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Almost Calabi-Yau m-folds

An almost Calabi-Yau m-fold
(M, J, g,Ω) is a compact
complex m-fold (M, J) with a
Kähler metric g with Kähler
form ω, and a nonvanishing
holomorphic (m,0)-form Ω,
the holomorphic volume form.
It is a Calabi-Yau m-fold if
|Ω|2 ≡ 2m. Then ∇Ω = 0,
the holonomy group Hol(g) ⊆
SU(m), and g is Ricci-flat.
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Special Lagrangian m-folds

Let (M, J, g,Ω) be an almost
Calabi-Yau m-fold. Let N be
a real m-submanifold of M .
We call N special Lagrangian
(SL) if ω|N ≡ ImΩ|N ≡ 0, and
SL with phase eiθ if ω|N ≡
(cos θ ImΩ−sin θ ReΩ)|N ≡ 0.
If (M, J, g,Ω) is a Calabi-Yau
m-fold then ReΩ is a calibra-
tion on (M, g), and N is an
SL m-fold iff it is calibrated
with respect to ReΩ.
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Let (M, J, g,Ω) be an almost
Calabi–Yau m-fold and N a
compact SL m-fold in M . Let
MN be the moduli space of
SLdeformations ofN . We ask:
1. Is MN a manifold, and of
what dimension?
2. Does N persist under
deformations of (J, g,Ω)?
3. Can we compactify MN

by adding a ‘boundary’ of sin-
gular SL m-folds? If so, what
are the singularities like?
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These questions concern the
deformations of SL m-folds,
obstructions to their existence,
and their singularities.
Questions 1 and 2 are fairly
well understood, and we shall
discuss them in the first half
of this lecture. Question 3
is an active area of research,
and will be discussed in the
second half, and next lecture.
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The answer to Question 1,
on deformations of SL m-folds,
was given by McLean in 1990
(in the Calabi-Yau case).
Theorem. Let (M, J, g,Ω) be
an almost Calabi–Yau m-fold,
and N a compact SL m-fold
in M . Then the moduli space
MN of SL deformations of N

is a smooth manifold of
dimension b1(N), the first
Betti number of N .
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Here is a sketch of the proof.
Let ν → N be the normal bun-
dle of N in M . Then J iden-
tifies ν ∼= TN and g identifies
TN ∼= T ∗N . So ν ∼= T ∗N . We
can identify a small tubular
neighbourhood T of N in M

with a neighbourhood of the
zero section in ν, identifying
ω on M with the symplectic
structure on T ∗N .
Let π : T → N be the obvious
projection.
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Then graphs of small 1-forms
α on N are identified with sub-
manifolds N ′ in T ⊂ M close
to N . Which α correspond to
SL m-folds N ′?
Well, N ′ is special Lagrangian
iff ω|N ′ ≡ ImΩ|N ′ ≡ 0.
Now π|N ′ : N ′→ N is a diffeo-
morphism, so this holds iff
π∗

(
ω|N ′

)
= π∗

(
ImΩ|N ′

)
= 0.

We regard π∗
(
ω|N ′

)
and

π∗
(
ImΩ|N ′

)
as functions of α.
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Calculation shows that
π∗

(
ω|N ′

)
= dα and

π∗
(
ImΩ|N ′

)
= F (α,∇α),

where F is nonlinear. Thus,
MN is locally the set of small
1-forms α on N with dα ≡ 0
and F (α,∇α) ≡ 0. Now
F (α,∇α) ≈ d(∗α) for small α.
SoMN is locally approximately
the set of 1-forms α with dα=
d(∗α)=0. But by Hodge the-
ory this is the de Rham group
H1(N,R), of dimension b1(N).
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Question 2, on obstructions
to the existence of SL m-folds,
can locally be answered using
the same methods.
Theorem. Let Mt : t ∈ (−ε, ε)
be a family of almost Calabi–
Yau m-folds, and N0 a com-
pact SL m-fold of M0.
If [ωt|N0

] = [ImΩt|N0
] = 0 in

H∗(N0,R) for all t, then N0
extends to a family Nt : t ∈
(−δ, δ) of SL m-folds in Mt,
for 0 < δ 6 ε.
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Singular SL m-folds
General singularities of SL m-
folds may be very bad, and
difficult to study. Would like
a class of singular SL m-folds
with nice, well-behaved sin-
gularities to study in depth.
Would like these to occur of-
ten in real life, i.e. of finite
codimension in the space of
all SL m-folds. SL m-folds
with isolated conical singular-
ities (ICS) are such a class.

11



Let N be an SL m-fold in M

whose only singular points are
x1, . . . , xn. Near xi we can iden-
tify M with Cm ∼= TxiM , and
N near xi approximates an SL
m-fold in Cm with singularity
at 0. We say N has isolated
conical singularities if near xi

it converges with order O(rµi)
for µi > 1 to an SL cone Ci in
Cm nonsingular except at 0.
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SL m-folds with ICS have a
rich theory.
• Examples. Many examples
of SL cones Ci in Cm have
been constructed. Rudiments
of classification for m = 3.
• Regularity near x1, . . . , xn.
Let ι : N → M be the inclu-
sion. If ∇kι converges to Ci

near xi with order O(rµi−k)
for k = 0,1 then it does so
for all k > 0.

13



• Deformation theory. The
moduli space MN of defor-
mations of N is locally home-
omorphic to Φ−1(0), for
smooth Φ : I → O and fin.
dim. vector spaces I,O with
I the image of H1

cs(N
′,R) in

H1(N ′,R), N ′=N\{x1, . . . , xn},
and dimO = Σn

i=1s-ind(Ci).
Here s-ind(Ci) ∈ N is the sta-
bility index, the obstructions
from Ci. If s-ind(Ci) = 0 for
all i then MN is smooth.
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• Desingularization. Let C

be an SL cone in Cm, non-
singular except at 0. A non-
singular SL m-fold L in Cm is
Asymptotically Conical (AC)
C if L converges to C at infin-
ity with order O(rν) for ν < 1.
Then tL converges to C as
t → 0+. Thus, AC SL m-
folds model how families of
nonsingular SL m-folds develop
singularities modelled on C.
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If N is an SL m-fold with ICS
at x1, . . . , xn and cones Ci, and
L1, . . . , Ln are AC SL m-folds
in Cm with cones Ci, then un-
der cohomological conditions
we can construct a family of
compact nonsingular SL m-
folds Ñ t for small t > 0 con-
verging to N as t → 0, by glu-
ing tLi into N at xi, all i.
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Here is how this works. Let
Bε(0) be an open ball of small
radius ε > 0 in Cm, and choose
a local diffeomorphism Υi :
Bε(0) → M with Υi(0) = xi,
that identifies Ci in Cm with
the tangent cone to N at xi,
and Υ∗

i (ω) = ω0, for ω the
Kähler form on M and ω0 the
Hermitian form on Cm. Write
Σi = Ci ∩ S2m−1. Then ιi :
(σ, r) 7→ rσ is a diffeomorphism
ιi : Σi × (0,∞) → Ci \ {0}.
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For 0 < ε′ < ε small there is
a unique φi : Σi × (0, ε′) →
Cm such that Im(Υi ◦ φi) co-
incides with N \ {xi} near xi,
and (φi − ιi)(σ, r) is perpen-
dicular to TrσCi in Cm for all
(σ, r) ∈ Σi × (0, ε′). These
are distinguished coordinates
on N near xi. Regard φi − ιi
as a small closed 1-form on
Ci. Regularity theory gives
∇k(φi−ιi) = O(rµi−k) as r→0
for some µi>1 and all k>0.
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Similarly, for R À 0 there is a
unique ψi : Σi × (R,∞) → Cm

such that Imψi coincides with
Li near ∞, and (φi − ιi)(σ, r)
is perpendicular to TrσCi in
Cm for all (σ, r) ∈ Σi×(R,∞).
These are distinguished coor-
dinates on Li near ∞. Regu-
larity gives ∇k(ψi − ιi) =
O(rνi−k) as r → ∞ for some
νi < 1 and all k > 0. We as-
sume νi <−1 for no obstruc-
tions, or νi=−1 and m<6.
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Fix τ ∈ (0,1). Let t > 0 with
2tτ < ε′ and tτ > tR. De-
fine a compact, nonsingular
Lagrangian N t in M to be N

outside Υi ◦ φi
(
Σi × (0,2tτ)

)

for all i, to be Υi(tLi) outside
ψi

(
Σi × (tτ−1,∞)

)
in Li, and

to interpolate smoothly be-
tween these on Σi × [tτ ,2tτ ].
On Σi × [tτ ,2tτ ] we have
φi(σ, r) ≡ ιi(σ, τ)+O(tµiτ) and
tψi(σ, t−1r) ≡ ιi(σ, r)+O(tνi(τ−1)+1),

so
∣∣∣φi(σ, r)− tψi(σ, t−1r)

∣∣∣ is small.
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This N t is approximately spe-
cial Lagrangian, as ω|N t ≡ 0
and ImΩ|N t is small. Banach
norms of ImΩ|N t measure the
‘error’, e.g. ‖ ImΩ|N t‖C0 =

O(t(µi−1)τ) + O(t(νi−1)(τ−1))
for small t. But also, N t is
nearly singular for small t, with
second fundamental form
‖B‖C0 = O(t−1), Riemann
curvature ‖R(g|N t)‖C0 =
O(t−2) and injectivity radius
δ(g|N t) = O(t).
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We show using analysis that
we can deform N t to a nearby
SL m-fold Ñ t. We must solve
the nonlinear elliptic p.d.e.
Q(Ñ t) = ImΩ|Ñ t ≡ 0. We
make the solution as the limit
of a series of Lagrangians
(N t

k)
∞
k=0 with N t

0 = N t, which
roughly inductively satisfy
dQ|N t

(
N t

k+1−N t
k) = − ImΩ|N t

k
.

The series converges if the
initial ‘error’ is small enough,
in terms of ‖B‖C0, ‖R(g|N t)‖C0,
δ(g|N t), . . ..
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Three things can go wrong in
this proof:
(A) For the ‘error’ to be small
and the series to converge,
we need τ ≈ 1 and νi < −1 for
all i, or νi = −1 and m < 6.
(B) To make the Lagrangian
N t we join N\{x1, . . . , xn} and
Υ(tL1), . . . ,Υ(tLn). Effectively
we must find a closed 1-form
on Σi × [tτ ,2tτ ] interpolating
between small closed 1-forms
φi(σ, r)− ιi(σ, τ) and
tψi(σ, t−1r)− ιi(σ, r).
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Now φi(σ, r)−ιi(σ, τ) is exact,
and tψi(σ, t−1r)−ιi(σ, r) is ex-
act if νi < −1, but if νi > −1
then we can have [tψi(σ, t−1r)−
ιi(σ, r)] 6= 0 in H1(Σi,R). This
is a global topological obstruc-
tion to making N t Lagrangian.
To overcome it, we modify
N ′ = N\{x1, . . . , xn} by a small
closed 1-form αt whose coho-
mology class [αt] ∈ H1(N ′,R)
satisfies [αt]|Σi

= [tψi(σ, t−1r)−
ιi(σ, r)] in H1(Σi,R) for all i.
Such αt need not exist.
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(C) Suppose N is connected,
but N ′ = N \ {x1, . . . , xn} has
l > 1 connected components,
which meet at x1, . . . , xn. Then
the Laplacian ∆t on functions
on N t has l − 1 small eigen-
values of size O(tm−2). The
corresponding eigenfunctions
are approximately constant on
each component of N ′, and
change on the ‘necks’ Υ(tLi).
The linearization dQ|N t of Q
at N t is basically ∆t. So small
eigenvalues of ∆t can cause
the series (N t

k)
∞
k=0 to diverge.
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To overcome this, the com-
ponents of N t

k −N t in the di-
rections of the l − 1 eigen-
functions with small eigenval-
ues must remain small for all
k > 0. There is a global coho-
mological obstruction to do-
ing this, that there should be
a small closed (m − 1)-form
βt on N ′ whose cohomology
class [βt] ∈ Hm−1(N ′,R) sat-
isfies [βt]|Σi

= [∗(tψi(σ, t−1r)−
ιi(σ, r))] in Hm−1(Σi,R) for all
i. Such βt need not exist.
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We understand obstructions
(B),(C) using relative coho-
mology. As ω|Ñ t ≡ ImΩ|Ñ t ≡
0, we have classes [ω], [ImΩ]
in Hk(M, N t;R) for k = 2, m.
Also we have [ω0], [ImΩ0] in
Hk(Cm, Li;R). An exact se-
quence gives Hk(Cm, Li;R) ∼=
Hk−1(Li;R), and as Σi is the
‘boundary’ of Li we restrict
to Hk−1(Σi;R). So [ω0], [ImΩ0]
induce classes in Hk−1(Li;R)
for all i, which must lie in the
image of Hk−1(N ′;R).
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