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Abstract

In this paper we consider Hamilton’s Ricci flow on a 3-manifold having a
metric of positive scalar curvature. We establish several a priori estimates for the
Ricci flow which we believe are important in understanding possible singularities
of the Ricci flow. For Ricci flow with initial metric of positive scalar curvature,
we obtain a sharp estimate on the norm of the Ricci curvature in terms of the
scalar curvature (which is not trivial even if the initial metric has non-negative
Ricci curvature, a fact which is essential in Hamilton’s estimates [8]), some L2-
estimates for the gradients of the Ricci curvature, and finally the Harnack type
estimates for the Ricci curvature. These results are established through careful
(and rather complicated and lengthy) computations, integration by parts and
the maximum principles for parabolic equations. (Revised version).
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1 Introduction

In the seminal paper [8], R. S. Hamilton has introduced an evolution equation for
metrics on a manifold, the Ricci flow equation, in order to obtain a “better metric” by
deforming a Riemannian metric in a way of improving positivity of the Ricci curvature.
Hamilton devised his heat flow type equation (originally motivated by Eells-Sampson’s
work [6] on the heat flow method for harmonic mappings) by considering the gradient
vector field of the total scalar curvature functional on the space M(M) of metrics on
a manifold M

E(g) =

∫
M

Rgdµg ; g ∈M(M)

where Rg and dµg are the scalar curvature and the volume measure with respect to
the metric g, respectively. While Hamilton’s Ricci flow is not the gradient flow of the
energy functional E which is ill-posed, rather Hamilton has normalized the gradient
flow equation of E to the following heat flow type equation

∂

∂t
gij = −2Rij +

2

n
σggij (1.1)

where σg denotes the average of the scalar curvature V −1
g

∫
M
Rdµg. The variation

characteristic of the Ricc flow (1.1) has been revealed by G. Perelman in recent works
[15], [16]. In these papers Perelman presented powerful and substantial new ideas in
order to understand the singularities of solutions to (1.1), for further information, see
the recent book [5].

It is clear that the Ricci flow (1.1) preserves the total mass. After change of the
space variable scale and re-parametrization of t (1.1) is equivalent to

∂

∂t
gij = −2Rij (1.2)

which however is not volume-preserving. We will refer this equation as the Ricci flow.
The parameter t (which has no geometric significance) is suppressed from notations if
no confusion may arise.
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If we express the Ricci tensor Rij in terms of the metric tensor gij, we may see
that the Ricci flow equation (1.2) is a highly non-linear system of second-order partial
differential equations, which is not strictly parabolic, for which there is no general
theory in hand to solve this kind of PDE. Even worse, there are known topological
obstructions to the existence of a solution to (1.2).

The system (1.2) has a great interest by its own from a point-view of PDE theory,
it however has significance in the resolution of the Poincaré conjecture. The Poincaré
conjecture claims that a simply-connected 3-manifold is a sphere. If we run the Ricci
flow (1.2) on a 3-manifold, and if we could show a limit metric exists with controlled
bounds of the curvature tensor, then we could hope the limit metric must have constant
Ricci curvature (see (1.1)), therefore the manifold must be a sphere. Thus Ricci flow
is a very attractive approach to a possible positive answer to the Poincaré conjecture.
This approach was worked out in the classical paper [8] for 3-manifolds with positive
Ricci curvature by proving a series of striking a priori estimates for solutions of the
Ricci flow.

Theorem 1.1 (Hamilton [8], Main Theorem 1.1, page 255) On any 3-manifold with
a metric of positive Ricci curvature, there is an Einstein metric with positive scalar
curvature.

1.1 Description of main results

Hamilton proved his theorem 1.1 through three a priori estimates for the Ricci flow
with initial metric of positive curvature. The essential feature in this particular case
is that the scalar curvature dominates the whole curvature tensor. Indeed if the Ricci
tensor Rij is positive then we have the following elementary fact

1

3
R2 ≤ |Rij|2 ≤ R2 . (1.3)

While in general case we still have the lower bound for |Rij|, but there is no way to
control |Rij| by its trace R. The first estimate Hamilton proved is the expected one:
the Ricci flow improves the positivity of the Ricci tensor, thus if the initial metric has
positive Ricci curvature then it remains so as long as the Ricci flow alive. This conclu-
sion is proved by using a maximum principle for solutions to the tensor type parabolic
equations (which indeed follows from the use of the classical maximum principle in
parabolic theory).

One of our results shows that under the Ricci flow on a 3-manifold with positive
scalar curvature, the squared norm of the Ricci tensor can be controlled in terms of
its scalar curvature and the initial date. Indeed we prove a comparison theorem for
the quantity |Rij|2/R2. We then deduce precise bounds on the scalar curvature for the
Ricci flow with positive scalar curvature.
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By removing the positivity assumption of the Ricci curvature, three eigenvalues of
the Ricci curvature under the Ricci flow may develop into a state of dispersion: one
of eigenvalues may go to −∞ while another to +∞ but still keep the scalar curvature
R bounded. Our above result just excludes this case if the initial metric has positive
scalar curvature.

The second key estimate in [8], also the most striking result in [8], is an estimate
which shows (after re-parametrization) the eigenvalues of the Ricci flow at each point
approach each other. Hamilton achieved this claim by showing the variance of the
three eigenvalues of the Ricci tensor decay like Rκ where κ ∈ (1, 2) depending on the
positive lower bound of the Ricci curvature of the initial metric. It is not easy to see
the curvature explodes in time for normalized Ricci flow (the volumes of the manifold
are scaled to tend to zero), the variance of three eigenvalues of the Ricci curvature
are easily seen as |Rij|2 − R2/3, by (1.3) one might guess the variance |Rij|2 − R2/3
possesses the same order of R2. The striking fact is that indeed

|Rij|2 −R2/3

Rκ

is bounded for some κ < 2! That is to say, |Rij|2−R2/3 explodes much slower then R2,
so that, after re-scaling back to the un-normalized Ricci flow, it shows the variance of
the eigenvalues of the Ricci tensor goes to zero, hence proves the claim. The positive
Ricci curvature assumption is washed down to an elementary fact recorded in Lemma
5.2. This core estimate (see [8], Theorem 10.1, page 283 ) is definitely false if the
positivity assumption on the Ricci tensor is removed, and it seems no replacement
could be easily recognized without an assumption on the Ricci curvature.

Finally in order to show a smooth metric does exist, and has constant Ricci cur-
vature, Hamilton [8] established an important gradient estimate for |∇R| in terms of
R and |Rij| ([8], Theorem 11.1, page 287), which in turn implies that, for the un-
normalized Ricci flow, |∇R| goes to zero. This estimate was proved by using the
previous crucial estimate on the variance |Rij|2−R2/3 and a clever use of the Bianchi
identity: |∇Ric|2 ≥ 7|∇R|2/20, instead of the trivial one |∇Ric|2 ≥ |∇R|2/3. The key
question we would ask is what kind of gradient estimates for the scalar curvature and
for the Ricci curvature can we expect without the essential estimates on the variance
of three eigenvalues of the Ricci tensor?

This paper gives some partial answers to this question: we establish a weighted
integral estimate for |∇R|2 and a Harnack type estimate for the Ricci curvature. We
hope these estimates would help us to understand the singularities in the Ricci flow on
a 3-manifold with positive scalar curvature, and complete the Hamilton’s program [11]
for these 3-manifolds. For recent exciting development, see the papers by G. Perelman
and Chow and Knopf’s excellent recent book [5], and also [18] and Ecker’s book for
the mean curvature flow.
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The main simplification for 3-manifolds comes from the fact that the full curvature
tensor Rijkl may be read out from the Ricci tensor (Rij):

Rijkl = Rikgjl −Rilgjk +Rjlgik −Rjkgil

−1

2
R (gjlgik − gjkgil) . (1.4)

In all computations the Bianchi identity will play an essential role. The following
are the several forms we will need. The first one is

∇mRijkl +∇kRijlm +∇lRijmk = 0 . (1.5)

Taking trace over indices m and j we obtain

gab∇aRibkl = ∇lRik −∇kRil (1.6)

and taking trace again over i and k we thus have

∇kR = 2gij∇jRik . (1.7)

That is ∇aRka = 1
2
∇kR. The equation (1.7) may be write as ∇aG(Ric)ak = 0 for all

k, where

G(V )ij = Vij −
1

2
trg(V )gij

for a symmetric tensor (Vij).

1.2 Example

In order to appreciate the difficulty induced by the topology for the Ricci flow, let us
examine a typical example not covered by the theorem of Hamilton [8].

Let M = S2×S1 endowed with the standard product metric. Choose a coordinate
system, and write (hij) to be the standard metric on the sphere S2 with sectional
curvature 1. The standard product metric on M may be written as

(g(0)ij) =

(
(hij) 0

0 1

)
and the Ricci curvature tensor

(R(0)ij) =

(
(hij) 0

0 0

)
so that the scalar curvature R(0) = 2, a constant. Consider the Ricci flow with the
initial metric (g(0)ij):

∂

∂t
(g(t)ij) = −2R(t)ij +

2

3
σ(t)g(t)ij .
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Let us assume that the solution flow has the following form

(g(t)ij) =

(
a(t)(hij) 0

0 f(t)

)
. (1.8)

Since

(R(t)ij) =

(
(hij) 0

0 0

)
so that

R(t) = g(t)ijR(t)ij =
2

a(t)
.

Therefore σ(t) = 2
a(t)

. Thus the Ricci flow equation is equivalent to the following
system of ordinary differential equations

∂

∂t
a(t) = −2

3
; a(0) = 1 ;

∂

∂t
f(t) =

4

3

f(t)

a(t)
; f(0) = 1

which have solutions

a(t) = 1− 2

3
t ; f(t) =

1(
1− 2

3
t
)2 .

The condition that a > 0 then yields that t < 3
2
. Notice that as t ↑ 3

2
, then σ(t)

explodes to +∞, though the volumes still keep as a constant. On the other hand the
Ricci tensor for all t has constant eigenvalues, and therefore ∇kRij = 0. Let us write
down the solution flow as the following explicit form

(g(t)ij) =

(
(1− 2t

3
)(hij) 0

0
(
1− 2

3
t
)−2

)
or in terms of the mean value of the scalar curvature σ(t) = 2/

(
1− 2

3
t
)

we have the
solution metric

(g(t)ij) =

(
2

σ(t)
(hij) 0

0 σ(t)2

4

)
.

The Ricci flow (g(t)ij) on S2 × S1 explains the difficulty about Ricci flow on a general
3-manifold: a limit metric (even after a scaling) to the Ricci flow may not exist.

However we may also consider the following form of Ricci flow

∂

∂t
(g(t)ij) = −2R(t)ij +

2

3
(ασ(t) + β) g(t)ij (1.9)
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where α and β are two constants to be chosen according to the type of 3-manifolds.
We still search for a solution flow with the form (1.8), which leads to again σ(t) = 2

a(t)

and

∂

∂t
a(t) = −2 +

2

3
(2α+ βa(t)) ; a(0) = 1

∂

∂t
f(t) =

2

3

(
α

2

a(t)
+ β

)
f(t) ; f(0) = 1 .

Obviously α = 3
2

is a good choice for the manifold S2 × S1. With this choice α = 3
2

and any β ≥ 0 we have

a(t) = exp

(
2

3
βt

)
and

f(t) = exp

[
3

β
− 3

β
exp

(
−2

3
βt

)
+

2

3
βt

]
.

Thus the solution flow to (1.9) exists for all time t, the eigenvalues of the Ricci tensor
are constant (in space variables), and

σ(t) = 2 exp

(
−2

3
βt

)
goes to zero as t→∞ if β > 0. In particular if α = 3

2
and β = 0, then

a(t) = 1 ; f(t) = exp (2t) .

The solution flow exists, but no limit exist as t→∞.

2 Deformation of metrics

Let (g(t)ij) be a family of metrics on M satisfying the following equation

∂

∂t
gij = −2hij

where hij is a family of symmetric tensors depending on t maybe on (g(t)ij) as well. If
no confusion may arise, the parameter t will be suppressed. The inverse of (gij) then
evolves according to the equation

∂

∂t
gij = 2gibgajhab (2.1)

which may be written as ∂
∂t
gij = 2hij (the indices in h(t)ij are lifted with respect to

the metric g(t)ij, this remark applies to other similar notations).
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Although for each t the Christoffel symbol Γj
ik is not a tensor, is however

∂Γj
ik

∂t
its

derivative in t. Recall that

Γj
ik =

1

2
gjp

(
∂gip

∂xk

+
∂gkp

∂xi

− ∂gik

∂xp

)
so that

∂Γj
ik

∂t
= −gjp {(∇khip) + (∇ihkp)− (∇phik)} . (2.2)

From which it follows immediately the variation for the Ricci curvature tensor, ∂Rik

∂t
.

Indeed under a normal coordinate system

∂Rik

∂t
= ∂j

∂Γj
ik

∂t
− ∂i

∂Γj
jk

∂t

= ∇j
∂Γj

ik

∂t
−∇i

∂Γj
jk

∂t

which together (2.2) implies the following

∂

∂t
Rij = ∆hij +∇i∇jtrg(hab)− (∇a∇jhia +∇a∇ihja) . (2.3)

After taking trace

∂

∂t
R = 2∆trg(hab) + 2habR

ab − 2∇a∇bhab .

We may exchange the order of taking co-variant derivatives in the last term of (2.3)
via the following

Lemma 2.1 Let (hij) be a symmetric tensor on a 3-manifold. Then

(∇a∇jhia +∇a∇ihja)

= (∇i∇ahja +∇j∇ahia)− 2Rabhabgij − 2trg(hab)Rij

−Rhij +Rtrg(hab)gij + 3gab (hiaRjb + hjaRib) . (2.4)

Proof. Indeed, by the Ricci identity for symmetric tensors,

∇j∇khil = ∇k∇jhil + halg
abRkjbi + hiag

abRkjbl

and
∇l∇ihkj = ∇i∇lhkj + hajg

abRilbk + hkag
abRilbj
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we thus have

gjl (∇j∇khil +∇l∇ihkj)

= gjl (∇i∇lhkj +∇k∇jhil)

+gjlhajg
ab (Rilbk +Riblk) + hkag

jlgabRijbl + hiag
jlgabRkjbl

=
(
gjl∇i∇lhkj +∇k∇jhil

)
−2hajg

jlgabRibkl + hkag
jlgabRijbl + hiag

jlgabRkjbl . (2.5)

However in 3-manifolds, the full Ricci curvature Rijkl may be expressed in terms of the
Ricci tensor, equation (1.4), we may easily verify the followings

hajg
jlgabRibkl =

(
gjlgabhajRbl −

1

2
Rtrg(hab)

)
gik +

1

2
Rhik

−gabhaiRbk − gabhkbRia + trg(hab)Rik,

hkag
jlgabRijbl = gabhkaRib

and
hiag

jlgabRkjbl = hiag
abRkb ,

substituting these equations into (2.5) to get the conclusion.
Therefore

Lemma 2.2 On 3-manifolds, if ∂
∂t
gij = −2hij, then

∂

∂t
Rij = ∆hij +∇i∇jtrg(hab)− {∇i∇ahja +∇j∇ahia}

+
{
2habR

ab −Rtrg(hab)
}
gij +Rhij

+2trg(hab)Rij − 3gab (hiaRjb + hjaRib) . (2.6)

Corollary 2.3 On 3-manifolds, if ∂
∂t
gij = −2hij, then

∂

∂t
R = 2∆trg(hab) + 2habR

ab − 2
(
∇b∇ahab

)
. (2.7)

3 Hamilton’s Ricci flow

Although most of our results will be stated only for the normalized Ricci flow

∂

∂t
gij = −2Rij
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it may be useful to consider a general evolution equation for metrics. LetM(M) denote
the space of all metrics on the manifold M of dimension 3, and let

hij = Rij −
1

3
(ασ + β) gij (3.1)

where α and β are two constant, Rij is the Ricci tensor of gij, and σ is the mean value
of the scalar curvature

σ =
1

Vg

∫
M

Rgdµg

which is a functional on M(M). Therefore (hij) is a symmetric tensor which may be
seen as a functional on M(M). It is obvious by definition

trg(hij) = R− (ασ + β)

The Ricci flow (with parameters α and β) is the following equation on the metrics (gij):

∂

∂t
gij = −2hij

= −2

(
Rij −

1

3
(ασ + β) gij

)
. (3.2)

The Ricci flow (3.2) may be written in different forms:

∂

∂t
gij = 2

(
Rij − 1

3
(ασ + β) gij

)
(3.3)

and (
∆− ∂

∂t

)
gij = −2

(
Rij −

1

3
(ασ + β) gij

)
where ∆ denotes the trace Laplacian gij∇i∇j associated with the metric (g(t)ij).

In what follows we assume that (g(t)ij) (but t will be suppressed from notations,
unless specified) is the maximum solution to the Ricci flow (3.2). For simplicity we use
A(t) to denote ασ(t) + β, and Vg denote the volume of (M, g).

Let λ1 ≥ λ2 ≥ λ3 denote the three eigenvalues of the Ricci tensor (Rij). Then

R = λ1 + λ2 + λ3 ; S = λ2
1 + λ2

2 + λ2
3

where S = |Rij|2. We also define

T = λ3
1 + λ3

2 + λ3
3, U = λ4

1 + λ4
2 + λ4

3 .

Then

λ1λ2 + λ2λ3 + λ1λ3 =
1

2
(R2 − S) ,
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λ1λ2λ3 =
1

6
R3 − 1

2
RS +

1

3
T

and

U =
4

3
RT −R2S +

1

2
S2 +

1

6
R4 .

The variance of λ1, λ2 and λ3 is S − 1
3
R2 which will be denoted by Y .

Let Sij = gabRibRaj and Tij = gabRibSaj. Then S = trg(Sij) and T = trg(Tij).
By equation (2.6) we easily see that(

∆− ∂

∂t

)
Rij = 6Sij − 3RRij +

(
R2 − 2S

)
gij (3.4)

which has a form independent of α or β. From here we may compute the evolution for
the scalar curvature (

∆− ∂

∂t

)
R = −2

(
S − 1

3
AR

)
. (3.5)

We next compute the evolution equations for the tensors (Sij) and (Tij).(
∆− ∂

∂t

)
Sij = gabRaj

(
∆− ∂

∂t

)
Rib −RibRaj

∂

∂t
gab

+gabRib

(
∆− ∂

∂t

)
Raj + 2gab〈∇Rib,∇Raj〉

= 6gabRajSib + 6gabRibSaj − 2RibRajR
ab

−6RSij + 2
(
R2 − 2S

)
Rij +

2

3
ASij

+2gab〈∇Rib,∇Raj〉

that is (
∆− ∂

∂t

)
Sij = 10Tij − 6RSij + 2

(
R2 − 2S

)
Rij

+
2

3
ASij + 2gab(∇kRib)(∇kRaj) . (3.6)

Taking trace we obtain(
∆− ∂

∂t

)
S = 2

(
R3 − 5RS + 4T

)
+

4

3
AS + 2|∇kRij|2 . (3.7)

These are the evolution equations computed in Hamilton [8] (in the case α = β = 0)
via his evolution equation for the full curvature tensor.
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Similarly we have(
∆− ∂

∂t

)
Tij = 14gabRibTaj − 9RTij + 3

(
R2 − 2S

)
Sij

+
4

3
ATij + 2Rab(∇kRib)(∇kRaj)

+2(∇kRab) {Rib(∇kRaj) +Raj(∇kRib)} . (3.8)

It follows that (
∆− ∂

∂t

)
T = 12U − 9RT + 3

(
R2 − 2S

)
S + 2AT

+6gabRia(∇kRij)(∇kRbj)

together with the fact that

U =
4

3
RT −R2S +

1

2
S2 +

1

6
R4

we thus establish the following evolution equation(
∆− ∂

∂t

)
T = 7RT − 9R2S + 2R4 + 2AT

+6gabRia(∇kRij)(∇kRbj) . (3.9)

In what follows, we only consider 3-manifolds with a metric of positive scalar cur-
vature. Let (g(t)ij) be the maximum solution to the Ricci flow(

∆− ∂

∂t

)
gij = −2

(
Rij −

1

3
Agij

)
on a 3-manifold M with initial metric g(0)ij of positive constant scalar curvature R(0),
unless otherwise specified.

Let µt denote the volume measure associated with the solution metric (g(t)ij) (at
time t), and let

Mt =
dµt

dµ0

=

√
det(g(t)ij)

det(g(0)ij)
.

Then an elementary computation shows that

∂

∂t
logMt = −trg(hij)

= −R + A .
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Therefore

d

dt
Vg(t) =

d

dt

∫
M

Mtdµ0

=

∫
M

(
d

dt
logMt

)
dµt

=

∫
M

(−R + A) dµt

= (β + (α− 1)σ)Vg(t)

so that the following

Lemma 3.1 The volume function t → Vg(t) is constant if β = 0 and α = 1. For
general α and β we have

d

dt
log Vg(t) = β + (α− 1)σ(t)

where

σ(t) =
1

Vg(t)

∫
M

Rg(t)dµt .

Since

∂

∂t
log M(t) = −trg

(
Rij −

1

3
Agij

)
= −R(t, ·) + A(t)

and therefore

log M(t) = −
∫ t

0

(R(s, ·)− A(s)) ds . (3.10)

Taking Laplacian of logM(t) in the last equation we obtain

∆ log M(t) = −
∫ t

0

(∆R)(s, ·)ds

= R(0)−R + 2

∫ t

0

(
S − 1

3
AR

)
so that (

∆− ∂

∂t

)
log M(t) = R(0)− A(t) + 2

∫ t

0

(
S − 1

3
AR

)
. (3.11)

The scalar curvature R remains positive if the initial metric possesses positive scalar
curvature. To see this let us consider the function

K = e
2
3

∫ t
0 A(s)dsR , (3.12)
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and we can easily see the evolution equation for K is given as(
∆− ∂

∂t

)
K = −2e

2
3

∫ t
0 A(s)dsS (3.13)

so the claim follows easily from the maximum principle.

4 Control the curvature tensor

Consider the maximum solution (g(t)ij) to the Ricci flow

∂

∂t
gij = −2

(
Rij −

1

3
Agij

)
(4.1)

where A(t) = ασ(t) + β as before.
Recall that the scalar curvature R satisfies the following parabolic equation(

∆− ∂

∂t

)
R = −2S +

2

3
AR

so that (
∆− ∂

∂t

)(
e−

2
3

∫ t
0 A(s)dsR

)
= −2e−

2
3

∫ t
0 A(s)dsS ,

therefore by the maximum principle, it follows that R remains positive if for the initial
metric R(0) is positive.

Our first result shows that if the initial metric possesses positive scalar curvature,
then the full curvature tensor of (g(t)ij) may be controlled by its scalar curvature.

Let Vij = Rij − εRgij where ε is a constant. Then by the evolution equations for
(Rij), R and the Ricci flow (4.1) we deduce that(

∆− ∂

∂t

)
Vij = 6gpqVpjViq + (10ε− 3)RVij

+
(
2 (ε− 1)S +

(
4ε2 − 3ε+ 1

)
R2
)
gij . (4.2)

The very nice feature of this identity is that it involves α, β and σ only through the
symmetric tensor Vij, which takes the same form for all α, β.

Theorem 4.1 Let M be a closed 3-manifold. If ε ≤ 1/3 is a constant such that
Rij − εRgij ≥ 0 at t = 0, so does it remain. If ε ≥ 1 and at t = 0, Rij − εRgij ≤ 0,
then the inequality remains to hold for all t > 0.
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Proof. We prove these conclusions by using the maximum principle to the tensor
type parabolic equation (4.2) and (Vij) (see [8], Theorem 9.1, page 279). Let us prove
the first conclusion. Suppose λ ≥ µ ≥ ν are eigenvalues of the Ricci tensor Rij. Then
S = λ2 +µ2 + ν2 and R = λ+µ+ ν. If ξ 6= 0 such that Vijξ

j = 0 for all i. Then one of
the eigenvalues of Vij is zero. Since the eigenvalues of Vij are λ− εR, µ− εR, ν − εR,
so we may assume that ν − εR = 0. Hence

λ+ µ = (1− ε)R , S = λ2 + µ2 + ε2R2 .

Since

2 (ε− 1)S +
(
4ε2 − 3ε+ 1

)
R2

= 2 (ε− 1)
(
λ2 + µ2 + ε2R2

)
+
(
4ε2 − 3ε+ 1

)
R2

= 2 (ε− 1) (λ2 + µ2) + 2 (ε− 1) ε2R2 +
(
4ε2 − 3ε+ 1

)
R2

≤ (ε− 1) (λ+ µ)2 + 2 (ε− 1) ε2R2 +
(
4ε2 − 3ε+ 1

)
R2

= (ε− 1) (1− ε)2R2 + 2 (ε− 1) ε2R2 +
(
4ε2 − 3ε+ 1

)
R2

= (3ε− 1) ε2R2 ≤ 0 ,

where the first inequality follows from the Cauchy inequality and the last one follows
our assumption ε ≤ 1/3. Now the conclusion follows from equation (4.2) and the
maximum principle.

To show the second conclusion, we apply the maximum principle to −Vij and use
the fact that ε ≥ 1. The only thing then one should notice is the following inequality

2 (ε− 1)S +
(
4ε2 − 3ε+ 1

)
R2 ≥ 7R2/16 ≥ 0 .

Corollary 4.2 On a closed 3-manifold M and suppose R(0) > 0 (so R(t) > 0 for all
t).

1. If R(0)ij ≥ 0, then R2/3 ≤ S ≤ R2. If ε > 0 such that

R(0)ij ≥ −εR(0)g(0)ij

then
R2/3 ≤ S ≤ (1 + 4ε+ 6ε2)R2 . (4.3)

2. If R(0)ij ≥ bR(0)g(0)ij for some constant 0 ≤ b ≤ 1/3, then

R2/3 ≤ S ≤ (1− 4b+ 6b2)R2 .
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Proof. By Theorem 4.1, Rij ≥ −εRgij as long as the solution exists. Let λ ≥ µ ≥ ν
be the eigenvalues of the Ricci tensor Rij. Then λ, µ, ν ≥ −εR. Suppose µ, ν < 0,
then

λ2 + µ2 + ν2 ≤ (R + |µ|+ |v|)2 + |µ|2 + |v|2

= (R + 2εR)2 + 2ε2R2

=
(
1 + 4ε+ 6ε2

)
R2 ,

and similarly when λ ≥ µ ≥ 0 and ν < 0 we have

λ2 + µ2 + ν2 ≤ (λ+ µ)2 + v2

= (R + |ν|)2 + |v|2

≤ (R + εR)2 + ε2R2

and while ν ≥ 0 we then clearly have λ2 + µ2 + ν2 ≤ R2. Therefore the conclusion
follows.

The estimate (4.3) shows that the scalar curvature dominates the full curvature if
the initial metric has positive scalar curvature, which however is a rough estimate. We
will give a sharp estimate in next section (Theorem 5.6 below).

5 Control the norm of the Ricci tensor

In this section we work with the Ricci flow on a 3-manifold

∂

∂t
gij = −2Rij

with initial metric such that R(0) > 0. Thus R ≥ R(0) > 0 and the variance of three
eigenvalues of the Ricci tensor (Rij), Y ≡ S − 1

3
R2 is non-negative as well. The third

variable in our mind is not T whose sign is difficulty to determined. Motivated by the
fundamental work [8], we consider the polynomial of the eigenvalues of (Rij):

P = S2 +
1

2
R4 − 5

2
R2S + 2RT (5.1)

as the third independent variable, which is non-negative, as showed in [8].
Let us begin with a geometric explanation about the polynomial P . In terms of the

three eigenvalues λ1 ≥ λ2 ≥ λ3 of the Ricci tensor (Rij) ([8], Lemma 10.6, page 285)

P = (λ1 − λ2)
2 [λ2

1 + (λ1 + λ2)(λ2 − λ3)
]
+ λ2

3(λ1 − λ3)(λ2 − λ3) . (5.2)

Hence we establish the following

16



Lemma 5.1 We have
1) P ≥ 0 ;
2) P = 0 if and only if 2a) λ1 = λ2 = λ3; or 2b) one of eigenvalues λi is zero, the

other two are equal number.

Together with this lemma, the following lemma explains why the assumption of
positive Ricci curvature is special.

Lemma 5.2 Suppose that λ1 + λ2 + λ3 ≥ 0 and

λ1 ≥ λ2 ≥ λ3 ≥ ε (λ1 + λ2 + λ3) (5.3)

for some ε ∈ [0, 1/3], then
P ≥ ε2S

(
S −R2/3

)
. (5.4)

Therefore all evolution equations must be written in terms of these variables.(
∆− ∂

∂t

)
R = −2S , (5.5)(

∆− ∂

∂t

)
S = 2R3 − 10RS + 8T + 2|∇kRij|2 . (5.6)

To take care the homogeneity, we may use R2 instead of R(
∆− ∂

∂t

)
R2 = −4RS + 2|∇R|2 ,

and for S we prefer to use Y = S − 1
3
R2 then S:(

∆− ∂

∂t

)
Y = 2R3 − 26

3
RS + 8T + 2|∇kRij|2 −

2

3
|∇R|2 .

Therefore, for any constant κ,(
∆− ∂

∂t

)
Y

Rκ
=

1

Rκ

(
∆− ∂

∂t

)
Y + Y

(
∆− ∂

∂t

)
R−κ

+2〈∇Y,∇R−κ〉

=

[
R3 − 13

3
RS + 4T + κ

S

R
Y

]
2

Rκ

+

[
|∇kRij|2 −

1

3
|∇R|2 +

κ(κ+ 1)

2
Y
|∇R|2

R2

]
2

Rκ

+2〈∇Y,∇R−κ〉 .

17



Lemma 5.3 We have the following elementary facts

〈∇Y,∇R−κ〉 =
2

3
κ|∇R|2 1

Rκ
− κ

1

R
〈∇S,∇R〉 1

Rκ
(5.7)

and

〈∇Y,∇R−κ〉 = −κ2Y
|∇R|2

R2

1

Rκ
− κ〈∇ logR,∇ Y

Rκ
〉 . (5.8)

Therefore we may write the evolution equation for Y/Rκ into different forms. For
the one we need, we decompose 2〈∇Y,∇R−κ〉 into

2θ〈∇Y,∇R−κ〉+ 2(1− θ)〈∇Y,∇R−κ〉

= −θκ2Y
|∇R|2

R2

2

Rκ
− 2θκ〈∇ logR,∇ Y

Rκ
〉

+

(
2

3
(1− θ)κ|∇R|2 − κ(1− θ)

1

R
〈∇S,∇R〉

)
2

Rκ

so that(
∆− ∂

∂t

)
Y

Rκ
=

(
R3 − 13

3
RS + 4T + κ

S

R
Y

)
2

Rκ

+

{
|∇kRij|2 −

κ(1− θ)

R
〈∇S,∇R〉+

2(1− θ)κ− 1

3
|∇R|2

}
2

Rκ

+κ {(1− 2θ)κ+ 1} |∇R|
2

R2

Y

Rκ
− 2θκ〈∇ logR,∇ Y

Rκ
〉 . (5.9)

To eliminate the term 〈∇S,∇R〉 we use the following elementary fact

Lemma 5.4 For any constant a we have

|∇kRij − aRij∇kR|2 = |∇kRij|2 + a2S|∇R|2 − a〈∇R,∇S〉 .

In order to apply it to (5.9) we choose a = κ(1−θ)
R

so that

|∇kRij|2 −
κ(1− θ)

R
〈∇R,∇S〉 = |∇kRij − aRij∇kR|2 − κ2(1− θ)2 S

R2
|∇R|2

hence equation (5.9) may be written as(
∆− ∂

∂t

)
Y

Rκ
=

(
R3 − 13

3
RS + 4T + κ

S

R
Y

)
2

Rκ

+
[
κ ((1− 2θ)κ+ 1)− 2κ2(1− θ)2

] Y
R2

|∇R|2

Rκ

− (κ (1− θ)− 1)2 2

3

|∇R|2

Rκ

+|∇kRij − aRij∇kR|2
2

Rκ
− 2θκ〈∇ logR,∇ Y

Rκ
〉 . (5.10)
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Choose θ so that
κ (1− θ) = 1

which will eliminate the non-positive term

(κ (1− θ)− 1)2 2

3

|∇R|2

Rκ
,

that is

θ = 1− 1

κ
.

With this value of θ,(
∆− ∂

∂t

)
Y

Rκ
=

(
R3 − 13

3
RS + 4T + κ

S

R
Y

)
2

Rκ

+|∇kRij − aRij∇kR|2
2

Rκ
+ (2− κ) (κ− 1)

Y

R2

|∇R|2

Rκ

−2 (κ− 1) 〈∇ logR,∇ Y

Rκ
〉 . (5.11)

Finally we replace T by via P , R and S

4T = 2
P

R
− 2

S2

R
−R3 + 5RS (5.12)

and thus establish(
∆− ∂

∂t

)
Y

Rκ
=

(
P − 2− κ

2
SY

)
4

R

1

Rκ
+ (2− κ) (κ− 1)

Y

R2

|∇R|2

Rκ

−2(κ− 1)〈∇ logR,∇ Y

Rκ
〉+ |∇kRij − aRij∇kR|2

2

Rκ
. (5.13)

Lemma 5.5 For any constant κ, set Lκ = ∆ + 2(κ− 1)∇ logR.∇. Then

Rκ

(
Lκ −

∂

∂t

)
Y

Rκ
=

[
P − 2− κ

2
SY

]
4

R
+ (2− κ) (κ− 1)

Y |∇R|2

R

+2

∣∣∣∣∇kRij −
Rij

R
∇kR

∣∣∣∣2 . (5.14)

In particular for any κ ∈ [1, 2], the following differential inequality holds

Rκ

(
Lκ −

∂

∂t

)
Y

Rκ
≥
(
P − 2− κ

2
SY

)
4

R
. (5.15)
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Indeed this lemma was proved in Hamilton [8] in order to prove his most striking
estimate ([8], Theorem 10.1, page 283). We give a detailed computation to exhibit the
reason why the differential inequality (5.15) takes this form, which we need to prove
our estimate on S.

In particular if κ = 2 then

R2

(
L2 −

∂

∂t

)
Y

R2
=

4

R
P + 2

∣∣∣∣∇kRij −
Rij

R
∇kR

∣∣∣∣2
which is always non-negative, which allows us to derive a sharp estimate on the scalar
function |Rij|2. Indeed the above equation yields the following differential inequality

R2

(
L2 −

∂

∂t

)
Y

R2
≥ 0

so that the maximum principle for parabolic equations yields the following

Theorem 5.6 Under the Ricci flow, and suppose R(0) > 0. Then as long as the Ricci
flow exists we always have

S

R2
≤ max

M

S(0)

R(0)2
. (5.16)

The estimate in this theorem is sharp.
Another observation is the following.

Corollary 5.7 We have for any constants κ and η

Rκ+η

(
Lκ+η −

∂

∂t

)
Y

Rκ+η
= Rκ

(
Lκ −

∂

∂t

)
Y

Rκ
+ 2η

S

R
Y

+ (3− 2κ− η) η
Y |∇R|2

R
. (5.17)

In particular

d

dκ
Rκ

(
Lκ −

∂

∂t

)
Y

Rκ
=

{
2
S

R
− (2κ− 3)

|∇R|2

R

}
Y . (5.18)

5.1 Gradient estimate for scalar curvature

Next we want to treat the gradient of the Ricci tensor, begin with the scalar curvature
R. In general if a scalar function F satisfies the following parabolic equation (under
the Ricci flow ∂

∂t
gij = −2Rij) (

∆− ∂

∂t

)
F = BF , (5.19)
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then by the Bochner identity and the Ricci flow equation(
∆− ∂

∂t

)
|∇F |2 = 2|∇∇F |2 + 2〈∇BF ,∇F 〉 . (5.20)

It is better to look at the evolution equation for |∇F |2/R which can be found by
using the chain rule. It is given indeed as the following(

∆− ∂

∂t

)
|∇F |2

R
=

2

R
〈∇BF ,∇F 〉+

{
2S

R2
+

2

R3
|∇R|2

}
|∇F |2 (5.21)

+
2

R
|∇∇F |2 − 2

R2
〈∇R,∇|∇F |2〉 .

In order to use the hessian term which is non-negative, we observe

∇k|∇F |2 = 2gab (∇aF ) (∇k∇bF )

so that
〈∇R,∇|∇F |2〉 = 2(∇kR)

(
∇lF

)
(∇k∇lF ) .

It follows that

|∇∇F |2 = |∇k∇lF − a(∇kR) (∇lF ) |2

−a2|∇R|2|∇F |2 + a〈∇R,∇|∇F |2〉 .

Therefore (
∆− ∂

∂t

)
|∇F |2

R
=

2

R
〈∇BF ,∇F 〉+

{
2S

R2
+

2

R3
|∇R|2

}
|∇F |2

+
2

R
|∇k∇lF − a(∇kR) (∇lF ) |2

−2a2

R
|∇R|2|∇F |2 + a

2

R
〈∇R,∇|∇F |2〉

− 2

R2
〈∇R,∇|∇F |2〉 . (5.22)

In particular, to eliminate the term 〈∇R,∇|∇F |2〉 we choose a = 1/R which then gives
us the following(

∆− ∂

∂t

)
|∇F |2

R
=

2

R
〈∇BF ,∇F 〉+

2S

R2
|∇F |2

+
2

R

∣∣∇k∇lF −R−1(∇kR) (∇lF )
∣∣2 . (5.23)
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In particular, if we apply the formula to the scalar curvature R, we establish

1

2

(
∆− ∂

∂t

)
|∇R|2

R
= − 2

R
〈∇S,∇R〉+

S

R2
|∇R|2

+
1

R

∣∣∇k∇lR−R−1(∇kR) (∇lR)
∣∣2 . (5.24)

Together with the equations

1

2

(
∆− ∂

∂t

)
R2 = −2RY − 2

3
R3 + |∇R|2

and
1

2

(
∆− ∂

∂t

)
Y = 2

P

R
− 2

S

R
Y + |∇kRij|2 −

1

3
|∇R|2 ,

for function

H =
|∇R|2

R
+ ξY + ηR2

where ξ and η are two constants, we have

1

2

(
∆− ∂

∂t

)
H = − 2

R
〈∇S,∇R〉+

1

R

∣∣∇k∇lR−R−1(∇kR) (∇lR)
∣∣2

+

[
2ξ
P

R
− 2Y

R

(
ξS + ηR2

)
− 2

3
ηR3

]
+

{
ξ|∇kRij|2 −

1

3
ξ|∇R|2 + η|∇R|2 +

S

R2
|∇R|2

}
.

In this formula, the only term we have to deal is 〈∇S,∇R〉, which we handle as the
following.

|b∇kRij − aRij∇kR|2 = b2|∇kRij|2 + a2S|∇R|2 − ab〈∇S,∇R〉

in which we set ab = 2
R
, i.e. a = 2

bR
, and thus

− 2

R
〈∇S,∇R〉 =

∣∣∣∣b∇kRij −
2

bR
Rij∇kR

∣∣∣∣2
−b2|∇kRij|2 −

4

b2
S

R2
|∇R|2 .
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Therefore

1

2

(
∆− ∂

∂t

)
H =

1

R

∣∣∇k∇lR−R−1(∇kR) (∇lR)
∣∣2

+

∣∣∣∣b∇kRij −
2

bR
Rij∇kR

∣∣∣∣2
+

[
2ξ
P

R
− 2Y

R

(
ξS + ηR2

)
− 2

3
ηR3

]
+
(
ξ − b2

)
|∇kRij|2 −

1

3
ξ|∇R|2 + η|∇R|2

+

(
1− 4

b2

)
S

R2
|∇R|2 . (5.25)

We next need to decide the signs of three constants ξ, η and b. It is suggested that
ξ ≥ b2 (otherwise we can not control |∇kRij|2). Under this choice, and we are expected
with the good choices of these three constants, we will lose nothing from the first two
terms on the right-hand side of equation (5.25), we thus simply drop these two, and
use the inequality ([8], Lemma 11.6, page 288)

|∇kRij|2 ≥
7

20
|∇R|2

so that

1

2

(
∆− ∂

∂t

)
H ≥ 2ξ

P

R
− 2Y

R

(
ξS + ηR2

)
− 2

3
ηR3

+

(
1

60
ξ − 7

20
b2 + η

)
|∇R|2

+

(
1− 4

b2

)
S

R2
|∇R|2 . (5.26)

Obviously a simple choice for b is b = 2 so that the last term in (5.26) is dropped.
Thus

1

2

(
∆− ∂

∂t

)
H ≥ 2ξ

P

R
− 2

3
ηR3 − 2R

(
S

R2
+
η

ξ

)
ξY

+

(
1

60
ξ − 7

5
+ η

)
|∇R|2 . (5.27)

This inequality is enough to prove Hamilton’s estimate ([8], Theorem 11.1, page 287).
Replace Y by

ξY = H − |∇R|2

R
− ηR2
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to obtain

1

2

(
∆− ∂

∂t

)
H ≥ 2ξ

P

R
+ 2

(
δ +

η

ξ
− 1

3

)
ηR3 − 2R

(
δ +

η

ξ

)
H

+

(
1

60
ξ + 2δ + 2

η

ξ
− 7

5
+ η

)
|∇R|2 (5.28)

in which we choose η = 0 and ξ = 84 we have

1

2

(
∆− ∂

∂t

)
H ≥ −2δRH . (5.29)

We may use the Kac formula to deduce an estimate for the scalar curvature.
Let (Xt, Ps,x) be the diffusion process associated with the time dependent elliptic

operator 1
2
∆. Then we have

Theorem 5.8 Under the Ricci flow ∂
∂t
gij = −2Rij with initial metric of positive scalar

curvature R(0) > 0. Then

H(t, x) ≤ P0,x
(
H(0, Xs)e

2δ
∫ t
0 R(s,Xs)ds

)
, (5.30)

where H = |∇R|2
R

+ 84S. In particular if R(t, ·) ≤ θ(t) on M , then

H(t, x) ≤ e2δ
∫ t
0 θ(s)ds max

M
H(0, ·) .

6 Estimates on the scalar curvature

Thanks to the resolution of the Yamabe problem (e.g. , for a 3-manifold with a metric
of positive scalar curvature, we may run the general Ricci flow with an initial metric
(g(0)ij) such that R(0) is a positive constant. Under such an initial metric, and if we
run the Ricci flow

∂

∂t
gij = −2

(
Rij −

1

3
σgij

)
(i.e. for the case α = 1 and β = 0), then all volume measures µt associated with the
Ricci flow (g(t)ij) have the same volume.

We may choose a non-negative constant ε such that R(0)ij ≥ −εR(0)g(0)ij, which
is possible since R(0) > 0. We will of course choose the least one ε ≥ 0 for a given
initial data. Then R > 0 as long as the Ricci flow exists, and by Theorem 4.1

R(t)ij ≥ −εR(t)g(t)ij
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for all t. Furthermore there is a constant δ ≥ 1
3

such that

R(t)2/3 ≤ S(t) ≤ δR(t)2 . (6.1)

For example, any δ ≥ 1 + 4ε + 6ε2 will do. However in the case of the Ricci flow
∂
∂t
gij = −2Rij, the optimal choice for δ is the maximum of S(0)/R(0)2.
With the last estimate we may deduce several elementary estimates on the scalar

curvature R. Define

ρ(t) = exp

(
−3

2

∫ t

0

A(s)ds

)
, ρ(0) = 1 .

Lemma 6.1 Let ψ(r) =e−
3
2

1
r and set

F = ψ(K) exp

{
−
∫ t

0

ρ(s)ds

}
= exp

{
−
[
3

2

1

R(t)
ρ(t) +

∫ t

0

ρ(s)ds

]}
where K is given in (3.12). Then(

∆− ψ
′′
(K)

ψ′(K)
∇K − ∂

∂t

)
F ≤ 0 . (6.2)

Proof. The differential inequality relies on the evolution (3.13) for K. By the
chain (

∆− ∂

∂t

)
ψ(K) = ψ′(K)

(
∆− ∂

∂t

)
K +

ψ
′′
(K)

ψ′(K)
∇K.∇ψ(K)

= −2ψ′(K)e
2
3

∫ t
0 A(s)dsS +

ψ
′′
(K)

ψ′(K)
∇K.∇ψ(K)

≤ −2

3
ψ′(K)K2e−

2
3

∫ t
0 A(s)ds +

ψ
′′
(K)

ψ′(K)
∇K.∇ψ(K)

= −e−
2
3

∫ t
0 A(s)dsψ(K) +

ψ
′′
(K)

ψ′(K)
∇K.∇ψ(K)

which implies (6.2).
By the maximum principle applying to (6.2) and the fact that R(0) is constant, we

have
3

2

ρ(t)

R(t)
+

∫ t

0

ρ(s)ds ≤ 3

2

1

R(0)
.
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Since we always have ρ(t)
R(t)

> 0 so that∫ t

0

ρ(s)ds ≤ 3

2

1

R(0)

for all t and

R(t) ≥ 3R(0)ρ(t)

3− 2R(0)
∫ t

0
ρ(s)ds

.

for all t provides the Ricci flow exists.
Similarly, if we use the fact that S ≤ δR2 we then have

Lemma 6.2 Let ψ(r) =e−
1
2δ

1
r and

F = ψ(K) exp

{
−
∫ t

0

ρ(s)ds

}
= exp

{
− 1

2δR
ρ(t)−

∫ t

0

ρ(s)du

}
.

Then (
∆− ψ

′′
(K)

ψ′(K)
∇K − ∂

∂t

)
F ≥ 0 . (6.3)

Again the maximum principle then implies that

ρ(t)

2δR
+

∫ t

0

ρ(s)ds ≥ 1

2δR(0)

and therefore

R(t) ≤ R(0)ρ(t)

1− 2δ
∫ t

0
ρ(s)ds

.

Theorem 6.3 Under the general Ricci flow with initial metric having positive constant
scalar curvature R(0) and

ρ(t) = exp

(
−3

2

∫ t

0

A(s)ds

)
.

Then ∫ t

0

ρ(s)ds <
3

2

1

R(0)

and
3R(0)ρ(t)

3− 2R(0)
∫ t

0
ρ(s)ds

≤ R(t) ≤ R(0)ρ(t)

1− 2δ
∫ t

0
ρ(s)ds

as long as the Ricci flow (g(t)ij) exists.
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7 L2-estimates for scalar curvature

If (gij) is a solution flow to an evolution equation: ∂
∂t
gij = −2hij, and if f ∈ C2,1(R+×

M), then

d

dt

∫
M

f(t, ·)dµt =

∫
M

∂

∂t
f(t, ·)dµt +

∫
M

f(t, ·) ∂
∂t

(logMt) dµt

=

∫
M

∂

∂t
f(t, ·)dµt −

∫
M

trg(hij)f(t, ·)dµt . (7.1)

Since M is compact, so that
∫

M
∆f(t, ·)dµt = 0 (where ∆ is the Laplace-Beltrami

operator associated with g(t)ij, if no confusion may arise we will suppress the parameter
t), and thus

d

dt

∫
M

f(t, ·)dµt = −
∫

M

(
∆− ∂

∂t

)
f(t, ·)dµt −

∫
M

trg(hij)f(t, ·)dµt . (7.2)

In particular, under the Ricci flow (3.2), trg(hij) = R− A so that

d

dt

∫
M

f(t, ·)dµt = −
∫

M

(
∆− ∂

∂t

)
f(t, ·)dµt

−
∫

M

Rf(t, ·)dµt + A

∫
M

f(t, ·)dµt . (7.3)

For the gradient of f we may use the Bochner identity

∆|∇f |2 = 2Γ2(f) + 2〈∇∆f,∇f〉
= 2|∇∇f |2 + 2Ric(∇f,∇f) + 2〈∇∆f,∇f〉 ,

while by using the fact that ∂
∂t
gij = −2hij we have

∂

∂t
|∇f |2 =

(
∂

∂t
gij

)
∂f

∂xi

∂f

∂xj
+ 2〈∇

(
∂

∂t
f

)
,∇f〉

= 2hij ∂f

∂xi

∂f

∂xj
+ 2〈∇

(
∂

∂t
f

)
,∇f〉 ,

so that (
∆− ∂

∂t

)
|∇f |2 = 2|∇∇f |2 + 2

(
Rij − hij

) ∂f
∂xi

∂f

∂xj

+2〈∇
(

∆− ∂

∂t

)
f,∇f〉 . (7.4)
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Next we consider the solution flow to the Ricci flow (3.2). In this case

Rij − hij =
1

3
Agij

where A(t) = ασ(t) + β, and therefore(
∆− ∂

∂t

)
|∇f |2 = 2|∇∇f |2 +

2

3
A|∇f |2 + 2〈∇

(
∆− ∂

∂t

)
f,∇f〉 . (7.5)

Applying (7.2) to |∇f |2 we obtain

d

dt

∫
M

|∇f |2dµt = −
∫

M

(
∆− ∂

∂t

)
|∇f |2dµt

−
∫

M

R|∇f |2dµt + A

∫
M

|∇f |2dµt

= −2

∫
M

|∇∇f |2dµt −
∫

M

R|∇f |2dµt +
1

3
A

∫
M

|∇f |2dµt

−2

∫
M

〈∇
(

∆− ∂

∂t

)
f,∇f〉dµt ,

and integration by parts we establish the following interesting equality

d

dt

∫
M

|∇f |2dµt = −2

∫
M

|∇∇f |2dµt −
∫

M

R|∇f |2dµt

+
1

3
A

∫
M

|∇f |2dµt + 2

∫
M

(∆f)

(
∆− ∂

∂t

)
fdµt . (7.6)

Theorem 7.1 Under the Ricci flow (3.2)

d

dt

∫
M

|∇f |2dµt ≤ −
∫

M

R|∇f |2dµt +
1

3
A

∫
M

|∇f |2dµt

+
3

2

∫
M

[(
∆− ∂

∂t

)
f

]2

dµt . (7.7)

Proof. On 3-manifolds |∇∇f |2 ≥ 1
3
(∆f)2 so that by (7.6)

d

dt

∫
M

|∇f |2dµt ≤ −
∫

M

R|∇f |2dµt +
1

3
A

∫
M

|∇f |2dµt

−2

3

∫
M

(∆f)2dµt + 2

∫
M

(∆f)

(
∆− ∂

∂t

)
fdµt

≤ −
∫

M

R|∇f |2dµt +
1

3
A

∫
M

|∇f |2dµt

+
3

2

∫
M

[(
∆− ∂

∂t

)
f

]2

dµt .
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Since under the Ricci flow (3.2)(
∆− ∂

∂t

)
R = −2S +

2

3
AR

we therefore have the following

Corollary 7.2 Under the Ricci flow (3.2) for the scalar curvature R we have the
following energy estimate

d

dt

∫
M

|∇R|2dµt ≤ −
∫

M

R|∇R|2dµt +
1

3
A

∫
M

|∇R|2dµt

+6

∫
M

S2dµt +
2

3
A2

∫
M

R2dµt

−4A

∫
M

RSdµt . (7.8)

In particular if ∂
∂t
gij = −2Rij with initial metric g(0)ij such that R(0) is a positive

constant, then ∫
M

|∇R|2dµt ≤ 6

∫ t

0

{
e−R(0)(t−s)

∫
M

S2dµs

}
. (7.9)

7.1 Some applications

Another application of equation (7.6) is to obtain information on spectral gaps. Let us
prove the following

Theorem 7.3 Let (g(t)ij) be the solution to the Ricci flow ∂
∂t
gij = −2Rij on the 3-

manifold M .
1) If λ(t) denotes the first non-negative eigenvalue of (M, g(t)ij), then

d

dt
λ = 2λ2 + λ

∫
M

Rf2dµt − 2

∫
M

|∇∇f |2dµt −
∫

M

R|∇f |2dµt (7.10)

where f is an eigenvector: ∆f = −λf such that
∫

M
f 2dµt = 1.

2) If λ(t) denotes the first non-negative eigenvalue of ∆ + 1
4
R, then

d

dt
λ ≤ 19

8
λ2. (7.11)
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Proof. Let us make computations under the Ricci flow (3.2). Indeed, consider an
eigenvector f with eigenvalue λ (both depending smoothly on t):

(∆ + V ) f = −λf ;

∫
M

f 2dµt = 1

where V is some potential (depending on t as well) to be chosen later. Then, by
equation (7.6)

d

dt

∫
M

|∇f |2dµt =

∫
M

(V + λ)
∂f 2

∂t
dµt − 2

∫
M

|∇∇f |2dµt −
∫

M

R|∇f |2dµt

+2

∫
M

(V + λ)2 f 2dµt +
1

3
A

∫
M

|∇f |2dµt . (7.12)

On the other hand
d

dt

∫
M

|∇f |2dµt =
d

dt

∫
M

(−∆f)fdµt

=
d

dt

∫
M

(V + λ) f 2dµt

=

∫
M

f 2 d

dt
(V + λ) dµt +

∫
M

(V + λ)
∂f 2

∂t
dµt

+

∫
M

(V + λ) f 2

(
∂

∂t
logMt

)
dµt

=

∫
M

f 2 d

dt
(V + λ) dµt +

∫
M

(V + λ)
∂f 2

∂t
dµt

−
∫

M

(R− A) (V + λ) f 2dµt ,

combining with equation (7.12), the facts that
∫

M
f 2dµt = 1 and∫

M

|∇f |2dµt = −
∫

M

(∆f) fdµt

=

∫
M

(λ+ V )f 2dµt ,

we deduce the following

d

dt
λ =

∫
M

(R− A) (V + λ) f 2dµt − 2

∫
M

|∇∇f |2dµt −
∫

M

R|∇f |2dµt

+2

∫
M

(V + λ)2 f 2dµt +
1

3
A

∫
M

|∇f |2dµt −
∫

M

f 2∂V

∂t
dµt

= −2

∫
M

|∇∇f |2dµt −
∫

M

R|∇f |2dµt + 2

∫
M

(V + λ)2 f 2dµt

−
∫

M

f 2∂V

∂t
dµt +

∫
M

(
R− 2

3
A

)
(V + λ) f 2dµt .
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We then choose V = −ϕ(t)R(t, ·) where ϕ depends on t only. Then

∂V

∂t
= −ϕ′R− ϕ

∂

∂t
R

so that ∫
M

f 2∂V

∂t
dµt = −

∫
M

ϕ′Rf2dµt − ϕ

∫
M

f 2 ∂

∂t
Rdµt .

To treat the term
∫

M
f 2 ∂

∂t
Rdµt we use integration by parts again, thus∫

M

R|∇f |2dµt =

∫
M

〈∇(Rf),∇f〉dµt −
1

2

∫
M

〈∇R,∇f 2〉dµt

=

∫
M

R(V + λ)f 2dµt +
1

2

∫
M

f 2(∆R)dµt

=

∫
M

R(V + λ)f 2dµt +
1

2

∫
M

f 2

(
∆− ∂

∂t

)
Rdµt +

1

2

∫
M

∂R

∂t
f 2dµt

=

∫
M

R(V + λ)f 2dµt +
1

2

∫
M

f 2∂R

∂t
dµt

+

∫
M

f 2

(
−S +

1

3
AR

)
dµt .

In other words∫
M

f 2∂R

∂t
dµt = 2

∫
M

f 2

(
S − 1

3
AR

)
dµt + 2

∫
M

R|∇f |2dµt

−2

∫
M

R(V + λ)f 2dµt ,

therefore

−
∫

M

f 2∂V

∂t
dµt =

∫
M

ϕ′Rf2dµt + 2ϕ

∫
M

f 2

(
S − 1

3
AR

)
dµt

−2ϕ

∫
M

R|∇f |2dµt + 2ϕ

∫
M

R(ϕR + λ)f 2dµt .

d

dt
λ = −2

∫
M

|∇∇f |2dµt − (1 + 2ϕ)

∫
M

R|∇f |2dµt

+

∫
M

(
2ϕS − 2

3
ϕAR + ϕ′R

)
f 2dµt

+ϕ

∫
M

R

(
R + 4ϕR− 2

3
A+ 2λ

)
f 2dµt

+λ

∫
M

(
R + 4ϕR− 2

3
A+ 2λ

)
f 2dµt .
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In particular, under the Ricci flow ∂
∂t
gij = −2Rij, then A = 0, and if choose ϕ to be a

constant as well, then

d

dt
λ = −2

∫
M

|∇∇f |2dµt − (1 + 2ϕ)

∫
M

R|∇f |2dµt

+2ϕ

∫
M

Sf 2dµt + ϕ

∫
M

R (R + 4ϕR + 2λ) f 2dµt

+λ

∫
M

(R + 4ϕR + 2λ) f 2dµt . (7.13)

For example, if we choose ϕ = 0, then

d

dt
λ = 2λ2 + λ

∫
M

Rf 2dµt − 2

∫
M

|∇∇f |2dµt −
∫

M

R|∇f |2dµt . (7.14)

However if we choose ϕ = −1/4 then

d

dt
λ = −2

∫
M

|∇∇f |2dµt −
1

2

∫
M

R|∇f |2dµt

+2λ2 − 1

2

∫
M

Sf 2dµt −
1

2
λ

∫
M

Rf2dµt.

While S ≥ 1
3
R2 so that

d

dt
λ = −2

∫
M

|∇∇f |2dµt −
1

2

∫
M

R|∇f |2dµt

+2λ2 − 1

6

∫
M

(
R2 − 3λR

)
f 2dµt

≤ 19

8
λ2.

Let us come back to equation (7.13). By the Bochner identity

Γ2(f) = |∇∇f |2 + Ric(∇f,∇f)

so that ∫
M

Γ2(f)dµt =

∫
M

|∇∇f |2dµt +

∫
M

Ric(∇f,∇f)dµt,

while by integration by parts∫
M

Γ2(f)dµt = −
∫

M

〈∇∆f,∇f〉dµt

=

∫
M

(∆f)2dµt

=

∫
M

(ϕR + λ)2f 2
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hence

−
∫

M

|∇∇f |2dµt = −
∫

M

(ϕR + λ)2f 2 +

∫
M

Ric(∇f,∇f)dµt .

Inserting this fact into (7.13) we obtain, after simplification,

d

dt
λ = (1 + 2ϕ)λ

∫
M

Rf2dµt − (1 + 2ϕ)

∫
M

R|∇f |2dµt

+
(
2ϕ2 + ϕ

) ∫
M

R2f 2dµt + 2ϕ

∫
M

Sf 2dµt

+2

∫
M

Ric(∇f,∇f)dµt . (7.15)

While under the Ricci flow

Ric(∇f,∇f) ≥ −εR|∇f |2

where ε ∈ [0, 1/3] so that

d

dt
λ ≥ (1 + 2ϕ)λ

∫
M

Rf2dµt − (1 + 2ϕ+ 2ε)

∫
M

R|∇f |2dµt

+
(
2ϕ2 + ϕ

) ∫
M

R2f 2dµt + 2ϕ

∫
M

Sf 2dµt .

In particular if ϕ = 0 then

d

dt
λ = λ

∫
M

Rf2dµt −
∫

M

R|∇f |2dµt + 2

∫
M

Ric(∇f,∇f)dµt .

7.2 L2-estimates for the Ricci tensor

Our next goal is to improve these L2-estimates to weighted forms. By (7.5) and the
evolution equations (3.5, 3.7, 3.9) we may easily establish the following

Lemma 7.4 Under the Ricci flow (3.2)
1) For the scalar curvature(

∆− ∂

∂t

)
|∇R|2 = 2|∇∇R|2 − 4〈∇S,∇R〉+ 2A|∇R|2 . (7.16)

2) (
∆− ∂

∂t

)
|∇S|2 = 2|∇∇S|2 +

10

3
A|∇S|2 − 20R|∇S|2

+4
{
3R2 − 5S

}
〈∇R,∇S〉

+16〈∇T,∇S〉+ 4〈∇|∇kRij|2,∇S〉 . (7.17)
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3) (
∆− ∂

∂t

)
|∇T |2 = 2|∇∇T |2 + 14

(
1

3
A+R

)
|∇T |2 − 18R2〈∇S,∇T 〉

+
{
14T − 36RS + 16R3

}
〈∇R,∇T 〉

+12〈∇
{
gabRia(∇kRij)(∇kRbj)

}
,∇T 〉 . (7.18)

By chain rule, (7.16) and the evolution equation for the scalar curvature we deduce
easily the following(

∆− ∂

∂t

)(
Rγ|∇R|2

)
=

(
−2γ

S

R
+

(
2γ

3
+ 2

)
A

)
|∇R|2Rγ

+γ (γ − 1)Rγ−2|∇R|4 + 2|∇∇R|2Rγ

−4〈∇S,∇R〉Rγ + 2〈∇Rγ,∇|∇R|2〉 .

Then we apply (7.3) to function Rγ|∇R|2, after simplification we obtain

d

dt

∫
M

|∇R|2Rγdµt =

∫
M

[
2γ
S

R
−
(

2γ

3
+ 1

)
A−R

]
|∇R|2Rγdµt

−γ (γ − 1)

∫
M

Rγ−2|∇R|4dµt − 2

∫
M

|∇∇R|2Rγdµt

+4

∫
M

〈∇S,∇R〉Rγdµt − 2

∫
M

〈∇Rγ,∇|∇R|2〉dµt .(7.19)

Using integration by parts in the last two integrals we then deduce

4

∫
M

〈∇S,∇R〉Rγdµt = −4

∫
M

(S∆R) dνt − 4γ

∫
M

S

R
|∇R|2dνt

and

−2

∫
M

〈∇Rγ,∇|∇R|2〉dµt = 2γ

∫
M

R−1 (∆R) |∇R|2dνt

+2γ(γ − 1)

∫
M

R−2|∇R|4dνt

so that, with dνt = Rγdµt,

d

dt

∫
M

|∇R|2dνt = −
∫

M

[
2γ
S

R
+

(
2γ

3
+ 1

)
A+R

]
|∇R|2dνt

+γ(γ − 1)

∫
M

R−2|∇R|4dνt − 2

∫
M

|∇∇R|2dνt

+2γ

∫
M

R−1|∇R|2 (∆R) dνt − 4

∫
M

S (∆R) dνt .
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It follows that, since |∇∇R|2 ≥ 1
3
(∆R)2,

d

dt

∫
M

|∇R|2dνt ≤ −
∫

M

[
2γ
S

R
+

(
2γ

3
+ 1

)
A+R

]
|∇R|2dνt

+γ(γ − 1)

∫
M

R−2|∇R|4dνt

−2

3

∫
M

[
(∆R)2 − 2

(
3γ

2R
|∇R|2 − 3S

)
(∆R)

]
dνt

≤ −
∫

M

[
8γ
S

R
+

(
2γ

3
+ 1

)
A+R

]
|∇R|2dνt

−γ
(

1− 5

2
γ

)∫
M

|∇R|4

R2
dνt + 6

∫
M

S2dνt

which allows us to establish an estimate for
∫

M
|∇R|2dνt, and here again γ = 2/5 seems

to be the best choice.

Theorem 7.5 Under the Ricci flow (3.2) with initial metric of positive scalar curva-
ture, and let γ ∈ [0, 2/5], then

d

dt

∫
M

|∇R|2Rγdµt ≤ −
∫

M

[
8γ
S

R
+

(
2

3
γ + 1

)
A+R

]
|∇R|2Rγdµt

+6

∫
M

S2Rγdνt .

In particular if A = 0 and R(0) is a positive constant, then∫
M

|∇R|2Rγdµt ≤ 6

∫ t

0

{
e−( 8γ

3
+1)R(0)(t−s)

∫
M

S2Rγdµs

}
. (7.20)

8 Harnack estimate for Ricci flow

We in this section prove Harnack estimates for the Ricci curvature under the Ricci
flow.

8.1 Some formulae about Ricci tensors

On a 3-manifold with a family of metrics (g(t)ij) evolving with the equation

∂gij

∂t
= −2hij
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and suppose that (Vij) is a symmetric tensor depending smoothly in t, then it is clear
that

∂

∂t
trg(Vij) = 2hijVij + trg(

∂Vab

∂t
) . (8.1)

Since in a local coordinate system

∇bVij = ∂bVij − VpjΓ
p
bi − VipΓ

p
bj ,

∂Γp
bi

∂t
= −gpc {(∇ihbc) + (∇bhic)− (∇chbi)}

and
∂

∂t
(∇bVij) = ∇b

∂Vij

∂t
− Vpj

∂Γp
bi

∂t
− Vip

∂Γp
bj

∂t

we have the following

Lemma 8.1 If ∂
∂t
gij = −2hij then

∂

∂t
(∇bVij) = ∇b

∂Vij

∂t
+ gpqVqj (∇ihpb +∇bhpi −∇phib)

+Viqg
pq (∇jhpb +∇bhpj −∇phjb) . (8.2)

Lemma 8.2 If ∂
∂t
gij = −2hij then

∂

∂t
∇a∇bVij = ∇a∇b

∂Vij

∂t
+ Vpjg

pq (∇a∇ihqb +∇a∇bhqi −∇a∇qhib)

+Vipg
pq (∇a∇bhqj +∇a∇jhqb −∇a∇qhbj)

+gpq (∇aVpj) (∇ihqb +∇bhqi −∇qhib)

+gpq (∇aVip) (∇bhqj +∇jhqb −∇qhbj)

+gpq (∇pVij) (∇bhqa +∇ahqb −∇qhba)

+gpq (∇bVpj) (∇ihqa +∇ahqi −∇qhia)

+gpq (∇bVip) (∇ahqj +∇jhqa −∇qhaj)

so that

∂

∂t
(∆Vij) = ∆

∂Vij

∂t
+ 2hab∇a∇bVij − Vbj∇a∇bhia − Vib∇a∇bhaj

+Vipg
pq (∇a∇ahqj +∇a∇jhqa)

+Vpjg
pq (∇a∇ihqa +∇a∇ahqi)

+
(
∇bVij

)
(2∇ahab −∇btrg(hkl))

+2gpq (∇aVpj) (∇ihqa +∇ahqi)− 2 (∇aVbj)
(
∇bhia

)
+2gpq (∇aVip) (∇ahqj +∇jhqa)− 2 (∇aVib)

(
∇bhaj

)
.
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8.2 Harnack inequality for Ricci curvature

In what follows we are working with the Ricci flow

∂

∂t
gij = −2Rij (8.3)

with initial metric (g(0)ij) such that the scalar curvature R(0) is a positive constant.
Then R ≥ R(0) and

1

3
≤ S

R2
≤ max

M

S(0)

R(0)2

as long as the solution flow to (8.3) exists.
Next we compute the evolution equation for |∇kRij|2.
We consider the Ricci flow (g(t)ij): the maximum solution to the Ricci flow

∂

∂t
gij = −2Rij

In this section we deduce the evolution equation for |∇kRij|2.
Let us make computation in a normal coordinate system at the point we evaluate

the geometric quantities.(
∆− ∂

∂t

)
|∇kRij|2 = 2

(
∇kRij

)(
∆− ∂

∂t

)
(∇kRij)

−2Rka (∇kRij)
(
∇aR

ij
)
− 2gjqRip (∇kRij)

(
∇kRpq

)
−2gipRjq (∇kRij)

(
∇kRpq

)
+ 2〈∇ (∇kRij) ,∇

(
∇kRij

)
〉 .

By the Ricci identity for symmetric tensor we have

Lemma 8.3 If (Tij) is a symmetric tensor, then on 3-manifolds we have

∇c (∆Tij)−∆ (∇cTij)

= Taj (∇aRci) + Tia (∇aRcj)− gabTia (∇jRcb)− gabTaj (∇iRcb)

+ (∇aTai) (2Rcj −Rgcj) + (∇aTaj) (2Rci −Rgci)− (∇aTij)Rca

−2gabRcb {(∇iTaj) + (∇jTai)}+ (∇jTci +∇iTcj)R

+2gpq (∇aTpi)Raqgcj − 2 (∇aTci)Raj

+2gpq (∇aTpj)Raqgci − 2 (∇aTcj)Rai . (8.4)

Proof. In fact a direct computation (though a little bit complicated) shows that

∇c∇a∇bTij −∇a∇b∇cTij

= (∇pTij)R
p
acb + (∇aTip)R

p
bcj + (∇aTpj)R

p
bci

+ (∇bTip)R
p
acj + (∇bTpj)R

p
aci + Tip

(
∇aR

p
bcj

)
+ Tpj (∇aR

p
bci) (8.5)
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and

∇b∇a∇cTij −∇c∇a∇bTij

= Tpj∇aR
p
cbi + Tip∇aR

p
cbj + (∇pTij)R

p
cba

+ (∇aTpj)R
p
cbi + (∇aTip)R

p
cbj + (∇bTpj)R

p
cai

+ (∇bTip)R
p
caj + (∇cTpj)R

p
abi + (∇cTip)R

p
abj .

Taking trace over indices a and b we thus obtain

∇c (∆Tij)−∆ (∇cTij)

= − (∇aTij)Rca + 2 (∇aTip)R
p
acj + 2 (∇aTpj)R

p
aci

+Tia (∇aRcj) + Taj(∇aRci)− gabTia (∇jRcb)− gabTaj (∇iRcb) . (8.6)

Now on a 3-manifold we may replace the full curvature tensor by the Ricci curvature
via equation (1.4), which then yields (8.4).

Applying (8.4) to the Ricci symmetric tensor Rij together with the Bianchi identity
∇aRaj = 1

2
∇jR we obtain

∆ (∇kRij) = ∇k (∆Rij)−Rrj (∇rRki)−Rir (∇rRkj)

+grbRir (∇jRkb) + grbRrj (∇iRkb) + (∇rRij)Rkr

− (∇iR)

{
Rkj −

1

2
Rgkj

}
− (∇jR)

{
Rki −

1

2
Rgki

}
+2grbRkb {(∇iRrj) + (∇jRri)} − (∇jRki +∇iRkj)R

−2gpq (∇rRpi)Rrqgkj + 2 (∇rRki)Rrj

−2gpq (∇rRpj)Rrqgki + 2 (∇rRkj)Rri .

On the other hand, applying (8.2) to Rij we have

∂

∂t
(∇kRij) = ∇k

∂Rij

∂t
+ grbRrj {(∇iRbk) + (∇kRbi)} − grbRrj(∇bRik)

+grbRir {(∇jRbk) + (∇kRbj)} − grbRir(∇bRjk) .

Putting the previous two equations, after simplification, gives us the following(
∆− ∂

∂t

)
(∇kRij) = ∇k

[(
∆− ∂

∂t

)
Rij

]
−Rrj (∇rRki)−Rir (∇rRkj)

− (∇iR)

{
Rkj −

1

2
Rgkj

}
− (∇jR)

{
Rki −

1

2
Rgki

}
+2grbRkb {(∇iRrj) + (∇jRri)} − (∇jRki +∇iRkj)R

−2gkjR
rs (∇rRsi)− 2gkiR

rs (∇rRsj) +Rkr (∇rRij)

+grbRrj {3(∇bRik)− (∇kRbi)}
+grbRir {3(∇bRjk)− (∇kRbj)} .
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We are now in a position to show the following

Proposition 8.4 Under the Ricci flow ∂
∂t
gij = −2Rij it holds that(

∆− ∂

∂t

)
(∇kRij) = gabRaj {5(∇kRbi) + 2 (∇bRki)}

+gabRia {5(∇kRbj) + 2 (∇bRkj)}
+gabRka {2 (∇iRbj) + 2 (∇jRbi) + (∇bRij)}
−3Rij(∇kR) + 2Rgij(∇kR)− 2gij(∇kS)

−R {(∇jRki) + (∇iRkj) + 3(∇kRij)}

− (∇iR)

{
Rkj −

1

2
Rgkj

}
− (∇jR)

{
Rki −

1

2
Rgki

}
−2gkjR

ab (∇aRbi)− 2gkiR
ab (∇aRbj) . (8.7)

Proof. Differentiating the evolution equation (3.4) for the Ricci curvature gives
that

∇k

(
∆− ∂

∂t

)
Rij = 6gabRaj (∇kRib) + 6gabRib (∇kRaj)

−3Rij(∇kR)− 3R(∇kRij)

+2Rgij(∇kR)− 2gij(∇kS) ,

together with the previous equation for
(
∆− ∂

∂t

)
(∇kRij) yield the result.

Taking trace in equation (8.7) we establish the following

Corollary 8.5 Under the Ricci flow (8.3)(
∆− ∂

∂t

)
(∇kR) = −2(∇kS) + gijRkj (∇iR) . (8.8)

The identity (8.8) yields the following(
∆− ∂

∂t

)
|∇R|2 = 2|∇∇R|2 − 4〈∇R,∇S〉

obtained via the Bochner identity.
We now proceed to deduce the evolution for |∇kRij|2. By (8.7)

2(∇kRij)

(
∆− ∂

∂t

)
(∇kRij)

= −6R|∇kRij|2 − 4R(∇kRij)(∇iRkj)

−7(∇kR)(∇kS) + 5R|∇R|2 − 8Rkj(∇kRij) (∇iR)

+gabRaj(∇kRij) {20(∇kRbi) + 8 (∇bRki)}
+gabRka(∇kRij) {8 (∇iRbj) + 2 (∇bRij)} . (8.9)

Therefore
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Lemma 8.6 Under the Ricci flow ∂
∂t
gij = −2Rij we have(

∆− ∂

∂t

)
|∇kRij|2

= −6R|∇kRij|2 − 4R(∇kRij)(∇iRkj)

−7(∇kR)(∇kS) + 5R|∇R|2 − 8Rkj(∇kRij) (∇iR)

+16gabRaj(∇kRij) {(∇kRbi) + (∇bRki)}
+2〈∇ (∇kRij) ,∇

(
∇kRij

)
〉 . (8.10)

We next deduce the equation for |∇kRij|2/R. By chain rule(
∆− ∂

∂t

)
|∇kRij|2

R
=

(
2S

R2
− 6

)
|∇kRij|2 + 5|∇R|2 − 7

R
〈∇S,∇R〉

−4(∇kRij)(∇iRkj)−
8

R
Rkj(∇kRij) (∇iR)

+
16

R
gabRai(∇kRij) {(∇bRjk) + (∇kRjb)}

+
2

R
〈∇ (∇kRij) ,∇

(
∇kRij

)
〉 − 2〈∇ logR,∇|∇kRij|2

R
〉 .(8.11)

This identity allows us to deduce a gradient estimate for the Ricci curvature. To
simplify the notations set F = |∇kRij|2/R, and use a normal coordinate which diago-
nalizes the Ricci curvature (Rij), and set Xkij = ∇kRij, then equation (8.11) may be
written as the following(

∆− ∂

∂t

)
F =

(
2S

R2
− 6

)
RF + 5|∇R|2 − 7

R
〈∇S,∇R〉

+
16

R
λiX

2
kij +

16

R
λiXkijXikj −

8

R
λiXijiXjaa − 4XkijXikj

+
2

R
〈∇ (∇kRij) ,∇

(
∇kRij

)
〉 − 2〈∇ logR,∇F 〉 . (8.12)

We then use the following identity, for any constant ξ 6= 0

−〈∇S,∇R〉 =
1

ξ
|∇kRij − ξRij∇kR|2 −

1

ξ
|∇kRij|2 − ξS|∇R|2 (8.13)
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so that, for ξ > 0 we have

− 7

R
〈∇S,∇R〉 =

1

ξ

7

R
|∇kRij − ξRij∇kR|2 −

1

ξ

7

R
|∇kRij|2

−7ξ
S

R
|∇R|2

≥ −1

ξ

7

R
|∇kRij|2 − 7ξ

S

R
|∇R|2

≥ −1

ξ

7

R
|∇kRij|2 − 7ξδR|∇R|2 .

By choosing 7ξδR = 5, i.e. ξ = 5
7δR

we deduce that(
∆− ∂

∂t

)
F ≥

(
2S

R2
− 6− 49

5
δ

)
RF +

16

R
λiX

2
kij +

16

R
λiXkijXikj

− 8

R
λiXijiXjaa − 4XkijXikj − 2〈∇ logR,∇F 〉 .

Since

|λiXkijXikj| ≤
√
S

√√√√∑
i

(∑
j,k

XkijXikj

)2

≤
√
S

√√√√∑
i

√∑
j,k

X2
kij

√∑
j,k

X2
ikj

≤
√

3S|∇kRij|2

and

|λiXijiXjaa| = |
∑

i

λi

(∑
j,a

XijiXjaa

)
|

≤
√
S

√√√√∑
i

(∑
j,a

XijiXjaa

)2

≤
√
S

√√√√∑
j,a

X2
jaa

(∑
i

∑
i,j,a

X2
iji

)
≤

√
S|∇kRij|2 .
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Therefore, as λi ≥ −εR,(
∆− ∂

∂t

)
F ≥

(
2S

R2
− 6− 49

5
δ

)
RF − 16εRF − 16

R

√
3S|∇kRij|2

− 8

R

√
S|∇kRij|2 − 4|∇kRij|2 − 2〈∇ logR,∇F 〉

≥
(

2

3
− 10− 16

√
3δ − 8

√
δ − 49

5
δ − 16ε

)
RF

−2〈∇ logR,∇F 〉 .

Theorem 8.7 Under the Ricci flow (8.3) on the 3-manifold with initial metric with
positive constant scalar curvature R(0), such that R(0)ij ≥ −εR(0)g(0)ij for some
ε ∈ [0, 1/3]. Then (

L− ∂

∂t

)
F ≥ −C(ε)RF

where L = ∆ + 2∇ logR, F = |∇kRij|2/R and

C(ε) =
28

3
+ 16

√
3δ + 8

√
δ +

49

5
δ + 16ε .

In particular, suppose R(t, ·) ≤ θ(t) then(
L− ∂

∂t

)
F ≥ −C(ε)θ(t)F

so that
|∇kRij|2

R
≤ eC(ε)

∫ t
0 θ(s)ds |∇kR(0)ij|2

R(0)
. (8.14)
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