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Abstract

We discuss our outreach efforts to introduce school students to network science and explain

why researchers who study networks should be involved in such outreach activities. We

provide overviews of modules that we have designed for these efforts, comment on our

successes and failures, and illustrate the potentially enormous impact of such outreach efforts.

Keywords: outreach, mathematics, physics, information science, sociology

1 Introduction and motivation

The World Wide Web, friendship networks at schools, and transportation networks

are all complex interconnected systems that are based not only on components but

also on interactions between components (Newman, 2010). To try to understand such

systems, one can use network science (i.e., the science of connectivity). The notion

of networks has become a mainstream part of everyday life, and scholars from

sociology, physics, computer science, mathematics, and many other disciplines have

developed theoretical tools and conducted empirical analyses to obtain profound

insights on a diverse array of natural and designed phenomena.

In the present article, we describe our outreach efforts to teach network science

to teenagers and the materials that we have developed to do this. We are mathe-

maticians, and our perspectives on the study of networks as well as our goals in

undertaking outreach activities are (of course) colored by our backgrounds. It is

� Now at Centre for Mathematical Biology and Oxford Centre for Collaborative Applied Mathematics,
Mathematical Institute, University of Oxford, Oxford OX1 3LB, UK.
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important to us to try to inspire more students to pursue the mathematical sciences

in their studies at universities and, more generally, to develop a greater appreciation

of mathematics and its applications. This is a major goal of our efforts and is a

core reason why they were funded. Importantly, network science is a fundamentally

interdisciplinary subject (which is reflected in our choice of modules), and outreach

activities from people with different disciplinary backgrounds (and different goals)

can—and should—reflect those backgrounds. For example, many of our modules

include topics from the social and biological sciences, and they can be adjusted so

that they reflect more sociological or biological perspectives. We will present this

article and its associated outreach materials using our perspective as mathematicians.

Networks are fundamentally interesting to children and scientists alike. They are

accessible on an intuitive level using visualizations and simple calculations, they

arise in myriad areas of study (and the interdisciplinary science of networks benefits

from all of them), and we believe that scholars and the lay public are interested in

networks for essentially the same reasons. The ubiquity of networks offers a glimpse

into the types of questions that scholars consider when studying networks, and many

of these questions—and, at an intuitive level, even their solutions—can already be

appreciated by children with just a primary school education. Most children have

regular contact with networks (through Facebook, Google, etc.), although one would

expect that almost none of them would appreciate their deep connections to science

and mathematics. The habitual contact that children have with networks makes it

possible to impart intuitive understanding of key concepts from network science

in short outreach sessions. Importantly, because networks are omnipresent, these

sessions provide an excellent way to expose students to an important side (which

differs from their usual experiences) of subjects like mathematics and, ideally, to

motivate them to pursue mathematics and other quantitative subjects in greater

depth (or at least to improve the regard that they hold for such subjects).

There are many ways to help inspire children to study mathematics and other

scientific disciplines. For example, science books written for adolescents can be

extremely valuable (Preskill, 2013). Other resources, such as the “Being a Profes-

sional Mathematician” project, demonstrate that science is fundamentally a human

endeavor (Mann & Good, 2013). Still others, such as the Ig Nobel Prizes, illustrate

the sheer joy of scientific discovery (Abrahams, 2013). In this article, we advocate

outreach activities (Saab, 2010; Dwyer, 2001a; Dwyer, 2001b; Dwyer, 2013), which

provide a medium for students to interact with specialists and learn first-hand what

scientists do.

We have developed a program of outreach activities to teach school students

about pure and applied mathematics using network science. People from many

disciplinary backgrounds have engaged in outreach efforts or developed interesting

materials that can be used for outreach on network science and related topics (see,

e.g., Jenkinson et al., 2013; Uzzo & Sayama, 2012; Trunfio et al., 2013; Barabási

et al., 2012; Uzzo et al., 2013; Carley et al. , 2013; Meeks & Krishnan, 2013; Budd,

2013). With our outreach efforts, we hope to convey our enthusiasm for networks

and mathematics (and science) more generally. We concentrated on ages 13–16,

as the younger members of this age group in the United Kingdom have not yet

chosen their subject specializations. We conducted our outreach activities both at

local schools and at Somerville College in Oxford, and they lasted anywhere from a
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couple of hours to half a day. At each outreach event, we presented various aspects

of network science and discussed more general issues such as studying mathematics

at universities.

An outreach setting makes it possible to discuss with students what scientists

actually do. Rather than showing a result after it has been cleaned and packaged,

we guide the students toward their own discovery of network principles. This

contrasts with the usual (and perhaps somewhat dry) material that the students are

used to seeing, and we hope that it inspires them to engage in further study. We

also try to illustrate that mathematics—not just networks—is a fundamental part

of the students’ lives by virtue of its connection to known everyday experiences like

traversing a network of roads or searching for information on the Web.

Our outreach activities highlight a side of mathematics that is crucial but

likely unfamiliar to the students:1 curiosity to understand a vexing (and perhaps

ambiguous) question is the main drive, and repetitive calculation (which comes

later) can temporarily be pushed aside in favor of a big picture. The distinction

between repetition and creative thinking about mathematics and science is common

at universities, and we believe that it can—and should—be available for people of all

ages. One of our main objectives with these activities is to demystify mathematics, so

we present it as a discipline that is relevant to daily lives and accessible to everybody

(not just to those who do it for a living). Our choices of problems for the activities

were influenced both by our own research interests as applied mathematicians (of

course) and by the need to present accessible, engaging, and self-contained problems

that are suitable for sessions of 30–60 minutes. Networks are particularly well-

suited for our objectives, although many other topics can also be used to develop

fascinating outreach activities.

The rest of this article is organized as follows. We introduce our modules in

Section 2 (and discuss them in detail in appendices). We present our outreach

activities in Section 3, examine their successes and challenges in Section 4, and

provide arguments in favor of teaching network science to teenagers in Section 5.

In Section 6, we present an outlook and encourage others to participate in and

develop similar activities. In Supplementary Online Material (SOM), we include

lesson materials for five modules, and we encourage readers to use and adapt them

for their own activities.

2 Lesson materials

Our session plans are designed for modules that last about 30–60 minutes, but they

can be adapted readily for other formats. We have occasionally merged multiple

modules into a single module that covers a broader set of topics. The modules are

interactive, and each one allows participating students to learn about one or more

areas (or applications) of network science.

In the appendices, we describe the following modules:

1. Appendix A: food webs and climate change;

2. Appendix B: small worlds and social networks;

1 School students might have some experience with this side of some of the sciences, but we assert that
this is manifestly not the case for mathematics.
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3. Appendix C: disease spread and vaccination strategies;

4. Appendix D: Google’s PageRank algorithm;

5. Appendix E: coloring maps and other puzzles as an introduction to proving

theorems in graph theory;

6. Appendix F: why your friends have more friends than you do;

7. Appendix G: structural balance in networks.

Modules A–E were our most successful ones, though we are sure that they can be

improved further. We discuss all seven of the above modules in the appendices and

go into greater depth for Modules A–E in the SOM.

As one can see from the topics above, network science is an interdisciplinary

subject, and it is important to convey this when working with students. We have

chosen the topics in our modules based on a combination of our interests and what

we believe can be discussed successfully with teenagers. We have emphasized the

role of mathematics in these topics, but the modules can be adjusted to focus on

other perspectives. The study of networks benefits greatly from the contributions

of scholars in sociology, biology, economics, physics, and myriad other disciplines.

The choice of applications in the modules reflects this diversity, although we have

focused on a mathematical approach to studying them.

3 Our outreach activities

We ran events in which students visited us at Somerville College in Oxford and

others in which we visited them. The number of students varied significantly (from

about 5 to about 50) from one event to another, and their ages ranged from 13

to 16. After introducing ourselves to the students and teachers, we gave a short

introductory talk2 in which we defined the concept of a “network” and some other

relevant terms. We also introduced “network science” as the science of connectivity,

presented several diverse examples of networks, and gave tantalizing hints on how

investigating network structure can provide information about dynamics or function.

We then split the students into smaller groups (e.g., 50 students can yield three

groups) for breakout sessions so that they could delve deeper into a specific topic.

We have posted an example of an introductory talk on networks (Porter, 2012).

This introductory talk takes 20–30 minutes. (We varied the amount of time that

was spent discussing the various examples.) The presentation gives the definition

of a network and shows how to represent a network as an adjacency matrix3

using a small example. The speaker brings up different types of networks (e.g.,

unweighted, weighted, directed, etc.) and asks the students to think about how a

matrix representation can be generalized for the different cases. The presentation

then includes numerous examples, which are introduced via pretty pictures (just

like in other talks for general audiences), and comments on how networks relate

to the students’ experiences and to various disciplines of study. Examples that

we discussed include London’s metropolitan transportation network (“The Tube”),

2 For events at Somerville College, we also included a short introduction to the University of Oxford,
studying mathematics and science at a university, and Somerville College before we started discussing
network science.

3 Some of the students had seen matrices before, but others had not.
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Facebook friendships, food webs, networks in online role-playing games, and Web

pages connected by hyperlinks. The talk also purposely introduces a small amount

of jargon—such as “node,” “edge,” “small world,” and “degree”—to provide some

terminology to facilitate discussions in the breakout sessions. This talk covers many

topics in a short period of time and it challenges the students (arguably too much

on occasion), but it provides common ground and makes it possible to introduce

vocabulary for the second time rather than the first during the breakout sessions. The

introductory talk also includes hints of the mathematics and science that underlies

networks, but it focuses predominantly on a few important ideas, which are painted

using broad brush strokes.

After the introductory talk, we break out into sessions that allow students to

explore some topic or set of topics in detail in smaller groups. (See Section 2 for the

topics, and see the appendices and SOM for additional details and handouts.) Each

of these sessions, which had 3–6 students per volunteer, was led by 1–2 people with

1–2 others helping. In many cases, the school teachers participated actively and were

extremely helpful. Depending on the event, our sessions lasted 30–60 minutes, and

each student participated in 1–2 such sessions.4 On many occasions, we also asked

the students to present their findings to the other groups. Naturally, our sessions

had broader aims beyond discussions of specific ideas from network science: we

wanted the students to think independently (and in small groups) and to investigate

difficult, open-ended problems instead of problems with neat answers (to which they

were more accustomed). This format gives the students a sense of how a scientist

might try to tackle a problem and, at minimum, a better idea of what a university

student might experience when trying to master scientific topics.

We conducted two types of outreach events: (1) ones in which students and

teachers visited us at Somerville College in Oxford, and (2) ones in which we

visited schools. For the events at Oxford, the logistics—including essential items like

food, travel, and coffee—were arranged and run by Amy Crosweller (Somerville

College’s Access and Communications Officer). Amy also helped recruit Somerville

undergraduates to assist us by giving tours of the College, answering questions about

what it is like to be an undergraduate at University of Oxford and in Somerville

College, and occasionally even acting as helpers for the breakout sessions. (When

possible, the undergraduate volunteers were mathematics majors.) In one of the

events in Oxford, we had a panel discussion about careers that included a volunteer

from Google.

Hosting the students in Somerville College had several advantages—it made it

possible to attract students from different schools to the same event, it allowed

more control and knowledge of the local facilities (e.g., via the availability of flip

charts, markers, etc.), and it gave us access to friendly and helpful undergraduates.

However, we ultimately decided that the “traveling road show” format was more

effective. This format makes it possible to work with students who are farther away

geographically, as only nearby schools came to the Oxford events in practice even

though we had funds for students from more distant locations to travel to Oxford

and stay for a night. A traveling road show is also important for attempting to

4 As we became more experienced, we concluded that shorter sessions tended to be a better format
than longer sessions for most of the students.
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work with students from schools who do not typically send students to University

of Oxford (or, in some cases, who do not even consider the University of Oxford as

a viable university to attend). It also makes it easier to have an event on a weekday

rather than during a weekend,5 as the students can attend this special event rather

than a normal class for an hour or two.

We varied details of the event components to accommodate school schedules,

road-show versus Oxford events, number of volunteers, number and type (e.g., age

and quality) of students who would be working with us, and lessons that we learned

regarding what seemed to work and what did not. For example, in one event that

was held in Somerville College, we worked with the same set of students for 6

hours:6 we had two 45-minute sessions (with parallel breakout modules during each

session), discussions over lunch, and more. Our other events were shorter. In our

visits to schools, we experienced a wide range of abilities and behavior among the

students. Sometimes we had students from the same grade level, but the occasions

when students from different grades were mixed together were particularly enjoyable,

as it appears to be unusual for students of different ages to work with each other

on equal footing. Schools varied on whether they asked us to work with their top,

average, or struggling students.

Our outreach events benefited tremendously from numerous volunteers—including

professors, postdoctoral scholars from University of Oxford and Imperial College

London, doctoral students from several different disciplines (predominantly math-

ematical scientists but also several biologists), visiting researchers, undergraduates,

staff members, and the students’ own teachers. Our outreach efforts have been

highlighted on the following Web pages:

• http://www.some.ox.ac.uk/191-5717/all/1/Somerville tutor helps students har-

ness the science behind social networks.aspx

• http://blogs.some.ox.ac.uk/access/2012/04/30/motivating-maths-pupils-and-

reflecting-on-the-latest-sutton-trust-survey/

The University of Oxford has also produced a public-relations video to describe our

outreach efforts. It is available at http://www.youtube.com/watch?v=9dcdjcyA-8E.

4 Successes and challenges

Our outreach events have been largely successful, and (unsurprisingly) more itera-

tions have led to greater polish and greater success. In this section, we highlight a

few points that we hope will be helpful for outreach events by others.

The students found the introductory talk (Porter, 2012) to be extremely chal-

lenging, but it seemed to interest them immensely7 and its introduction to network

theory, its applications, and some of its jargon helped to provide a solid foundation

for the interactive modules to follow. Put another way, the initial challenge helped

5 On one occasion, we tried having a weekday event in Oxford, but attendance was sparse.
6 In retrospect, this was probably too long for them.
7 We draw this conclusion based both on our perception of student excitement and on the surveys that

we gave to the students for the outreach events that we held in Somerville College.
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make life easier for the rest of the event. We worked with students from very different

backgrounds, but (for the most part) they were genuinely interested in working with

us. We learned from our first outreach event that many students learned the key

material in our lesson plans extremely quickly (despite the fact that we discussed

topics on which there is active research). To address this, we sometimes needed to

come up with impromptu activities to fill the allotted time. In Module 2 (Small

Worlds), for example, we sometimes discussed material from a different module

(such as Networks and Diseases, which is Module 3) that we were not running that

day. When we were able to work with the same students on more than one module,

students usually picked up the key ideas faster in the second module.

Our most successful modules were the most interactive ones, and we tried to

increase the interactivity in the modules as we refined them. The sessions instigated

many interesting and thought-provoking conversations, and sometimes the best

thing we could do was to let the students discuss ideas among themselves without

interrupting them. In Module 1 (Networks and the Environment), for example,

students used a network-science perspective to think about the importance of grass

at the bottom for survival of an entire food web. It was inspiring to see individual

thinking, group discussions, and “Aha!” moments without our intervention. Much of

what we write is of course true very generally and is not specific to network science,

but the accessibility of networks as a subject of study helps a great deal. One of the

most important outcomes of our outreach activities was that the students with whom

we worked learned that many seemingly disparate problems can be solved using

similar tools once they have been adequately framed (in this case, as networks). In

other words, the students were able to grasp the notion of abstraction successfully,

and they were able to see how the same methods can be used to achieve insights

in applications from sociology, ecology, computer science, epidemiology, and other

subjects. This is what many applied mathematicians, scientists, and other scholars do

for a living. Additionally, examining problems from graph theory gives the students

a taste of pure mathematics.

Despite the overall success of our efforts, we faced many challenges, and we have

not yet figured out how to overcome all of them. We have gained much more of an

appreciation for the difficulties faced by primary and secondary school teachers than

we had before.8 For example, sometimes it was difficult to get students to choose a

module in the first place. (We preferred, when possible, not to choose modules for

them.) Sometimes the majority of students picked the same topic, and we had to

balance group sizes with the students’ interests. Many students were shy and hesitant

to participate, and we sometimes had to tailor the module format to encourage more

group-based answers rather than individuals ones. Some students were disruptive,

though teachers from most of the schools were very helpful for managing these

situations and otherwise maintaining order. (This became a serious problem at only

one school.) It is also worth remarking that we often noticed a difference in student

comfort level when they visited us versus when we visited them.

It is also important to note that the smoothest outreach efforts are not necessarily

the most important ones to undertake. For example, our outreach activities were

8 Occasional outreach activities are wonderful, but we would not want to do this every day!



Teach network science to teenagers 233

more difficult when we worked with weaker students, but this type of struggle is

a necessary one. We welcome ideas for how to improve our outreach activities to

make them more accessible to a wide variety of students and schools.

5 Why bother?

We found that some schools could not fit our outreach activities into their existing

(squeezed) school schedule due to the time that it takes away from the current

curriculum, whereas others worked to find an optimal time for their students either

during the school day or on a weekend.9 Whether the students came to Oxford

or we went to their school, we think that learning about network science is a

valuable use of time for any teenager—whether it is done via an outreach event

like ours, in after-school sessions that are led by school teachers (e.g., in a science

or math club), or part of the regular curriculum. Network science offers an exciting

supplement to standard mathematics curricula in schools. Examining problems

involving networks gives a wonderful opportunity to show that mathematics is

about ideas and abstractions—and not just calculations—in a way that is both visual

and closely connected to students’ everyday experiences. Network science benefits

from a confluence of diverse perspectives from many disciplines—including not only

mathematics but also sociology, computer science, biology, physics, and myriad other

areas—so examining networks in a quantitative, scholarly way allows students to

experience and demonstrate interdisciplinary thinking. Moreover, working through

problems like those in our modules helps students (and teachers) to see a side

of mathematics that is different from most of what they have experienced. We

emphasize intuition, modeling, problem-solving, and insights that draw ideas from

multiple disciplines in our modules, and this provides a nice complement to the

calculations to which students are accustomed. Because of the ubiquity of networks

in everyday life, network science is an ideal subject for these kinds of outreach efforts.

Once we explain the notion of a network to students, they—just like professional

scholars—see networks everywhere they look. We hope that they will also start to

see mathematics everywhere.

Based on our discussions with the students (and their teachers) and the comments

in the surveys that they filled out for the events in Oxford, the students with whom

we have worked certainly seem to have gained a significant appreciation and interest

in networks, mathematics, and the applications that we discussed. They viewed the

problems that we presented as puzzles to ponder rather than rote calculations to

get out of the way. It is also a positive experience for students and teachers to have

direct contact with professional mathematicians, scientists, and other scholars to get

a better idea of what it is that we do (which is to try to solve problems, just like

the students were doing). It is also good to promote a view of scientists as regular

people, which contrasts sharply with the cold, detached stereotype that seems to

be prevalent. Meanwhile, such outreach activities help improve the communication

skills of the instructors (i.e., people like us), and that too is a significant boon.

We target our outreach activities for students of ages 13–16, as the younger

students in this range have still not decided what subjects to study at university.

9 All weekend events were held in Oxford.
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(Students specialize very early in the United Kingdom.) We hope to persuade more

students to pursue mathematics and science, and we hope that those who do not

pursue such disciplines will at least gain a greater appreciation of mathematics

(and other quantitative disciplines) as well as its importance. Network science is

an eminently accessible subject—that is why many professionals enjoy it, after

all—which makes it perfect for these kinds of outreach efforts. Although our

target audience was students in a particular age range, the materials can be made

accessible to a broader spectrum of ages (including adults) with minimal—and

mostly cosmetic—adjustments. It is desirable to increase literacy about networks

among the public more generally, and the modules that we have developed will

hopefully be helpful for such efforts.

One can also debate whether it is better for professionals to undertake outreach

activities or for networks to be incorporated directly into school curricula. We believe

that both are extremely important.

6 Conclusions and outlook

We are continuing to conduct outreach activities across England, but the only way

to make a really big impact is if these activities spread far and wide. We hope

that we have whet appetites for conducting outreach activities in schools, and we

encourage people to use, borrow, adapt, and improve any material in this article or

in the SOM.

We recognize that many people will have different opinions as to what should

constitute the contents of modules, and we have already seen that the outreach

activities and modules need to be adaptable from one school to another. We

encourage people to create new modules and to improve our modules, so that the

scientific community can develop a large repository of high-quality, networks-related

school activities. Some such modules already exist (see, e.g., Jenkinson et al., 2013).

We are also happy to provide advice and encouragement to anybody who wishes to

contact us.

We also urge school teachers to include network science in their lessons and

math/science-club projects (and, of course, to use our materials and to contact

us for any desired discussions or feedback). We have written only a few modules,

but we hope that they convey the hugely important role that networks have the

potential to play in getting school students interested in mathematics and other

scientific subjects. This is a big challenge, but it is also an exciting opportunity.

We hope that we have convinced people to engage in outreach efforts. It is a

valuable use of time, and it can have a very large impact. Please do not hesitate to

contact us to discuss this further.
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Appendix A: Networks and the environment

In this module, which was designed by Laura Keating and Puck Rombach, the

students examine how climate change can affect animal species. The students

construct and analyze food webs, and they investigate how the extinction of one

species can affect other species.

We start the session by informing the students that they have been hired by

the government to advise how climate change might affect species survival in the

Arctic. Many of the students already possess some knowledge of food chains from

their biology lessons, and we build on this to present food webs as networks rather

than chains. To help introduce background material, the students first fill out a

worksheet that includes questions about what a food web is and how one might

construct a food web as a network. These initial questions also introduce relevant

network properties, such as directedness of edges to describe unidirectional energy

flow between species.

To help the students obtain a better grasp of representing a food web as a network,

we construct a network using a small set of familiar species (e.g., grass, a mouse,

an insect, a small bird, and a large bird). We then explore what happens if one or

more of those species becomes endangered. We begin to discuss the potential for

extinction cascades and the implications that network structure (e.g., high in-degree

or high out-degree) can have for an entire ecosystem.

The final part of the module is spent on a “game” that explores food webs in

Arctic ecosystems. We split the students into multiple groups and give each group

a set of Arctic species that are either aquatic or terrestrial. Both sets of animals

include the polar bear, which connects the aquatic and terrestrial food webs. See the

Supplementary Online Material (SOM) for further details and the handouts that we

give to the students. Each group of students constructs a network from their set of

species, and they write down the adjacency matrix representation of it. We then ask

the students what happens if one of the nodes is removed (i.e., if a species becomes

extinct). Even these small networks are able to help illustrate the complicated and

far-reaching effects of species extinction. At the end of the module, the students

present their findings—including which species are most vulnerable, how climate

change can affect food webs, and potential ways to reduce the negative effects of

extinction.

Appendix B: Social networks and small worlds

This module, which was designed by Mariano Beguerisse-Dı́az and Pau Erola,

illustrates that social networks are everywhere and introduces some of their features.

We examine the notion of a small world—the introductory talk included the jargon

and a picture of a Watts-Strogatz network—using several examples that we hope

are poignant for the students.
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At the beginning, we ask the students whether they have heard of the idea of

“six degrees of separation.” The term itself tends to be unfamiliar to most students,

but many of them recognize the idea as a familiar one once we explain the jargon.

We discuss Stanley Milgram’s package-passing experiments and how it reached a

mainstream audience through venues such as The Oracle of Bacon (Reynolds, 2013).

We play the Kevin Bacon game with the students to try to find paths between movie

actors so that they can find their own “surprisingly” short paths (e.g., a short path

between an actor in a horror film and one in a children’s movie), and we also think

about trying to navigate networks. See the SOM for an example of a handout that

we used for this activity.

We ask the students to explain what is meant by a “social network” and to give

examples (and to indicate the nodes and edges). We expand on the Kevin Bacon

game by examining short paths and navigation in social networks. For example, we

might ask the students “How many degrees of separation are there between you and

the Queen of England?” We also tried other famous people, and students on two

occasions had very short paths to Nelson Mandela. (One knew him and another

knew a person who knew him.) We again find short paths and try to reconcile

these close connections with the fact that famous people are supposedly distant and

unreachable.

We discuss who in a social network might help lead to the existence of many short

paths, introduce the notion of hubs, and ask the students to consider this in the

context of their Facebook friendships (Ugander et al., 2011; Backstrom et al., 2012).

We stress that many short paths go through hubs and ask the students to consider

how hubs can help lead to small worlds. We also discuss different “communities” of

people and which types of connections might serve as “shortcuts” between different

communities rather than “local” connections within a community. In our discussions,

typical examples of the former arose via friendships from vacations or a summer

spent abroad, and naturally the latter tended to be people—classmates, neighbors,

etc.—in close geographical proximity.

As we developed this module, we added more exercises for the students, as

early versions of the module were sometimes less interactive than they should have

been. One exercise, which did not include a worksheet, concerns how Facebook

chooses which friendships it recommends to its users. We encouraged the students

to develop their own recommendation algorithms, and we discussed their ideas on a

whiteboard or flip chart. In another (very successful) exercise, we returned to movies

and considered the social networks of characters in movies such as Toy Story (see

the SOM and Kaminski & Schober, 2013). We gave the students a handout with an

unlabeled version of the Toy Story network, and we asked them to identify which

nodes represent the protagonists and other characters. We also asked the students

to identify some communities of toys that had things in common.10 Obviously, the

choice of Toy Story as an example network is geared toward a young audience,

and the same exercise can use different movies that are more appropriate for other

audiences.

10 We did not use words like “homophily,” though social scientists who undertake similar outreach
efforts might wish to do so.
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Appendix C: Networks and diseases

This module, which was designed by Heather Harrington and Mariano Beguerisse-

Dı́az, illustrates how thinking about networks arises naturally when one tries to

understand how diseases spread and how to develop good strategies to contain them.

We start this module by asking students to discuss the main characteristics of

an infectious disease and to think about how it might spread. We encourage the

students to think about a fictional disease that can only spread by shaking hands

and to discuss how it might spread in their school. This quickly leads to the notion

of disease spread on social networks in schools, and we sometimes combined this

module with Module 2 (which is concerned with small worlds and social networks).

For this discussion, it can be useful to distinguish between online and offline social

networks. It is also worth discussing differences between the spread of ideas (and

rumors) and the spread of diseases.

We also briefly discuss what other types of networks (e.g., transportation networks

or trade networks) might be important for understanding, containing, and preventing

diseases. We steer the discussion toward how different types of network topologies

can affect disease spread and vaccination strategies. (One can ask similar questions

in Module 2.) If it is too expensive to vaccinate everybody, then who should be

vaccinated? Some students brought up node labels in this discussion—one student

proposed that the youngest people should be vaccinated because they (supposedly)

had the most time left to live—though our primary focus was on network topology

and how it affects disease spread. In some sessions, students brought up air travel,

which led to a discussion of how such travel has changed the ways that diseases

spread. Students also pointed out that some diseases could be spread by insects like

mosquitoes, and we used this opportunity to introduce bipartite networks and to

explain how vaccination strategies differ in this situation. For example, fumigation

can eliminate many mosquitoes (which reduces the number of one type of node)

and slow down the spread of a disease.

The largest portion of the module is a hands-on activity in which we distribute

handouts (see the SOM) with various example networks (see Figure 1) to the

students and ask them to devise possible vaccination strategies in each case if they

are only allowed to vaccinate three or fewer nodes. The students realized quickly

that this question was much harder to answer for some network topologies than

for others. This is an interesting point of discussion, as it allows the students to

consider how one might develop a vaccination strategy in real networks (which are,

of course, much more complicated). Moreover, given that one needs to think about

the answer even if one knows network structure exactly, one can discuss how to

develop strategies when some (or even a lot) of a network’s structure is not known.

We ask the students what would they do if one only knows that a network has

a particular structure (e.g., suppose that one knows that it was generated using a

Barabási–Albert mechanism) but do not know anything else. This question tends to

generate a lively discussion. A useful hint for many students is to ask what would

happen if we choose a random person (i.e., node) in a network and then ask him/her

to choose a friend to vaccinate (rather than vaccinating the original node). We also

sometimes discuss the time-ordering of contacts in social networks and how that

can influence disease spread.
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Fig. 1. Small example networks for which one can apply different vaccination strategies (see

the SOM). (A) A star network, (B) a circular lattice, (C) a regular (lattice-like) network

in which each node has four neighbors, (D) an Erdős–Rényi random graph, and (E) a

Barabási–Albert network. (color online)

In addition to discussing diseases specifically, it can be useful to encourage the

students to think about other contexts in which “vaccination” strategies might be

employed. One key issue is distinguishing between the spread of an idea and the

spread of a disease, and one might also wish to discuss other dynamical processes

on networks.

This module is particularly nice for illustrating that mathematics shows up in

many situations that the students (and their teachers) did not previously consider

to be mathematical. This occasionally came up in discussions of viable careers

for people who study mathematics at the university level, and we highlighted that

nowadays mathematicians work closely alongside health professionals.

Appendix D: How Google works

This module—which was designed by Mariano Beguerisse-Dı́az, Sang Hoon Lee,

and Lucas Jeub—aims to introduce Google’s PageRank algorithm for ranking pages

on the World Wide Web (Brin & Page, 1998; Newman, 2010). (Daniel Kim also

assisted in developing materials for this module.) One can find additional useful

material for running this module in Moler (2011).

To start the module, we ask the students to imagine a world without Google or

other search engines and to develop their own strategies for finding information on

the Web. Usually, one of the first ideas is to compile an exhaustive list of every Web

page. We use this to introduce the idea of a crawler to navigate Web pages, and this
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Fig. 2. An example of a directed network whose nodes we ask students to rank in order of

their importance. This network is strongly connected (so any Markov chain on it is ergodic),

so we can ignore the problem of dead-end nodes (i.e., nodes with an out-degree of 0). However,

we did discuss the notion of dead ends on many occasions that we ran our module on ranking

Web pages. The ranking of the nodes in this graph from largest to smallest PageRank score

(in parenthesis) is as follows: D (0.3077), F (0.2051), B (0.1538), C (0.1538), E (0.1026), and

A (0.0769). (color online)

leads naturally to the notion of representing the Web as a network with directed

edges (the hyperlinks) between nodes (the Web pages).

We ask the students to think about how to figure out whether a Web page is

relevant for the information that one seeks, and this leads almost immediately to

the issue of how one should rank Web pages in order of their importance. One

possibility that the students quickly bring up is that one can develop rankings based

on the textual content of a page. (In one case, we had a good discussion about how

we would try to use an automated method to distinguish the Amazon rain forest

from Amazon.com.) We let the students know that the first Web search engines used

to be “curated” by hand, which limited how much of the Web could be explored.

This limitation provided an incentive for people to seek algorithmic methods to

rank pages, which is what we want the students to explore. We ask the students to

develop ideas for how to use the network structure of the Web to rank pages. (The

difficulty of this transition in the discussion varied strongly between different groups

of students.) Most of the time, the first structure-based ranking that the students

proposed is to rank Web pages according to the number of incoming hyperlinks (i.e.,

according to their in-degree). We discuss whether someone can cheat this system (as

well as simple text-based systems) to improve the ranking of a page and whether

better methods are available.

In Figure 2, we show an example network that we use to help guide our discussion

of how to rank Web pages. This example is particularly useful for moving beyond

ideas for ranking based on the text on a page, as we can pretend that no such text

exists (or that it is otherwise impossible to distinguish Web pages based on their

text). We give the students a handout with this network (see the SOM), and we ask

them to rank the nodes in order of their importance (and also to indicate how they

have defined “important”).

Motivated by the fact that people often seem to explore the Web by “randomly”

following hyperlinks—as we point out to the students, who has not done this

on Wikipedia?—we ask the students whether they can develop a ranking method
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based on this idea. We use phrasing along the following lines: If we have a large

number of monkeys—it can be very compelling to refer to random walkers as

“monkeys” (Hopkin, 2003)—who are clicking on hyperlinks randomly, what ranking

would we obtain based on the number of times each page is visited? It can also

be useful to discuss why Wikipedia is a “monkey trap,” in the sense that many

Wikipedia pages have high rankings in Google searches. (We occasionally discussed

having one random walker versus having a large number of random walkers.) Using

these questions, we introduce the rationale behind PageRank. Crucially, we try to

avoid words like “eigenvalue” and “eigenvector” (and “ergodic,” “Markov,” etc.),

though we do attempt to get the students to approximate (by hand) the PageRank

eigenvector for a network like the one in Figure 2. They just do not know that what

they are computing is called an eigenvector.

The example network in Figure 2 is very instructive. Different choices for how

to measure node importance (e.g., in-degree versus out-degree) lead to different

rankings, and we have interesting discussions regarding which ranking is “correct.”

These ideas could also be used to develop a module that focuses on centralities more

generally—e.g., intuition related to the notion of “betweenness” sometimes comes

up in Modules 2 (Small Worlds) and 3 (Networks and Diseases)—as well as how

one might change the notion of importance depending on the question that one

wants to answer. An interesting feature of the network in Figure 2, which is worth

asking the students to try to prove, is that nodes B and C have the same PageRank

score.

To compute the rankings, the students count the number of times the nodes are

visited on different walks through the network. We and the students use two primary

techniques for this calculation: (1) start from a uniform distribution and iteratively

count the number of walkers on each node, or (2) try to identify relative orderings

for the ranking of different nodes without calculating individual probabilities. The

maximum out-degree in the example network is 2, which makes it easy to simulate

a random walk by flipping a coin to decide which edge to follow in a given step.

The students soon realize that one can get to node D from almost everywhere, and

that it is indeed the most visited node in a (conventional) random walk. This then

makes it the most important node in this ranking scheme. The students then realize

that the nodes (C and F) that have incoming edges from D must come next in the

rankings, and they discuss how to break the tie. Students also note that nodes C and

B are always visited the exact same number of times (as long as we do not stop the

walk before a monkey has had the chance to leave C). In some cases, we were able

to get the students to calculate the fraction of times, in a walk with a finite number

of steps, that each node was visited (as this gives an approximation of each node’s

PageRank score) rather than only determining the rank order. It was also useful to

explore how these fractions change as one increases the length of a walk. We were

consistently able to impart the intuition that the “better-linked” pages rather than

the most-linked ones were the most important ones for the application at hand.

When there is enough time, we discuss that a monkey gets “trapped” on any

Web page that has an out-degree of 0. This problem can be illustrated by adding a

dead-end node G to the network in Figure 2. We ask the students to think about how

one can change one’s ranking methodology to be able to deal with this situation.

This gives the opportunity to discuss the idea of a random walk with “teleportation”
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Fig. 3. The Bridges of Königsberg Puzzle. Is it possible to create a walk that crosses each

bridge exactly once and also returns to its starting point? (color online)

(e.g., at each node, one follows an edge with a probability p or otherwise chooses

some other node in the network via a random process). Once the dead-end node

has been added, the graph is no longer “strongly connected,” and one can use this

situation to illustrate that even a small perturbation of a network can change its

properties in a fundamental manner.

As part of this module, we sometimes discuss clever scientific ways to use Google—

such as trying to measure the similarity between two football players by examining

how often they show up together in Google searches (Lee et al., 2010).

Appendix E: Introduction to graph theory

This module, which was designed by Puck Rombach, provides an introduction to

graph theory through the discussion of some famous mathematical “puzzles.” In

contrast to the other modules, it focuses on the theoretical (or “pure”) side of

mathematics. It is also arguably our most popular and successful module.

Graph theory’s deep connection with networks makes it an area of pure math-

ematics that can resonate with students. The problems that we discuss with the

students happen to also be relevant for applications (and we mention them when

we are asked about them), but that is not our focus. We seek to show the students

how to formulate and prove theorems, and we want to convey our excitement for

and the value of abstract mathematical ideas for their own sake. This module also

illustrates that university mathematics need not require any numbers or calculations,

which is an important difference from the kind of mathematics with which students

are familiar from schools.

Graph theory is wonderful because its basic ideas and many of its interesting

problems can be explained in a few minutes in a way that allows people with

little or no mathematical background (such as children) to understand them. Two

examples that we discuss with the students are the Bridges of Königsberg puzzle (see

Figure 3) and the Water, Gas, and Electricity puzzle (see Figure 4). Both of these

puzzles are unsolvable, which one can demonstrate by systematically exhausting all

possible solutions. We ask the students to try to find solutions to these puzzles and

then—when they cannot—to try to prove that no solutions exist.

Excitingly, both puzzles hint at deep and general theorems. The Bridges of

Königsberg puzzle (Euler, 1741) is unsolvable because it is both necessary and
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Fig. 4. The Water, Gas, and Electricity Puzzle. Is it possible to connect every house to all of

water, gas, and electricity such that no lines cross? (color online)

sufficient that every node has an even degree for a graph to have an Euler cycle (i.e.,

a circuit that runs along every edge exactly once and returns to its starting point).

In this case, no nodes have an even degree. Proving the necessity is easy—every

time that an island (i.e., a node) is “entered,” it must also be exited—but proving

sufficiency is more difficult. This problem also allows us to discuss the notion of

necessary and sufficient conditions for results to be true. The Water, Gas, and

Electricity puzzle is unsolvable because K3,3 (the complete bipartite graph on two

sets of three nodes) is not planar.11

Another family of problems that we discuss at length with the students concerns

graph coloring. Graph-coloring problems are easy to explain, but they can be

excruciatingly difficult to solve. The most famous graph-coloring result is the Four-

Color Theorem (Diestel, 2005), which we explore in detail with the students. We

ask them the following question: How many colors does one need to color a map

such that two countries that share a border are not colored with the same color?

(Maps can be represented as planar graphs and vice versa, so map coloring is the

same as planar graph coloring.) We provide paper and markers, ask the students

to draw maps and color the countries, and examine the colorings that the students

draw.12 This allows us to determine quickly if they understand the definition of

“coloring.” We keep challenging them to try to construct maps that require more

colors. The students find through empirical observation and discussion that none

of them has been able to draw a map that needs more than four colors, and we

eventually let them know that it impossible to construct a planar map of countries

that is not four-colorable.13 In one memorable incident, a student insisted (despite

our statement that it was impossible) that he was going to construct a map that

could not be four-colored, he kept working on that problem for the rest of the day,

and then he insisted as the students were leaving that he was going to continue

working at it and get it to work.

11 A “planar” graph is a graph that can be drawn on a plane such that no edges cross each other.
12 The same basic activity would of course be suitable for adults, but we realize that it might be more

suitable to ask some adults to label the countries with numbers rather than to literally color the
countries using markers.

13 This was proved in the 1970s by Kenneth Appel and Wolfgang Haken (Appel & Haken, 1976), but
it required exhaustive computer searches and hundreds of pages of analysis. There is not (yet) an
elegant proof for this theorem.
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Fig. 5. An infinite-border map, for which one can prove a Two-Color Theorem.

To encourage students to get their hands dirty with mathematical proofs, we then

discuss a Two-Color Theorem (see the discussions in Gardner, 1984 and the SOM),

which is considerably simpler. We consider maps with the special rule that borders

cannot end. That is, every border must either go off of the page in all directions

(imagining that it goes to infinity) or it must connect to itself in a cycle. To make

things simpler—although the result holds without this simplification—we do not

allow borders to cross themselves. In Figure 5, we show an example of this special

“infinite-border” map (IB-map). We teach the students how to prove this Two-Color

Theorem using induction (Gardner, 1984), which we explain is a common approach

in mathematics. (The proof is in the SOM.)

It might also be useful to ask the students to consider coloring maps that are

drawn on objects that are more complicated than globes. For example, a map on a

Möbius strip can require as many as six colors, and a map on a torus can require

as many as seven colors. At the end of some sessions, we showed the students a

Möbius strip that we constructed using six differently colored strips of paper that

all touch each other.

If there is extra time or if it is useful to discuss something different, we also

go through the proof of Hall’s Marriage Theorem (HMT). This theorem gives

a necessary and sufficient condition for marrying each member of one group of

people to a member of another group of people, given that some of the latter have

conditions that constrain who they are willing to marry.14 The setting for HMT is

enjoyable to explain, and it usually elicits a few laughs from the students. (HMT

can also be discussed without bringing up marriage, though that is the traditional

setting of the problem.)

Student reaction to this module has been overwhelmingly positive. To our great

pleasure, most students have enjoyed solving problems for their own sake without

having to be encumbered by any external importance. Most of the questions are

14 Conveniently, half of the 2012 Nobel Prize in Economics was awarded for theoretical work on
generalizing HMT (“The Prize,” 2012). We used this as part of our response to a skeptical question
about HMT ever being useful—the reaction to our answer was wonderful—though we also stressed
that that did not matter, as we were only concerned with the fact that proving the theorem is
interesting.
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very challenging and difficult to answer straightaway. When running this module,

we encourage the students to think like mathematicians. If they find a problem to

be too hard, then we encourage them to consider a simpler but related question that

they can try to answer first. If students do not know an answer, it is good to ask

them to indicate what they do know. For particularly keen students, of course, this

module can be scaled up to make it more challenging.

Appendix F: Do your friends have more friends than you do?

Two decades ago, Scott Feld wrote a well-known article that discusses why, on

average, a given person’s friends tend to have more friends than that person (Feld,

1991). Because this can be explained using simple mathematical arguments on some

networks (such as the configuration model; see Bollobás, 2001; Newman, 2010), we

decided that this idea would make a compelling module.

This module, which was designed by Lucas Jeub, starts by asking the students

whether or not they have heard about this result. On the one occasion that we ran

the module, none of the students had heard about anything like this (which is not

terribly shocking), and we actually want students to express skepticism about this

kind of result. Our plan in such a situation is ask the students to come up with an

argument of why such a result cannot be true followed by guiding them through

the intuition for the correct result that the mean number of friends of one’s friends

is larger than one’s own mean number of friends.

To illustrate this result, we ask the students to think about their Facebook friends

and the number of friends of their most popular Facebook friend. We also thought

about getting the students to write down the number of people in the room that they

consider to be friends, as this can of course help illustrate the same phenomenon.

However, there is a major flaw in using this specific scenario to illustrate the key

idea: the students were rather shy about saying how many friends they had.

In this module, we use the configuration model as a toy situation to illustrate the

key phenomenon. We ask the students to write down their number of friends on a

piece of paper.15 We tabulate the numbers and ask the students to try and construct

a network with the given degree sequence, and the idea of the configuration model

then comes naturally by considering the set of all possible networks that one can

construct from this information.

When we ran the module, we were hoping to get into a discussion of whether

the fact that social networks are rather different from the configuration model (e.g.,

because of triadic closure) changes whether a random person in a network has fewer

friends on average than do their friends, and we thereby wanted to get into some

issues regarding the structure of social networks. However, although we were able

to get the students to understand the intuitive arguments using the configuration

model, our attempts to scale up from this point were unsuccessful. An even bigger

issue is that the calculations necessary to verify the key result are tedious even for

15 As indicated above, it would have been better to use a less personal mechanism to illustrate this
example. For example, one can ask each student to choose an arbitrary positive integer bounded
above by the number of people in the room and to just pretend that that number is his/her number
of friends.
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small networks. We ended up finding something else to discuss with the remaining

time and decided that this module needed to go back to the drawing board.

A while after we ran this module, Steve Strogatz presented an excellent explanation

of Scott Feld’s result in a New York Times article (Strogatz, 2012). We think that his

explanation can serve as a useful springboard for a good module, and we suggest

starting from there to try to develop a module with this theme. We believe that this

theme has the potential to make an excellent module.

Appendix G: Structural balance (the ad hoc module)

This module was not “designed” by anybody, though we ran it once on an ad hoc

basis instead of Module 6 (on why a random person in a social network has, on

average, fewer friends than his/her friends) when the latter had not worked out as

well as we would have liked earlier in the day. We needed something at the last

minute, as we did not want to try Module 6 again without first redesigning it.

Motivated by a brilliant colloquium by Steve Strogatz on the previous day, we

decided that structural balance would make an excellent topic. We covered the basic

ideas behind structural balance, including whether or not three mutually antagonistic

connections in a triad should be considered as balanced. We also guided the students

through work by Cartwright and Harary (Cartwright & Harary, 1956) and asked

them to consider this in real life as well as in Massively Multiplayer Online Role-

Playing Games (MMORPGs) (Szell et al., 2010). (For some students, it might not

be entirely clear which of these is more real.)

In our original brainstorming for sessions to design, we had actually considered

developing a module on structural balance. The ad hoc module based on that idea

was surprisingly successful given the lack of formal design and preparation, so we

feel that structural balance would make a good module to develop more carefully.

One can of course bring up alliances and conflicts in war and among schoolmates,

and one can also discuss games like Risk in addition to MMORPGs.


