APPLICATIONS OF COMMUTATIVE HARMONIC ANALYSIS

TOM SANDERS

1. INTRODUCTION

In this set of notes we shall investigate applications of commutative harmonic analysis,
which for us will mean the Fourier transform on commutative groups. The focus will be
on examples, and these will come from a range of settings including functional analysis,
number theory, and probability.

Most of what we do will focus on quantitative estimates related to finite groups, and
in light of this there is no one specific reference to be recommended. There are a number
which give a flavour of different aspects of what we are interested in, and we shall try give
references as we proceed.

Before we introduce the Fourier transform it is worth providing some motivation for its
definition. For us this motivation will come from convolution. Convolution is something
which will have come up in a variety of settings and is an exceptionally useful mathematical
tool. We shall begin with some examples and then extend it to the more general setting
in which we are interested.

Definition 1.1 (Convolution on Z). Given two functions f, g € £*(Z), their convolution is
the function f = g defined by

frg(x) = Z f(y)g(x —y) for all z € Z.

yeL

It is immediate from the triangle inequality that this is well-defined in the sense that the
left hand side is finite.

1.2. Convolution and sumsets. There are various reasons that convolution on the in-
tegers is useful. One is that it can be used to study sumsets: given two sets of integers A
and B we write A + B for their sumset defined by

A+ B:={a+b:ae A be B}.
A number of questions in number theory can be phrased in terms of sumsets.

Example 1.3 (Goldbach’s conjecture and Lagrange’s theorem). If we write P for the set
of prime numbers then Goldbach’s conjecture is simply the statement that

P+ P 5 2N\{2).
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Similarly, if we write @) for the set of (non-negative) squares then Lagrange’s theorem is
simply the statement that

Q+Q+Q+Q=No.

Convolution can be used to help understand sumsets (and so called iterated sumsets,
A+ A+ A, &c.) because of the relationship

(1.1) A+ B =suppla 1,

where 14 and 1p are the indicator functions on A and B respectively. Roughly, if we want
to show that some element is contained in A + B, then it is sufficient to show that 14 = 15
is non-zero on this element.

1.4. Convolution and representation functions. Since sets are particularly important
to us, it is also instructive to think about what the convolution of their indicator functions
is in words. Suppose that A and B are finite sets of integers. Then

lax1p(z) = |{(a,b)e Ax B:a+b=uz}
= ‘The number of ways of writing z = a + b with a € A,be B/
We shall be interested in showing the existence of certain structures in sets or sumsets. As
an example of a structure we might be interested in, a quadruple of integers (z1, z2, T3, T4)
is called an additive quadruple if
X1+ To = T3 + Ty4.

One of the basic ways to show that a such a structure is present in a set is to try to count
copies of it, and the next proposition does exactly that.

Proposition 1.5. Suppose that A < {1,...,N} is such that there are no four distinct
elements x1, o, x3, 14 € A forming an additive quadruple. Then

|A] = O(NV?).

Proof. First note that if © = (2, z9, 23, x4) is an additive quadruple in which at least two
elements are the same then either z1 = xq, 7 = x3, ©1 = x4, or 3 = x4. (Note that if
x1 = x3 then x9 = x4 since x is an additive quadruple, and similarly if x; = x4.) There
are therefore at most 4|A|? such quadruples in A.

On the other hand there is an exact formula for (), the number of additive quadruples
in A, in terms of convolution. As this is the first time we are doing such a calculation we
shall go through it in somewhat more detail than we shall in future.

Q = Y lal@)la@s)la(es)la(zs)

T1+x2=x3+T4

= Z( > 1A(931)1A(372)>( > 1A(953)1A(334))

yeEZ \x1+x2=Yy T3+Ta=Y
2
_Z<Zlmmwg—2uumN%Mme-
yeZ \z+2=y YyeL
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At this point we want a lower bound on the right hand side and to get this we apply the
Cauchy-Schwarz inequalityﬂ:

|A+ Alll1a * Talfozy) = Maval gl « 1alZg = 114« 1alfig) = |Al"
Since A < {1,..., N} we have that
A+ Al <|{L,...,N}+{1,...,N}| =2N —1,

and so
(2N —1).(4]4P) = @ = |A[*,
and the proposition follows. O

Up to the implied constant this proposition is best possible, but it is worth thinking
about what happens if we replace the equation z; + x9 = x3 + x4 by 1 + 2 = 2x3.
That is to say, we ask what happens if A < {1,..., N} contains no three-term arithmetic
progressions with all elements distinct. It is still true that |A| = o(V) but it is much harder
to show. We shall investigate this question more thoroughly in §4] of the notes.

Returning to convolution in general, it has also come up in another setting: on the reals.

Definition 1.6 (Convolution on R). Given two functions f,g € L'(R), their convolution
is the function f = g defined by

fxg(x):= ff(y)g(x — y)dy for almost all z € R.

Here, of course, the definition is almost everywhere rather than point-wise and this follows
from a special case of Young’s inequality: by Tonelli’s theorem we have that

IF gl = f gl < j f gl — y)ldydz
- f ) f 9 — y)ldzdy = | flom 9],

In light of this L'(R) forms an associative (commutative) algebraﬂ under convolution.

We happen to be taking care here by applying Tonelli’s theorem. The notes will move
to make things largely finite quite soon at which point these concerns will take a different
form.

Hnequalities should only be applied when we expect to be close to the case of equality; here we are in
this situation. We are applying Cauchy-Schwarz to the inner product of 1444 with 14 = 14 to get

Aavasla*1a)pgy < [Layalfella 14l ),
and this is close to equality when 14, 4 is ‘close to’ a (scalar multiple of) 14 #14. Since A has no additive
quadruples with all elements distinct one sees that 14 * 14(x) only takes the values 0, 1, 2 or 3. This
means that we have the inequality
Tava <T1axla<31aqa,

which shows that 144 4 is ‘close to’ 14 % 14 as desired, and hence that our application of Cauchy-Schwarz
was sensible.

2Recall that an associative algebra is just a ring whose additive group is a vector space over a field K
and for which the ring multiplication is K-bilinear.
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It may be instructive to have a concrete example of convolution in action.

Example 1.7 (Convolution of intervals). Suppose that L > 1, and consider the convolution
of 1jo,z) and 1jo1). We get that

€T if 0 <zr<l

1 ifl<zx<L
ooy * lon(@) = pl(0, L1 @ =0 =9 1 G cr<rat

0 otherwise.

It is probably most helpful to draw this. A useful quick check on the particular parameters
can be made by integrating the function and verifying the identity

| 1o = [ fdy [ o210

In this case the right hand side is p([0,1])([0, L]) = L; the left can be checked from the
picture.

At this point we should properly introduce measures on R. Were we to do this we
should proceed via the Riesz representation theorem but since we shall not need much of
the theory we shall content ourselves with probability density functions.

Definition 1.8 (Probability density functions on R). Given an open bounded set S < R
we write fg for the function p(S) '1g; this is the uniform probability density function
supported on S.

1.9. Convolution and smoothing. Convolving has the effect of ‘smoothing’ functions
on R. A small illustration of this can be seen in Example [1.7] where the convolution of two
step functions produced a continuous function. It turns out that more is true and that
each time we convolve we ‘increase the differentiability class’ of a function.

Recall that C*(R) is the space of k-times continuously differentiable complex-valued
functions on R; in particular C°(R) = C(R), the space of continuous complex-valued
functions on R.

The following proposition is just a simple application of (the proof of) the Fundamental
Theorem of Calculus.

Proposition 1.10. Suppose that g € C*(R)n LY (R) and I = R is an open bounded interval.
Then g = fr € C*(R) n L}(R).

Proof. The fact that g = f; € L'(R) follows from the trivial instance of Young’s inequality
proved in Definition so the content of the proposition is in establishing the differentia-
bility.



APPLICATIONS OF COMMUTATIVE HARMONIC ANALYSIS 5

We put I = (a,b) for some a,b € R and note thatf]

g=fi(x+h) = ﬁfg(y)lz(aﬂrh—y)dy
- ﬁfg(y)(ll(a; +h—y) =1z —y))dy + g = fi(z)
1 z+h—a 1 z+h—b
- mLa g(y)dy—me g(y)dy + g = fi(r).

Since ¢ is continuous, for any z € R we havdﬂ

and it follows that
1

(9+ f1)(z) = —=(9(z — a) — g(z = D))
pu(l)
Since C*(R) is closed under translation, addition and scalar multiplication we conclude
that the right hand side is an element of C*(R) and the result follows. g

As with much of what we do in these notes, the above proposition has not been proved in
maximal generality. In fact we shall tend to prove results in the least generality illustrating
the main idea(s).

As we have already seen (in, for example, Definition we can convolve in settings
where there is no non-trivial differential structure and in light of the above proposition we
shall import the intuitive notion of smoothness into other settings through convolution.

One application of Proposition [1.10] is to show that convolutions can be used to make
bump functions. Bump functions are incredibly useful so it is worth a short detour to
construct them.

Example 1.11 (Bump functions). A bump function is a non-zero complex-valued, com-
pactly supported, infinitely differentiable function on R. The existence of bump functions
is not immediately obvious and often they are constructed by the introduction of an aux-
iliary function such as exp(—1/2)1[9w)(x). It turns out that we can use convolution to do
this quite naturally.

The basic idea is that by Proposition [1.10| each time we convolve with an interval we
increase the differentiability class of a function, so we should like to convolve an ‘infinite’
number of times. Of course, each time we convolve the support of the result is likely to
grow by (the real analogue of) ([1.1). However, if we take an infinite sequence of intervals

3Since we are (essentially) using the Fundamental Theorem of Calculus the integrals are morally with
respect to differential forms rather than measures. In particular § k(z)dz = — " k(2)dz, which we mention
since h may be negative.

A5 a quick notational remark we recall that o, . c,.z—-(1) denotes a quantity which tends to 0 as
x — z in a way which may depend on ¢y, ..., c,, and similarly for big-O.



6 TOM SANDERS

where the sum of their widths is bounded then the support will remain compact; this, then,
is the planﬂ
Suppose that (wy)n>1 is a sequence of positive reals such that > _, w, = 1 (for example
take w, = 27"), and let I, = (0,w,). For m < n we considerff| the functions
Gmn = Loy * Ljoa) * fr * - * [1,.-
Since >}, w, = 1 we have (in light of (the real analogue of) (1.1])) that

n

supp fr,, =+ = fr. < (0,wy,) + -+ (0,w,) = (0, Z w;) < (0,1).

i=m

It then follows from Example (and the fact that convolution is associative) that
Imn(2) = J1[02 * 1j017(2) fr,, - f1,(2 — x)dr = 1,

SUPD gmn < [0, 2] + [0, 1] + supp fr,, = - = f1, < (0,4),
and (since convolution is commutative) that

(1.3) Gin = Gmn * f1r, * 0 0 % fr, .
We now have a couple of key claims.

Claim. The functions g, , are 1-Lipschitz.
Proof of Claim. From Example 1.7)it is clear that h := 1[g ) * 1,1} is 1-Lipschitz. But then

) = )] = |[ (e = 2) = by = D oo
< supl(e =)= (=D [Ifa oo fr 2z = o =,
A
since h is 1-Lipschitz and the claim follows. O

A reasonable concern might arise at this point: the derivative in Proposition could go up by the
reciprocal of the interval length with each application. But then if we apply it with narrower and narrower
intervals it seems that it might get very large. Indeed, this is true, and a little thought will convince us
that actually this must be true: suppose that f : R — R is infinitely differentiable in some neighbourhood
N of a point o and

(1.2) sup{|f®)(z)| : x € N} = Oy, (K).
Then by Taylor’s theorem we have

") (o) (m — w)*
oy = 5 £zl =20

k=0

+ Oy (|z — 20|™) whenever x € N.

It follows that the power series for f converges to f in some (possibly smaller) neighbourhood of zg, and
so f is real analytic at xg. Thus, if f were infinitely differentiable and satisfied everywhere then
it would be analytic, and by the identity theorem if an analytic function has compact support then it is
identically 0. It follows that for bump functions cannot hold.

60n a first pass one might wonder why we consider (gm.n)n>m for all m rather than just (gi.n)n>1.
This is so that we can get , but the fact that this might be useful only becomes clear somewhat later.
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Claim. The sequence (Gmn)nsm is Cauchy in the L*-norm.

Proof of Claim. Suppose that € > 0. Then there is some ng > m such that 3, _ w, < €/2,
whence for any n > ny and x € R we have
9 (2) = @) = | [ = )1+ )y = )

[ G =) = D+ fzn(y)dy’

sup{|(z —y) — | : y € supp fr, ., * - * f1,}
Sup{|y| ‘Y e Ino+1 +ooet+ In}:

N

since fr, ., *---* [f1, is a probability measure and gy, », is 1-Lipschitz. On the other hand,
by design

Lnger + -+ + L, (0, X wy) < (0,€/2).

n>ngo

It follows that for n,n’ > ny we have

’gm,n(x> - gm,n’(x)| < |gm,n(x) - gm,no(x)| + ‘gm,n’(JJ) - gm,no(x” <€

and the claim is proved. O

In light of the claims the sequence (gmn)n=m is & sequence of continuous functions
supported on [0, 4] which converges to some continuous function g,, on [0, 4] with g,,(2) =
1.

Now, write k,, := fr, *---* fr_, and note that it is a probability density function so
that & > 0 and {k(z)dz = 1. By the triangle inequality we have

G * bn(2) — G i) = \ [ Gnatw) = am e - y)dy'

< Hgm,n - gmHLOO(]R) J ’k(l' - y)|dy = Hgm,n - gmHLw(R)a

whence

W g fr o i = G S e fru
Combining this with ([1.3)) we get that
(1.4) 91 = Gm * fr, #---= fr_, for all me N.

It follows from Proposition that ¢, is infinitely differentiable. Of course, we have
already seen that g¢; is non-zero, and compactly supported, so we conclude that it is a
bump function.

It may be worth remarking that much as measures can be defined as continuous linear
functionals on the space of continuous functions (vanishing at infinity), distributions can
be defined on the space of bump functions.
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1.12. Convolution and random variables. Suppose that Z is an integer-valued random
variable. We write pz for the probability mass function of Z, so that pz(z) = P(Z = z)
and consider it as an element of ¢*(Z).

Now, suppose that X and Y are independent integer-valued random variables. Then the
probability mass function of X + Y is given by convolution:

px+v(2) = ZPX(ZE)}?Y(Z — ) = px *py(2).
TEZL

In fact X and Y could be real-valued instead and this relation becomes the statement that
the law of X + Y is the convolution of the laws of X and Y. As we have not defined
measureﬂ we are not in a position to formally state this yet.

Once we have seen the very natural relationship between convolution and the Fourier
transform it will be of no surprise that the Fourier transform comes up in proofs of results
such as the Central Limit Theorem.

1.13. Convolution with respect to multiplication. One final example to illustrate the
variety of applications of convolution comes from ‘the other’ group structure on the reals:
multiplication. Convolution with respect to this structure is used a lot in number theory
and a good reference for our discussion here is the book [Ten95] of Tenenbaum.

Definition 1.14 (Convolution on Q). Given two functions f, g € £1(Qxg), their convo-
lution (sometimes called Dirichlet convolution) is the function f = g defined by

Frgl@) =Y fy)g(z/y) for all z e Qsy.

y€Q>0

As with convolution on Z this is easily seen to be well-defined by the triangle inequality.

AWarning /A The indicator function of a set implicitly depends on the superset from
which the set was taken. This means that convolutions of what seem like the same function
can be very different: write f* for the indicator function of {1,...,N} considered as a
subset of Q=o, and f* for the indicator function of {1,..., N} considered as a subset of 7.
Since f* € (*(Qso) we convolve it with itself using Definition and see, for example,
that

supp f* = f* ={ab:a,be {1,... N}}

which is a subset of {1,..., N} of size Q(N?>=°)). On the other hand f* € (*(Z) so we
convolve it with itself using Definition [1.1] and see that

supp [T+ ff={a+b:a,be{l,...,N}} ={2,3,...,2N}
which 1s a very different set.
If X and Y are absolutely continuous the statement about measures yields the fact that the probability

density function of X + Y is the convolution of the probability density functions of X and Y in the sense
of convolution over R as we have defined it.
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One function of interest in number theory is the divisor function, denoted 7, and defined
on the naturals by setting 7(x) to be the number of natural divisors of x. This is related
to convolution by the following identity:

7(x) = 1.~y * L1, vy (2) whenever o < .

The convolution here means that 7 is sufficiently smooth that we can compute its average
value relatively accurately using a method called Dirichlet’s hyperbola method.

Proposition 1.15. We have the estimate
Z 7(z) = Nlog N + (2y — 1)N + O(V/N),
<N

o f{a}

e dz 1s Euler’s constant.

where 7y :=

To prove this we shall use the following lemma which is the context in which Euler’s
constant was first discovered.

Lemma 1.16. We have the estimate
1
Z — =logN +7v+ O(1/N)
<N X

Proof. Given the definition of 7 this is essentially immediate:

1 1 N+11

<N <N

= ﬁfﬂ(éq—é)ww4XVN)

= JNH %daz + O(1/N)

= v+ . O(1/2*)dx + O(1/N) = v+ O(1/N).

N+1
The result is proved. ]

Proof of Proposition[I.15. An obvious start is to note that
N N
Z T(x) = Z 1= Z {—J = Z (—+O(1)> = Nlog N + O(N)
<N ab<N a<N a a<N a
by Lemma [1.16, The weakness of this argument is that the approximation
N N
{—J=—+Om
a a

is not a strong statement when a is close to N — the error term is of comparable size to
the main term. However, since ab < N we certainly have that at least one of a and b is
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always at most v/N. It follows that

D= >+ Y Y 1- Y 1=2 ) oL

ab<N a<+v/N b<N/a b<v/N a<N/b a,b<vVN a<f\‘ J a,b<v/N

This is called the hyperbola method because it is a way of counting lattice points below
the hyperbola xy = N. Now, as before we have that

Mo _22( ) (VN + 0(1))%.

<N a<\/7
On the other hand by Lemma [1.16] we have that

y __N1ogf+7+o<1/f)):—NlogN+vN+O(W>
a<\/7

and the result follows on rearranging. O

Voroni used bump functions amongst other things to show that the error term is bounded
by O(N1/3+°()) and this has since been improved to O(N®) for some o < 1/3. In the other
direction Hardy and Landau showed that the error is Q(N4), but the true order is not
known.

2. CONVOLUTION ON FINITE ABELIAN GROUPS

After all the examples of the first chapter we are now in a position to define the con-
volution in the setting in which we are most interested. The book [Kat04] of Katznelson
gives a flavour of things which is more examples focused, while the book [Rud90] of Rudin
gives a good level of generality but may be a little harder to read.

To begin with we shall need a few definitions concerning functions spaces.

2.1. The space of measures and Lebesgue space. Suppose that X is a finite (non-
empty) set. We write M (X) for the space of complex-valued measures on X. Since X is
finite, a measure is essentially just a (complex-valued) way of weighting elements of X. In
particular, if f: G — C we have

| v =3 swmwtia),

zeX

The space M(X) is a complex vector space and it can be normed in a natural way: for
each v € M(X) we define the norm of v to be

2. ol = supt | fav: |flie < 1} = X (b

zeX

and this makes M (X) into a normed space. More generally X is a locally compact topo-
logical space and M (X) is the space of regular Borel measures on X. We mention this for
the purposes of intuition — if it does not help it can be safely ignored.
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Example 2.2 (Counting measure and uniform probability measure). There are two par-
ticularly important measures supported on X. First, there is counting measure denoted
0x, which we use when X is behaving like a discrete topological space. This assigns mass
1 to each element of X. When dealing with counting measure we tend to talk about the
size of sets and use summation instead of integration so that

Sx(4) = [Aland [ f@)dix(e) = Y, Flo).
reX
Secondly, there is uniform probability measure denoted Py, which we use when X is be-
having like a compact topological space. This assigns mass | X|™! to each element of X.
When dealing uniform probability measure we tend to talk about the density of sets and
use expectation instead of integration so that

Px(4) = |A/1X| and [ f(2)dPx(z) = Eoexf(z).

A positive measure is a measure taking only non-negative values; suppose that v € M (X)
is such, and p € [1,00]. We define the Lebesgue space LP(v) to be the vector space of
complex-valued functions on X endowed with the norm defined on f: X — C by

1/p
oy = ( | |f(x)|”dx> |

with the usual convention when p = oo, that is to say

1 f] ) = max{|f(z)| : « € suppv}.
Technically these norms may only be a semi-norms (if the support of v is not the whole of

X), but this will make no difference to us and we can import essentially all our intuition
about normed spaces.

Example 2.3 (#(X) and LP(X)). The measures defined in Example [2.2] also give rise to
two special classes of Lebesgue space: we write

P(X) := LP(6x) and LP(X) := LP(Py),

where this is equality in the sense of normed spaces not just vector spaces. These Lebesgue
spaces have a useful nesting of norms property which is an immediate application of
Holder’s inequality:

1flerxy < [ fleaxy and || fllLacx)y < [ fllze(x) whenever p = q and p, q € [1, o0].

Remark. The nesting of norm inequalities above have p and ¢ one way for the ¢?(G)-spaces
and the other for the LP(G)-spaces. In general when recalling inequalities it can be difficult
to remember which way round they are. To help with this it can be useful simply to test
them against some functions. For the nesting of norm inequalities above one can simply
test the inequalities against the function 1y, (for some element x € X) in LP(X) and 1x
in /(X), where we get

| Laylecxy = 1X[77 and |[Lx|en(x) = [X |7
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The first of these is visibly increasing in p and the second decreasing.

2.4. Haar measure and convolution. Convolution makes sense on any locally compact
group, and there are arguments for establishing it in this generality. We shall concentrate
on finite Abelian groups which the reader may note does not even include the examples of
the introduction. It turns out that all the phenomena we are interested in can be seen in
finite groups so this is not the loss which it might at first appear to be. Readers interested
in work concentrating on finite groups might like to consult the book [Ter99] of Terras,
although she does proceed in the more general setting including non-Abelian groups.

Definition 2.5 (Haar measure on G). For any locally compact group there is a unique (up
to scale) translation invariant regular Borel measure on the group called Haar measure.
In particular, this is true for G: we say that a measure p on G is a Haar measure if it is
strictly positive and translation invariant. It is easy to see that this means that p gives
each element of G the same mass.

On G there are two particularly important Haar measures coming from Example [2.2
0, counting measure on GG, and Pg, uniform probability measure on G.

With Haar measure defined we can make sense of convolution.

Definition 2.6 (Convolution). Given a Haar measure p and two functions f, g € L(p)
we define their convolution to be the function f = g determined point-wise by

fego) = [ Flgta = w)dy = | 1wl ~ v)duty) for all 2 € G,

We shall tend to write dz instead of du(x) in integration when the Haar measure is clear.
Much as in Definition [L.6] we have that

I 2ol = [ 1] rwste = pislds
< f W) f l9( — g)ldady = [ Floigolgliion

which is a special case of Young’s inequality.
We can also convolve functions with measures: indeed, suppose that f € L'(u) and
v € M(G). Then we define f = v and v = f by

f=v(z)=vx* f(z) = Jf(x —y)dv(y) for all z € G,
and in a similar way to the above we have that | f = |1, < [ f]zr ||

Finally, given two measures v, p € M(G) (not necessarily Haar measures) we define their
convolution v = p to be the measure determined by

v+ p(A) = f 14y + 2)dv(y)dp(2).
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Since G is finite, it may be helpful to note that
voplah) = Ll + 2dvln)ds)
= ) Ly + 2 v{yhe{zh) = X v{yhefe — y}).

y,26G yeG

Again, it is fairly straightforward to show that |v = p| < ||v||p|, and so M(G) forms an
associative (commutative) algebra.

A Warning /\ The convolution of two functions depends on the particular choice of Haar
measure. Given f,g € L'(G) we have that

fxg(x) =Eyeaf(y)g(z —y).

On the other hand, if we write f' for the function f considered as an element of *(G) and
g for the function g considered as an element of {*(G) then

freg@=> fygla —y).

yeG

In particular, as functions we have f' =g = |G|.f = g. This may seem rather worrying at
first, but in practice if one finds oneself out by a power of |G| in a calculation it can usually
be traced back to a normalisation error.

At this point it is useful to record a few simple facts about convolution. As always
checking this sort of thing is important, but in this instance we shall leave it as an exercise.

Lemma 2.7 (Basic facts). Suppose that G is endowed with a Haar measure ju and f, g, h €
LY (u) v M(G). Then
(1) (Linearity) (Af 4+ pg) = h = AX(f =h) + pu(g = h) for all \, p € C;
(11) (Associativity) f = (g=h) = (f = g) = h;
(111) (Commutativity) f+g=g= f.
We should remark that while we usually reserve the letters f, g and h for functions, in

this instance they can be either functions or measures. We have done this simply to avoid
stating essentially the same thing several different times.

The point of Lemmal[2.7]is that it shows that L' (1) and M (G) form commutative normed
algebras, and in fact there is a rather close relationship between the two.

2.8. Embedding L'(v) in M(X). Returning, briefly, to the setting where X is any finite
non-empty set, then given a positive measure v € M(X) we can embed L'(v) into M (X)
via the map taking f € L'(v) to the measure fdv defined by

(Fdv)(A) = fb, Fd for all A < X.

The map f — fdv is then an isometric linear embedding of L'(v) into M (X). More than
this, if X = G and p is a Haar measure on G then the embedding is also an algebra
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homomorphism so that
(fdp) = (gdp) = (f = g)dpu for all f,g € L' ().

2.9. Relative p.d.fs and convolution as a measure of relative density. Given a
non-empty set S < G we write ug for the uniform probability measure supported on S,
in M(G). This differs slightly from Pg which is defined only on subsets of S, but there is
nevertheless a relationship between them (which one could take as defining for ug):

ps(A) =Pg(AnS) forall Ac G.

Now, suppose that X, A ¢ G. Then it turns out that 14 = ux(z) is the relative density of
A on the set x — X, that is to say it is the number of points in A N (x — X)) divided by the
number of points in x — X (which is the same as the number of points in X'). To see this
note that

1a# px () JlA(y)dux(fr )
[An(@—X)|

- ZlA MNx(z—y) = X

yeG

We shall frequently use this in the case when X = V for some subgroup V' < G. In this
case 14 * py(x) is the relative density of A on the coset z —V =z + V. More than this,
ifveVthenx+ov+V =2x+V,sowesee that 14 = py(x +v) = 14 * puy(x), and hence
14 * py is constant on cosets of V. (The reader may wish to compare this with the later

Example [2.16])

At this point it may be instructive to consider a couple of examples of convolutions.
Example 2.10 (Convolution of subgroups). Suppose that V, W < G. Then

By * pw = Qv +w-

To see this first note, by (the analogue of) (1.1)), that the support of the left hand side is
equal to V' + W. On the other hand

soifa;eV—i—Wthenx:v—i—wforsomeveVandweW,Whence
Voalx-—W)|=Vaw+w-W)|=|(V—-v)n(w—-W) =|VnW|,

so py * py is supported on V + W, constant on V' + W, and by integrating we see it is a
probability measure whence we get the claimed equality.

Example 2.11 (Convolution of random sets). Suppose that each x € G is placed in the
set A independently with probability o = ©(1). Then EP;(A) = o and
a2 if z #* OG

E1,4 = 1_A($) = EyeGElA(y)lA(y o :U) - {a otherwise
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Indeed, we expect it to be very likely that A — A is essentially the whole of GG, and to see
this we present an informal variance calculation: first note that

ELe+ L@ = 12 S ELL( LA~ 2)La(: )

a2+ 0(o/|G)  ifx=0g
a' +O0(a?/|G|)  otherwise.
It follows from this thatf] Var(14 = 1_4(x)) = O(1/|G|), and so by Chebychev’s inequality
we have that
P(lA * 1_A(Qf) = 0) = ]P)(lA * 1_A(Zlf) - ElA * 1_A(£L‘) < —ElA * 1_A(Qf))
Var(lA * 1,14(1’))
= O(1/|G)).

We conclude that the expected number of x with z ¢ A — A is O(1). In fact, by Chernoff-

type tail estimates of a sort we shall cover later on, one can see that it is much less than

1 and that with high probability A — A = G.

When we defined convolution in Definition [2.6| we established a simple algebra inequality:
given p a Haar measure on G we had

1 # gl < | Flglglo gy for all f,g € L (u).
This is an important fact which it turns out is part of a wider range of inequalities.

~

Proposition 2.12 (Young’s inequality). Suppose that p is a Haar measure on G, f €
LP(u), ge L9(pn) and 1 +1/r =1/p+ 1/q. Then

1F# gl < I lzeglglag
Proof. Since G is finite no analysis is required and we simply have a calculation:

([ 1rwllste - >|dy) dr

= (J!f )P |g(a )!q/’”-|f(y)\p(1/p_1/’")-lg($—y)lq“/q‘”’”)dy) da

1/r 1/p—1/r
(([1rwrtste = wrear) - ([1rwpra)
1/g—1/r\ "
X (J|g($ - ?/)|qdy) ) dx = ||fHEp(u)H9Hqu(u)

where the passage between the second and third line is via the three-variable Holder in-
equality which applies since (1/r) + (1/p — 1/r) + (1/¢ — 1/r) = 1. Taking rth roots the
result is proved. Il

1f = glzrgy <

N

8A more accurate calculation of the variance shows that it takes three different values depending on
whether x = 0g, 22 = 0¢ and = # Og, or 2z # Og. We leave this calculation to the interested reader.



16 TOM SANDERS

It is worth making a few remarks on the quality of this inequality. Since G is finite we
can take f = g = 1g and we see that the inequality is tight for any (admissible) triple
of indices (p,q,7). For p =1, ¢ = 1 or r = o0 the inequality is (true and) tight for any
locally compact group, but for other, so called internal triples of indices (that is triples
with p > 1, ¢ > 1 and r < o0) it is not.

When G is finite the tightness for internal triples is a result of the fact that G has an
‘open and compact’ subgroup. In groups such as R without any open compact subgroup,
given an internal triple of indices (p, g, r) there is a constant ¢,, < 1 such that

I % gl < cpal Sl lgliae) for all f < L(R),g & LI(R).
The existence of such a constant in locally compact groups was shown by Fournier [Fou77],
while the best possible constant for locally compact Abelian groups was found by Beckner
in the classic paper [BecT75].

When we defined convolution in Definition 2.6 we also defined it between functions
and measures and there is a hybrid of Young’s inequality and the algebra inequality for
measures (that is ||[v = p| < ||v]]pl]) in that case. The proof is left as an exercise.

Proposition 2.13 (Young’s inequality for measures). Suppose that p is a Haar measure
on G, ve M(G) and f € LP(u). Then

If = vleeqy < [ fzeglv].
We now come to a crucial definition.

Definition 2.14 (Convolution operators). Suppose that G is endowed with a Haar measure
. Then to each v € M(G) we can associate a linear map

My o LP(u) — LP(p); f v f.
Moreover, in light of Young’s inequality for measures, the map
M(G) = B ()i v — M,

is an injective algebra homomorphism of norm 1, where multiplication in M (G) is convo-
lution and in B(LP(u)) is composition.

We could make a similar definition for functions in L'(p), but in light of the embedding
in we shall not bother since L'(u) sits isometrically as a sub-algebra of M(G). Were
it needed we should put My := My, for all fe L'(u).

Definition 2.15 (Adjoints). Given a measure v € M (G) we write v for its adjoint measure
defined by

V(A):=v(—A) forall Ac.
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The reason for the name is that if p is a Haar measure on G, then M* = M; when M, is
considered as an operator on L?(u). Indeed, we have

r

My f,@r2) = fy)dv(z —y)g(z)du(z)

r

[
J

= (J fW)g(y — 2)du(y — z)dv(—=z)
fJ F)a(y — Ddp(y)dv(—2) = (£, Mogdizg

J

for all f,g e L*(u) since p is translation invariant (so that du(y — z) = du(y)).

Example 2.16 (Convolution operators as projections). Suppose that G is endowed with a
Haar measure . A special case of Example[2.10]is that when V' < G we have py = uy = uy,
in which case the operator M, is a projection since M? = M 4., = My, .
More than this, since py is positive we see that the operator norm of M, , denoted
|M,, |, is 1, so in a sense the projection is ‘as good as can be’. In the case p = 2 this
means that M, is an orthogonal projection on L?(p). Indeed, looking back at we see

that
M,y (f) = E(flo(G/V))
where o(G/V) is the o-algebra generated by the partition G/V .

3. THE FOURIER TRANSFORM ON FINITE ABELIAN GROUPS

In the first chapter we saw that convolution is a useful and varied tool; in the second
we set it up on general finite Abelian groups. More than this we defined convolution
operators which give a slightly different language for expressing quantities of interest in
terms of convolution. Whenever we have an operator we ask if there is a natural basis in
which to represent it, and in this case there is and it is the Fourier basis.

Throughout this chapter p will be a Haar measure on GG. The set of convolution operators
naturally acts on the Hilbert space L?(j); it is commuting as a result of the basic facts in
Lemma 2.7

M, M, = M, = My, = MM, for all v,p e M(G);
and it is adjoint-closed as a result of the comments in Definition [2.15}
M} = M; for all v e M(G).
We now recall a basic theorem from linear algebra.

Theorem 3.1 (Spectral theorem). Suppose that H is a finite dimensional Hilbert space and
M is an adjoint-closed set of commuting operators on H. Then there is an orthonormal
basis of H with respect to which every operator in M s diagonaﬂ.

9Note that throughout this set of notes we shall be interested in diagonalisation with respect to unitary
matrices not invertible matrices.
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We shall be interested in the above theorem applied to the collection of convolution
operators, in which case we get a basis in which every element is an eigenvector for every
convolution operator. It turns out that such vectors have a very special structure, and to
illicit this it will be useful to have a convenient basis for the convolution operators.

3.2. 6-functions: a basis for the algebra of convolution operators. The set of
convolution operators forms a space and hence, itself, has a basiﬂ. Write 9, for the
probability measure assigning mass 1 to = (and hence 0 everywhere else). Then

(3.1) My, (f)(y) = J F(y - 2)d8u(z) = fy— ) for all 2,y € G,

Since G is finite the set {0, }.ec forms a basis for M(G). Indeed, the measures are visibly
independent and

v = Jéxdy(a:) for all v € M(G).
Now the map v — M, is linear so it follows that

M, = JM(;zdy(x) for all v € M(G);

the operators (M;,).eq form a basis for the algebra of convolution operators.
We now use this basis to study the eigenvectors afforded by the Spectral Theorem (The-

orem [B.1).

Proposition 3.3. Suppose that v € L?(u) is an eigenvector for every convolution operator.
Then there is a homomorphism X\, : G — S' and o € C such that v = o)\, and

(3.2) M,v = (fmdu(a:)) v for all ve M(G).

Conversely, suppose that v is a scalar multiple of a homomorphism \, : G — S'. Then we
have .

Proof. We let \,(x) be the eigenvalue of the operator Ms__ corresponding to v. Note that
Ms_, . is the identity so A,(0g) = 1, while

/\U(x + y)U = M5_(x+y)v = M(LchLyU = MCLI(/\v(y)'U) = Av(x)Av(y)v

for all z,y € G, so A\y(z +y) = A(2)A(y) for all z,y € G. It follows that A, is a
homomorphism. To see that A\, maps into S we note by (3.1)) and the translation invariance
of u that

olio = [1o@)Pdy = ot + o)Pdy = [ s v(w)Pdy

_ f (@) Plo()Pdy = [\ (@) o],

-0

10Note that this is a basis of a subspace of B(L?(p)), not of L2(u)
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whence |\, (x)| = 1 as required. Now, in light of (3.1]) we see that
v(x) = Ms_ v =\, (2z)v(0g) for all x € G,
from which is follows that v = o, with o = v(0¢), and finally to get (3.2) we note that

My = <J M(;zdy(x)> Vo= J(M(;zv)dl/(x)
_ f O (—2)0)d(z) — ( f mdy(x)) .
for all v € M(G) as required.

In the other direction we have an easy calculation. Suppose that v = g\, for some scalar
o € C and homomorphism A, : G — S*. Then

M) = [ oty = Dhivto) = on, () [R@ivte) = ([ Mt ) o
for all y € G and v € M(G), and the result is proved. O

A hg\momorphism from G to St is called a chamctefm of GG, and from this point on we
write G for the set of characters on G.

The Spectral Theorem applied to the class of convolution operators gives us an orthonor-
mal basis of vectors which, by Proposition are scalar multiples of some characters. It
turns out that they are the same scalar multiple for all characters, but we have yet to prove
this. This basis suggests two main questions:

(i) What do vectors (functions) f € L?(u) ‘look like’ with respect to this new basis?
(ii) What do the operators M, for v € M(G) ‘look like” with respect to this new basis?

To address the first of these questions we make the following definition.

Definition 3.4 (Fourier transform). Given f € L*(u) we define the Fourier transform of
f to be the function f: G — C determined by

Fon) = oy = f f @)y @)du(z).

The idea is that f( ) is the prOJectlon of f onto the vector v, so that f is f written with
respect to the orthogonal basis G although we have not yet shown that G is such.

The basis afforded by the Spectral theorem is an orthonormal basis, but the set G we
have chosen will only turn out to be orthogonal — the characters can, in general, have large
norn. It follows that we shall need to weight G and we do so by deﬁnmg a measure p* on

G called the dual measure, assigning mass u(G)™! to each element of G. The reason for
this choice is that it is what comes out of the proof of the following theorem.

H)\ore generally for any finite group a character is the trace of a representation. For extensions in this
direction the reader may wish to consult a book on representation theory e.g. James and Liebeck [JL.93].
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Theorem 3.5 (Parseval’s theorem). The Fourier transform

T LAp) = L) f — f
18 an isometric linear map.

Proof. The particular choice of y* comes out of the proof. We start by noting that f — f
is linear, so it suffices to prove that it is isometric.

The Spectral Theorem gives us an orthonormal basis vy, ..., vy of L?(u) such that each
v; is an eigenvector for every convolution operator. It follows from Proposition that
for each 7 there is a character ; and a scalar o; such that v; = 0;7;, and by Pythagoras’
Theorem (sometimes called the generalised Parseval identity) we have that

N N
1F17200 = D Ko vdnzl® = D loiPIF(a)l* = D 1F(n)Pm
i=1 i=1 e
where m(v) = Zim:w |o;]? is non-negative. We compute the values of m by testing the

above equality against characters. Indeed, suppose that A € G. Since i is translation
invariant, for any z € G we have

33) 30) = [ Ma@idnt) = [ A+ 270 2duo

= A | May@du(a).

It follows that if v # A then X(v) = 0 since in that case there is some z € G such that
v(z) # )\(Z) On the other hand A(A\) = (@) so that

6) = [N@)Pduta) = 3, R Pmir) = w(GPm().

’yEG
and hence m(\) = p*({\}); the result is proved. O

Remark. The proof above may seem a little technical; it is not as hard as it appears. At
its core, Parseval’s theorem is just saying that G is an orthogonal (note not orthonormal)
basis, and then by generalised Parseval we have that

i = 3 '<<J; el

The Spectral theorem and Proposition tell us that G generates L?(u); a calcula-
tion shows that the characters are orthogonal; and the fact that |y(x)| = 1 shows that

sz = 1(G), so picking p*({v}) = 1/u(G) gives the result.

12This fact actually follows for all pairs of characters (7;,7;) with i # j from the fact that the basis is
an orthogonal basis. However, we do not know that the basis contains a multiple of every character until
the end of the argument so we still need the calculation.
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As usual an isometry between Hilbert spaces can be de-polarised to give a relationship
between inner products.

Corollary 3.6 (Plancherel’s theorem). We have the identity

<f7 g>L2(,u) = <J?7 §>L2(u*) fOT all fvg € L2(M)

Proof. On the one hand for every A € C we have

If + >\9H%2(u) = Hf”%m) + 2R6X<fa 9>L2(u) + HQH%%),

and on the other (for the same \) we have

|f + NGz goey = 1F |22y + 2Re X, Gonaury + G172 (uny-

By Parseval’s theorem (applied three times) and linearity of the Fourier transform we see
that

2R6X<f, 9>L2(,u) = 2Rex<f, §>L2(N*)‘

Taking A = 1 and A = ¢ gives us that the real and imaginary parts are equal, and hence
the result. U

Having understood what happens to functions f € L?(u) under our change of basis we
now turn to our operators. Again, motivated by Proposition [3.3] we make the following
definition.

Definition 3.7 (The Fourier-Stieltjes transform). Given v € M(G) we define the Fourier-
Stieltjes transform of v to be the map v : G — C determined by

v(y) = deu(y) for all v € G.

Here the idea is that 7(y) is the eigenvalue of the operator M, on the vector 7.

The Fourier-Stieltjes transform has a number of simple but important properties which
we now collect together. Their content is to show that all the important information
contained in the algebra M(G) is preserved under the Fourier-Stieltjes transform.

Theorem 3.8. The Fourier-Stieltjes transform

~

T M(G) - (°(G);v—> 1D

is an injective, norm 1 algebra *—homomorphis from M(G) under convolution to EOO(CA?)
under point-wise multiplication.

137 sx-homomorphism is a homomorphism which also preserves adjoints, so that in this case ﬁ = 7i. Note
that the adjoint depends on the underlying multiplication: on M (G) our multiplication is convolution, not

~

point-wise multiplication. Were it to be the latter then, like £*°(G), the adjoint of p would be f.



22 TOM SANDERS

Proof. We see immediately that the Fourier-Stieltjes transform is a linear map from M (G)

A~

to (@), and it is easy to check that

i) = [2@die) = [+()daT2) = [ A(@)du() = 70

for all v € G so that it preserves adjoints. To see that it is an algebra homomorphism
note that by the converse part of Proposition [3.3| every character is an eigenvector of
every convolution operator with eigenvalue equal to the Fourier-Stieltjes transform of the
measure inducing the operator at that character, so

v p(y)y = Mysyy = MM,y = Myp(y)y = D(7)p(7)7
for all v € G and v, p € M(G). We conclude that

vep="1v-pforalvpe M(G),
as required.
The norm of this homomorphism can be easily seen to be at most 1: since |y(x)| < 1 for
all x € G we get that

17y < Sup{Jv(:v)dV(x) iyeGY =y

for all v € M(G), which is (a slight variant of) a particular instance of the Hausdorff-Young
inequality. Moreover it is equal to 1 as can be seen by noting that for v positive, U at the
constant 1 function (which is a character) is [[v], so for such v we have V], @) = [v].
Finally, we need to check injectivity. Since the Fourier-Stieltjes transform is linear it
suffices to check that it has trivial kernel, and this follows from our application of the
Spectral Theorem and Proposition Indeed, if 7 = 0 then M, is identically 0 (by that
pair of results), which means that v = f = 0 for all f € L?(u). By testing this against the
functions (1{y})sec We see that v =0 O

Remark. In §2.8 we identified a way of embedding L'(x) into M(G) and this naturally
gives us a way to extend the Fourier-Stieltjes transform to L'(u): we should define the

Fourier transform of f to be @ Fortunately this is consistent with Definition in that
if fe L'Y(u)n L*(u) then we have fdu = f.
As a result of this equivalence we inherit the algebra identity:

Frg=F-gforal f,ge L'(u) n L*(n).

Of course, since G is finite this applies to all functions f and g. (If G were not finite we
should just take limits.)

We also inherit a trivial instance of the Hausdorff-Young inequality via the same em-
bedding. Namely that

(3.4) o) < 1 fluigo for all £ e L (u).

This can, of course, just be proved directly from the triangle inequality.
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One question left open by Parseval’s theorem as we stated it is whether the Fourier
transform is a surjection. We also know that both the Fourier transform and the Fourier-
Stieltjes transform are injections from Parseval’s theorem and Theorem respectively,
and so it is natural to ask if we can easily reconstruct functions from their Fourier transform.
It turns out that we can and shall do so now.

Theorem 3.9 (Fourier inversion formula). The Fourier transform™: L*(u) — L*(u*) is a
surjection. Moreover, if f € L'(u) is such that then we have

f(x) = f T (@)dy*(7) for all z € G.

Proof. As usual, since G is finite the inversion formula applies to all functions on G. First
suppose that h e L'(u*) and put

k(z) = j B3y (@)d* (7).

Then by linearity we have

R\ = f h(7) f ()N@)dp(e)du* (7) = f AN dE* () = h(N)

since J(\) = u(G) if v = X and is 0 otherwise[ Tt follows that the Fourier transform is
surjective. R L

Now, suppose that f € L*(u) and put h = f so that k = f. It then follows by uniqueness
(Theorem that k = f and the result is proved. O

Given the Fourier inversion formula we make the following definition.

Definition 3.10 (Inverse Fourier transform). Given f € L'(u*) we define

[V (x) = Jf(v)v(x)du*(v) for all x € G.

Shortly we shall see using Pontryagin duality that this is itself (almost) a Fourier transform.

From this point on we shall refer to both the Fourier transform and the Fourier-Stieltjes
transform under the one banner of the Fourier transform.

The set G is really just (equivalent to) the set of (equivalence classes of) irreducible
representation of G. Moreover, since GG is Abelian, they are all 1-dimensional, which means
that the tensor product gives rise to a genuine group operation. This group structure is
peculiar to the Abelian setting.

l4Gee |D in the proof of Parseval’s theorem for this calculation.
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3.11. The dual group. The product of two elements v, A € G is their point-wise product.
It is easy to see that this is, again, a homomorphism:

(YA)(06) = 7(06)A(0¢) = 17 =1

and

(M@ +y) =y +yMz+y) = Y(2)y(y)AMz)A(y)
= (@) A@)y(W)AY) = (YA) (@) (7 A) (y)
for all x,y € G. More than this, since multiplication of complex numbers is commutative,
the multiplication on G is commutative.

A Warning /A The group G is an Abelian group so we shall denote 1its identity, that s
the constant function equal to 1, as an additive identity, O5. This means that 0a(x) = 1
forall x € G.

By construction the measure p* is a Haar measure on G and there is a duality between
(G,p) and (G, p*) which it will be informative to draw out. It essentially identifies the

dual of (G, pu*) with (G, ), and is very close to the duality between a Hilbert space H and
its continuous double dual H**.

Theorem 3.12 (Pontryagin duality). The map
bga:G— Ga— (y—7(2))

is an isomorphism from G to G such that (W) o dsa = p

Proof. The fact that ¢ & is a homomorphism is an easy check. To see that it is injective
we import the injectivity of the Fourier-Stieltjes transform. Note that if z € ker ¢, 5 then

5;(7) = fﬁdéx(z) = (z) =1 for all v € G.

Since Og € ker gbG’é it follows from the linearity of the Fourier transform that (0, —dp,)" = 0
and hence, by the uniqueness in Theorem , that 0, —dp, = 0 and so x = O¢ as required.

The work now is to show that ¢, 5 is a surjection. Suppose that A € G which we

consider as a function on G. This time we use surjectivity of the Fourier transform and let
f be such that f(y) = A(y) for all v € G. Then by the inversion formula, the fact that A
is a homomorphism and translation invariance of p* we have that

f(x) = fA(v)v(w)du*(v) _ f AN () @)di* (1) = AN f ()

for all x € G. Since f is not identically zero there is some x € G such that f(x) # 0, and

dividing it follows that A(A) = A(—z) and we see that ¢, 4 is surjective as required.
Finally, we need to address the measure. The measure was design to make the inversion

theorem (and Parseval’s theorem) work so it is natural to check these using the Pontryagin
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isomorphism. Suppose that g € L'(u) and write f := g. By the Fourier inversion formula

on GG we conclude that
- [ ron@de )

On the other hand by definition of the Fourier transform on G we have that

Floaale)) = | 10)ag@mide () = | 10)7@du (),

and so f(¢G@(x)) = g(—x). Now, by the Fourier inversion formula on @, the fact that
¢q.¢ is an isomorphism and p** is a Haar measure (so p**(E) = p**(—E)) we have

_ j FA) A dpr(4) = j Flbe @) (@)d™ o 6 4(x)
_ f g(=2 ) (@)d™ 0 6 5(x)
- f G @)™ 0 b o(2).

On the other hand f = g, and so

| son@aute) = [ geRT@dn = 65 4l) for all v < C.

It follows that gdu = gdp** o ¢, & by the uniqueness of the Fourier-Stieltjes transform, but
then g € L'(n) was arbitrary and so pn = p** o ¢, 4 as required. O

Note that in the proof of this duality we saw that

~

fY(—z) = f(gzﬁGé(x)) for all z € G,

and so the inverse Fourier transform is (up to a minus sign) also a Fourier transform.
The duality expressed above extends to subgroups and quotient groups. To describe this
we make a further definition which will be very useful in the sequel.

Definition 3.13 (Annihilators). Given a set A = G we write A* for its annihilator defined
by

={7eézy(x):1forallxeA}.

It is easy to check that annihilators are subgroups, and by Pontryagin duality we see that
there is an isomorphism

e fes, {:CEG v(z) =1 for all yeI'},

g
and so if V' < G then there is an isomorphism V-t —=5 V.
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The aspect of duality which annihilators encode is that the annihilator of a subgroup is
naturally isomorphic to the dual of the quotient group. Indeed, suppose that V' < G then

VL*)C/;’/T/;’)/}—) ’y’: G/V"Sl
z+ V- y(x)
is a well-defined isomorphism.

Annihilators come up explicitly in the Fourier transform of measures as we shall now
see.

Example 3.14 (The Fourier transform of subgroup measures). Given V' < G we have
that fiy,(7) = 1. To see this first note that v € V4 if and only if iy (v) = 1. Indeed,

Re/i(7) = f Req(@)djuy (x) < j dyiy () = 1

with equality if and only if Rey(x) = 1 for all z € V, which in turn is true if and
only if v(z) = 1 for all z € V. Now, from the calculation in Example we see that
v = (py * py)” = fip” so that [y can only take the values 0 and 1. Thus, if fiy () # 0
then iy (y) = 1 and v € V4, and conversely. The claimed equality follows.

Using Parseval’s theorem we can establish a little bit more: we have (1y)du = u(V)duy,

whence 1y () = (V)12 But then by Parseval’s theorem we have

u(V) = 1y lizgy = 1Mv]Zegum = n(V)2u*(V5),
and so
(V) (V) = 1.

The last equality above represents a critical case of the well-known uncertainty principle.
We turn to this now.

Example 3.15 (Uncertainty principle). This states that for all f # 0 we have

~

p(supp f)p*(supp f) = 1.
Roughly speaking, a (non-zero) function cannot be simultaneously concentrated on G

A~

(physical space) and G (momentum space).

To prove the result we start by applying the triangle inequality and a special case of the
Hausdorff-Young inequality (that is (3.4])) to get that

|22y < 11z | f D -
Now by the Cauchy-Schwarz inequality we have that
[z uey < | fl2gueyp™ (supp £)2 and | £ 21 < £ 2200 s(supp £)2.
But then by Parseval’s theorem we conclude that
|72y < I Flz2quose® (supp £)2.] £l 20 e(supp £)1?

= [ 1132y (supp ) u(supp f)'/2.
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The claimed inequality follows on dividing.
Given V < G our previous calculations (in Example [3.14]) show that taking f = 1y the

inequality is tight since supp 1y = VL. In fact more than this, if v € G and = € G then
[ :=71s4v has

FOY) = 1@y @) ys (v =),
SO
supp f =+ + V and suppj?z v+ Vi,

and hence equality holds in the uncertainty principle for f as well.

It turns out that the uncertainty principle is, in fact, robustly true in the sense that any
function which is close to tight for this inequality is in some sense close to functions of this
type. Indeed, suppose that f % 0 is such that

A~

p(supp f)u*(supp f) < 1 +1

for some 7 > 0 sufficiently small. We shall show that there is some subgroup H < G such

that™l

1*((supp A(y + H)) = O(y/nu*(H)) for n sufficiently small.
We could equally well have looked at supp f, but it will be slightly more notationally con-
venient for us to do it this way round. We shall follow an argument of Fournier [Fou77] for
Young’s inequality. Indeed, showing the above result is essentially equivalent to analysing
the case when Young’s inequality is close to critical.

We start by estimating the size of S := supp f From the Cauchy-Schwarz inequality as
before we see that

p(supp f) = ||f|\%1(u)/\|f||%2(u)’
which inserted into our hypothesis tells us that
(3.5) pr(8) < (L4 M F 2/ 1F 12

Of course, we expect this to be tight since it follows the inequalities we used to derive
the uncertainty principle itself.m Now, by Plancherel’s theorem and the Cauchy-Schwarz

15Recall that A denotes symmetric difference so that AAB = (A\B) u (B\A); in words AAB is the
set of elements in exactly one of A and B.

16Ty see that it is tight in the sense that u*(S) is close to this upper bound, apply Parseval’s theorem
and the triangle inequality to get that

1120 = 17122y = j 1s()IF () 2y

2
dy < () FI2s -

[150) ' [ s

It follows that u(S) = HfH%z(#)/HfH%l(#) which complements our inequality up to a factor of 1 + 1.
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inequality (twice) we have

/]2, = j Ls(IF)Pdy = f [ F@)1y(x)da

([1e+ Feiac) - ([« Feotisoppar) -
([1e+ Feiac) -
< ([ fwpas) " ([1srar) "

rl/2 r1/2 v
= U I Pl 113 2

Young’s inequality provides estimates for these norms of f = f:

1F# Flezgy < 1F 1zl Flegy = 11220l £ 22

N

N

and
1f = Flogy < IAlegollflzgy = 1F 17
Inserting these bounds, raising to the fourth power and using (3.5)) we get that
1£172 1
15042 > > -
)

On the other hand by Parseval’s theorem we have that
(36) 15 % 1 agumy = 118y = (1= B)u*(S)"
At this point we recall that

lg=1_ S(fy) ©*(S A (v +S)) for all v e G.

This immediately tells us that is tlght.m More than this it turns out that the set of
characters at which 1g1_g is large is a large subgroup, and it is proving this to which we
turn our attention™ We write

={yeG:ls=1 5(7) = (1 —e)u*(9)},

where € (to be thought of as small) is a parameter to be optimised later. Translation by
characters in v does not vary 1g+1_g very much. In particular we have the following claim.

715 (S)* = (1= 3n)u*(S)°.

17 Indeed, note that

s % 1 s720um) < Ils # 1g|poe iy |15 # 1os sy = #*(S).*(S)* = p*(S9)?.

181t should not come as a total surprise that this is the case: an easy calculation shows that if T is
very close to being a (coset of a) subgroup then the set of characters where 17 = 1_7 is large is exactly a
subgroup.
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Claim 1. If~v € H, then

s 1os(y+7) = 1s * 1s(y)| < ep*(S) for all ' € G.
Proof. First note that

lgxl g(y+7)—1lsg*1_s(7) = u*(Sn(y+++8))—p (Sn(y+39))
p (S =7 +9)—u(Sn( +5))
(S =N\S)n (' +9))

—p*((S\(S =) n (v +9)).

N

It follows that
(S —=N\S) = 1g*1g(y+9) —1gx1_s(7") = —p*(S\(S — 7)),

and hence

pr(S) = lsx1og(y) = Ls» Lg(y +7) — Ls» Lg(?) = Lg * L_g(—7) — u*(S).
Finally, by symmetry we get the claim.

29

g

We now have the three main claims which help us show that the set of characters at

which 1g * 1_g is large is a large subgroup.

Claim 2.
pF(He) = (1= 3neh)p*(9).

Proof. Since 1g % 1_g(v) < p*(5), by the definition of H, we have
i) [ Lev sy + (1= 9(S) | Lenls()dy = L 1sr)dy
H. e

> (1= 3n)u*(S).

\He

However,

f Ls 1 s(y)dy = f Lg* 1os(y)dy — J Ls* 1 s(y)d,
G\H. G

€

whence
() [ 1a+ Ls()dr = (e~ 3 (s)
it follows that
pr(He) = (1= 3neh)p*(S)
again using the fact that 1+ 1_g(y) < p*(9).

We get the group structure in two steps.

Claim 3. If Hy\Ho is empty then Hae is a subgroup of G.
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Proof. First note that Hy. is non-empty since it contains Oz. Now, suppose 7,7 € Ha..
Then by symmetry —y' € Hy, and by Claim [I| we have

g+ 1 s(y—=7) = p*(S)] < Ngxl_g(y—7")—1s*1_5(7)l
g 1_g(y) — p*(S)] < 4ep™(S)

and so v — ' € Hy.. Since Hy\Hs, is empty we conclude that v — ' € Ha, and it is a
subgroup as required. ]

Our final claim is aimed at satisfying the hypotheses of the previous one.
Claim 4. The set H,_,\Hs, is empty provided 1 < (1 + v — 2¢)(1 — 3ne ).
Proof. Suppose, for a contradiction, that v € Hy_,\ Hae so that

(1 =26)p*(S) > 1s+ 1_5(7) = vu*(9).
It follows from Claim (1| that if v € H, then v+~ € Hy_,\H,, which is to say
(1= *(8) > 1s = 1s(y+7) = (v — ) (S).
We conclude that
ot s ) > O O (S s L) > v O (S)a (1),

since Hy_,,.\H, contains a translate of H, as a result of the hypothesis that H;_,\Ha, is
non-empty. On the other hand

f 15+ 1_s(y)dy + j 15+ 1_s(1)dy < j 15+ 1_s(7)dy = u*(S)2,
Hl—u+e\He

€

and so
PS8 = (v —u(S)u*(He) + (1 — )™ (S)p* (He)
(1+v—20)p*(S)p*(H) = (1 4+ v —2¢)(1 — 3ne )u*(S)?
by Claim [2) which contradicts the hypothesis proving this claim. O
We are now in a position to piece together our work. First we take v := 1 — 4¢ and

(provided 7 is sufficiently small) arrange € such thaﬂ
1< (1+(1—4e) —26e)(1—3ne ).

Given this we know from Claim {4 that Hy.\Hs, is empty and so by Claim [3| we have that
H := Hs, is a group. Moreover, H o H, and so by Claim [2| we conclude that

j 15+ 1_s(1)1a(7)dy > j 15+ 1_s(7)dy = (1 — )(1 — 3ne )t (S)2.

€

OThis is possible if, for example, we can take ¢ > 0 such that ¢ + ne~! < 1/6.
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On the other hand

Jls 1 g(VIn(v)dy = (ds=1l-g,1mrzgm
= (s, 1y Lsprageny < 5 (S)|Ls * 1o | oo ur).
We conclude that there is some «/ such that
PSS (Y + H)) =1sx1u(y) = (1 - €)(1 = 3ne )" (S).
Additionally,

(1 - 20)* (S)*(H) < fH Is+ 1_s(7)dy < u*(S)2,

so that (using Claim [2| for the left hand side) we have
(1= 3ne " )u*(S) < p*(H) < (1 —2¢)7'p*(S).
It follows from this that
pH(SAW +H) = p*(S)+p*(y+ H) = 2p* (S n (Y + H)) = Ole + ne” ) (H),
and optimising the choice of € gives the result.

Example 3.16 (The Fourier transform of random sets, Example contd.). Suppose
again that each x € G is placed in the set A independently with probability o = ©(1). The

phase of ﬁ is hard to determine and in general we shall not try; the magnitude however
Is easler to estimate. .

If v = 04 then we have E[14(y)| = «, but it turns out that for other characters we
expect the magnitude to be small. Indeed, suppose that v # 05. Then

<E EweglAmWD

(Eﬂﬁ,yeGElA(fL’) 1A(y)7(1’ — y))1/2

1/2
= (Ezye a27($_y>_a_+i>
( vea Gl 1G]

- (%)W = 0(1/4/]G)).

In fact using the variance calculation from Example [2.11] one can show that most of the
time |14()| is about this size, and in fact we shall see later that

—~ log |G\
sup |14(v)| =0 ( 8| ’) w.h.p.
v#0a ’G’

1/2

l

BT < (BIT0)F)

We now turn to the final example of this chapter which reflects another powerful way in
which the Fourier transform may be used.
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Example 3.17 (Spectral gap and convergence in distribution). Suppose that A < G is
non-empty. We set up a homogenous random walk on G as follows. Suppose that at stage
1 we have a GG-valued random variable X; with lawm w; — we think of X; as being our
position after ¢ steps of the random walk. We assume the distribution of Xy — the initial
position — is given by some (arbitrary) probability measure py € M(G):

P(Xy€e S) = up(S) for all S < G.

Now, at stage i we move to X; + a with probability |A|~! for each a € A. This translates
to

P(Xi1 € 5) = [ 1s(a + a)diua(a)dis(a) = pi +1a(S).

We conclude that p; 1 = p;*pa, and ask whether the walk converges. If A is chosen poorly,
for example if it is a non-zero coset of a subgroup of GG, then the walk may oscillate between
cosets and not, in general, converge. To avoid this we make the technical convenience of
assuming that Og € A.

Given our assumption intuitively we expect the walk to converge: the set A generates
some subgroup H and we expect after enough time that the random walk will have ‘aver-
aged’ our initial distribution over cosets of H. This means that the real question of interest
if how fast the walk converges.

To measure the difference between two distributions we use a quantity called total vari-
ation distance: suppose that v and o are two probability measures. Then their total
variation distance is

7(v,0) = sup{|v(S) — o(9)|: S < G}.
This quantity can be easily expressed in terms of the norm of the difference of the two

measures. First, for any set S < GG we have

r

0= J (13 + 1g\s)d(l/ - U),

so it follows that

(S) = ()| = 5 || (15 = Ll = )] < 31w =l

On the other hand taking

S:={x:v{z}) =o({z})},

we see that this upper bound is achieved (since sgn(v — o) = 1g — 1g\g) so that
1
r(v.0) = 5l —al.

Returning to our random walk it may be instructive to consider a concrete example:
take G = Z/NZ and A = {0, 1} (so that A generates the whole of G). Suppose that X is

20Recall that the law of a random variable X is the measure p such that u(S) = P(X € S).
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the d-distribution centred at Og. Then after k steps we have

P(Xp=r)=2" ) (le+ T).

Nl+r<k

It follows that

P(Xy=r) = 27| 3] (le+7~>+ 2 (Nlir)

Ni+r<k/2 k/2<Nl+r<k

<2t 2 <N<Zk+ 1>)+ 2, (J@

NI<k/2 k/2<Ni<k

k
< P(Xp=0)+27"
where the last equality is by Stirling’s formula. A similar argument shows that P(X =
r) = P(X; = 0) — O(1/vk) and so it follows that

(3.7) (s 1) = sup{[P(Xp € S) — pa(S)| : S = G} = O(|G|/Vk)

so that after O(¢72|G|?) steps we have 7(uy, pe) < €. The |G| dependence here is essentially
tight as can be seen by some more careful analysis; the € dependence can be improved and
the whole approach can be set in a more general frame. This is the task to which we turn
and for which we use the Fourier transform.

Returning to our general random walk we are interested in an upper bound on

) — P(X;, = 0) + O(1/VE),

1
T(Mk,ﬁbo * ,MH) = _H/v‘k — Mo * NH|‘7
2

where, as mentioned, H is the subgroup of G generated by A. This is measuring the
total variation distance between the distribution of our random walk after k steps and our
initial distribution averaged over cosets of H. We write f; for the probability mass function
associated with g then we see that

1 k 1 k
T(fhes pto * porr) = §\|f0 o1l — fox palae) < §|\fo 1) — fo* ]GV

by Cauchy-Schwarz, where ,u(:) is the k-fold convolution of u4 with itself. Now we examine
the ¢?>-norm using Parseval’s theorem (thinking of G as being endowed with counting
measure):

k N —~ —

fox 1y = fo= miley = Bl o PIEA()* = ()

By Example we have that iy = 1z.. On the other hand, A ¢ H and so if v € H*
then fia(y) = 1. Tt follows that

k o~ o~
1o = 1) — fo = il = Bocala e (Do PIEA() ™.
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We say that A has an@ e-spectral gap if

(3.8) sup [pa(7)l <1—¢
gAL
that is to say there is a gap of size € in the values of 14 between when it is 1 and when it
is less than 1. (Note that At = H' since A generates H.) It we talk about the spectral
gap of A we mean the largest € € [0, 1] such that holds.
If A has e-spectral gap then we see that

k
oo 1’ = for pialieic) < Brcglanm IFo()P(1 =
and it follows that

(3.9) T (ks o * fiar) < —||fo||z2 (1= )G = O(IGI'? exp(=O(ek))).

Roughly we expect to have achieved ‘good convergence’ after at most O(e~!log|G|) steps
of the walk.

It is trivial that A has some non-zero spectral gap: if A is a subgroup then we see that
it has spectral gap@ 1; if A is not a subgroup, suppose that v ¢ A*. Then there is some
ap € A such that fy(ao) # 1. Also Oc € A so that

L= TP = T 25 1= Rea(e—a) > 21— Res(an)

aaeA
Since v maps from G we have that the order of v(ag) divides |G| and hence
2(1 = Rev(ag)) = |1 = y(ao)[* = [1 — exp(27i/|G])* = (G| 7).

It follows that A has Q(1/|A|?|G|?)-spectral gap; in fact it is somewhat better [

Before proceeding it is worth noting that if |[A| = O(1) then the above tells us that
A has spectral gap Q(1/|G|?) and so by (3.9) we have good convergence after at most

O(|G|?*log |G|) steps. This should be compared with (3.7).

We now return to the general setting of G a finite Abelian group and A < G a set
containing the identity.

Claim. Suppose that A has density o and \ € G. Then at least one of the following is
true:

(i) (Fourier coefficient is small) |a(A)| < 1 — Q(a?);

(ii) (Many pairs in kernel) for at least 49/64 of the pairs (a,a’) € A* have a—a’ € ker \.

Proof. Our argument is, in a sense, dual to some of the work we did in Example [3.15] and
our analogue of the sets H, from there are the sets

Sei= {1 e G il = lr2guam ) <6}

2IThis is a slightly unorthodox definition of spectral gap. When the spectral gap is usually defined to
be inf,.o_ 1 —Refza(y). The exercises have some more material on this.

22Waﬂ‘le about infinity.

23We proved something a bit better in lectures; we shall prove something even better in a moment using
the main claim from the lectures.
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The reason for this slightly odd definition is because the triangle inequality for L2-norms
tells us immediately that if v € S, and 7' € S5 then
11 =2 uasncay = 11 =7+ 70 =) 2gann_n)
< 1= Alzzguaruen) + 1@ =2 guasi-a)
= Hl - 7‘|L2(MA*M—A) + Hl - 7/||L2(MA*M—A) <€+,

so that v ++' € Sc,s. On the other hand the definition relates to spectral gap in the sense
that

= g = | 1= @i -a(e) = 2 = 2@

so that
[7a(v)| =1 —€*/2 if and only if |1 — 7| 204 4m 1) < €
We shall let € be a constant to be optimised later (it will turn out that e = Q(«a)). Our

aim is to show that if A € S, and e is sufficiently small then we have the second conclusion.
Suppose that A € S.. If r < e !/2 then by the triangle inequality we have that

7 € Sp—1)e = A+ €S

Now, suppose that S,c\S(_1)c is non-empty for every r < ¢ /2. (This will turn out to lead
to a contradiction provided e is sufficiently small.) Since the sets (Syc\S(—1))r are disjoint
and contained in S/, we have, by Parseval’s theorem, that

e 12
(2] =178 < ) X [La()P

r=1 ’YES’FE\S(rfl)e

- 2 L)< Y 6P =

VEUrge_l/Q Sre\s(’r“fl)e ’}/Eé

It follows that € = Q(«); thus if € is sufficiently small then we have a contradiction and we
conclude that S, \S(—1)e is empty for some r < e /2. Thus by the triangle inequality we
have that S(_1)e + A © S(—1)e, and by induction Si_1)e + nA = Si—1)e. On the other hand
0g € So © Sir—1)e and so A" € S(,_1ye < Sy for all n e N.

Writing k for the order of A we know that Ei<,<x A" () = lxera(z) for all x € G. Thus,
it follows from the above that

(7/8)* < Ercnsalia(A")* = JElénékAn(a — a')dpa(a)dpa(a’)

N Jlkem(a — a’)dpa(a)dpa(d).

We conclude that we are in the second case of the claim and we are done. O

As an immediate consequence of this claim, suppose that G = Z/pZ for some prime p
and A ¢ Z/pZ contains the identity and has size at least 2. Every non-trivial character
has trivial kernel and so it follows that if we are in the second case of the claim then
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(49/64)| A]? < |A|. Since |A] > 2 this is a contradiction we see that A has Q(a?)-spectral
gap.

To summarise, combining our spectral gap result with our earlier result we see
that for every initial distribution po on Z/pZ the random walk associated to A will have
achieved ‘good convergence’ to the uniform distribution on Z/pZ in O(a~?1log|G|) steps.

Returning to the general setting of G a finite Abelian group and A < G containing the
identity we can use the previous claim to bootstrap our earlier estimate for the spectral

gap.
Claim. The set A has Q(|A|/|G|?)-spectral gap.

Proof. We apply the previous claim for each character A ¢ A*. If we are in the first case
then we have the relevant upper bound on |fz4())]; assume we are in the second.

In the first instance we note that | ker A\| > 49| A|/64 by averaging. By the isomorphism
theorem we conclude that |Im A\| < 64|G|/49|A| and so by Lagrange’s theorem A(x) has
order at most 64|G|/49|A| for all x € G.

Suppose that ag € A is such that A(ag) # 1. (Which exists since A ¢ AL.) Write m for
the order of A(ag) which has m > 1 and m < 64|G|/49|A|. We conclude that

1= Aao)| = [1 — exp(2mi/m)| = Q(1/m?) = Q(|A[*/|G]).
Now let ¢y € S* be such that [14(A)| = cxI4()\). Since O € A we have that
A= [T = Re Y (1-c\(a)

aceA
= Z (1 — Re(C)\)\(OJ)))
acA
> (1—Recy) + (1 —Re(exA(ag))

1 1
= (- al + 1= e @)) = 11— Ao = A(IAP/GP).
The claim follows on dividing. O

In the general setting this estimate is tight as can be see by letting A be a subgroup
adjoined by one other element of order close to |G|/|A|. In general we do not use sets A
which are ‘close’ to subgroups — rather we think of A as a generating set, in which case
better estimates are often available.

4. ROTH’S THEOREM AND ARITHMETIC PROGRESSIONS

Roth’s theorem on arithmetic progressions [Rot53| is one of the central problems of ad-
ditive combinatorics and was one of the routes by which the power of the Fourier transform
became apparent (in this field), although Roth used the term exponential sums.

A three-term arithmetic progression is a triple of integers (x,y, z) such that z + z = 2y
or, equivalently, a triple (z,x + d, x + 2d). We say that such a progression is trivial if d = 0
so that all of z, y and z are the same.
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Theorem 4.1 (Roth’s theorem on arithmetic progressions). Suppose that A < {1,...,N}
contains no non-trivial arithmetic progressions. Then

|A] = O(N/loglog N).

This result should be compared with Proposition [1.5| where instead of looking for triples
(x,y,z) with  + z = 2y we looked for quadruples (z,y, z,w) such that  + z = y + w.
While that proposition was rather easy, Roth’s theorem is not, and one of the reasons that
Roth’s theorem is so hard is that there are examples of rather large sets of integers not
containing any non-trivial arithmetic progressions.

Theorem 4.2 (Behrend’s construction, [Beh46]). There is a set A = {1,..., N} containing
no non-trivial arithmetic progressions such that

N
|A| =Q 3 :
exp(2+/21og, N)log? N

Proof. The basic idea is that the surfaces of strictly convex bodies do not contain (non-
trivial) arithmetic progressions and that the higher the dimension of the underlying space,
the more of the mass of the body is near the surface. Given such a surface in high
dimensional space we embed it into {1,..., N}.

Concretely we shall look at a sphere. We let M and d be naturals to be optimised later
and put

Spi={xe{l,... M} 2?4+ - +22=r}
By averaging it follows that there is some r such that |S,| = M9/(dM?). Of course, S, is a
set of points on a sphere which is strictly convex and so it contains no non-trivial convex
combinations of points and, in particular, no three-term progressions.
We now consider the embedding
¢:{1,...,M}* — {1,...,N}
(T1,...,0q) > @1+ M+ Doy + -+ (2M + 1) o,
This is into provided
M+ (2M + 1)M + -+ (2M + 1) 'M < N;
and by design if

(4.1) o(x) + ¢(y) = 6(2) + o(w)
then = +y = z +w. It follows that A := ¢(S,) does not contain any non-trivial arithmetic

progressions since S, does not provided (2M + 1)¢ < N. Furthermore, since ¢ is injective
(as a result of (4.1))) we conclude that

Al = M?/(dM?).

To ensure that A does not contain any arithmetic progressions we take M = | (N4 —1)/2],

so that AN
|A| = W(l — O(dN—Ydy),
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We optimise this by taking d as close to the solution to ‘2* = N?** as possible. In particular
we take d natural such that d = 4/2log, N + O(1), and the result follows. O

As we shall see later in Example with slightly more care one can save a log/* N
from the bottom, but essentially nothing better than this is known. Indeed, it took some
sixty years before Elkin [EIK10] improved this by a further log"/? N, and this is the best
known bound. For a nice and short version of Elkin’s result the reader can consult the
paper [GW10] of Green and Wolf.

We shall not prove Roth’s theorem in these notes, but we shall prove a model version in
a different group which captures most of the ideas. Indeed, nothing about the definition
of a three-term arithmetic progression really requires that it be in the integers.

Suppose that G is a finite Abelian group. Then (z,y, z) € G® is a three-term arithmetic
progression if x + z = 2y. If the group has 2-torsion then this results in some degeneracy.
Indeed, if G = (Z/27Z)™ then any triple (z,y, z) is a three-term arithmetic progression so we
avoid this case. On the other hand if G = (Z/3Z)" then 2 = —1 (mod 3) so a three-term
arithmetic progression is just three points in a line.

Theorem 4.3 (Roth-Meshulam Theorem). Suppose that G := (Z/3Z)" and A < G con-
tains no three points in a line. Then

Al = 0(3"/n).

This result is due to Meshulam [Mes95], although the argument follows Roth [Rot53]
adapted to the group G = (Z/37)". To compare this with Roth’s theorem we think of 3"
as being the equivalent of N so that the upper bound on A in Roth-Meshulam is of the
form O(N/log N). This is rather better than that in Theorem [4.1 and while the bound
in Theorem can be improved (see, for example, the paper [Bou99|] of Bourgain or its
exposition in [TV06, §10.4]) nothing of the shape O(N/log N) is known.

Remark (Qualitative vs quantitative). We have discussed bounds quite a bit in this chapter
and will continue to do so in the notes. Improvement of bounds provides a way to measure
progress on a problem and the extent to which we understand what is going on. For
example, if one could prove a bound in Theorem matching the lower bound of Behrend,
one might hope that it would say something about spheres in some sense ‘being extremal’
for this question. This also means that some improvements on bounds are more interesting
than others, depending on the understanding they afford.

We shall turn now to proving the Roth-Meshulam theorem. Our starting point for both
this and Roth’s theorem is the same: we try to prove that if A has large enough density
then A contains so many arithmetic progressions that it necessarily contains a non-trivial
three-term arithmetic progression.

Suppose that G is a finite Abelian group and A < G has density a. We write

Te(A) = Epuecla(@)la(z +u)la(z —u)

so that Te(A)|G)? is the number of three-term progression in the set A. We aim to show
that T (A)|G|* > |G| since a|G| is the number of trivial progressions in A.



APPLICATIONS OF COMMUTATIVE HARMONIC ANALYSIS 39

As we have done before we can rewrite T(A) in a simple way using convolution, and
then diagonalise using the Fourier transform (specifically, insert the inversion formula for

1A * 1A)Z
To(A) = Euegla(@)Buegla(z + u)la(z — u)
= ]ExeglA(.CE)lA * 1A(2x)

= Euecla(o Z La(y 2 La(7)*14 27)
el veG
We now do a little calculation assuming that G has no 2-torsion. If A were chosen at
random with probability « (as in Examples and then we should expect T (A) to
be about o, since T;(A)|G|? is the number of three-term progressions in A, and there are
|G|? possible progressions each of which (except the trivial ones) is present with probability

a®. On the other hand 1,(0z) = a, so
(4.2) To(A) —a® = Y Ta(v)".

7#0@

In Example 3.16| we saw that sup, ., 114(7)| was very small When A was chosen randomly,

which fits with our expectatlonsﬁ On the other hand, what (4.2) suggests is that this is
an equivalence as we now prove.

Lemma 4.4. Suppose G has no 2-torsion and A < G has density a. Then at least one of
the following is true.

(i) (Many progression) We have the estimate Tg(A) = o®/2;
(ii) (Large Fourier coeﬁicient} There is some v # 05 such that |14(v)| = /2.

Proof. We return to and apply the triangle inequality to see that

\TG( < D Lam)P < sup a2 Y. [Ta(y
¥#0a v#04

On the other hand by Parseval’s theorem we have

ML < D) 1A P = Eeala(@)? = o,

7#0a 'yeé

24The alert reader may wonder here: if we pick the elements of A independently at random with
probability « then the expected number of three-term progressions is o (|G|? —|G|) + «|G|. This is because
there are |G| — |G| non-trivial progressions each of which has probability a® of being included and then

|G | trivial progressions each of which has probability a of being included. It follows that T (A) —a® =

0. (1/1G)).

On the other hand from Exampleuwe expect |14(7)| to be ©4(|G|Y/2) in modulus so that we might
expect the right hand side of (4.2)) to be about |G|.04(|G|71/?)? = ©,(|G|~/?) in size. The reader may
be concerned about these heurlstlcs since ©,(1/|G|) # ©,(|G|7V2).

Of course, what we have forgotten is that the sign of 1/,; also behaves randomly so we expect square-root
cancellation in the right hand side of and then our adjusted heuristic for the right hand side tells us
it is about |G|Y/2.0,(|G|~Y?)? = O,(|G|™") as desired.
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and it follows that
Ta(A) — o’| < asup [14(27)].

Y#04
This gives the result since if T5(A) < a?/2 then the left hand side is at least o®/2, and if
G has no 2-torsion then 27 is a non-trivial character if and only if v is non-trivial. O

The reason the above lemma is useful is that a large Fourier coefficient leads to a density
increment on a coset of a subgroup. Indeed, since 7 is constant on cosets of {’y}L we see

that if T4(7) = (14, Y)r2(c) is large in modulus then A cannot have the same density on
all cosets of {7}*; this yields a density increment.

Lemma jl\.5. Suppose that A < G has density o and vy is non-trivial (meaning v # 0g)
and has |14(7)| = ea. Then writing V := {v}* we have
[Ta = pv =) = (1 +¢/2)a
Proof. This is simply an averaging argument: first
[(1a—a) = pviee = [(1a—a)pvleweg
> |(La—a)" MV = Ta()] = ea.

Note, crucially,
(1a— )" (7) == (1a = 1) (7) = Ta(7) — la(y) = 1a(7) = alg(7) = 1a(y)
since 7y is non-trivial. On the other hand
Erec(la — @) = py(z) =a—a =0.
It follows that
2max (1a — ) » pv(2) = Eaca|(1a — @) = v (2)] + Eaco(1a — ) = pv (2) = €a,
and we get the result. O

Our plan of action is to combine these two lemmas and iterate:

(i) either we have many three-term progressions;
(ii) or there is a coset of a subgroup on which we have increased density.

If we are in the second case we put the output back into the iteration (possible since three-
term progressions are translation invariant, so a three-term progression in the coset x + V'
is the same as one in V') and repeat. This process cannot go on forever since density is
bounded above by 1 and so we terminate in the first case.

The main problem with this plan is that the subgroup we pass to may be very small
and this is why the Roth-Meshulam theorem is easier to prove than Roth’s theorem: if
G = (Z/3Z)" then every element has order 3 and so y(x)® = v(3.z) = 1 and so v is a
homomorphism with an image of size at most 3. It follows that |ker~| > |G|/3 which is
large.
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Proof of Theorem[].3. We write « for the density of A in G and we proceed iteratively
to define a sequence of spaces G =: V, = V; > ... > V, > ... and elements Og =:
X0y X1y- ey Thy-... We write

Ai = ‘/z M (ZL’I + A),Oéi = P\/;(Az) and Kz = ‘G/‘/l|

Suppose that we are at stage i of the iteration. Apply Lemma[d.4] to the set A; considered
as a subset of V;. It follows that either

(4.3) Tv.(A;) = a?/Q or sup |1/\,41(7)| > a?/2.

7#07,

In the first case this means that A; contains at least (a}/2).|V;|? arithmetic progressions.
Since arithmetic progressions are translation invariant it follows that A contains at least
(a3/2)|Vi]* = (/2)K;?|G|* arithmetic progressions, and it will turn out that we shall be
done.

On the other hand in the second case, by Lemma there is a subgroup V;;1 < V;
with |V;/Vi41| = 3 (since every (non-trivial) element of G is order 3 means that every

(non-trivial) element of V; is order 3, and hence so is every (non-trivial) element of V;) and
some y; € V; such that

La,; HVi g (yl) = ||1A¢ * MViHHLm(Vz‘) = (1 + ai/4>ai'

Putting x;,1 = y; + x; we see that

Qit1 = PVH»l(Ai"rl) = Pml(VHl N (i1 + A))
= Py, (Vis1 0 (i + 2 + A))
= Py, (Visa 0 (i + Ai)) = La = py,, (vi) = (1 + ai/4)au;
additionally Ky, = |G/Visi| = 3|G/Vi| = 3K,
Since a1 = (1 + a;/4)a; we see that after k; = O(a; ') steps we have ay,p, = 20;. On

the other hand ap = o and «; < 1 and so the iteration terminates in the first case of (4.3)
in

O™ +0(2a)™) +0((4a) ™) + -+ O0((2"a) ) + - =0(a™)
steps. When it terminates we conclude that K; > exp(—O(a™')) (and a; > «) whence A

contains at least exp(—O(a™!))|G|? three-term progressions.
Finally, since A contains only trivial progressions we have that

a|G| = To(A)|G)? = exp(=0(a™))|G/?
from which the bound follows. O

Interestingly Behrend’s construction does not extend to the model setting of G :=
(Z/3Z)". Indeed, the best know construction is due to Edel [Ede04] who showed that
there is a set A < (Z/3Z)" not containing any non-trivial three-term progressions such
that [A] > (2.2...)".

Despite the fact that for Roth’s theorem one of the main constructions does not translate
to the model setting, the general technique of translating problems for the integers into
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model settings such as (Z/3Z)" is very useful. For more information it is recommended
that the reader take a look at the wonderful survey paper [Gre05] of Green.

One can adapt Lemma to work for ‘approximate annihilators of characters’; such
sets are called Bohr sets.

Definition 4.6 (Bohr sets). Suppose that I' is a set of characters on G and § € (0,2].
Then the Bohr set with frequency set I' and width 0 is the set

Bohr(I',d) :={x e G : |y(z) — 1] < ¢ for all vy e T'},

and it is said to have rank |I'|. The rank is sometimes called the dimension, but this
term is also used for another quantity so we avoid it here. Additionally, the term Bohr
neighbourhood is also used for Bohr sets although we shall use this for any translate of a
Bohr set.

It is immediate from the definition that

I't < Bohr(T',d) < G.

Since |y(x)| = 1, the triangle inequality tells us that we have equality on the right when
d = 2; on the other hand if § < |1 — exp(27i/r)| where r is the maximum order of an
element in I' then we have equality on the left.

In light of this we think of the width parameter as measuring the degree to which the
Bohr set Bohr(I'", §) approximates the annihilator I'*.

Even with Bohr sets proving Roth’s theorem is not as easy as simply plugging in the
generalisation of Lemma [£.5]into the proof of Theorem [£.3] The problem is that instead of
getting a density increment on a coset of a subgroup we get a density increment on a Bohr
neighbourhood and so we then have to go back and adapt Lemmas [£.4] and [£.5] to subsets
of Bohr sets, rather than just subsets of groups. This can be done provided the Bohr sets
satisfy a certain technical condition called regularity. This condition does not always hold,
but is ubiquitous and so holds enough of the time to make the argument work although
the details are fierce.

Example 4.7 (Bohr sets in cyclic groups). Bohr sets are at their most interesting in cyclic
groups. Suppose that G = Z/NZ and I = {v} where v(z) = exp(2miz/N). Then we have
that

11— ~(z)| = /2 — 2cos(2m2/N) = 27|z|/N + Opynv—o(|z|/N)?,
and so
Bohr(I',d) = {xeG:|1—exp(2miz/N)| <o}
= {2+ NZ:|z| < (0 + O5.0(6°))N/27}.
We see that the Bohr set is a symmetric interval of width about 0 N /7. Note, in particular,

that if ¢ is small enough then the Bohr set may only contain the identity despite being
rank 1.
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Taking other characters in the previous example leads to dilates of intervals — centred
arithmetic progressions — and taking a Bohr set with multiple characters in the frequency
set therefore leads to intersections of centred arithmetic progressions.

To understand Bohr sets better it will be useful to have an estimate for how big they
are, and in light of the example in cyclic groups it should come as little surprise that this
translates to a bound on the density (as opposed to size).

Lemma 4.8 (Bohr set size estimate). Suppose that Bohr(I',d) is a rank k Bohr set. Then
Pe(Bohr (T, 0)) = (6(1 — 05_0(1))/27)".

Proof. We write T := R/Z and consider the homomorphism

$:G Tz (logW)) .
~yel'

21

Writing @ for the cube [0,n]* + Z' in TT, we have, interchanging the order of summation,
that

E.errPe({z e G:9(x) € 2+ Q}) = EerrEoeal.iq(d(z))
ErecBocrr L1 o(A(2))

ErecE err 1g2)-@(2)

= Eeeu(o(z) — Q) = pn(Q).

Thus, by averaging that there is some z € T' such that

Po({re G: ¢(z) € 2+ Q}) = (@)

On the other hand if z,y € {z € G : ¢(x) € z + Q} then (since ¢ is a homomorphism) we
have that

1 =7(z —y)| < |1 = exp(2min)|.
Choosing 7 such that |1 — exp(2mi.n)| = § yields the result since u(Q) = n''! = n*. O

Up to the constant this is best possible as can be seen by considering, for example,
a cube in G = (Z/MZ)*. The cube example also motivates our thinking for arithmetic
progressions. Indeed, it turns out that every Bohr set contains a long arithmetic progression
as we can show using the above.

Lemma 4.9 (Arithmetic progressions in Bohr sets). Suppose that G is cyclic and T' is
a set of characters on G of size k. Then the Bohr set Bohr(I',d) contains an arithmetic
progression of length at least §|G|V*+1) (1 — 05_0(1))/7 centred at Og.

Proof. Write K := (1) p
group and we write |K| = M. First note that since K is cyclic I'* = Bohr(T', §) contains
an arithmetic progression of length M. Secondly, from the definition of K the characters
in I" induce a set of characters IV on H := G/K.

ker vy which we note is cyclic since it is a subgroup of a cyclic
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In light of Lemmawe can pick p ~ 27| H|~Y* such that Py (Bohr(I”,p)) > 1/|H|. Tt
follows that there is some xz € Bohr(I"”, p) with zy # 0y. But then if [ is an integer with
l| < dp~! we have

11— v(lxg)| <11 —y(x0)| <6 for all y e TV,
It follows that {lxq : |I] < dp~'} = Bohr(I",§); the problem is that these elements might
not be distinct. However, since xy # K = 0y we conclude that there is some v € I such
that vy(z¢) # 1. Tt follows that all the values v(lzg) are distinct for |I] < dp~! and hence
the arithmetic progression genuinely has length 2|dp~1| + 1.
It remains to optimise by minimising

max{M,2|6p~t| + 1} ~ max{M, §(|G|/M)"Y*/x}
which gives the result. U

The above result is easier and stronger if G is cyclic of prime order; we leave the proof
of this to the exercises.

We now turn to the last result of the section which is closely related to Roth’s theorem.
The starting point is that if we have a set A < {1,..., N} (with more than 1 element) then
eventually if one keeps adding A to itself it will contain a translate of {1,..., N}. (The
reader may wish to compare this with the work in Example m)

The following theorem, due to Freiman, Halberstam and Ruzsa [FHR92|, shows that
even after adding the set A to itself three times we get a long arithmetic progression.

Theorem 4.10. Suppose that A < {1,...,N} has size aN. Then A+ A+ A contains an
arithmetic progression of length Q(aNQ(O‘B)).

Proof. First we embed A in G := Z/6NZ via the usual quotient map from Z and write
A’ for the image. This has density o/ = «/6 and if A’ + A" + A’ contains an arithmetic
progression of length [ then this lifts to an arithmetic progression of length [ in A+ A + A.

We now study A’ + A" + A’ through the three-fold convolution of 14 with itself. Since
we have a bound on the density of A" in G we think of the group as endowed with Haar
probability measure. By Fourier inversion we have that

Ly e Ly L) = D (Las e L) (1)) = 3 Tar(9)* (@)
'yeé 76@
We shall split this sum into three parts which we shall deal with separately. First, recall

that 1/2/(0@) = «/. This term is going to be the main term and we shall want to show that
the rest of the sum above is an error term. We write

D= {y# 05 [Lo(7)] = ea’} and " := {7 : [T (7)| < ea'},
so that
1A’ * 1A’ * 1,4/(13) = 0/3 + C(l’) + E(m)

where

Clz) = Y Tau(1)*y(2) and B(x) = ) Lo (3)* ().

~yell ~yel”
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The term E(x) will genuinely be an error term in L*; the term C(z) will be roughly
constant on the Bohr set with frequency set I'. To see these facts we have

S T2 () ()

~yel”

< swplfe()] 3 T < o’ 3 T = ca
yer ve@G

so that |E(z)| < ea’. Secondly, if y € Bohr(T", ) then we have

Clz+y)—C@)] < Y ITa@PE+y) — ()

~yell
Z‘lA/ ‘ "‘)/ —1’ 52‘114/ \
el ve@

We are now in a position to find a Bohr neighbourhood on which 14/ =14/ = 14/ is large. If
v € I' then E,y(z) = 0 (since v # 04) so that E,C(z) = 0 and there is some x( such that
C(zo) = 0. But then for every z € xy + Bohr(I', §) we have

1A’ * 1A’ * 1A/(Qf) > O/3 + 0 — 505/2 — EO/Q
by the triangle inequality. If we take € = o//3 and § = /3 then we see that z € A'+A'+ A'.
Finally we use Parseval’s theorem to bound the size of I'":

IT|(ea) 2\1,4/ ’<d,

~yell

so |T'| < o/73. We conclude that A’ + A" + A’ contains a translate of a Bohr set of width
o/ /3 and rank O(a/73). By Lemmamthls means that A"+ A’ 4+ A’ contains an arithmetic

progresswn of length Q(a/ N®@ ) and we are done in light of the relationship between «
and o' O

It should be remarked that A+ A does not necessarily contain an arithmetic progression
of length N2« 5o up to a-dependence the above result is best possible. The examples
showing this are due to Ruzsa [Ruz91] and are technically formidable.

Remark 4.11. It may also be worth remarking that one often chooses the embeddings in
proofs of the type given above to be into groups of prime order. This often has benefits,
although typically not of an essential nature. For example Lemma is stronger and
easier to prove in this case, but not essentially more useful.

To get an appropriate prime we could use the prime number theorem, but a much weaker
result works. Indeed, we use (a weak version of ) Bertrand’s postulatﬂ that there is always
a prime between n and O(n). This is easy enough to prove: first we need an upper bound
on the Chebychev function §(n). On the one hand every prime between r and 2r divides

25Bertrand’s postulate asserts that there is always a prime between n and 2n; in fact they are far more
common.
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2
(:) a least once and so

[logs n| loganl /041 —
(4.4) [Tre< I 1] »=< 1] ( o ) < 4Zi=0" "% — exp(O(n)).
p<n 1=0 2i<pg2itl =0

On the other hand the number of times a prime p divides n! is Y., |n/p'], and
n/p—O(1) < ) |n/p'] < n/p+ On/p?).

i>1

Hence

nlogn + O(n) =logn! = Z long L%J

p<n =1
log p
- n) + >,0(1)logp+ > O(n/p*) logp.
p<sn p p<sn p<n

Inserting the log of the bound 1) and the fact that Zpgn p~2logp = O wen r73?) =
O(1) into this and dividing by n gives

Z logp _ logn + O(1).

psn

This result is called Merten’s theorem and the weak version of Bertand’s postulate follows
immediately since the sum of (logp)/p for primes between n and Dn is then at least
log D — O(1) which is positive provided D is a sufficiently large absolute constant. That is
to say there is a prime between n and Dn = O(n).

5. SUMS OF INDEPENDENT RANDOM VARIABLES

We have spent considerable time developing the Fourier transform and examining basic
examples of its uses. At this point we shall introduce a new tool called measure concen-
tration and some variants which are very powerful. In particular they will help us revise
and improve much of our earlier work with some much stronger estimates.

Our starting point is sums of independent random variables which, in the spirit of the rest
of the notes, will be assumed based on a finite probability space. Suppose that X,..., X,
are independent with mean 0 and variance 1. We are interested in ). X; which has

EZ X; =0 and Var(Z Xi)=n

where the variance calculation is as a result of the X;s being (pair-wise) independent.
By Chebychev’s inequality we see that most of the mass of > . X, is concentrated in
[—C\/n, Cy/n]; indeed it gives

P(| 2, Xil/vn ¢ [-C.C) < 1/C*

There are now two questions about )., X;/y/n:
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(i) What does Y, X;/+/n look like inside the interval [—C,C]? Answers to this are
called local limit theorems.

(i) How rapidly does »}, X;/+4/n concentrate on the interval [—-C, C'|? Answers to this
go by various names such as concentration of measure.

Our interest is more in the second of these two questions.
At this point it is instructive to consider the prototypical example. Suppose that the
X;s above are identically distributed with P(X; = 1) = P(X; = —1) = 1/2. Then for r =n

(mod 2) we have
PQ,Xi=r) = 5 (02

Provided n — |r| — o0 as n — o0 we can use Stirling’s formula to get that

n nnJrl/Zefn /27.‘_
(n+1)/2 ((n + r)/2)n+r+0/2e=40)/2, 2 ((n — 1) /2)(n=r+1)/2e=(n=7)/2, /27

on+1 n2 (ntD)/2 /N2
 Vorn \n?2 —r2 n+r ’
so that

9 n2 (n+1)/2 n—r r/2
5.1 P X, = ~ _
(5.1) <ZZ: ") V21 <n2—r2) (n+r>

Initially we are looking for an upper bound on this in terms of r, and we begin by consid-
ering the range 0 < r < n/4. When this is the case we have

P(;Xi:r) _ 0((@)””(1—712—;“)7«/2)

= O(exp(3r?/4n) exp(—r?/(n + 1))

= Of(exp(—r%/20n))
since (1 —z)~! < exp(3x/2) whenever z € [0,1/3] and 1 — x < exp(—x) for all z € [0, ).
Of course, binomial coefficients are decreasing away from the centre and are symmetric so
we conclude that

]P’(Z X;=r1) = Oexp(—r?/320n)) = O(exp(—Q(r?/n))),

and hence summing gives an upper bound of
P(| ) Xi| > 1) = Oexp(=Q(r*/n))).

This bound is called a Chernoff-type bound and more information can be found in the clas-
sic text [Shi96] of Shiryaev. For comparison it is exponentially stronger than Chebychev’s
estimate, giving

(5.2) (] Z Xil/v/n ¢ [-C,C]) = O(exp(—Q(C?))).
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Of course Chebychev’s bound holds for any pairwise independent set of random variables,
whereas the estimate just proved is for the specific case of the distributions defined above.
It turns out, however, that results of this shape are true in much greater generality and
the key properties are three-fold: the X;s have mean 0; bounded L*; and are independent.

To prove this we start with a clever lemma. It is unlikely that the discovery of this
lemma was made with this proof, but it is a natural refinement of a proof.

Lemma 5.1. Suppose that Xi,...,X, € Ly(P) are independent random variables with
mean 0. Then

1
Bl exp(Y] Xo)| < exp(5 D 1XilRoqe)

i

Proof. Begin by noting that

E| exp(Z X;)| = Eexp(ReZ X;) = En exp(Re Xj;).
Now we have the elementary inequality exp(ty) < cosht + ysinht whenever ¢ € R and
-1<y<1,so

(5301 <E[ ] (cob e + 2

Sinh ||X7J|Loc(]p)> s

with the usual convention that ¢ !sinht is 1 if ¢ = 0. Since EX; = 0 we conclude that
ERe X; = 0 and so, by independence we pass E through the product, and get

E Re(X;
E| exp(Z X)) < H <cosh |1 X3 oo ey + ERe(X:)

sinh HXZHLOO P )
i [Xill oo e ®

- Hcosh ||XiHL°°(IP’)'

The result follows since cosh x < exp(2?/2). O

A rather general Chernoff-type bound follows immediately from this by a quadratic
optimisation.

Proposition 5.2. Suppose that X1, ..., X, are independent random variables with mean
0. Then if the X;s are real we have

P (\ ZXJ =>C /Z Xiioo(ﬂ],)> < 2exp(—C?/2) for all C = 0,

and if the X;s are complex we have

P (\ Yxi|=c ] Xﬂw@) < dexp(—C?/4) for all C = 0,
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Proof. Write S := /> || X; HLOO ) and let A be a non-negative real to be optimised later.
Apply the previous lemma to the variables A X1, ..., AX,, to get that

E| exp )\ZX < exp(A25%/2).

It now follows that

ReZX > CS) exp(ACS) = P(ARe Y X; = AC'S) exp(AC'S) < exp(A\>S?/2).

Thus solving the quadratic we put A = C'/S and get that
P(Re Y | X; > CS) < exp(—C?/2).

Similarly applying the above argument to the variables i" X1, ..., 1" X,, for r € {1,2, 3} tells
us that

P(+ ReZXZ- > CS),P(+ ImZXi > (0S) < exp(—C?/2),
and the result follows by the triangle inequality. Il

Note that the above argument significantly improves the constant in the exponent we
obtained in the bound (5.2). On the other hand, by returning to (5.1) we recall that for
X, independent with P(X; = 1) = P(X; = —1) = 1/2 and r ~ C'y/n we get

9 ng (n+1)/2 n—r r/2 9 )
P X,=1r)~ ~ —C*/2
(Zzl 7’) V2T <n2 —7“2) (n—i—r) V2™ exp( / )

provided C' = o(4/n). By summing over the range of r € [C'\/n, C\/n++/n/C] we conclude
that

P(|ZX1’| > 1) = QC™ exp(~C?/2))

so that the bound above is close to tightm
Our first application of this bound is in improving the estimates in Example [3.16]

Example 5.3 (The Fourier transform of random sets, Example contd.). As in Ex-
amples and suppose again that each x € G is placed in the set A independently
with probability a. Our aim is to show the previously promised statement that

—~ log |G\ 2
(5.3) sup [14(y)| = O ( |gG|| |) w.h.p.

v#04

26The tightness we have in mind here is in the constant of C? in the exponent, and must disappear as
C approaches y/n since P(| Y, X;| > n — 1) = 27"~ whereas exp(—C?/2) = exp(—n/2) in that case and
exp(—1/2) > 1/2.
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We start by fixing 7 # 0z and for each z € G let X, := (14(z) — a)y(x). The random
variables (X),eq are independent, have mean 0, and | X, | z»@) = max{l—o, a}. It follows
from Proposition [5.2] that

P(| 2 X,| = C/|G|max{l — a,a}) < 2exp(—C?/2).
xeG

But since v # 05 we have

Ta(y

= a7l 2 (1400) = = 1 3,

zeG zelG

and moreover max{l — a,a} < 1, so

P(|T4(v)| = C/\/|G]) < 2exp(—C?/2).

But then by the triangle inequality we get

P(sup [14(v)] = C/V/IG]) < 2(G| - 1) exp(~C?/2),

Y#04

and we can take C' = O(y/log|G|) so that (5.3) holds. It may be worth saying that even

this estimate is not best possible, and there are sets A with sup. 1a(y)| = o(|lG|2).
These sets are not typical in the sense that the upper bound above is tight up to a constant
for randomly chosen sets, but they can be constructed by more sophisticated random
arguments of Beck and Spencer (see [ASO8], §12.2]) or explicitly Rudin-Shapiro polynomials.

Example 5.4 (Improving the Behrend construction). As mentioned at the end of the
Behrend construction (Theorem [4.2)) with slightly more care one can construct a subset
Ac{l,..., N} containing no three-term arithmetic progressions with

N
|A| = Q " :
exp(24/21og, N) log"/* N

With our Chernoff-type estimates we are in a position to make this improvement. Recall
that we were considering the sets

Syi={xe{l,... M} : 22+ . 422 =r},

and noted by that there is some 7 such that |S,| = M¢/(dM?). We shall now show that
there is some r with that |S,| = Q(M¢//dM?) from which the claimed improvement
follows. To see this we consider the independent random variables (X;)L, defined by

P(X; = Zk2 — 1/M for all je{1,..., M}.
k 1
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These variables have mean 0 and | X;|| =@y = max{L S20 k% M2 — LM K2} < M2 Tt
follows from Proposition [5.2] that

d
P(| Y, Xl > CVdMY) < P(| Y Xi| > C\ | D1 Xi[20p) < 2exp(—C?/2).
i i i=1
It follows that we can pick C' = O(1) such that for at least 1/2 of z € {1,..., M}¢ we have
| M
2_ NV = O(VdMY);
X~ 3y 23 = OV,

equivalently for at least 1/2 of the points x € {1,..., M}? the sum Y, z7 comes from a
range of length O(vdM*) = O(v/dM?). By averaging we conclude that there is some r
with |S,| = Q(M?/v/dM?) as required.

It may be worth saying that on a careful examination the reader will see that we did not
really use the full power of the Chernoff bound; we could have made do with Chebychev’s
inequality, but conceptually we are thinking about the result as being a statement about
concentration.

In Proposition we looked at probabilities of the form

P(1 ), Xil = C, D 1Xil} e e,

whereas Chebychev’s bound looks at probabilities of the form

P(Y, Xl > C, [ Xl

since EX; = 0 implies that Var X; = | X;|3. - We should like to recover the situation and
to some extent we can in the Marcinkiewicz-Zygmund inequality. To understand this we
first need a lemma which relates Chernoff-type bounds to inequalities about LP-norms.

Lemma 5.5. Suppose that X is a random variable. Then the following are equivalent:
(1) (Chernoff-type bound) For all t € [0,0) we have

P(|X] = t]X]L2) = O(exp(=Q(t%))).
(i1) (Bounded LP-norm growth) For all p € [2,00) we have
[ X[ zo@) = O(PIX [ 22e))-

Proof. There is no loss of generality in proving this for random variables with | X2 = 1.
We start by showing that implies : let C' > 0 be the constant in the big-O of the
hypothesis and let ¢ > 0 be a constant to be optimised later. Note that

Dk 0 o0
P(|X| > t) exp(ct®?) < Eexp(c|X[*) = > EE|X|% Z (2C°K)F = Y O(cC?)

k=0 """ k=0 k=0
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Pick ¢ = Q(1/C?) such that the right hand side is O(1) so that P(|X| > t) exp(Q(t?)) =
O(1), and the result follows.

Secondly we show that implies . By nesting of norms it suffices to show for
even integers, and then we note that there is some ¢ > 0 such that

o] 0
X |25 :f 2t 1P| X]| > t)dt — O (f DJet2h-1 exp(—ct2)dt>.
0 0

We now proceed by parts to see that for » > 1 we have
a0

Q0
J t"exp(—ct®)dt = [t exp(—ctz)]go +c! J (r — 1)t" 2 exp(—ct?)dt
0 0

o0
= ¢! f (r — 1)t" 2 exp(—ct?)dt,
0
hence by induction we have HXHL% = O(c k)", O

The proof actually gives us that the constant in the Q2 in the first case is roughly the
reciprocal of the square of the constant in the big-O of the second case. This is not quite
true, but it is asymptotically for large p. For small p the big-O in the first hypothesis has
an effect.

As an aside, behind much of the above material is the fact that one can define a Banach
space of sub-gaussian random variables following Kahane [Kah60] to be the real (we made
no such assumption above) random variables such that there is some ¢ > 0 for which

Eexp(AX) < exp(c®A?/2) for all X € R;

the norm of X is the smallest ¢ such that this holds. The fact that this is a norm is not
completely trivial. Homogeneity is easy, but the triangle inequality requires a little more
work.

An examination of Lemma shows that we actually proved that ). X; is sub-gaussian

with norm at most , />, ]\XiH2w(]P,)

As a corollary of Proposition and Lemma we have Khintchine’s inequality.

Proposition 5.6 (Khintchine’s inequality). Suppose that p € [2,0) and X,..., X, are
random variables with P(X; = a;) = P(X; = —a;) = 1/2. Then

1/2
[ ZXiHLP(P) =0 |Vp (Z ‘XiH%?(Jp))
This can be bootstrapped to the following.

Theorem 5.7 (Marcinkiewicz-Zygmund inequality). Suppose that p € [2,90) and we are
given independent random variables Xy, ..., X, € LP(P) with EY,. X; = 0. Then

1/2
”ZXZ'HLP(IP’) <\fHZ‘X‘ HL/p/2 p))
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Proof. For complex random variables the result follows from the real case by taking real
and imaginary parts and applying the triangle inequality.

We now proceed in two parts. First we prove the inequality with the X;s assumed
symmetricﬂ (whence the mean of each X; is automatically 0). Partition the probability
space () into sets €,...,Qy (and write P; for the induced measure) such that all X;s are
symmetric and take at most 2 values on each 2;. Then by Khintchine’s inequality we have

that
2
H Z X5, (p)"?| Z Xl e,

Summing over j and takmg roots gives the result in the symmetric case.

Now we suppose that the variables X,...,X,, are given and Yj,...,Y,, are such that
X;~Y, and X4,...,X,,Y],....Y, are independent. We now apply the symmetric result
to the variables X; —Y; to get that

1/2
|25 (Xi = Yi)lznexey = (fo!X Yl pxp)

1/2
(w DXl ))
But then it follows from nesting of norms and the fact that EY . Y; = 0 that

[ ZXiHLP(]P’) = | ZXi — ]EZ Yillee) < | Z (Xi = Y)) | o exp),

and the result is proved. O

For random variables satisfying the hypotheses of Khintchine’s inequality the LP/2-
norm on the right is an L'-norm, and there is something close to this true for variables
in the generality considered above called Rosenthal’s inequality. Indeed, suppose that
Xi,...,X, € L?(P) are independent and EY . X; = 0. Then

1/p
(5.4) 1. Xillo@ = O lo—max <2X\ ) D Xill ey

For p large the second term in the max takes over and we recover a strengthening of
Khintchine’s inequality. Of course, precisely when this takes over depends on the specific
variables X; and how large their LP mass is compared to their L? — that is how often they
take very large values.

The p dependence in (5.4]) is best possible (up to the precise constant; see [JSZ85] for
details), and it is weaker than that for the Marcinkiewicz-Zygmund inequality. This fits
with the fact that the critical distributions for Rosenthal’s inequality are Poisson whereas
for the Marcinkiewicz-Zygmund inequality they are Gaussians.

2TThat is when X; ~ —X;; equivalently P(X; = a) = P(X; = —a) for all a € R.
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5.8. Constants in Khintchine’s inequality. The example we considered after Proposi-
tion to show that nothing much stronger is true also applies to show that Khintchine’s
inequality is best possible up to the constants. Of course we are not, for the most part,
actually interested in the specific constants although they are known (see [Haa81] for the
original proof, or [NP0O0] for a very accessible and more recent proof).

It is should be said that the price we pay for the a;s being arbitrary in Khintchine’s
inequality is that all bar one of them could be zero (or just very small) so that the term
we are looking to bound is dominated by one random variable. This shows us that while
for p € [2,0) we have

1/2
1> Xille@y = 1) Xillo@) = (Z ||Xz‘|i2(p)>

by nesting of norms, this cannot be improved and so in particular there is no matching
lower bound to Khitchine’s inequality.

We have concentrated on comparing the LP-norm with the L?-norm for p > 2 so far, but
things can also be said for p € [1,2]. On the one hand

1Y Xilpe < 1), Xl
i i
by nesting of norms; on the other it turns out that we have

(5.5) | Xillzeey = O D, Xil wwy)-

To see this note by log-convexity of LP-norms that
4/3 2/3
” Z Xi”%%l?) < H Z XiHL/‘l(]P’)” Z XiHL/l(]p)a

and then apply Khintchine’s inequality for p = 4 and rearrange. As a result of (5.5 and
the remarks immediately before it we conclude that

1) Xiloey < 1Y Xileey = OBl Y Xillae) for all p e [1,90)

which is often the result that is actually called Khintchine’s inequality in the literature;
the result we call Khintchine’s inequality is seen as a special case.

There is a rather nice argument due to Latata and Oleszkiewicz [LO94] using the Fourier
transform which actually gives the correct constant in . To get a lower bound on the
constant consider X; and X, independent random variables with mean 0 taking the values
1 and —1. Then

| X1 + Xl @) = 1 and | X + Xo| 2 = V2,

so the constant is at least 4/2. This turns out to be the worst case.
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Theorem 5.9. Suppose that Xi,..., X, are independent random variables with P(X; =
a;) = P(X; = —a;) = 1/2. Then

|23 Xillzewy < V20 ) Xil oy

Proof. We put G := (Z/2Z)"™ which we think of as endowed with Haar probability measure,
vi(z) == (—1)*" and

fx) =

i=1
Now by symmetry the value of f(z) and f(z+ >, x;) are the same and so for all ¢ we have

J? (7i) = 0.

The Laplacian of f is then defined via the measure v := 3 3. (0o, — d.,) where the e;s
are the canonical basis vectors. This means the Laplacian of f is f = v.

Now, by the triangle inequality we see that

frule) = §<nf<x>2
”Zaﬁ(x) - QZCM%(%)

i

Z a;v;(x) — 2a;vi()

1
< 5 <Tlf(£l:) -

) - s

On the other hand the Fourier transform of v is easy to compute:

N 1
D(y) =] 5L =7(e)) = hl,
that is to say it is the number of 1s in v when it is written with respect to the standard
basis.

Combining this information with Parseval’s theorem we have

1) = < * v Poraey = Y WIFOIP =2 DT IFO)P = 201 £ 122y — 1F(02)),
ve@ [v=2

~

and the result follows on rearranging since f > 0 and so f(0z) = | f|L1(c)- O

It should be remarked that this proof extends to random variables taking values in an
arbitrary normed space; for complex values the result was already known but without such
an elegant proof.

5.10. Harmonic analysis of thin sets: Rudin’s inequality. Rudin’s inequality is an
extension of Khintchine’s inequality to the case when the random variables are characters
which do not necessarily need to be totally independent. Before starting it is useful to
consider the example of G := (Z/2Z)" endowed with Haar probability measure. The dual

group G can be thought of in two ways:
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(i) (Probabilistically) The characters in G are random variables on G and there is a

notion of statistical independence for a sequence of characters vy,...,7, € G ;
(ii) (Algebraically) The group G is naturally a vector space over Fy and there is a
notion of algebraic independence for a sequence of characters vy,...,v, € G.

It turns out that in this setting these two notions are equivalent.ﬁ
In a general finite Abelian group G the algebraic notion of independence has a very
useful extension called dissociativity which we now define.

Definition 5.11 (Dissociativity). Suppose that G is a finite Abelian group. We say that
S < G is dissociated if

ZESSIOG and e€ {—1,0,1}° = ¢ =0.
seS

Moreover, we write

Span(S) := {Z €5 €€ {—1,0,1}°}.

It may be useful to note that a set in G = (Z/2Z)" is dissociated if and only if it is
independent; in G = Z/pZ this is not the case and an example of a dissociated set of
size greater than 1 (that being the largest size of a genuinely independent set) is given by
{1,2,4,...,2"} for r < logs |G]|.

Algebraically a set is contained in the space generated by any maximal independent
subset. With dissociativity and span we have a similar relationship.

Lemma 5.12. Suppose that S is a mazimal dissociated subset of T. Then T < Span(S).

Proof. The proof is as for the algebraic version of this: suppose that t € T\S. Then
adjoining t to S violates the dissociativity condition since otherwise we would contradict
the maximality of S. Thus there is some € € {—1,0, 1} with ¢, # 0 such that

€t + 2 €ss = O¢.
seS

It follows that ¢ € Span(S). On the other hand S < Span(S) trivially and so the lemma is
proved. O

28Gince the characters v are homomorphisms we see that any ¥, z € {z : v(x) = w., for all v € A’} have
v(y — z) = 1 for all v € A" and so the set is just a translate of the annihilator of A’. Thus A is statistically
independent iff
Po(AY) = [ Pa({y}h) for all A’ < A.
yeN!

Now, if A is algebraically independent then none of the vs in A are identically 1 and so Pg({y}*) = 1/2
for all vy € A. On the other hand (A’+)! is the subspace generated by A’ which has size 2¢ since A’ is
independent. Hence Pg(A'*) = Po(((A'H)+1)1) = 27¢ and we see that A is statistically independent.

On the other hand if A is statistically independent then by a similar argument the subspace generated
by A has size 2/* and hence is |A|-dimensional. It follows that A is algebraically independent.
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Dissociativity is really a property of sets in groups endowed with Haar counting measure.
In the example at the start of the subsection where we considered G = (Z/2Z)" endowed
with Haar probability measure, but that meant that G was endowed with Haar counting
measure and so was the natural setting for dissociativity.

It turns out that when a set of characters is dissociated we have an analogue of Khint-
chine’s inequality éand Chernoff’s bound) which can be established in the same way as the
Chernoff bounds

Theorem 5.13 (Rudin’s inequality). Suppose that I is a dissociated set of characters and
€ [2,0). Then
1Y 0@y = O(WD| fleeqy) for all f e (T).

Proof. We proceed as in the proof of Lemma . Suppose that f € ¢*(T') and begin by
noting that

Eexp(Re f*) = E] [ exp(Re(f(7)7))-

vyel
As before we see that

Eexp(Re f¥) < EH (cosh lf(] + w sinh |f(fy)|>

el |f<7)|
_ cos sinh | f()] (f(1)7 + F()7)
- (H b )H< o [fC)] 217) )

with the obvious convention that the factor is 1 if f(y) = 0. Now, when we multiply out
the second product on the right we get terms of the form

f(y)sinh|f(v)] f(y)sinh | f(y
(5:6) L 570 reo 70 H2!f()cosh|f 117

yeS ~yeT yeS ~yeT

where S and T" are disjoint subsets of I'. By dissociativity we have
[T7-[[7=0¢if and only it S =T = &,
ves ~eT

since S and T are disjoint subsets of I'. On the other hand if v # 0z then Ey = 0 and
hence the expectation of (5.6]) is 0 unless S = T' = ¢ which which case we see that it is 1.
It follows that

Eexp(Re /") < (H cosh |f(7)|> exp(3 Y1702
~yel fyel"
We now have a conclusion of the shape of Lemma/[5.1]and so we could follow the arguments

of Proposition and then Lemma to get the desired conclusion. We shall proceed

29The proof below is different from the one lectured, but seems easier to understand given the difficulties
we had with dissociativity.
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directly instead: suppose that A € R is arbitrary. Then
A2( Re 1
2, G = EenRe)) + exp(Re(-A))

A f 1

2”n'

1 e}
< eXP(§)\2||fH§2( Z

By equating coefficients of A and then taking 2n-th roots we conclude that
(271) 1/2n
IRe £ < ( Il

2nn!
The result follows for even integers by the triangle inequality and applying this for f and
1f. Nesting of norms then completes the proof. O

It is worth noting that Rudin’s inequality actually is Khintchine’s inequality when G =
(Z/2Z)™ since then being dissociated is the same as being algebraically independent which,
as we noted earlier, is the same as being statistically independent.

Dissociated sets are examples of Sidon sets. The first basic result about Sidon sets is
Rudin’s inequality, and that along with some more basic results may be found in [Rud90,
§5.7]. There is also the dedicated book [LR75] of Lépez and Ross and some material in
the book |[GM79] of Graham and McGehee, although both of these are harder to find.

There is also one further remark relating to §5.8| on the constants in Khintchine’s in-
equality which may be of interest. Contained in the preceding proof of Rudin’s inequality
was a version of Khintchine’s inequality for real random variables with a particularly good
constant: we showed that

1/2n 1/2
o (2 P
HZ zHLQ"(lP’)\ o) ZH 1HL2(IP>) :

It turns out that this constant is tight. Of course, we use nesting of norms to deduce
Khintchine’s inequality for LP-norms where p is not an even integer, and so it will not be
surprising that for these other values of p the constants are not tight. In fact for other
values of p € [2,00) the tight inequality is

1/2
” Z Xz'HLP( (2(;0 2)/2 (( (3/;)/2)) <Z Xiiz(]p)> )

which coincides with the above for p an even integer. The critical example arises by taking
the X;s to be identically distributed.

A Warning /A In number theory the term Sidon set is used for something also called a
Bs[1]-set. It refers to any set of positive integers A such that ay n € N has at most one
representation n = a + b with a,b€ A and a < b. The reader should compare this with the
condition of having no proper additive quadruples considered in Proposition[1.5. In general
these number theoretic Sidon sets are much bigger than analytic Sidon sets.
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5.14. Application: structure of the large spectrum. We have often found ourselves
with some A < G of density «, examining the set of characters at which its Fourier
transform is largdﬂ o
I:={yeG:|1a(7)| = ea}.

There are two trivial pieces of structural information about I':

(i) T is symmetric since 14 is real;

(ii) 04 € I since 14 is non-negative.
Moreover, we have the so-called ‘Parseval bound’ which says thaﬂ
(5.7) T <e?al.

The question we now consider is whether we can say anything more about the structure of
the set I'. It turns out when A has density tending to 0 we can and we have a celebrated
result of Chang [Cha02].

Theorem 5.15 (Chang’s theorerll). é‘\uppose that A is a subset of G of density a > 0 and
[ is a dissociated subset of {y € G : |14(y)| = ea}. Then
IT| = O(e ?loga™).
Proof. Given such a I', by Rudin’s inequality the operator
T: () — LP(G); f = ¥
has norm O(,/p). It follows that its adjoint 7 also has norm O(,/p), but a short calcula-
tionﬁ shows us that the adjoint is just the restriction of the Fourier transform:

T*: 17(G) = ()i f = flr
where 1/p+ 1/p’ = 1. It follows that
Dl(ea)” < D TaMP = [T*1alZery = OWl1al30 ) = O(pa™™) = a*O(pa~?).
~el
We optimise this by setting p = 2 +loga~! and arrive at the result on rearranging. U
Chang’s theorem has a huge number of applications and a number of proofs. When

comparing it with the Parseval bound ([5.7)) it should be clear that we gain when oo — 0.
We now turn to a sample application where we improve the dependencies in Theorem

4. 10l

Theorem 5.16 (Theorem [4.10, improved). Suppose that A < {1,...,N} has size aN.
Then A+ A+ A contains an arithmetic progression of length Q(a3+0(1)NQ(a2+0(1))).

30As usual, since we are considering density we regard G as endowed with Haar probability measure.
31 The proof is simply the usual application of Parseval’s theorem to show us that

()T < Y ITa()P < ) TP = .

ver e

328imply check that Tgyrza = <T* f, 900 for all fe Lp/(G) and g € ¢*(T).
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Sketch proof. We proceed as in the proof before to get a set A’ (which is morally the same
as the set A), a set

L= {y#0g: [la(7)| = a”/3},
and an element zy such that for all y € Bohr(T', o//3) we have
1A’ % 1A’ * 1A’($0 + y) > 0.

Let A < I' be maximal dissociated and suppose that y € Bohr(A, o//3|A[). Then by Lemma
we have that I' = Span(A) and so given v € I there is some € € {—1,0,1}* such that
v = hea A?. Thus, by the triangle inequality
) =1 =] A ) = 11 < D3 A () = 1 < [AL(a//3]A]) = o'/3,
AeA AeA

and hence Bohr(A,«//3|A]) = Bohr(I',a//3). Now by Chang’s theorem we have the
bound |A| = O(a/~?loga’™!) and the result now follows from Lemma applied to
Bohr(A, o/ /3|A]). O

In fact it is possible to use the Marcinkiewicz-Zygmund inequality in a rather clever way
to improve this further and get an arithmetic progression of length Q(a®® N """y " The

details of this may be found in [HenI2l Theorem 1.5] and make use of the rather powerful
techniques of Croot and Sisask as developed in [CS10] and |JCLS11].

5.17. Application: limitations on the structure of the large spectrum. In the
same setting as above we can ask about what happens if & = Q(1); in this case Chang’s
bound is no better than Parseval’s bound since ™' = O(1) and loga™ = O(1). One
might be hopeful since 1% = 1,4 and so

La+1a(y) = La(y) for all y € G,

which looks like it places restrictions on what ﬁ can look like. It turns out somewhat
surprisingly that it does not significantly impact the modulus, and we have the following
theorem.

Theorem 5.18. Suppose that I' < Gisa symmetric neighbourhood of Oy of size k. Then
there is a set A < G of density Q(1) such that

Ta(0)| = Qk™"2) for all yeT
provided k is sufficiently small.ﬁ

We prove this in two parts. First we need a lemma which shows that L* functions are
much the same as sets.

Lemma 5.19. Suppose that f € C(G) is a real-valued function with |h|io@) < M. Then
there is some set A < G with Pg(A) = Q(1/M) and

—~ B’y log |G

1/2
) for all v # 0g.

33Taking k = o(|G|/log |G|) works and this can hardly be said to be a major restriction.
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Sketch proof. The argument is essentially the same as that for Example[5.3] We pick z € G
with independently with probability (h(z) +2M)/3M and let A be the resulting set. O

With this information at hand we have the following theorem of de Leeuw, Kahane and
Katznelson [dLKKT77].
Theorem 5.20. Suppose that [ € 62(@). Then there is some real-valued h € C(G) such
that |h(v)| = |f(7)] for all v € G and || =@ = O(|f]z@))-
Proof. If f is symmetric then it is easy to check that the argument below produces a real
function, and if it is not symmetric then we replace f by v — |f(v)| + |f(—7)| (which is
symmetric) and apply the argument to that from which the result follows (with slightly
worse constants).

Our starting point, then, is a ‘99%’ version of the conclusion which we distill into the
following claim which illustrates the power of Khintchine’s inequality already for p = 4.

Claim. Given ke (2(G) and n € (0,1/2] there is some choice of signs € on the support of
k (meaning € : supp k — {—1,1}) and a function g with

15— ekl 2@y < k@) and lglie@ = O [kl p@))-
Proof. We suppose that (€,)esuppr are independent and P(e, = —1) = P(e, = 1) = 1/2,

and examine
ge(x) = D ek(y)v(x).

yesupp k

By linearity, uniqueness and Fourier inversion we have g.(y) = e,k(7) for all v € G. Now
|v(x)] =1 for all x € G and so

kg = SR = ) k()P
'yeé ~yesupp k

for all z € G. It follows by Khintchine’s inequality (for fixed z € G with random variables
X, = e,k(7)v(z)) that we have

Elgel4 ey = EaecElg ()] = EaccOIkl4 )
It follows that we can make a choice of signs € (supported on supp k) such that
l9l4a) = ORI )
Finally we let

ge(x) if |ge(x)| < Ok )2
o(e) = { (2) if lge(o)| < Clkl gy
0 otherwise,

and note that
9~ 9el326) (ClElmy)* = ORI ).
By Parseval’s theorem and our earlier calculation of g, we conclude that

lg — ekl 2@y = OCT k] @))-
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Optimising we can take C' = O(n~') such that the right hand side is at most k[ e @) and
the claim is proved. O

We define functions hq, ..., h, iteratively as better and better approximations to our
eventual function A. We think of them as ‘almost—majorantsﬁ and to measure their quality
we introduce a sequence of positive real parameters (J;); and sets

D= {ye G lh()l < (1 +0)f0I

this set is the set where f;« fails to ‘robustly majorise’ f. A sensible choice for the d;s
emerges from the proof below.

We write f, := f|r, and the plan is to use the above claim to produce a function g, such
that |g,| is a good approximation to |f,| and then add this to h, to get h,,1. The hope is
that this new function is ‘better’ in the sense that I',,; is smaller than I',.

We let (1;); be another sequence of parameters which will be optimised later. Applying
the claim to 4f, with parameter 7, we get g, such that

19: = defill ey < melfill ey and lgrllze) = Ot M il

and then put h,,q1 := h, + g.. Suppose that v € I',,1. Then we have two possibilities:

(i) v € I';: which is to say that v was ‘bad’ for h, and we have not succeeded in
dealing with it in h,,;. In this case we have

G- < Beaa ()] + e (V)] < 2+ 8 + 82) [ £ ()],

and so

|- (7) — de, fr(7)] A fF )] = 19-(7)]

(2 =0 = )l F(V)] = (0r = Grea) | F (V)]

This last inequality holds if we take 6, < 1 for all » which we can certainly do and
is, in any case, very weak. It can easily be replaced with a lower bound of |f(7)]
for example, but we make the estimate in light of the next case.

(ii) v ¢ I',: which is to say that v was ‘good’ but adding in our new approximation
has made things worse and it is now ‘bad’. In this case we have

19:(V = [he(D)] = [hesa (7))
> (L+0)If() = @+ 6l f (] = 0 = )| f ()]
Of course f,.(y) = 0 and so it follows that
19- () — dex fr (V)] = (6 = Grsn)[F (7).
In both cases we have shown the same inequality and so we conclude that

By = 33 DR < G = 80) G — e g,

YELr 41

=
=

< (57“ - 5r+1)_2777%“f7‘H§2(@) = (57" - 57‘+1)_27772’||f”?2(rr)'

34A function F majorises a function G if F(x) > G(x) for all z.
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Now, since G is finite, f has a minimum non-zero modulus and so taking 7, := (8, —0,11)/2
we see that after a finite number, say r, iterations I', = ¢J at which point we terminate

and put h := h,. Since I, is empty we certainly have that h majorises f; it remains to
note that

[Pl ey = O (Z 2710 — 5i+1>1> 1f 12
i=1

For the right hand side to converge we can take, for example, §; = 1/i* and the result is
proved. [l

It should be noted that the proof only really needed Khintchine’s inequality for some
p > 2, although since we deduced Khintchine for p € (2,4) from Khintchine for p = 4 this
is not immediately useful. It turns out, however, that there is a wonderful generalisation
due to Nazarov [Naz97] which takes an even weaker input.

Suppose that (¢;); of unit vectors in L (v) satisfying an L'(v) —¢* Khintchine inequality,
that is to say such that

J
for all real sequences (a;);. Then Nazarov proved that for any sequence (f;); of positive
numbers there is a function g € L*(v) with

l9]l 22wy = O(M?| f|l2) and [{¢;, g)r20| = f; for all j.

In our case the ¢;s were characters and the f;s were the values of f. Of course when the
¢;s are characters, (5.17)) follows from Khintchine’s inequality for any p > 2 by the same
argument we used to deduce (5.5)), but it is a strictly weaker assumption.

Proof of Theorem[5.18, We simply take f = 1p which is symmetric and apply Theorem
to get a function h. Lemma then completes the argument. [l

A Warning /\ Note that the function produced in Theorem 1$ a majorant not an
approzimation, so that its Fourier transform may be large at more characters than just
those at which f is large. In particular this result can be used to find counter-ezamples of
the form ‘there are continuous functions whose large spectrum contains the following bad
structure’, but is not useful for showing that ‘there are continuous functions whose large
spectrum does not contain the following good structure’.

1/2
IIZaj¢j\|L1(V) <M (Z a?)
7
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