibra*tion on (M, q), and N is an SL m-fold iff it is calibrated with respect to $\operatorname{Re}\Omega$.

3

Let (M, J, g, Ω) be an almost Calabi–Yau *m*-fold and *N* a *compact* SL *m*-fold in *M*. Let \mathcal{M}_N be the moduli space of *SL deformations* of *N*. We ask: **1.** Is \mathcal{M}_N a manifold, and of what dimension?

2. Does N persist under deformations of (J, g, Ω) ?

3. Can we compactify \mathcal{M}_N by adding a 'boundary' of *sin-gular* SL *m*-folds? If so, what are the singularities like?

These questions concern the *deformations* of SL *m*-folds, *obstructions* to their existence, and their *singularities*.

Questions 1 and 2 are fairly well understood, and we shall discuss them in the first half of this lecture. Question 3 is an active area of research, and will be discussed in the second half, and next lecture. The answer to Question 1, on *deformations* of SL *m*-folds, was given by McLean in 1990 (in the Calabi-Yau case).

Theorem. Let (M, J, g, Ω) be an almost Calabi–Yau m-fold, and N a compact SL m-fold in M. Then the moduli space \mathcal{M}_N of SL deformations of N is a smooth manifold of dimension $b^1(N)$, the first Betti number of N.

Here is a sketch of the proof. Let $\nu \to N$ be the normal bundle of N in M. Then J identifies $\nu \cong TN$ and g identifies $TN \cong T^*N$. So $\nu \cong T^*N$. We can identify a small tubular neighbourhood T of N in Mwith a neighbourhood of the zero section in ν , identifying ω on M with the symplectic structure on T^*N .

Let $\pi : T \to N$ be the obvious projection.

Then graphs of small 1-forms α on N are identified with submanifolds N' in $T \subset M$ close to N. Which α correspond to SL m-folds N'? Well, N' is special Lagrangian iff $\omega|_{N'} \equiv \operatorname{Im} \Omega|_{N'} \equiv 0$. Now $\pi|_{N'}: N' \to N$ is a diffeomorphism, so this holds iff $\pi_*(\omega|_{N'}) = \pi_*(\operatorname{Im} \Omega|_{N'}) = 0.$ We regard $\pi_*(\omega|_{N'})$ and

 $\pi_*(\operatorname{Im} \Omega|_{N'})$ as functions of α .

Calculation shows that $\pi_*(\omega|_{N'}) = d\alpha$ and $\pi_*(\operatorname{Im} \Omega|_{N'}) = F(\alpha, \nabla \alpha),$ where F is nonlinear. Thus, \mathcal{M}_N is locally the set of small 1-forms α on N with $d\alpha \equiv 0$ and $F(\alpha, \nabla \alpha) \equiv 0$. Now $F(\alpha, \nabla \alpha) \approx d(*\alpha)$ for small α . So \mathcal{M}_N is locally approximately the set of 1-forms α with d $\alpha =$ $d(*\alpha) = 0$. But by Hodge theory this is the de Rham group $H^1(N,\mathbb{R})$, of dimension $b^1(N)$.

9

Question 2, on *obstructions* to the existence of SL *m*-folds, can locally be answered using the same methods.

Theorem. Let $M_t : t \in (-\epsilon, \epsilon)$ be a family of almost Calabi– Yau *m*-folds, and N_0 a compact SL *m*-fold of M_0 .

If $[\omega_t|_{N_0}] = [\operatorname{Im} \Omega_t|_{N_0}] = 0$ in $H^*(N_0, \mathbb{R})$ for all t, then N_0 extends to a family $N_t : t \in$ $(-\delta, \delta)$ of SL m-folds in M_t , for $0 < \delta \leq \epsilon$.

Singular SL *m*-folds

General singularities of SL mfolds may be very bad, and difficult to study. Would like a class of singular SL *m*-folds with nice, well-behaved singularities to study in depth. Would like these to occur often in real life, i.e. of finite codimension in the space of all SL *m*-folds. SL *m*-folds with isolated conical singularities (ICS) are such a class.

Let N be an SL m-fold in Mwhose only singular points are x_1, \ldots, x_n . Near x_i we can identify M with $\mathbb{C}^m \cong T_{x_i}M$, and N near x_i approximates an SL *m*-fold in \mathbb{C}^m with singularity at 0. We say N has isolated conical singularities if near x_i it converges with order $O(r^{\mu_i})$ for $\mu_i > 1$ to an SL cone C_i in \mathbb{C}^m nonsingular except at 0.

SL m-folds with ICS have a rich theory.

• Examples. Many examples of SL cones C_i in \mathbb{C}^m have been constructed. Rudiments of classification for m = 3.

• Regularity near x_1, \ldots, x_n . Let $\iota : N \to M$ be the inclusion. If $\nabla^k \iota$ converges to C_i near x_i with order $O(r^{\mu_i - k})$ for k = 0, 1 then it does so for all $k \ge 0$.

• **Deformation theory.** The moduli space \mathcal{M}_N of deformations of N is locally homeomorphic to $\Phi^{-1}(0)$, for smooth $\Phi : \mathcal{I} \to \mathcal{O}$ and fin. dim. vector spaces \mathcal{I}, \mathcal{O} with \mathcal{I} the image of $H^1_{CS}(N',\mathbb{R})$ in $H^1(N',\mathbb{R}), N'=N\setminus\{x_1,\ldots,x_n\},\$ and dim $\mathcal{O} = \sum_{i=1}^{n} \text{s-ind}(C_i)$. Here s-ind $(C_i) \in \mathbb{N}$ is the *stability index*, the obstructions from C_i . If s-ind $(C_i) = 0$ for all i then \mathcal{M}_N is smooth.

 Desingularization. Let C be an SL cone in \mathbb{C}^m , nonsingular except at 0. A nonsingular SL *m*-fold *L* in \mathbb{C}^m is Asymptotically Conical (AC) C if L converges to C at infinity with order $O(r^{\nu})$ for $\nu < 1$. Then tL converges to C as $t \rightarrow 0_+$. Thus, AC SL *m*folds model how families of nonsingular SL m-folds develop singularities modelled on C.

If N is an SL m-fold with ICS at x_1, \ldots, x_n and cones C_i , and L_1, \ldots, L_n are AC SL *m*-folds in \mathbb{C}^m with cones C_i , then under cohomological conditions we can construct a family of compact nonsingular SL mfolds \tilde{N}^t for small t > 0 converging to N as $t \rightarrow 0$, by gluing tL_i into N at x_i , all i.

Here is how this works. Let $B_{\epsilon}(0)$ be an open ball of small radius $\epsilon > 0$ in \mathbb{C}^m , and choose a local diffeomorphism Υ_i : $B_{\epsilon}(0) \to M$ with $\Upsilon_i(0) = x_i$, that identifies C_i in \mathbb{C}^m with the tangent cone to N at x_i , and $\Upsilon_i^*(\omega) = \omega_0$, for ω the Kähler form on M and ω_0 the Hermitian form on \mathbb{C}^m . Write $\Sigma_i = C_i \cap S^{2m-1}$. Then ι_i : $(\sigma, r) \mapsto r\sigma$ is a diffeomorphism $\iota_i: \Sigma_i \times (0,\infty) \to C_i \setminus \{0\}.$

For $0 < \epsilon' < \epsilon$ small there is a unique ϕ_i : $\Sigma_i \times (0, \epsilon') \rightarrow$ \mathbb{C}^m such that $\operatorname{Im}(\Upsilon_i \circ \phi_i)$ coincides with $N \setminus \{x_i\}$ near x_i , and $(\phi_i - \iota_i)(\sigma, r)$ is perpendicular to $T_{r\sigma}C_i$ in \mathbb{C}^m for all $(\sigma, r) \in \Sigma_i \times (0, \epsilon')$. These are distinguished coordinates on N near x_i . Regard $\phi_i - \iota_i$ as a small closed 1-form on C_i . Regularity theory gives $\nabla^k(\phi_i - \iota_i) = O(r^{\mu_i - k}) \text{ as } r \rightarrow 0$ for some $\mu_i > 1$ and all $k \ge 0$.

Similarly, for $R \gg 0$ there is a unique $\psi_i : \Sigma_i \times (R, \infty) \to \mathbb{C}^m$ such that Im ψ_i coincides with L_i near ∞ , and $(\phi_i - \iota_i)(\sigma, r)$ is perpendicular to $T_{r\sigma}C_i$ in \mathbb{C}^m for all $(\sigma, r) \in \Sigma_i \times (R, \infty)$. These are distinguished coordinates on L_i near ∞ . Regularity gives $\nabla^k(\psi_i - \iota_i) =$ $O(r^{\nu_i-k})$ as $r \to \infty$ for some $\nu_i < 1$ and all $k \ge 0$. We assume $\nu_i < -1$ for no obstructions, or $\nu_i = -1$ and m < 6.

Fix $\tau \in (0, 1)$. Let t > 0 with $2t^{\tau} < \epsilon'$ and $t^{\tau} > tR$. Define a compact, nonsingular Lagrangian N^t in M to be Noutside $\Upsilon_i \circ \phi_i(\Sigma_i \times (0, 2t^{\tau}))$ for all i, to be $\Upsilon_i(tL_i)$ outside $\psi_i(\Sigma_i imes(t^{ au-1},\infty))$ in L_i , and to interpolate smoothly between these on $\Sigma_i \times [t^{\tau}, 2t^{\tau}]$. On $\Sigma_i \times [t^{\tau}, 2t^{\tau}]$ we have $\phi_i(\sigma, r) \equiv \iota_i(\sigma, \tau) + O(t^{\mu_i \tau})$ and $t\psi_i(\sigma, t^{-1}r) \equiv \iota_i(\sigma, r) + O(t^{\nu_i(\tau-1)+1}),$ SO $|\phi_i(\sigma, r) - t\psi_i(\sigma, t^{-1}r)|$ is small.

20

This N^t is approximately special Lagrangian, as $\omega|_{N^t} \equiv 0$ and Im $\Omega|_{Nt}$ is small. Banach norms of Im $\Omega|_{N^t}$ measure the 'error', e.g. $\|Im \Omega\|_{N^t}\|_{C^0} =$ $O(t^{(\mu_i-1)\tau}) + O(t^{(\nu_i-1)(\tau-1)})$ for small t. But also, N^t is *nearly singular* for small t, with second fundamental form $||B||_{C^0} = O(t^{-1}),$ Riemann curvature $||R(g|_{N^t})||_{C^0}$ $O(t^{-2})$ and injectivity radius $\delta(g|_{N^t}) = O(t).$

We show using analysis that we can deform N^t to a nearby SL *m*-fold \tilde{N}^t . We must solve the nonlinear elliptic p.d.e. $Q(\tilde{N}^t) = \operatorname{Im} \Omega|_{\tilde{N}^t} \equiv 0.$ We make the solution as the limit of a series of Lagrangians $(N_k^t)_{k=0}^{\infty}$ with $N_0^t = N^t$, which roughly inductively satisfy $\mathrm{d}Q|_{N^t}(N_{k+1}^t - N_k^t) = -\mathrm{Im}\,\Omega|_{N_k^t}.$ The series converges if the initial 'error' is small enough, in terms of $||B||_{C^0}$, $||R(g|_{N^t})||_{C^0}$, $\delta(g|_{Nt}),\ldots$

Three things can go wrong in this proof:

(A) For the 'error' to be small and the series to converge, we need $\tau \approx 1$ and $\nu_i < -1$ for all *i*, or $\nu_i = -1$ and m < 6. (B) To make the Lagrangian N^t we join $N \setminus \{x_1, \ldots, x_n\}$ and $\Upsilon(tL_1), \ldots, \Upsilon(tL_n)$. Effectively we must find a *closed* 1-form on $\Sigma_i \times [t^{\tau}, 2t^{\tau}]$ interpolating between small closed 1-forms $\phi_i(\sigma,r) - \iota_i(\sigma,\tau)$ and $t\psi_i(\sigma, t^{-1}r) - \iota_i(\sigma, r).$

23

Now $\phi_i(\sigma, r) - \iota_i(\sigma, \tau)$ is exact, and $t\psi_i(\sigma, t^{-1}r) - \iota_i(\sigma, r)$ is exact if $\nu_i < -1$, but if $\nu_i \geqslant -1$ then we can have $[t\psi_i(\sigma, t^{-1}r) \iota_i(\sigma, r) \neq 0$ in $H^1(\Sigma_i, \mathbb{R})$. This is a global topological obstruction to making N^t Lagrangian. To overcome it, we modify $N' = N \setminus \{x_1, \ldots, x_n\}$ by a small closed 1-form α^t whose cohomology class $[\alpha^t] \in H^1(N', \mathbb{R})$ satisfies $[\alpha^t]|_{\Sigma_i} = [t\psi_i(\sigma, t^{-1}r) \iota_i(\sigma, r)$] in $H^1(\Sigma_i, \mathbb{R})$ for all *i*. Such α^t need not exist.

(C) Suppose N is connected, but $N' = N \setminus \{x_1, \ldots, x_n\}$ has l > 1 connected components, which meet at x_1, \ldots, x_n . Then the Laplacian $\Delta^{\overline{t}}$ on functions on N^t has l-1 small eigenvalues of size $O(t^{m-2})$. The corresponding eigenfunctions are approximately constant on each component of N', and change on the 'necks' $\Upsilon(tL_i)$. The linearization $dQ|_{N^t}$ of Qat N^t is basically Δ^t . So small eigenvalues of Δ^t can cause the series $(N_k^t)_{k=0}^{\infty}$ to diverge.

To overcome this, the components of $N_k^t - N^t$ in the directions of the l-1 eigenfunctions with small eigenvalues must remain small for all $k \ge 0$. There is a global cohomological obstruction to doing this, that there should be a small closed (m-1)-form β^t on N' whose cohomology class $[\beta^t] \in H^{m-1}(N', \mathbb{R})$ satisfies $[\beta^t]|_{\Sigma_i} = [*(t\psi_i(\sigma, t^{-1}r) \iota_i(\sigma, r))$] in $H^{m-1}(\Sigma_i, \mathbb{R})$ for all *i*. Such β^t need not exist.

We understand obstructions (B),(C) using relative cohomology. As $\omega|_{\widetilde{N}^t} \equiv \operatorname{Im} \Omega|_{\widetilde{N}^t} \equiv$ 0, we have classes $[\omega]$, $[Im \Omega]$ in $H^k(M, N^t; \mathbb{R})$ for k = 2, m. Also we have $[\omega_0]$, $[\text{Im }\Omega_0]$ in $H^k(\mathbb{C}^m, L_i; \mathbb{R})$. An exact sequence gives $H^k(\mathbb{C}^m, L_i; \mathbb{R}) \cong$ $H^{k-1}(L_i;\mathbb{R})$, and as Σ_i is the 'boundary' of L_i we restrict to $H^{k-1}(\Sigma_i; \mathbb{R})$. So $[\omega_0], [\text{Im } \Omega_0]$ induce classes in $H^{k-1}(L_i; \mathbb{R})$ for all i, which must lie in the image of $H^{k-1}(N'; \mathbb{R})$.