
APPLICATIONS OF COMMUTATIVE HARMONIC ANALYSIS

TOM SANDERS

1. Introduction

In this set of notes we shall investigate applications of commutative harmonic analysis,
which for us will mean the Fourier transform on commutative groups. The focus will be
on examples, and these will come from a range of settings including functional analysis,
number theory, and probability.

Most of what we do will focus on quantitative estimates related to finite groups, and
in light of this there is no one specific reference to be recommended. There are a number
which give a flavour of different aspects of what we are interested in, and we shall try give
references as we proceed.

Before we introduce the Fourier transform it is worth providing some motivation for its
definition. For us this motivation will come from convolution. Convolution is something
which will have come up in a variety of settings and is an exceptionally useful mathematical
tool. We shall begin with some examples and then extend it to the more general setting
in which we are interested.

Definition 1.1 (Convolution on Z). Given two functions f, g P `1pZq, their convolution is
the function f ˚ g defined by

f ˚ gpxq :“
ÿ

yPZ

fpyqgpx´ yq for all x P Z.

It is immediate from the triangle inequality that this is well-defined in the sense that the
left hand side is finite.

1.2. Convolution and sumsets. There are various reasons that convolution on the in-
tegers is useful. One is that it can be used to study sumsets: given two sets of integers A
and B we write A`B for their sumset defined by

A`B :“ ta` b : a P A, b P Bu.

A number of questions in number theory can be phrased in terms of sumsets.

Example 1.3 (Goldbach’s conjecture and Lagrange’s theorem). If we write P for the set
of prime numbers then Goldbach’s conjecture is simply the statement that

P ` P Ą 2Nzt2u.
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Similarly, if we write Q for the set of (non-negative) squares then Lagrange’s theorem is
simply the statement that

Q`Q`Q`Q “ N0.

Convolution can be used to help understand sumsets (and so called iterated sumsets,
A` A` A, &c.) because of the relationship

(1.1) A`B “ supp 1A ˚ 1B,

where 1A and 1B are the indicator functions on A and B respectively. Roughly, if we want
to show that some element is contained in A`B, then it is sufficient to show that 1A ˚ 1B
is non-zero on this element.

1.4. Convolution and representation functions. Since sets are particularly important
to us, it is also instructive to think about what the convolution of their indicator functions
is in words. Suppose that A and B are finite sets of integers. Then

1A ˚ 1Bpxq “ |tpa, bq P AˆB : a` b “ xu|

“ ‘The number of ways of writing x “ a` b with a P A, b P B.1

We shall be interested in showing the existence of certain structures in sets or sumsets. As
an example of a structure we might be interested in, a quadruple of integers px1, x2, x3, x4q

is called an additive quadruple if

x1 ` x2 “ x3 ` x4.

One of the basic ways to show that a such a structure is present in a set is to try to count
copies of it, and the next proposition does exactly that.

Proposition 1.5. Suppose that A Ă t1, . . . , Nu is such that there are no four distinct
elements x1, x2, x3, x4 P A forming an additive quadruple. Then

|A| “ OpN1{2
q.

Proof. First note that if x “ px1, x2, x3, x4q is an additive quadruple in which at least two
elements are the same then either x1 “ x2, x1 “ x3, x1 “ x4, or x3 “ x4. (Note that if
x1 “ x3 then x2 “ x4 since x is an additive quadruple, and similarly if x1 “ x4.) There
are therefore at most 4|A|2 such quadruples in A.

On the other hand there is an exact formula for Q, the number of additive quadruples
in A, in terms of convolution. As this is the first time we are doing such a calculation we
shall go through it in somewhat more detail than we shall in future.

Q “
ÿ

x1`x2“x3`x4

1Apx1q1Apx2q1Apx3q1Apx4q

“
ÿ

yPZ

˜

ÿ

x1`x2“y

1Apx1q1Apx2q

¸˜

ÿ

x3`x4“y

1Apx3q1Apx4q

¸

“
ÿ

yPZ

˜

ÿ

x`z“y

1Apxq1Apzq

¸2

“
ÿ

yPZ

1A ˚ 1Apyq
2
“ }1A ˚ 1A}

2
`2pZq.
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At this point we want a lower bound on the right hand side and to get this we apply the
Cauchy-Schwarz inequality1:

|A` A|}1A ˚ 1A}
2
`2pZq “ }1A`A}

2
`2pZq}1A ˚ 1A}

2
`2pZq ě }1A ˚ 1A}

2
`1pZq “ |A|

4.

Since A Ă t1, . . . , Nu we have that

|A` A| ď |t1, . . . , Nu ` t1, . . . , Nu| “ 2N ´ 1,

and so
p2N ´ 1q.p4|A|2q ě Q ě |A|4,

and the proposition follows. �

Up to the implied constant this proposition is best possible, but it is worth thinking
about what happens if we replace the equation x1 ` x2 “ x3 ` x4 by x1 ` x2 “ 2x3.
That is to say, we ask what happens if A Ă t1, . . . , Nu contains no three-term arithmetic
progressions with all elements distinct. It is still true that |A| “ opNq but it is much harder
to show. We shall investigate this question more thoroughly in §4 of the notes.

Returning to convolution in general, it has also come up in another setting: on the reals.

Definition 1.6 (Convolution on R). Given two functions f, g P L1pRq, their convolution
is the function f ˚ g defined by

f ˚ gpxq :“

ż

fpyqgpx´ yqdy for almost all x P R.

Here, of course, the definition is almost everywhere rather than point-wise and this follows
from a special case of Young’s inequality: by Tonelli’s theorem we have that

}f ˚ g}L1pRq “

ż

|f ˚ gpxq|dx ď

ż ż

|fpyqgpx´ yq|dydx

“

ż

|fpyq|

ż

|gpx´ yq|dxdy “ }f}L1pRq}g}L1pRq.

In light of this L1pRq forms an associative (commutative) algebra2 under convolution.
We happen to be taking care here by applying Tonelli’s theorem. The notes will move

to make things largely finite quite soon at which point these concerns will take a different
form.

1Inequalities should only be applied when we expect to be close to the case of equality; here we are in
this situation. We are applying Cauchy-Schwarz to the inner product of 1A`A with 1A ˚ 1A to get

x1A`A, 1A ˚ 1Ay
2
`2pZq ď }1A`A}

2
`2pZq}1A ˚ 1A}

2
`2pZq,

and this is close to equality when 1A`A is ‘close to’ a (scalar multiple of) 1A ˚ 1A. Since A has no additive
quadruples with all elements distinct one sees that 1A ˚ 1Apxq only takes the values 0, 1, 2 or 3. This
means that we have the inequality

1A`A ď 1A ˚ 1A ď 3.1A`A,

which shows that 1A`A is ‘close to’ 1A ˚ 1A as desired, and hence that our application of Cauchy-Schwarz
was sensible.

2Recall that an associative algebra is just a ring whose additive group is a vector space over a field K
and for which the ring multiplication is K-bilinear.
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It may be instructive to have a concrete example of convolution in action.

Example 1.7 (Convolution of intervals). Suppose that L ě 1, and consider the convolution
of 1r0,Ls and 1r0,1s. We get that

1r0,Ls ˚ 1r0,1spxq “ µpr0, Ls X px´ r0, 1sqq “

$

’

’

’

&

’

’

’

%

x if 0 ď x ď 1

1 if 1 ď x ď L

L` 1´ x if L ď x ď L` 1

0 otherwise.

It is probably most helpful to draw this. A useful quick check on the particular parameters
can be made by integrating the function and verifying the identity

ż

f ˚ gpxqdx “

ż

fpyqdy

ż

gpzqdz.

In this case the right hand side is µpr0, 1sqµpr0, Lsq “ L; the left can be checked from the
picture.

At this point we should properly introduce measures on R. Were we to do this we
should proceed via the Riesz representation theorem but since we shall not need much of
the theory we shall content ourselves with probability density functions.

Definition 1.8 (Probability density functions on R). Given an open bounded set S Ă R
we write fS for the function µpSq´11S; this is the uniform probability density function
supported on S.

1.9. Convolution and smoothing. Convolving has the effect of ‘smoothing’ functions
on R. A small illustration of this can be seen in Example 1.7 where the convolution of two
step functions produced a continuous function. It turns out that more is true and that
each time we convolve we ‘increase the differentiability class’ of a function.

Recall that CkpRq is the space of k-times continuously differentiable complex-valued
functions on R; in particular C0pRq “ CpRq, the space of continuous complex-valued
functions on R.

The following proposition is just a simple application of (the proof of) the Fundamental
Theorem of Calculus.

Proposition 1.10. Suppose that g P CkpRqXL1pRq and I Ă R is an open bounded interval.
Then g ˚ fI P C

k`1pRq X L1pRq.

Proof. The fact that g ˚ fI P L
1pRq follows from the trivial instance of Young’s inequality

proved in Definition 1.6, so the content of the proposition is in establishing the differentia-
bility.
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We put I “ pa, bq for some a, b P R and note that3

g ˚ fIpx` hq “
1

µpIq

ż

gpyq1Ipx` h´ yqdy

“
1

µpIq

ż

gpyqp1Ipx` h´ yq ´ 1Ipx´ yqqdy ` g ˚ fIpxq

“
1

µpIq

ż x`h´a

x´a

gpyqdy ´
1

µpIq

ż x`h´b

x´b

gpyqdy ` g ˚ fIpxq.

Since g is continuous, for any z P R we have4

ż z`h

z

gpyqdy “ hpgpzq ` og,z;hÑ0p1qq,

and it follows that

pg ˚ fIq
1
pxq “

1

µpIq
pgpx´ aq ´ gpx´ bqq.

Since CkpRq is closed under translation, addition and scalar multiplication we conclude
that the right hand side is an element of CkpRq and the result follows. �

As with much of what we do in these notes, the above proposition has not been proved in
maximal generality. In fact we shall tend to prove results in the least generality illustrating
the main idea(s).

As we have already seen (in, for example, Definition 1.1) we can convolve in settings
where there is no non-trivial differential structure and in light of the above proposition we
shall import the intuitive notion of smoothness into other settings through convolution.

One application of Proposition 1.10 is to show that convolutions can be used to make
bump functions. Bump functions are incredibly useful so it is worth a short detour to
construct them.

Example 1.11 (Bump functions). A bump function is a non-zero complex-valued, com-
pactly supported, infinitely differentiable function on R. The existence of bump functions
is not immediately obvious and often they are constructed by the introduction of an aux-
iliary function such as expp´1{xq1r0,8qpxq. It turns out that we can use convolution to do
this quite naturally.

The basic idea is that by Proposition 1.10 each time we convolve with an interval we
increase the differentiability class of a function, so we should like to convolve an ‘infinite’
number of times. Of course, each time we convolve the support of the result is likely to
grow by (the real analogue of) (1.1). However, if we take an infinite sequence of intervals

3Since we are (essentially) using the Fundamental Theorem of Calculus the integrals are morally with
respect to differential forms rather than measures. In particular

şv

u
kpzqdz “ ´

şu

v
kpzqdz, which we mention

since h may be negative.
4As a quick notational remark we recall that oc1,...,cn;xÑzp1q denotes a quantity which tends to 0 as

xÑ z in a way which may depend on c1, . . . , cn, and similarly for big-O.
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where the sum of their widths is bounded then the support will remain compact; this, then,
is the plan.5

Suppose that pwnqně1 is a sequence of positive reals such that
ř

ně1wn “ 1 (for example

take wn “ 2´n), and let In “ p0, wnq. For m ď n we consider6 the functions

gm,n :“ 1r0,2s ˚ 1r0,1s ˚ fIm ˚ ¨ ¨ ¨ ˚ fIn .

Since
ř

ně1wn “ 1 we have (in light of (the real analogue of) (1.1)) that

supp fIm ˚ ¨ ¨ ¨ ˚ fIn Ă p0, wmq ` ¨ ¨ ¨ ` p0, wnq “ p0,
n
ÿ

i“m

wiq Ă p0, 1q.

It then follows from Example 1.7 (and the fact that convolution is associative) that

gm,np2q “

ż

1r0,2s ˚ 1r0,1spxqfIm ˚ ¨ ¨ ¨ ˚ fInp2´ xqdx “ 1,

supp gm,n Ă r0, 2s ` r0, 1s ` supp fIm ˚ ¨ ¨ ¨ ˚ fIn Ă p0, 4q,

and (since convolution is commutative) that

(1.3) g1,n “ gm,n ˚ fI1 ˚ ¨ ¨ ¨ ˚ fIm´1 .

We now have a couple of key claims.

Claim. The functions gm,n are 1-Lipschitz.

Proof of Claim. From Example 1.7 it is clear that h :“ 1r0,2s ˚1r0,1s is 1-Lipschitz. But then

|gm,npxq ´ gm,npyq| “

ˇ

ˇ

ˇ

ˇ

ż

phpx´ zq ´ hpy ´ zqqfIm ˚ ¨ ¨ ¨ ˚ fInpzqdz

ˇ

ˇ

ˇ

ˇ

ď sup
zPR
|px´ zq ´ py ´ zq|

ż

|fIm ˚ ¨ ¨ ¨ ˚ fInpzq|dz “ |x´ y|,

since h is 1-Lipschitz and the claim follows. �

5A reasonable concern might arise at this point: the derivative in Proposition 1.10 could go up by the
reciprocal of the interval length with each application. But then if we apply it with narrower and narrower
intervals it seems that it might get very large. Indeed, this is true, and a little thought will convince us
that actually this must be true: suppose that f : RÑ R is infinitely differentiable in some neighbourhood
N of a point x0 and

(1.2) supt|f pkqpxq| : x P Nu “ Ox0
pk!q.

Then by Taylor’s theorem we have

fpxq “
n´1
ÿ

k“0

f pkqpx0qpx´ x0q
k

k!
`Ox0

p|x´ x0|
nq whenever x P N.

It follows that the power series for f converges to f in some (possibly smaller) neighbourhood of x0, and
so f is real analytic at x0. Thus, if f were infinitely differentiable and satisfied (1.2) everywhere then
it would be analytic, and by the identity theorem if an analytic function has compact support then it is
identically 0. It follows that for bump functions (1.2) cannot hold.

6On a first pass one might wonder why we consider pgm,nqněm for all m rather than just pg1,nqně1.
This is so that we can get (1.4), but the fact that this might be useful only becomes clear somewhat later.
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Claim. The sequence pgm,nqněm is Cauchy in the L8-norm.

Proof of Claim. Suppose that ε ą 0. Then there is some n0 ě m such that
ř

nąn0
wn ă ε{2,

whence for any n ą n0 and x P R we have

|gm,npxq ´ gm,n0pxq| “

ˇ

ˇ

ˇ

ˇ

ż

gm,n0px´ yqfIn0`1 ˚ ¨ ¨ ¨ ˚ fInpyqdy ´ gm,n0pxq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

pgm,n0px´ yq ´ gm,n0pxqqfIn0`1 ˚ ¨ ¨ ¨ ˚ fInpyqdy

ˇ

ˇ

ˇ

ˇ

ď supt|px´ yq ´ x| : y P supp fIn0`1 ˚ ¨ ¨ ¨ ˚ fInu

“ supt|y| : y P In0`1 ` ¨ ¨ ¨ ` Inu,

since fIn0`1 ˚ ¨ ¨ ¨ ˚ fIn is a probability measure and gm,n0 is 1-Lipschitz. On the other hand,
by design

In0`1 ` ¨ ¨ ¨ ` In Ă p0,
ÿ

nąn0

wnq Ă p0, ε{2q.

It follows that for n, n1 ą n0 we have

|gm,npxq ´ gm,n1pxq| ď |gm,npxq ´ gm,n0pxq| ` |gm,n1pxq ´ gm,n0pxq| ă ε,

and the claim is proved. �

In light of the claims the sequence pgm,nqněm is a sequence of continuous functions
supported on r0, 4s which converges to some continuous function gm on r0, 4s with gmp2q “
1.

Now, write km :“ fI1 ˚ ¨ ¨ ¨ ˚ fIm´1 and note that it is a probability density function so
that k ě 0 and

ş

kpxqdx “ 1. By the triangle inequality we have

|gm,n ˚ kmpxq ´ gm ˚ kmpxq| “

ˇ

ˇ

ˇ

ˇ

ż

pgm,npyq ´ gmpyqqkmpx´ yqdy

ˇ

ˇ

ˇ

ˇ

ď }gm,n ´ gm}L8pRq

ż

|kpx´ yq|dy “ }gm,n ´ gm}L8pRq,

whence

lim
nÑ8

gm,n ˚ fI1 ˚ ¨ ¨ ¨ ˚ fIm´1 “ gm ˚ fI1 ˚ ¨ ¨ ¨ ˚ fIm´1 .

Combining this with (1.3) we get that

(1.4) g1 “ gm ˚ fI1 ˚ ¨ ¨ ¨ ˚ fIm´1 for all m P N.

It follows from Proposition 1.10 that g1 is infinitely differentiable. Of course, we have
already seen that g1 is non-zero, and compactly supported, so we conclude that it is a
bump function.

It may be worth remarking that much as measures can be defined as continuous linear
functionals on the space of continuous functions (vanishing at infinity), distributions can
be defined on the space of bump functions.



8 TOM SANDERS

1.12. Convolution and random variables. Suppose that Z is an integer-valued random
variable. We write pZ for the probability mass function of Z, so that pZpzq “ PpZ “ zq
and consider it as an element of `1pZq.

Now, suppose that X and Y are independent integer-valued random variables. Then the
probability mass function of X ` Y is given by convolution:

pX`Y pzq “
ÿ

xPZ

pXpxqpY pz ´ xq “ pX ˚ pY pzq.

In fact X and Y could be real-valued instead and this relation becomes the statement that
the law of X ` Y is the convolution of the laws of X and Y . As we have not defined
measures7 we are not in a position to formally state this yet.

Once we have seen the very natural relationship between convolution and the Fourier
transform it will be of no surprise that the Fourier transform comes up in proofs of results
such as the Central Limit Theorem.

1.13. Convolution with respect to multiplication. One final example to illustrate the
variety of applications of convolution comes from ‘the other’ group structure on the reals:
multiplication. Convolution with respect to this structure is used a lot in number theory
and a good reference for our discussion here is the book [Ten95] of Tenenbaum.

Definition 1.14 (Convolution on Qą0). Given two functions f, g P `1pQą0q, their convo-
lution (sometimes called Dirichlet convolution) is the function f ˚ g defined by

f ˚ gpxq “
ÿ

yPQą0

fpyqgpx{yq for all x P Qą0.

As with convolution on Z this is easily seen to be well-defined by the triangle inequality.

BWarning B The indicator function of a set implicitly depends on the superset from
which the set was taken. This means that convolutions of what seem like the same function
can be very different: write fˆ for the indicator function of t1, . . . , Nu considered as a
subset of Qą0, and f` for the indicator function of t1, . . . , Nu considered as a subset of Z.
Since fˆ P `1pQą0q we convolve it with itself using Definition 1.14 and see, for example,
that

supp fˆ ˚ fˆ “ tab : a, b P t1, . . . , Nuu

which is a subset of t1, . . . , N2u of size ΩpN2´op1qq. On the other hand f` P `1pZq so we
convolve it with itself using Definition 1.1 and see that

supp f` ˚ f` “ ta` b : a, b P t1, . . . , Nuu “ t2, 3, . . . , 2Nu

which is a very different set.

7If X and Y are absolutely continuous the statement about measures yields the fact that the probability
density function of X ` Y is the convolution of the probability density functions of X and Y in the sense
of convolution over R as we have defined it.
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One function of interest in number theory is the divisor function, denoted τ , and defined
on the naturals by setting τpxq to be the number of natural divisors of x. This is related
to convolution by the following identity:

τpxq “ 1t1,...,Nu ˚ 1t1,...,Nupxq whenever x ď N.

The convolution here means that τ is sufficiently smooth that we can compute its average
value relatively accurately using a method called Dirichlet’s hyperbola method.

Proposition 1.15. We have the estimate
ÿ

xďN

τpxq “ N logN ` p2γ ´ 1qN `Op
?
Nq,

where γ :“
ş8

1
txu
xtxu

dx is Euler’s constant.

To prove this we shall use the following lemma which is the context in which Euler’s
constant was first discovered.

Lemma 1.16. We have the estimate
ÿ

xďN

1

x
“ logN ` γ `Op1{Nq

Proof. Given the definition of γ this is essentially immediate:

ÿ

xďN

1

x
´ logN “

ÿ

xďN

1

x
´

ż N`1

1

1

x
dx`Op1{Nq

“

ż N`1

1

ˆ

1

txu
´

1

x

˙

dx`Op1{Nq

“

ż N`1

1

txu

xtxu
dx`Op1{Nq

“ γ `

ż 8

N`1

Op1{x2
qdx`Op1{Nq “ γ `Op1{Nq.

The result is proved. �

Proof of Proposition 1.15. An obvious start is to note that

ÿ

xďN

τpxq “
ÿ

abďN

1 “
ÿ

aďN

Z

N

a

^

“
ÿ

aďN

ˆ

N

a
`Op1q

˙

“ N logN `OpNq

by Lemma 1.16. The weakness of this argument is that the approximation
Z

N

a

^

“
N

a
`Op1q

is not a strong statement when a is close to N – the error term is of comparable size to
the main term. However, since ab ď N we certainly have that at least one of a and b is
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always at most
?
N . It follows that

ÿ

abďN

1 “
ÿ

aď
?
N

ÿ

bďN{a

1`
ÿ

bď
?
N

ÿ

aďN{b

1´
ÿ

a,bď
?
N

1 “ 2
ÿ

aď
?
N

Z

N

a

^

´
ÿ

a,bď
?
N

1.

This is called the hyperbola method because it is a way of counting lattice points below
the hyperbola xy “ N . Now, as before we have that

ÿ

xďN

τpxq “ 2
ÿ

aď
?
N

ˆ

N

a
`Op1q

˙

´ p
?
N `Op1qq2.

On the other hand by Lemma 1.16 we have that
ÿ

aď
?
N

N

a
“ Nplog

?
N ` γ `Op1{

?
Nqq “

1

2
N logN ` γN `Op

?
Nq,

and the result follows on rearranging. �

Voron̈ı used bump functions amongst other things to show that the error term is bounded
by OpN1{3`op1qq and this has since been improved to OpNαq for some α ă 1{3. In the other
direction Hardy and Landau showed that the error is ΩpN1{4q, but the true order is not
known.

2. Convolution on finite Abelian groups

After all the examples of the first chapter we are now in a position to define the con-
volution in the setting in which we are most interested. The book [Kat04] of Katznelson
gives a flavour of things which is more examples focused, while the book [Rud90] of Rudin
gives a good level of generality but may be a little harder to read.

To begin with we shall need a few definitions concerning functions spaces.

2.1. The space of measures and Lebesgue space. Suppose that X is a finite (non-
empty) set. We write MpXq for the space of complex-valued measures on X. Since X is
finite, a measure is essentially just a (complex-valued) way of weighting elements of X. In
particular, if f : GÑ C we have

ż

fdν “
ÿ

xPX

fpxqνptxuq.

The space MpXq is a complex vector space and it can be normed in a natural way: for
each ν PMpXq we define the norm of ν to be

(2.1) }ν} “ supt

ż

fdν : }f}L8pνq ď 1u “
ÿ

xPX

|νptxuq|,

and this makes MpXq into a normed space. More generally X is a locally compact topo-
logical space and MpXq is the space of regular Borel measures on X. We mention this for
the purposes of intuition – if it does not help it can be safely ignored.
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Example 2.2 (Counting measure and uniform probability measure). There are two par-
ticularly important measures supported on X. First, there is counting measure denoted
δX , which we use when X is behaving like a discrete topological space. This assigns mass
1 to each element of X. When dealing with counting measure we tend to talk about the
size of sets and use summation instead of integration so that

δXpAq “ |A| and

ż

fpxqdδXpxq “
ÿ

xPX

fpxq.

Secondly, there is uniform probability measure denoted PX , which we use when X is be-
having like a compact topological space. This assigns mass |X|´1 to each element of X.
When dealing uniform probability measure we tend to talk about the density of sets and
use expectation instead of integration so that

PXpAq “ |A|{|X| and

ż

fpxqdPXpxq “ ExPXfpxq.

A positive measure is a measure taking only non-negative values; suppose that ν PMpXq
is such, and p P r1,8s. We define the Lebesgue space Lppνq to be the vector space of
complex-valued functions on X endowed with the norm defined on f : X Ñ C by

}f}Lppνq :“

ˆ
ż

|fpxq|pdx

˙1{p

,

with the usual convention when p “ 8, that is to say

}f}L8pνq “ maxt|fpxq| : x P supp νu.

Technically these norms may only be a semi-norms (if the support of ν is not the whole of
X), but this will make no difference to us and we can import essentially all our intuition
about normed spaces.

Example 2.3 (`ppXq and LppXq). The measures defined in Example 2.2 also give rise to
two special classes of Lebesgue space: we write

`ppXq :“ LppδXq and LppXq :“ LppPXq,
where this is equality in the sense of normed spaces not just vector spaces. These Lebesgue
spaces have a useful nesting of norms property which is an immediate application of
Hölder’s inequality:

}f}`ppXq ď }f}`qpXq and }f}LqpXq ď }f}LppXq whenever p ě q and p, q P r1,8s.

Remark. The nesting of norm inequalities above have p and q one way for the `ppGq-spaces
and the other for the LppGq-spaces. In general when recalling inequalities it can be difficult
to remember which way round they are. To help with this it can be useful simply to test
them against some functions. For the nesting of norm inequalities above one can simply
test the inequalities against the function 1txu (for some element x P X) in LppXq and 1X
in `ppXq, where we get

}1txu}LppXq “ |X|
´1{p and }1X}`ppXq “ |X|

1{p.
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The first of these is visibly increasing in p and the second decreasing.

2.4. Haar measure and convolution. Convolution makes sense on any locally compact
group, and there are arguments for establishing it in this generality. We shall concentrate
on finite Abelian groups which the reader may note does not even include the examples of
the introduction. It turns out that all the phenomena we are interested in can be seen in
finite groups so this is not the loss which it might at first appear to be. Readers interested
in work concentrating on finite groups might like to consult the book [Ter99] of Terras,
although she does proceed in the more general setting including non-Abelian groups.

Definition 2.5 (Haar measure on G). For any locally compact group there is a unique (up
to scale) translation invariant regular Borel measure on the group called Haar measure.
In particular, this is true for G: we say that a measure µ on G is a Haar measure if it is
strictly positive and translation invariant. It is easy to see that this means that µ gives
each element of G the same mass.

On G there are two particularly important Haar measures coming from Example 2.2:
δG, counting measure on G, and PG, uniform probability measure on G.

With Haar measure defined we can make sense of convolution.

Definition 2.6 (Convolution). Given a Haar measure µ and two functions f, g P L1pµq
we define their convolution to be the function f ˚ g determined point-wise by

f ˚ gpxq “

ż

fpyqgpx´ yqdy “

ż

fpyqgpx´ yqdµpyq for all x P G.

We shall tend to write dx instead of dµpxq in integration when the Haar measure is clear.
Much as in Definition 1.6 we have that

}f ˚ g}L1pµq “

ż

|

ż

fpyqgpx´ yqdy|dx

ď

ż

|fpyq|

ż

|gpx´ yq|dxdy “ }f}L1pµq}g}L1pµq

which is a special case of Young’s inequality.
We can also convolve functions with measures: indeed, suppose that f P L1pµq and

ν PMpGq. Then we define f ˚ ν and ν ˚ f by

f ˚ νpxq “ ν ˚ fpxq :“

ż

fpx´ yqdνpyq for all x P G,

and in a similar way to the above we have that }f ˚ ν}L1pµq ď }f}L1pµq}ν}.
Finally, given two measures ν, ρ PMpGq (not necessarily Haar measures) we define their

convolution ν ˚ ρ to be the measure determined by

ν ˚ ρpAq “

ż

1Apy ` zqdνpyqdρpzq.
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Since G is finite, it may be helpful to note that

ν ˚ ρptxuq “

ż

1txupy ` zqdνpyqdρpzq

“
ÿ

y,zPG

1txupy ` zqνptyuqρptzuq “
ÿ

yPG

νptyuqρptx´ yuq.

Again, it is fairly straightforward to show that }ν ˚ ρ} ď }ν}}ρ}, and so MpGq forms an
associative (commutative) algebra.

BWarning B The convolution of two functions depends on the particular choice of Haar
measure. Given f, g P L1pGq we have that

f ˚ gpxq “ EyPGfpyqgpx´ yq.

On the other hand, if we write f 1 for the function f considered as an element of `1pGq and
g1 for the function g considered as an element of `1pGq then

f 1 ˚ g1pxq “
ÿ

yPG

fpyqgpx´ yq.

In particular, as functions we have f 1 ˚ g1 “ |G|.f ˚ g. This may seem rather worrying at
first, but in practice if one finds oneself out by a power of |G| in a calculation it can usually
be traced back to a normalisation error.

At this point it is useful to record a few simple facts about convolution. As always
checking this sort of thing is important, but in this instance we shall leave it as an exercise.

Lemma 2.7 (Basic facts). Suppose that G is endowed with a Haar measure µ and f, g, h P
L1pµq YMpGq. Then

(i) (Linearity) pλf ` µgq ˚ h “ λpf ˚ hq ` µpg ˚ hq for all λ, µ P C;
(ii) (Associativity) f ˚ pg ˚ hq “ pf ˚ gq ˚ h;

(iii) (Commutativity) f ˚ g “ g ˚ f .

We should remark that while we usually reserve the letters f, g and h for functions, in
this instance they can be either functions or measures. We have done this simply to avoid
stating essentially the same thing several different times.

The point of Lemma 2.7 is that it shows that L1pµq and MpGq form commutative normed
algebras, and in fact there is a rather close relationship between the two.

2.8. Embedding L1pνq in MpXq. Returning, briefly, to the setting where X is any finite
non-empty set, then given a positive measure ν P MpXq we can embed L1pνq into MpXq
via the map taking f P L1pνq to the measure fdν defined by

pfdνqpAq “

ż

1Afdν for all A Ă X.

The map f ÞÑ fdν is then an isometric linear embedding of L1pνq into MpXq. More than
this, if X “ G and µ is a Haar measure on G then the embedding is also an algebra
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homomorphism so that

pfdµq ˚ pgdµq “ pf ˚ gqdµ for all f, g P L1
pµq.

2.9. Relative p.d.fs and convolution as a measure of relative density. Given a
non-empty set S Ă G we write µS for the uniform probability measure supported on S,
in MpGq. This differs slightly from PS which is defined only on subsets of S, but there is
nevertheless a relationship between them (which one could take as defining for µS):

µSpAq “ PSpAX Sq for all A Ă G.

Now, suppose that X,A Ă G. Then it turns out that 1A ˚ µXpxq is the relative density of
A on the set x´X, that is to say it is the number of points in AX px´Xq divided by the
number of points in x´X (which is the same as the number of points in X). To see this
note that

1A ˚ µXpxq “

ż

1ApyqdµXpx´ yq

“
1

|X|

ÿ

yPG

1Apyq1Xpx´ yq “
|AX px´Xq|

|X|
.

We shall frequently use this in the case when X “ V for some subgroup V ď G. In this
case 1A ˚ µV pxq is the relative density of A on the coset x ´ V “ x ` V . More than this,
if v P V then x ` v ` V “ x ` V , so we see that 1A ˚ µV px ` vq “ 1A ˚ µV pxq, and hence
1A ˚ µV is constant on cosets of V . (The reader may wish to compare this with the later
Example 2.16.)

At this point it may be instructive to consider a couple of examples of convolutions.

Example 2.10 (Convolution of subgroups). Suppose that V,W ď G. Then

µV ˚ µW “ µV`W .

To see this first note, by (the analogue of) (1.1), that the support of the left hand side is
equal to V `W . On the other hand

µV ˚ µW ptxuq “
1

|V ||W |

ÿ

yPG

1V pyq1W px´ yq “
1

|V ||W |
|V X px´W q|,

so if x P V `W then x “ v ` w for some v P V and w P W , whence

|V X px´W q| “ |V X pv ` w ´W q| “ |pV ´ vq X pw ´W q| “ |V XW |,

so µV ˚ µW is supported on V `W , constant on V `W , and by integrating we see it is a
probability measure whence we get the claimed equality.

Example 2.11 (Convolution of random sets). Suppose that each x P G is placed in the
set A independently with probability α “ Ωp1q. Then EPGpAq “ α and

E1A ˚ 1´Apxq “ EyPGE1Apyq1Apy ´ xq “

#

α2 if x ‰ 0G
α otherwise.
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Indeed, we expect it to be very likely that A´ A is essentially the whole of G, and to see
this we present an informal variance calculation: first note that

E1A ˚ 1´Apxq
2
“

1

|G|2

ÿ

y,z

E1Apyq1Apzq1Apy ´ xq1Apz ´ xq

“

#

α2 `Opα{|G|q if x “ 0G
α4 `Opα2{|G|q otherwise.

It follows from this that8 Varp1A ˚ 1´Apxqq “ Op1{|G|q, and so by Chebychev’s inequality
we have that

Pp1A ˚ 1´Apxq “ 0q “ Pp1A ˚ 1´Apxq ´ E1A ˚ 1´Apxq ď ´E1A ˚ 1´Apxqq

ď
Varp1A ˚ 1´Apxqq

pE1A ˚ 1´Apxqq2
“ Op1{|G|q.

We conclude that the expected number of x with x R A´A is Op1q. In fact, by Chernoff-
type tail estimates of a sort we shall cover later on, one can see that it is much less than
1 and that with high probability A´ A “ G.

When we defined convolution in Definition 2.6 we established a simple algebra inequality:
given µ a Haar measure on G we had

}f ˚ g}L1pµq ď }f}L1pµq}g}L1pµq for all f, g P L1
pµq.

This is an important fact which it turns out is part of a wider range of inequalities.

Proposition 2.12 (Young’s inequality). Suppose that µ is a Haar measure on G, f P
Lppµq, g P Lqpµq and 1` 1{r “ 1{p` 1{q. Then

}f ˚ g}Lrpµq ď }f}Lppµq}g}Lqpµq.

Proof. Since G is finite no analysis is required and we simply have a calculation:

}f ˚ g}rLrpµq ď

ż
ˆ
ż

|fpyq||gpx´ yq|dy

˙r

dx

“

ż
ˆ
ż

|fpyq|p{r|gpx´ yq|q{r.|fpyq|pp1{p´1{rq.|gpx´ yq|qp1{q´1{rqdy

˙r

dx

ď

ż

˜

ˆ
ż

|fpyq|p|gpx´ yq|qdy

˙1{r ˆż

|fpyq|pdy

˙1{p´1{r

ˆ

ˆ
ż

|gpx´ yq|qdy

˙1{q´1{r
¸r

dx “ }f}rLppµq}g}
r
Lqpµq,

where the passage between the second and third line is via the three-variable Hölder in-
equality which applies since p1{rq ` p1{p ´ 1{rq ` p1{q ´ 1{rq “ 1. Taking rth roots the
result is proved. �

8A more accurate calculation of the variance shows that it takes three different values depending on
whether x “ 0G, 2x “ 0G and x ‰ 0G, or 2x ‰ 0G. We leave this calculation to the interested reader.
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It is worth making a few remarks on the quality of this inequality. Since G is finite we
can take f “ g “ 1G and we see that the inequality is tight for any (admissible) triple
of indices pp, q, rq. For p “ 1, q “ 1 or r “ 8 the inequality is (true and) tight for any
locally compact group, but for other, so called internal triples of indices (that is triples
with p ą 1, q ą 1 and r ă 8) it is not.

When G is finite the tightness for internal triples is a result of the fact that G has an
‘open and compact’ subgroup. In groups such as R without any open compact subgroup,
given an internal triple of indices pp, q, rq there is a constant cp,q ă 1 such that

}f ˚ g}LrpRq ď cp,q}f}LppRq}g}LqpRq for all f P LppRq, g P LqpRq.

The existence of such a constant in locally compact groups was shown by Fournier [Fou77],
while the best possible constant for locally compact Abelian groups was found by Beckner
in the classic paper [Bec75].

When we defined convolution in Definition 2.6 we also defined it between functions
and measures and there is a hybrid of Young’s inequality and the algebra inequality for
measures (that is }ν ˚ ρ} ď }ν}}ρ}) in that case. The proof is left as an exercise.

Proposition 2.13 (Young’s inequality for measures). Suppose that µ is a Haar measure
on G, ν PMpGq and f P Lppµq. Then

}f ˚ ν}Lppµq ď }f}Lppµq}ν}.

We now come to a crucial definition.

Definition 2.14 (Convolution operators). Suppose thatG is endowed with a Haar measure
µ. Then to each ν PMpGq we can associate a linear map

Mν : Lppµq Ñ Lppµq; f ÞÑ ν ˚ f.

Moreover, in light of Young’s inequality for measures, the map

MpGq Ñ BpLppµqq; ν ÞÑMν

is an injective algebra homomorphism of norm 1, where multiplication in MpGq is convo-
lution and in BpLppµqq is composition.

We could make a similar definition for functions in L1pµq, but in light of the embedding
in §2.8 we shall not bother since L1pµq sits isometrically as a sub-algebra of MpGq. Were
it needed we should put Mf :“Mfdµ for all f P L1pµq.

Definition 2.15 (Adjoints). Given a measure ν PMpGq we write ν̃ for its adjoint measure
defined by

ν̃pAq :“ νp´Aq for all A Ă .
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The reason for the name is that if µ is a Haar measure on G, then M˚
ν “ Mν̃ when Mν is

considered as an operator on L2pµq. Indeed, we have

xMνf, gyL2pµq “

ż ż

fpyqdνpx´ yqgpxqdµpxq

“

ż ż

fpyqgpy ´ zqdµpy ´ zqdνp´zq

“

ż ż

fpyqgpy ´ zqdµpyqdνp´zq “ xf,MνgyL2pµq

for all f, g P L2pµq since µ is translation invariant (so that dµpy ´ zq “ dµpyq).

Example 2.16 (Convolution operators as projections). Suppose that G is endowed with a
Haar measure µ. A special case of Example 2.10 is that when V ď G we have µV ˚µV “ µV ,
in which case the operator MµV is a projection since M2

µV
“MµV ˚µV “MµV .

More than this, since µV is positive we see that the operator norm of MµV , denoted
}MµV }, is 1, so in a sense the projection is ‘as good as can be’. In the case p “ 2 this
means that MµV is an orthogonal projection on L2pµq. Indeed, looking back at §2.9 we see
that

MµV pfq “ Epf |σpG{V qq
where σpG{V q is the σ-algebra generated by the partition G{V .

3. The Fourier transform on finite Abelian groups

In the first chapter we saw that convolution is a useful and varied tool; in the second
we set it up on general finite Abelian groups. More than this we defined convolution
operators which give a slightly different language for expressing quantities of interest in
terms of convolution. Whenever we have an operator we ask if there is a natural basis in
which to represent it, and in this case there is and it is the Fourier basis.

Throughout this chapter µ will be a Haar measure on G. The set of convolution operators
naturally acts on the Hilbert space L2pµq; it is commuting as a result of the basic facts in
Lemma 2.7:

MνMρ “Mν˚ρ “Mρ˚ν “MρMν for all ν, ρ PMpGq;

and it is adjoint-closed as a result of the comments in Definition 2.15:

M˚
ν “Mν̃ for all ν PMpGq.

We now recall a basic theorem from linear algebra.

Theorem 3.1 (Spectral theorem). Suppose that H is a finite dimensional Hilbert space and
M is an adjoint-closed set of commuting operators on H. Then there is an orthonormal
basis of H with respect to which every operator in M is diagonal9.

9Note that throughout this set of notes we shall be interested in diagonalisation with respect to unitary
matrices not invertible matrices.
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We shall be interested in the above theorem applied to the collection of convolution
operators, in which case we get a basis in which every element is an eigenvector for every
convolution operator. It turns out that such vectors have a very special structure, and to
illicit this it will be useful to have a convenient basis for the convolution operators.

3.2. δ-functions: a basis for the algebra of convolution operators. The set of
convolution operators forms a space and hence, itself, has a basis10. Write δx for the
probability measure assigning mass 1 to x (and hence 0 everywhere else). Then

(3.1) Mδxpfqpyq “

ż

fpy ´ zqdδxpzq “ fpy ´ xq for all x, y P G.

Since G is finite the set tδxuxPG forms a basis for MpGq. Indeed, the measures are visibly
independent and

ν “

ż

δxdνpxq for all ν PMpGq.

Now the map ν ÞÑMν is linear so it follows that

Mν “

ż

Mδxdνpxq for all ν PMpGq;

the operators pMδxqxPG form a basis for the algebra of convolution operators.
We now use this basis to study the eigenvectors afforded by the Spectral Theorem (The-

orem 3.1).

Proposition 3.3. Suppose that v P L2pµq is an eigenvector for every convolution operator.
Then there is a homomorphism λv : GÑ S1 and σ P C such that v “ σλv and

(3.2) Mνv “

ˆ
ż

λvpxqdνpxq

˙

v for all ν PMpGq.

Conversely, suppose that v is a scalar multiple of a homomorphism λv : GÑ S1. Then we
have (3.2).

Proof. We let λvpxq be the eigenvalue of the operator Mδ´x corresponding to v. Note that
Mδ´0G

is the identity so λvp0Gq “ 1, while

λvpx` yqv “Mδ´px`yqv “Mδ´xMδ´yv “Mδ´xpλvpyqvq “ λvpxqλvpyqv

for all x, y P G, so λvpx ` yq “ λvpxqλvpyq for all x, y P G. It follows that λv is a
homomorphism. To see that λv maps into S1 we note by (3.1) and the translation invariance
of µ that

}v}2L2pµq “

ż

|vpyq|2dy “

ż

|vpy ` xq|2dy “

ż

|Mδ´xvpyq|
2dy

“

ż

|λvpxq|
2
|vpyq|2dy “ |λvpxq|

2
}v}2L2pµq,

10Note that this is a basis of a subspace of BpL2pµqq, not of L2pµq
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whence |λvpxq| “ 1 as required. Now, in light of (3.1) we see that

vpxq “Mδ´xv “ λvpxqvp0Gq for all x P G,

from which is follows that v “ σλv with σ “ vp0Gq, and finally to get (3.2) we note that

Mνv “

ˆ
ż

Mδxdνpxq

˙

v “

ż

pMδxvqdνpxq

“

ż

pλvp´xqvqdνpxq “

ˆ
ż

λvpxqdνpxq

˙

v

for all ν PMpGq as required.
In the other direction we have an easy calculation. Suppose that v “ σλv for some scalar

σ P C and homomorphism λv : GÑ S1. Then

Mνvpyq “

ż

σλvpy ´ xqdνpxq “ σλvpyq

ż

λvpxqdνpxq “

ˆ
ż

λvpxqdνpxq

˙

vpyq

for all y P G and ν PMpGq, and the result is proved. �

A homomorphism from G to S1 is called a character 11 of G, and from this point on we

write pG for the set of characters on G.
The Spectral Theorem applied to the class of convolution operators gives us an orthonor-

mal basis of vectors which, by Proposition 3.3, are scalar multiples of some characters. It
turns out that they are the same scalar multiple for all characters, but we have yet to prove
this. This basis suggests two main questions:

(i) What do vectors (functions) f P L2pµq ‘look like’ with respect to this new basis?
(ii) What do the operators Mν for ν PMpGq ‘look like’ with respect to this new basis?

To address the first of these questions we make the following definition.

Definition 3.4 (Fourier transform). Given f P L2pµq we define the Fourier transform of

f to be the function pf : pGÑ C determined by

pfpγq “ xf, γy “

ż

fpxqγpxqdµpxq.

The idea is that pfpγq is the projection of f onto the vector γ, so that pf is f written with

respect to the orthogonal basis pG, although we have not yet shown that pG is such.

The basis afforded by the Spectral theorem is an orthonormal basis, but the set pG we
have chosen will only turn out to be orthogonal – the characters can, in general, have large

norm. It follows that we shall need to weight pG and we do so by defining a measure µ˚ on
pG, called the dual measure, assigning mass µpGq´1 to each element of pG. The reason for
this choice is that it is what comes out of the proof of the following theorem.

11More generally for any finite group a character is the trace of a representation. For extensions in this
direction the reader may wish to consult a book on representation theory e.g. James and Liebeck [JL93].
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Theorem 3.5 (Parseval’s theorem). The Fourier transform

p̈ : L2
pµq Ñ L2

pµ˚q; f ÞÑ pf

is an isometric linear map.

Proof. The particular choice of µ˚ comes out of the proof. We start by noting that f ÞÑ pf
is linear, so it suffices to prove that it is isometric.

The Spectral Theorem gives us an orthonormal basis v1, . . . , vN of L2pµq such that each
vi is an eigenvector for every convolution operator. It follows from Proposition 3.3 that
for each i there is a character γi and a scalar σi such that vi “ σiγi, and by Pythagoras’
Theorem (sometimes called the generalised Parseval identity) we have that

}f}2L2pµq “

N
ÿ

i“1

|xfi, viyL2pµq|
2
“

N
ÿ

i“1

|σi|
2
| pfpγiq|

2
“

ÿ

γP pG

| pfpγq|2mpγq

where mpγq “
ř

i:γi“γ
|σi|

2 is non-negative. We compute the values of m by testing the

above equality against characters. Indeed, suppose that λ P pG. Since µ is translation
invariant, for any z P G we have

pλpγq “

ż

λpxqγpxqdµpxq “

ż

λpx` zqγpx` zqdµpxq(3.3)

“ λpzqγpzq

ż

λpxqγpxqdµpxq.

It follows that if γ ‰ λ then pλpγq “ 0 since in that case there is some z P G such that

γpzq ‰ λpzq.12 On the other hand pλpλq “ µpGq so that

µpGq “

ż

|λpxq|2dµpxq “
ÿ

γP pG

|pλpγq|2mpγq “ µpGq2mpλq.

and hence mpλq “ µ˚ptλuq; the result is proved. �

Remark. The proof above may seem a little technical; it is not as hard as it appears. At

its core, Parseval’s theorem is just saying that pG is an orthogonal (note not orthonormal)
basis, and then by generalised Parseval we have that

}f}2L2pµq “
ÿ

γP pG

|xf, γyL2pµq|
2

xγ, γyL2pµq

.

The Spectral theorem and Proposition 3.3 tell us that pG generates L2pµq; a calcula-
tion shows that the characters are orthogonal; and the fact that |γpxq| “ 1 shows that
xγ, γyL2pµq “ µpGq, so picking µ˚ptγuq “ 1{µpGq gives the result.

12This fact actually follows for all pairs of characters pγi, γjq with i ‰ j from the fact that the basis is
an orthogonal basis. However, we do not know that the basis contains a multiple of every character until
the end of the argument so we still need the calculation.
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As usual an isometry between Hilbert spaces can be de-polarised to give a relationship
between inner products.

Corollary 3.6 (Plancherel’s theorem). We have the identity

xf, gyL2pµq “ x
pf, pgyL2pµ˚q for all f, g P L2

pµq.

Proof. On the one hand for every λ P C we have

}f ` λg}2L2pµq “ }f}
2
L2pµq ` 2 Reλxf, gyL2pµq ` }g}

2
L2pµq,

and on the other (for the same λ) we have

} pf ` λpg}2L2pµ˚q “ }
pf}2L2pµ˚q ` 2 Reλx pf, pgyL2pµ˚q ` }pg}

2
L2pµ˚q.

By Parseval’s theorem (applied three times) and linearity of the Fourier transform we see
that

2 Reλxf, gyL2pµq “ 2 Reλx pf, pgyL2pµ˚q.

Taking λ “ 1 and λ “ i gives us that the real and imaginary parts are equal, and hence
the result. �

Having understood what happens to functions f P L2pµq under our change of basis we
now turn to our operators. Again, motivated by Proposition 3.3 we make the following
definition.

Definition 3.7 (The Fourier-Stieltjes transform). Given ν PMpGq we define the Fourier-

Stieltjes transform of ν to be the map pν : pGÑ C determined by

pνpγq “

ż

γpyqdνpyq for all γ P pG.

Here the idea is that pνpγq is the eigenvalue of the operator Mν on the vector γ.

The Fourier-Stieltjes transform has a number of simple but important properties which
we now collect together. Their content is to show that all the important information
contained in the algebra MpGq is preserved under the Fourier-Stieltjes transform.

Theorem 3.8. The Fourier-Stieltjes transform

p̈ : MpGq Ñ `8p pGq; ν ÞÑ pν

is an injective, norm 1 algebra ˚-homomorphism13 from MpGq under convolution to `8p pGq
under point-wise multiplication.

13A ˚-homomorphism is a homomorphism which also preserves adjoints, so that in this case pµ̃ “ pµ. Note
that the adjoint depends on the underlying multiplication: on MpGq our multiplication is convolution, not

point-wise multiplication. Were it to be the latter then, like `8p pGq, the adjoint of µ would be µ.
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Proof. We see immediately that the Fourier-Stieltjes transform is a linear map from MpGq

to `8p pGq, and it is easy to check that

pµ̃pγq “

ż

γpxqdµ̃pxq “

ż

γpxqdµp´xq “

ż

γpxqdµpxq “ pµpγq

for all γ P pG so that it preserves adjoints. To see that it is an algebra homomorphism
note that by the converse part of Proposition 3.3 every character is an eigenvector of
every convolution operator with eigenvalue equal to the Fourier-Stieltjes transform of the
measure inducing the operator at that character, so

zν ˚ ρpγqγ “Mν˚ργ “MνMργ “Mνpρpγqγ “ pνpγqpρpγqγ

for all γ P pG and ν, ρ PMpGq. We conclude that

zν ˚ ρ “ pν ¨ pρ for all ν, ρ PMpGq,

as required.
The norm of this homomorphism can be easily seen to be at most 1: since |γpxq| ď 1 for

all x P G we get that

}pν}`8p pGq ď supt

ż

γpxqdνpxq : γ P pGu “ }ν}

for all ν PMpGq, which is (a slight variant of) a particular instance of the Hausdorff-Young
inequality. Moreover it is equal to 1 as can be seen by noting that for ν positive, pν at the
constant 1 function (which is a character) is }ν}, so for such ν we have }pν}`8p pGq “ }ν}.

Finally, we need to check injectivity. Since the Fourier-Stieltjes transform is linear it
suffices to check that it has trivial kernel, and this follows from our application of the
Spectral Theorem and Proposition 3.3. Indeed, if pν ” 0 then Mν is identically 0 (by that
pair of results), which means that ν ˚ f “ 0 for all f P L2pµq. By testing this against the
functions p1txuqxPG we see that ν ” 0 �

Remark. In §2.8 we identified a way of embedding L1pµq into MpGq and this naturally
gives us a way to extend the Fourier-Stieltjes transform to L1pµq: we should define the

Fourier transform of f to be yfdµ. Fortunately this is consistent with Definition 3.4 in that

if f P L1pµq X L2pµq then we have yfdµ “ pf .
As a result of this equivalence we inherit the algebra identity:

zf ˚ g “ pf ¨ pg for all f, g P L1
pµq X L2

pµq.

Of course, since G is finite this applies to all functions f and g. (If G were not finite we
should just take limits.)

We also inherit a trivial instance of the Hausdorff-Young inequality via the same em-
bedding. Namely that

(3.4) } pf}L8pµ˚q ď }f}L1pµq for all f P L1
pµq.

This can, of course, just be proved directly from the triangle inequality.
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One question left open by Parseval’s theorem as we stated it is whether the Fourier
transform is a surjection. We also know that both the Fourier transform and the Fourier-
Stieltjes transform are injections from Parseval’s theorem and Theorem 3.8 respectively,
and so it is natural to ask if we can easily reconstruct functions from their Fourier transform.
It turns out that we can and shall do so now.

Theorem 3.9 (Fourier inversion formula). The Fourier transform p̈ : L2pµq Ñ L2pµ˚q is a
surjection. Moreover, if f P L1pµq is such that then we have

fpxq “

ż

pfpγqγpxqdµ˚pγq for all x P G.

Proof. As usual, since G is finite the inversion formula applies to all functions on G. First
suppose that h P L1pµ˚q and put

kpxq :“

ż

hpγqγpxqdµ˚pγq.

Then by linearity we have

pkpλq “

ż

hpγq

ż

γpxqλpxqdµpxqdµ˚pγq “

ż

hpγqpγpλqdµ˚pγq “ hpλq

since pγpλq “ µpGq if γ “ λ and is 0 otherwise.14 It follows that the Fourier transform is
surjective.

Now, suppose that f P L1pµq and put h “ pf so that pk “ pf . It then follows by uniqueness
(Theorem 3.8) that k “ f and the result is proved. �

Given the Fourier inversion formula we make the following definition.

Definition 3.10 (Inverse Fourier transform). Given f P L1pµ˚q we define

f_pxq :“

ż

fpγqγpxqdµ˚pγq for all x P G.

Shortly we shall see using Pontryagin duality that this is itself (almost) a Fourier transform.

From this point on we shall refer to both the Fourier transform and the Fourier-Stieltjes
transform under the one banner of the Fourier transform.

The set pG is really just (equivalent to) the set of (equivalence classes of) irreducible
representation of G. Moreover, since G is Abelian, they are all 1-dimensional, which means
that the tensor product gives rise to a genuine group operation. This group structure is
peculiar to the Abelian setting.

14See (3.3) in the proof of Parseval’s theorem for this calculation.
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3.11. The dual group. The product of two elements γ, λ P pG is their point-wise product.
It is easy to see that this is, again, a homomorphism:

pγλqp0Gq “ γp0Gqλp0Gq “ 12
“ 1

and

pγλqpx` yq “ γpx` yqλpx` yq “ γpxqγpyqλpxqλpyq

“ γpxqλpxqγpyqλpyq “ pγλqpxqpγλqpyq

for all x, y P G. More than this, since multiplication of complex numbers is commutative,

the multiplication on pG is commutative.

BWarning B The group pG is an Abelian group so we shall denote its identity, that is
the constant function equal to 1, as an additive identity, 0

pG. This means that 0
pGpxq “ 1

for all x P G.

By construction the measure µ˚ is a Haar measure on pG and there is a duality between

pG, µq and p pG, µ˚q which it will be informative to draw out. It essentially identifies the

dual of p pG, µ˚q with pG, µq, and is very close to the duality between a Hilbert space H and
its continuous double dual H˚˚.

Theorem 3.12 (Pontryagin duality). The map

φG, pG : GÑ
p

pG;x ÞÑ pγ ÞÑ γpxqq

is an isomorphism from G to
p

pG such that pµ˚q˚ ˝ φG, pG “ µ.

Proof. The fact that φG, pG is a homomorphism is an easy check. To see that it is injective
we import the injectivity of the Fourier-Stieltjes transform. Note that if x P kerφG, pG then

pδxpγq “

ż

γpzqdδxpzq “ γpxq “ 1 for all γ P pG.

Since 0G P kerφG, pG it follows from the linearity of the Fourier transform that pδx´δ0Gq
^ ” 0

and hence, by the uniqueness in Theorem 3.8, that δx´ δ0G ” 0 and so x “ 0G as required.

The work now is to show that φG, pG is a surjection. Suppose that A P
p

pG which we

consider as a function on pG. This time we use surjectivity of the Fourier transform and let

f be such that pfpγq “ Apγq for all γ P pG. Then by the inversion formula, the fact that A
is a homomorphism and translation invariance of µ˚ we have that

fpxq “

ż

Apγqγpxqdµ˚pγq “

ż

Apγλqpγλqpxqdµ˚pγq “ Apλqλpxqfpxq

for all x P G. Since f is not identically zero there is some x P G such that fpxq ‰ 0, and
dividing it follows that Apλq “ λp´xq and we see that φG, pG is surjective as required.

Finally, we need to address the measure. The measure was design to make the inversion
theorem (and Parseval’s theorem) work so it is natural to check these using the Pontryagin
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isomorphism. Suppose that g P L1pµq and write f :“ pg. By the Fourier inversion formula
on G we conclude that

gpxq “

ż

fpγqγpxqdµ˚pγq.

On the other hand by definition of the Fourier transform on pG we have that

pfpφG, pGpxqq “

ż

fpγqφG, pGpxqpγqdµ
˚
pγq “

ż

fpγqγpxqdµ˚pγq,

and so pfpφG, pGpxqq “ gp´xq. Now, by the Fourier inversion formula on pG, the fact that

φG, pG is an isomorphism and µ˚˚ is a Haar measure (so µ˚˚pEq “ µ˚˚p´Eq) we have

fpγq “

ż

pfpAqApγqdµ˚˚pAq “

ż

pfpφG, pGpxqqγpxqdµ
˚˚
˝ φG, pGpxq

“

ż

gp´xqγpxqdµ˚˚ ˝ φG, pGpxq

“

ż

gpxqγpxqdµ˚˚ ˝ φG, pGpxq.

On the other hand f “ pg, and so
ż

gpxqγpxqdµpxq “

ż

gpxqγpxqdµ˚˚ ˝ φG, pGpxq for all γ P pG.

It follows that gdµ “ gdµ˚˚ ˝φG, pG by the uniqueness of the Fourier-Stieltjes transform, but

then g P L1pµq was arbitrary and so µ “ µ˚˚ ˝ φG, pG as required. �

Note that in the proof of this duality we saw that

f_p´xq “
p

pfpφG, pGpxqq for all x P G,

and so the inverse Fourier transform is (up to a minus sign) also a Fourier transform.
The duality expressed above extends to subgroups and quotient groups. To describe this

we make a further definition which will be very useful in the sequel.

Definition 3.13 (Annihilators). Given a set A Ă G we write AK for its annihilator defined
by

AK :“ tγ P pG : γpxq “ 1 for all x P Au.

It is easy to check that annihilators are subgroups, and by Pontryagin duality we see that
there is an isomorphism

ΓK
φ
G, pG
ÝÝÝÑ tx P G : γpxq “ 1 for all γ P Γu,

and so if V ď G then there is an isomorphism V KK
φ
G, pG
ÝÝÝÑ V .
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The aspect of duality which annihilators encode is that the annihilator of a subgroup is
naturally isomorphic to the dual of the quotient group. Indeed, suppose that V ď G then

V K Ñ zG{V ; γ ÞÑ γ1 : G{V Ñ S1

x` V ÞÑ γpxq

is a well-defined isomorphism.

Annihilators come up explicitly in the Fourier transform of measures as we shall now
see.

Example 3.14 (The Fourier transform of subgroup measures). Given V ď G we have
that xµV pγq “ 1V K . To see this first note that γ P V K if and only if xµV pγq “ 1. Indeed,

Re xµV pγq “

ż

Re γpxqdµV pxq ď

ż

dµV pxq “ 1

with equality if and only if Re γpxq “ 1 for all x P V , which in turn is true if and
only if γpxq “ 1 for all x P V . Now, from the calculation in Example 2.10 we see that
xµV “ pµV ˚ µV q

^ “ xµV
2 so that xµV can only take the values 0 and 1. Thus, if xµV pγq ‰ 0

then xµV pγq “ 1 and γ P V K, and conversely. The claimed equality follows.
Using Parseval’s theorem we can establish a little bit more: we have p1V qdµ “ µpV qdµV ,

whence x1V pγq “ µpV q1V K . But then by Parseval’s theorem we have

µpV q “ }1V }
2
L2pµq “ }

x1V }
2
L2pµ˚q “ µpV q2µ˚pV Kq,

and so
µpV qµ˚pV Kq “ 1.

The last equality above represents a critical case of the well-known uncertainty principle.
We turn to this now.

Example 3.15 (Uncertainty principle). This states that for all f ı 0 we have

µpsupp fqµ˚psupp pfq ě 1.

Roughly speaking, a (non-zero) function cannot be simultaneously concentrated on G

(physical space) and pG (momentum space).
To prove the result we start by applying the triangle inequality and a special case of the

Hausdorff-Young inequality (that is (3.4)) to get that

} pf}2L2pµ˚q ď }
pf}L1pµ˚q}f}L1pµq.

Now by the Cauchy-Schwarz inequality we have that

} pf}L1pµ˚q ď }
pf}L2pµ˚qµ

˚
psupp pfq1{2 and }f}L1pµq ď }f}L2pµqµpsupp fq1{2.

But then by Parseval’s theorem we conclude that

} pf}2L2pµ˚q ď } pf}L2pµ˚qµ
˚
psupp pfq1{2.}f}L2pµqµpsupp fq1{2

“ } pf}2L2pµ˚qµ
˚
psupp pfq1{2µpsupp fq1{2.
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The claimed inequality follows on dividing.
Given V ď G our previous calculations (in Example 3.14) show that taking f “ 1V the

inequality is tight since supp x1V “ V K. In fact more than this, if γ P pG and x P G then
f :“ γ1x`V has

pfpγ1q “ γpxqγ1pxq1V Kpγ ´ γ
1
q,

so

supp f “ x` V and supp pf “ γ ` V K,

and hence equality holds in the uncertainty principle for f as well.
It turns out that the uncertainty principle is, in fact, robustly true in the sense that any

function which is close to tight for this inequality is in some sense close to functions of this
type. Indeed, suppose that f ı 0 is such that

µpsupp fqµ˚psupp pfq ď 1` η

for some η ą 0 sufficiently small. We shall show that there is some subgroup H ď pG such
that15

µ˚ppsupp pfq4pγ `Hqq “ Op
?
ηµ˚pHqq for η sufficiently small.

We could equally well have looked at supp f , but it will be slightly more notationally con-
venient for us to do it this way round. We shall follow an argument of Fournier [Fou77] for
Young’s inequality. Indeed, showing the above result is essentially equivalent to analysing
the case when Young’s inequality is close to critical.

We start by estimating the size of S :“ supp pf . From the Cauchy-Schwarz inequality as
before we see that

µpsupp fq ě }f}2L1pµq{}f}
2
L2pµq,

which inserted into our hypothesis tells us that

(3.5) µ˚pSq ď p1` ηq}f}2L2pµq{}f}
2
L1pµq.

Of course, we expect this to be tight since it follows the inequalities we used to derive
the uncertainty principle itself.16 Now, by Plancherel’s theorem and the Cauchy-Schwarz

15Recall that 4 denotes symmetric difference so that A4B “ pAzBq Y pBzAq; in words A4B is the
set of elements in exactly one of A and B.

16To see that it is tight in the sense that µ˚pSq is close to this upper bound, apply Parseval’s theorem
and the triangle inequality to get that

}f}2L2pµq “ }
pf}2L2pµ˚q “

ż

1Spγq| pfpγq|
2dγ

“

ż

1Spγq

ˇ

ˇ

ˇ

ˇ

ż

fpxqγpxqdx

ˇ

ˇ

ˇ

ˇ

2

dγ ď µ˚pSq}f}2L1pµq.

It follows that µpSq ě }f}2L2pµq{}f}
2
L1pµq which complements our inequality up to a factor of 1` η.
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inequality (twice) we have

}f}2L2pµq “

ż

1Spγq| pfpγq|
2dγ “

ż

f ˚ f̃pxq1_S pxqdx

ď

ˆ
ż

|f ˚ f̃pxq|dx

˙1{2 ˆż

|f ˚ f̃pxq||1_S pxq|
2dx

˙1{2

ď

ˆ
ż

|f ˚ f̃pxq|dx

˙1{2

ˆ

ˆ
ż

|f ˚ f̃pxq|2dx

˙1{4 ˆż

|1_S pxq|
4dx

˙1{4

“ }f ˚ f̃}
1{2

L1pµq}f ˚ f̃}
1{2

L2pµq}1
_
S }L4pµq.

Young’s inequality provides estimates for these norms of f ˚ f̃ :

}f ˚ f̃}L2pµq ď }f}L2pµq}f̃}L1pµq “ }f}L2pµq}f}L1pµq

and

}f ˚ f̃}L1pµq ď }f}L1pµq}f̃}L1pµq “ }f}
2
L1pµq.

Inserting these bounds, raising to the fourth power and using (3.5) we get that

}1_S }
4
L4pµq ě

}f}6L2pµq

}f}6L1pµq

ě
1

p1` ηq3
µ˚pSq3 ě p1´ 3ηqµ˚pSq3.

On the other hand by Parseval’s theorem we have that

(3.6) }1S ˚ 1´S}
2
L2pµ˚q “ }1

_
S }

4
L4pµq ě p1´ 3ηqµ˚pSq3.

At this point we recall that

1S ˚ 1´Spγq “ µ˚pS X pγ ` Sqq for all γ P pG.

This immediately tells us that (3.6) is tight.17 More than this it turns out that the set of
characters at which 1S ˚ 1´S is large is a large subgroup, and it is proving this to which we
turn our attention.18 We write

Hε :“ tγ P pG : 1S ˚ 1´Spγq ě p1´ εqµ
˚
pSqu,

where ε (to be thought of as small) is a parameter to be optimised later. Translation by
characters in γ does not vary 1S ˚1´S very much. In particular we have the following claim.

17 Indeed, note that

}1S ˚ 1´S}
2
L2pµ˚q ď }1S ˚ 1´S}L8pµ˚q}1S ˚ 1´S}L1pµ˚q “ µ˚pSq.µ˚pSq2 “ µ˚pSq3.

18It should not come as a total surprise that this is the case: an easy calculation shows that if T is
very close to being a (coset of a) subgroup then the set of characters where 1T ˚ 1´T is large is exactly a
subgroup.
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Claim 1. If γ P Hε then

|1S ˚ 1´Spγ ` γ
1
q ´ 1S ˚ 1´Spγ

1
q| ď εµ˚pSq for all γ1 P pG.

Proof. First note that

1S ˚ 1´Spγ ` γ
1
q ´ 1S ˚ 1´Spγ

1
q “ µ˚pS X pγ ` γ1 ` Sqq ´ µ˚pS X pγ1 ` Sqq

“ µ˚ppS ´ γq X pγ1 ` Sqq ´ µ˚pS X pγ1 ` Sqq

ď µ˚pppS ´ γqzSq X pγ1 ` Sqq

´µ˚ppSzpS ´ γqq X pγ1 ` Sqq.

It follows that

µ˚ppS ´ γqzSq ě 1S ˚ 1´Spγ ` γ
1
q ´ 1S ˚ 1´Spγ

1
q ě ´µ˚pSzpS ´ γqq,

and hence

µ˚pSq ´ 1S ˚ 1´Spγq ě 1S ˚ 1´Spγ ` γ
1
q ´ 1S ˚ 1´Spγ

1
q ě 1S ˚ 1´Sp´γq ´ µ

˚
pSq.

Finally, by symmetry we get the claim. �

We now have the three main claims which help us show that the set of characters at
which 1S ˚ 1´S is large is a large subgroup.

Claim 2.

µ˚pHεq ě p1´ 3ηε´1
qµ˚pSq.

Proof. Since 1S ˚ 1´Spγq ď µ˚pSq, by the definition of Hε we have

µ˚pSq

ż

Hε

1S ˚ 1´Spγqdγ ` p1´ εqµ
˚
pSq

ż

GzHε

1S ˚ 1´Spγqdγ ě

ż

1S ˚ 1´Spγq
2dγ

ě p1´ 3ηqµ˚pSq3.

However,
ż

GzHε

1S ˚ 1´Spγqdγ “

ż

G

1S ˚ 1´Spγqdγ ´

ż

Hε

1S ˚ 1´Spγqdγ,

whence

εµ˚pSq

ż

Hε

1S ˚ 1´Spγqdγ ě pε´ 3ηqµ˚pSq3;

it follows that

µ˚pHεq ě p1´ 3ηε´1
qµ˚pSq

again using the fact that 1S ˚ 1´Spγq ď µ˚pSq. �

We get the group structure in two steps.

Claim 3. If H4εzH2ε is empty then H2ε is a subgroup of pG.
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Proof. First note that H2ε is non-empty since it contains 0
pG. Now, suppose γ, γ1 P H2ε.

Then by symmetry ´γ1 P H2ε and by Claim 1 we have

|1S ˚ 1´Spγ ´ γ
1
q ´ µ˚pSq| ď |1S ˚ 1´Spγ ´ γ

1
q ´ 1S ˚ 1´Spγq|

`|1S ˚ 1´Spγq ´ µ
˚
pSq| ď 4εµ˚pSq

and so γ ´ γ1 P H4ε. Since H4εzH2ε is empty we conclude that γ ´ γ1 P H2ε and it is a
subgroup as required. �

Our final claim is aimed at satisfying the hypotheses of the previous one.

Claim 4. The set H1´νzH2ε is empty provided 1 ă p1` ν ´ 2εqp1´ 3ηε´1q.

Proof. Suppose, for a contradiction, that γ1 P H1´νzH2ε so that

p1´ 2εqµ˚pSq ą 1S ˚ 1´Spγ
1
q ě νµ˚pSq.

It follows from Claim 1 that if γ P Hε then γ ` γ1 P H1´ν`εzHε, which is to say

p1´ εqµ˚pSq ą 1S ˚ 1´Spγ ` γ
1
q ě pν ´ εqµ˚pSq.

We conclude that
ż

H1´ν`εzHε

1S ˚ 1´Spγqdγ ě pν ´ εqµ
˚
pSqµ˚pH1´ν`εzHεq ě pν ´ εqµ

˚
pSqµ˚pHεq,

since H1´ν`εzHε contains a translate of Hε as a result of the hypothesis that H1´νzH2ε is
non-empty. On the other hand

ż

H1´ν`εzHε

1S ˚ 1´Spγqdγ `

ż

Hε

1S ˚ 1´Spγqdγ ď

ż

1S ˚ 1´Spγqdγ “ µ˚pSq2,

and so

µ˚pSq2 ě pν ´ εqµ˚pSqµ˚pHεq ` p1´ εqµ
˚
pSqµ˚pHεq

“ p1` ν ´ 2εqµ˚pSqµ˚pHεq ě p1` ν ´ 2εqp1´ 3ηε´1
qµ˚pSq2

by Claim 2, which contradicts the hypothesis proving this claim. �

We are now in a position to piece together our work. First we take ν :“ 1 ´ 4ε and
(provided η is sufficiently small) arrange ε such that19

1 ă p1` p1´ 4εq ´ 2εqp1´ 3ηε´1
q.

Given this we know from Claim 4 that H4εzH2ε is empty and so by Claim 3 we have that
H :“ H2ε is a group. Moreover, H Ą Hε and so by Claim 2 we conclude that

ż

1S ˚ 1´Spγq1Hpγqdγ ě

ż

Hε

1S ˚ 1´Spγqdγ ě p1´ εqp1´ 3ηε´1
qµ˚pSq2.

19This is possible if, for example, we can take ε ą 0 such that ε` ηε´1 ă 1{6.
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On the other hand
ż

1S ˚ 1´Spγq1Hpγqdγ “ x1S ˚ 1´S, 1HyL2pµ˚q

“ x1S, 1H ˚ 1SyL2pµ˚q ď µ˚pSq}1S ˚ 1H}L8pµ˚q.

We conclude that there is some γ1 such that

µ˚pS X pγ1 `Hqq “ 1S ˚ 1Hpγ
1
q ě p1´ εqp1´ 3ηε´1

qµ˚pSq.

Additionally,

p1´ 2εqµ˚pSqµ˚pHq ď

ż

H

1S ˚ 1´Spγqdγ ď µ˚pSq2,

so that (using Claim 2 for the left hand side) we have

p1´ 3ηε´1
qµ˚pSq ď µ˚pHq ď p1´ 2εq´1µ˚pSq.

It follows from this that

µ˚pS4pγ1 `Hqq “ µ˚pSq ` µ˚pγ `Hq ´ 2µ˚pS X pγ1 `Hqq “ Opε` ηε´1
qµ˚pHq,

and optimising the choice of ε gives the result.

Example 3.16 (The Fourier transform of random sets, Example 2.11 contd.). Suppose
again that each x P G is placed in the set A independently with probability α “ Ωp1q. The

phase of x1A is hard to determine and in general we shall not try; the magnitude however
is easier to estimate.

If γ “ 0
pG then we have E|x1Apγq| “ α, but it turns out that for other characters we

expect the magnitude to be small. Indeed, suppose that γ ‰ 0
pG. Then

E|x1Apγq| ď
´

E|x1Apγq|2
¯1{2

“

ˆ

E
ˇ

ˇ

ˇ
ExPG1Apxqγpxq

ˇ

ˇ

ˇ

2
˙1{2

“ pEx,yPGE1Apxq1Apyqγpx´ yqq
1{2

“

ˆ

Ex,yPGα2γpx´ yq ´
α2

|G|
`

α

|G|

˙1{2

“

ˆ

α ´ α2

|G|

˙1{2

“ Op1{
a

|G|q.

In fact using the variance calculation from Example 2.11 one can show that most of the
time |x1Apγq| is about this size, and in fact we shall see later that

sup
γ‰0

pG

|x1Apγq| “ O

ˆ

log |G|

|G|

˙1{2

w.h.p.

We now turn to the final example of this chapter which reflects another powerful way in
which the Fourier transform may be used.
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Example 3.17 (Spectral gap and convergence in distribution). Suppose that A Ă G is
non-empty. We set up a homogenous random walk on G as follows. Suppose that at stage
i we have a G-valued random variable Xi with law20 µi – we think of Xi as being our
position after i steps of the random walk. We assume the distribution of X0 – the initial
position – is given by some (arbitrary) probability measure µ0 PMpGq:

PpX0 P Sq “ µ0pSq for all S Ă G.

Now, at stage i we move to Xi ` a with probability |A|´1 for each a P A. This translates
to

PpXi`1 P Sq “

ż

1Spx` aqdµApaqdµipxq “ µi ˚ µApSq.

We conclude that µi`1 “ µi˚µA, and ask whether the walk converges. If A is chosen poorly,
for example if it is a non-zero coset of a subgroup of G, then the walk may oscillate between
cosets and not, in general, converge. To avoid this we make the technical convenience of
assuming that 0G P A.

Given our assumption intuitively we expect the walk to converge: the set A generates
some subgroup H and we expect after enough time that the random walk will have ‘aver-
aged’ our initial distribution over cosets of H. This means that the real question of interest
if how fast the walk converges.

To measure the difference between two distributions we use a quantity called total vari-
ation distance: suppose that ν and σ are two probability measures. Then their total
variation distance is

τpν, σq :“ supt|νpSq ´ σpSq| : S Ă Gu.

This quantity can be easily expressed in terms of the norm of the difference of the two
measures. First, for any set S Ă G we have

0 “

ż

p1S ` 1GzSqdpν ´ σq,

so it follows that

|νpSq ´ σpSq| “
1

2

ˇ

ˇ

ˇ

ˇ

ż

p1S ´ 1GzSqdpν ´ σq

ˇ

ˇ

ˇ

ˇ

ď
1

2
}ν ´ σ}.

On the other hand taking

S :“ tx : νptxuq ě σptxuqu,

we see that this upper bound is achieved (since sgnpν ´ σq “ 1S ´ 1GzS) so that

τpν, σq “
1

2
}ν ´ σ}.

Returning to our random walk it may be instructive to consider a concrete example:
take G “ Z{NZ and A “ t0, 1u (so that A generates the whole of G). Suppose that X0 is

20Recall that the law of a random variable X is the measure µ such that µpSq “ PpX P Sq.



APPLICATIONS OF COMMUTATIVE HARMONIC ANALYSIS 33

the δ-distribution centred at 0G. Then after k steps we have

PpXk “ rq “ 2´k
ÿ

Nl`rďk

ˆ

k

Nl ` r

˙

.

It follows that

PpXk “ rq “ 2´k

¨

˝

ÿ

Nl`rďk{2

ˆ

k

Nl ` r

˙

`
ÿ

k{2ăNl`rďk

ˆ

k

Nl ` r

˙

˛

‚

ď 2´k

¨

˝

ÿ

Nlďk{2

ˆ

k

Npl ` 1q

˙

`
ÿ

k{2ăNlďk

ˆ

k

Nl

˙

˛

‚

ď PpXk “ 0q ` 2´k
ˆ

k

k{2

˙

“ PpXk “ 0q `Op1{
?
kq,

where the last equality is by Stirling’s formula. A similar argument shows that PpXk “

rq ě PpXk “ 0q ´Op1{
?
kq and so it follows that

(3.7) τpµk, µGq “ supt|PpXk P Sq ´ µGpSq| : S Ă Gu “ Op|G|{
?
kq

so that after Opε´2|G|2q steps we have τpµk, µGq ď ε. The |G| dependence here is essentially
tight as can be seen by some more careful analysis; the ε dependence can be improved and
the whole approach can be set in a more general frame. This is the task to which we turn
and for which we use the Fourier transform.

Returning to our general random walk we are interested in an upper bound on

τpµk, µ0 ˚ µHq “
1

2
}µk ´ µ0 ˚ µH},

where, as mentioned, H is the subgroup of G generated by A. This is measuring the
total variation distance between the distribution of our random walk after k steps and our
initial distribution averaged over cosets of H. We write f0 for the probability mass function
associated with µ0 then we see that

τpµk, µ0 ˚ µHq “
1

2
}f0 ˚ µ

pkq
A ´ f0 ˚ µH}`1pGq ď

1

2
}f0 ˚ µ

pkq
A ´ f0 ˚ µH}`2pGq|G|

1{2

by Cauchy-Schwarz, where µ
pkq
A is the k-fold convolution of µA with itself. Now we examine

the `2-norm using Parseval’s theorem (thinking of G as being endowed with counting
measure):

}f0 ˚ µ
pkq
A ´ f0 ˚ µH}

2
`2pGq “ EγP pG|pf0pγq|

2
|xµApγq

k
´ xµHpγq|

2.

By Example 3.14 we have that xµH “ 1HK . On the other hand, A Ă H and so if γ P HK

then xµApγq “ 1. It follows that

}f0 ˚ µ
pkq
A ´ f0 ˚ µH}

2
`2pGq “ EγP pG1

pGzHKpγq|
pf0pγq|

2
|xµApγq|

2k.
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We say that A has an21 ε-spectral gap if

(3.8) sup
γRAK

|xµApγq| ď 1´ ε,

that is to say there is a gap of size ε in the values of xµA between when it is 1 and when it
is less than 1. (Note that AK “ HK since A generates H.) It we talk about the spectral
gap of A we mean the largest ε P r0, 1s such that (3.8) holds.

If A has ε-spectral gap then we see that

}f0 ˚ µ
pkq
A ´ f0 ˚ µH}

2
`2pGq ď EγP pG1

pGzHKpγq|
pf0pγq|

2
p1´ εq2k,

and it follows that

(3.9) τpµk, µ0 ˚ µHq ď
1

2
}f0}`2pGqp1´ εq

k
|G|1{2 “ Op|G|1{2 expp´Opεkqqq.

Roughly we expect to have achieved ‘good convergence’ after at most Opε´1 log |G|q steps
of the walk.

It is trivial that A has some non-zero spectral gap: if A is a subgroup then we see that
it has spectral gap22 1; if A is not a subgroup, suppose that γ R AK. Then there is some
a0 P A such that γpa0q ‰ 1. Also, 0G P A so that

1´ |xµApγq|
2
“

1

|A|2

ÿ

a,a1PA

1´ Re γpa´ a1q ě
1

|A|2
2p1´ Re γpa0qq.

Since γ maps from G we have that the order of γpa0q divides |G| and hence

2p1´ Re γpa0qq “ |1´ γpa0q|
2
ě |1´ expp2πi{|G|q|2 “ Ωp|G|´2

q.

It follows that A has Ωp1{|A|2|G|2q-spectral gap; in fact it is somewhat better.23

Before proceeding it is worth noting that if |A| “ Op1q then the above tells us that
A has spectral gap Ωp1{|G|2q and so by (3.9) we have good convergence after at most
Op|G|2 log |G|q steps. This should be compared with (3.7).

We now return to the general setting of G a finite Abelian group and A Ă G a set
containing the identity.

Claim. Suppose that A has density α and λ P pG. Then at least one of the following is
true:

(i) (Fourier coefficient is small) |xµApλq| ď 1´ Ωpα2q;
(ii) (Many pairs in kernel) for at least 49{64 of the pairs pa, a1q P A2 have a´a1 P kerλ.

Proof. Our argument is, in a sense, dual to some of the work we did in Example 3.15, and
our analogue of the sets Hε from there are the sets

Sε :“ tγ P pG : }1´ γ}L2pµA˚µ´Aq ď εu.

21This is a slightly unorthodox definition of spectral gap. When the spectral gap is usually defined to
be infγ‰0

xG
1´ Re xµApγq. The exercises have some more material on this.

22Waffle about infinity.
23We proved something a bit better in lectures; we shall prove something even better in a moment using

the main claim from the lectures.
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The reason for this slightly odd definition is because the triangle inequality for L2-norms
tells us immediately that if γ P Sε and γ1 P Sδ then

}1´ γγ1}L2pµA˚µ´Aq “ }1´ γ ` γp1´ γ1q}L2pµA˚µ´Aq

ď }1´ γ}L2pµA˚µ´Aq ` }γp1´ γ
1
q}L2pµA˚µ´Aq

“ }1´ γ}L2pµA˚µ´Aq ` }1´ γ
1
}L2pµA˚µ´Aq ď ε` δ,

so that γ ` γ1 P Sε`δ. On the other hand the definition relates to spectral gap in the sense
that

}1´ γ}2L2pµA˚µ´Aq
“

ż

|1´ γpxq|2dµA ˚ µ´Apxq “ 2´ 2|xµApγq|
2,

so that

|xµApγq| ě 1´ ε2{2 if and only if }1´ γ}L2pµA˚µ´Aq ď ε.

We shall let ε be a constant to be optimised later (it will turn out that ε “ Ωpαq). Our
aim is to show that if λ P Sε and ε is sufficiently small then we have the second conclusion.

Suppose that λ P Sε. If r ď ε´1{2 then by the triangle inequality we have that

γ1 P Spr´1qε ñ λ` γ1 P Srε.

Now, suppose that SrεzSpr´1qε is non-empty for every r ď ε´1{2. (This will turn out to lead
to a contradiction provided ε is sufficiently small.) Since the sets pSrεzSpr´1qεqr are disjoint
and contained in S1{2 we have, by Parseval’s theorem, that

ptε´1
{2u´ 1q.p7α{8q2 ď

ε´1{2
ÿ

r“1

ÿ

γPSrεzSpr´1qε

|x1Apγq|
2

“
ÿ

γP
Ť

rďε´1{2 SrεzSpr´1qε

|x1Apγq|
2
ď

ÿ

γP pG

|x1Apγq|
2
“ α.

It follows that ε “ Ωpαq; thus if ε is sufficiently small then we have a contradiction and we
conclude that SrεzSpr´1qε is empty for some r ď ε´1{2. Thus by the triangle inequality we
have that Spr´1qε`λ Ă Spr´1qε, and by induction Spr´1qε`nλ Ă Spr´1qε. On the other hand
0
pG P S0 Ă Spr´1qε and so λn P Spr´1qε Ă S1{2 for all n P N.
Writing k for the order of λ we know that E1ďnďkλ

npxq “ 1kerλpxq for all x P G. Thus,
it follows from the above that

p7{8q2 ď E1ďnďk|xµApλ
n
q|

2
“

ż

E1ďnďkλ
n
pa´ a1qdµApaqdµApa

1
q

“

ż

1kerλpa´ a
1
qdµApaqdµApa

1
q.

We conclude that we are in the second case of the claim and we are done. �

As an immediate consequence of this claim, suppose that G “ Z{pZ for some prime p
and A Ă Z{pZ contains the identity and has size at least 2. Every non-trivial character
has trivial kernel and so it follows that if we are in the second case of the claim then
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p49{64q|A|2 ď |A|. Since |A| ě 2 this is a contradiction we see that A has Ωpα2q-spectral
gap.

To summarise, combining our spectral gap result with our earlier result (3.9) we see
that for every initial distribution µ0 on Z{pZ the random walk associated to A will have
achieved ‘good convergence’ to the uniform distribution on Z{pZ in Opα´2 log |G|q steps.

Returning to the general setting of G a finite Abelian group and A Ă G containing the
identity we can use the previous claim to bootstrap our earlier estimate for the spectral
gap.

Claim. The set A has Ωp|A|{|G|2q-spectral gap.

Proof. We apply the previous claim for each character λ R AK. If we are in the first case
then we have the relevant upper bound on |xµApλq|; assume we are in the second.

In the first instance we note that | kerλ| ě 49|A|{64 by averaging. By the isomorphism
theorem we conclude that | Imλ| ď 64|G|{49|A| and so by Lagrange’s theorem λpxq has
order at most 64|G|{49|A| for all x P G.

Suppose that a0 P A is such that λpa0q ‰ 1. (Which exists since λ R AK.) Write m for
the order of λpa0q which has m ą 1 and m ď 64|G|{49|A|. We conclude that

|1´ λpa0q| ě |1´ expp2πi{mq| “ Ωp1{m2
q “ Ωp|A|2{|G|2q.

Now let cλ P S
1 be such that |x1Apλq| “ cλx1Apλq. Since 0G P A we have that

|A| ´ |x1Apλq| “ Re
ÿ

aPA

p1´ cλλpaqq

“
ÿ

aPA

p1´ Repcλλpaqqq

ě p1´ Re cλq ` p1´ Repcλλpa0qq

“
1

2
p|1´ cλ|

2
` |1´ cλλpa0q|

2
q ě

1

4
|1´ λpa0q|

2
“ Ωp|A|2{|G|2q.

The claim follows on dividing. �

In the general setting this estimate is tight as can be see by letting A be a subgroup
adjoined by one other element of order close to |G|{|A|. In general we do not use sets A
which are ‘close’ to subgroups – rather we think of A as a generating set, in which case
better estimates are often available.

4. Roth’s theorem and arithmetic progressions

Roth’s theorem on arithmetic progressions [Rot53] is one of the central problems of ad-
ditive combinatorics and was one of the routes by which the power of the Fourier transform
became apparent (in this field), although Roth used the term exponential sums.

A three-term arithmetic progression is a triple of integers px, y, zq such that x ` z “ 2y
or, equivalently, a triple px, x`d, x`2dq. We say that such a progression is trivial if d “ 0
so that all of x, y and z are the same.
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Theorem 4.1 (Roth’s theorem on arithmetic progressions). Suppose that A Ă t1, . . . , Nu
contains no non-trivial arithmetic progressions. Then

|A| “ OpN{ log logNq.

This result should be compared with Proposition 1.5 where instead of looking for triples
px, y, zq with x ` z “ 2y we looked for quadruples px, y, z, wq such that x ` z “ y ` w.
While that proposition was rather easy, Roth’s theorem is not, and one of the reasons that
Roth’s theorem is so hard is that there are examples of rather large sets of integers not
containing any non-trivial arithmetic progressions.

Theorem 4.2 (Behrend’s construction, [Beh46]). There is a set A Ă t1, . . . , Nu containing
no non-trivial arithmetic progressions such that

|A| “ Ω

˜

N

expp2
a

2 log2Nq log1{2N

¸

.

Proof. The basic idea is that the surfaces of strictly convex bodies do not contain (non-
trivial) arithmetic progressions and that the higher the dimension of the underlying space,
the more of the mass of the body is near the surface. Given such a surface in high
dimensional space we embed it into t1, . . . , Nu.

Concretely we shall look at a sphere. We let M and d be naturals to be optimised later
and put

Sr :“ tx P t1, . . . ,Mud : x2
1 ` ¨ ¨ ¨ ` x

2
d “ ru.

By averaging it follows that there is some r such that |Sr| ěMd{pdM2q. Of course, Sr is a
set of points on a sphere which is strictly convex and so it contains no non-trivial convex
combinations of points and, in particular, no three-term progressions.

We now consider the embedding

φ : t1, . . . ,Mud Ñ t1, . . . , Nu

px1, . . . , xdq ÞÑ x1 ` p2M ` 1qx2 ` ¨ ¨ ¨ ` p2M ` 1qd´1xd.

This is into provided

M ` p2M ` 1qM ` ¨ ¨ ¨ ` p2M ` 1qd´1M ď N ;

and by design if

(4.1) φpxq ` φpyq “ φpzq ` φpwq

then x` y “ z`w. It follows that A :“ φpSrq does not contain any non-trivial arithmetic
progressions since Sr does not provided p2M ` 1qd ď N . Furthermore, since φ is injective
(as a result of (4.1)) we conclude that

|A| ěMd
{pdM2

q.

To ensure that A does not contain any arithmetic progressions we take M “ tpN1{d´1q{2u,
so that

|A| ě
4N

d2dN2{d
p1´OpdN´1{d

qq.
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We optimise this by taking d as close to the solution to ‘2z “ N2{z’ as possible. In particular
we take d natural such that d “

a

2 log2N `Op1q, and the result follows. �

As we shall see later in Example 5.4, with slightly more care one can save a log1{4N
from the bottom, but essentially nothing better than this is known. Indeed, it took some
sixty years before Elkin [Elk10] improved this by a further log1{2N , and this is the best
known bound. For a nice and short version of Elkin’s result the reader can consult the
paper [GW10] of Green and Wolf.

We shall not prove Roth’s theorem in these notes, but we shall prove a model version in
a different group which captures most of the ideas. Indeed, nothing about the definition
of a three-term arithmetic progression really requires that it be in the integers.

Suppose that G is a finite Abelian group. Then px, y, zq P G3 is a three-term arithmetic
progression if x` z “ 2y. If the group has 2-torsion then this results in some degeneracy.
Indeed, if G “ pZ{2Zqn then any triple px, y, xq is a three-term arithmetic progression so we
avoid this case. On the other hand if G “ pZ{3Zqn then 2 “ ´1 pmod 3q so a three-term
arithmetic progression is just three points in a line.

Theorem 4.3 (Roth-Meshulam Theorem). Suppose that G :“ pZ{3Zqn and A Ă G con-
tains no three points in a line. Then

|A| “ Op3n{nq.

This result is due to Meshulam [Mes95], although the argument follows Roth [Rot53]
adapted to the group G “ pZ{3Zqn. To compare this with Roth’s theorem we think of 3n

as being the equivalent of N so that the upper bound on A in Roth-Meshulam is of the
form OpN{ logNq. This is rather better than that in Theorem 4.1, and while the bound
in Theorem 4.1 can be improved (see, for example, the paper [Bou99] of Bourgain or its
exposition in [TV06, §10.4]) nothing of the shape OpN{ logNq is known.

Remark (Qualitative vs quantitative). We have discussed bounds quite a bit in this chapter
and will continue to do so in the notes. Improvement of bounds provides a way to measure
progress on a problem and the extent to which we understand what is going on. For
example, if one could prove a bound in Theorem 4.1 matching the lower bound of Behrend,
one might hope that it would say something about spheres in some sense ‘being extremal’
for this question. This also means that some improvements on bounds are more interesting
than others, depending on the understanding they afford.

We shall turn now to proving the Roth-Meshulam theorem. Our starting point for both
this and Roth’s theorem is the same: we try to prove that if A has large enough density
then A contains so many arithmetic progressions that it necessarily contains a non-trivial
three-term arithmetic progression.

Suppose that G is a finite Abelian group and A Ă G has density α. We write

TGpAq :“ Ex,uPG1Apxq1Apx` uq1Apx´ uq

so that TGpAq|G|
2 is the number of three-term progression in the set A. We aim to show

that TGpAq|G|
2 ą α|G| since α|G| is the number of trivial progressions in A.
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As we have done before we can rewrite TGpAq in a simple way using convolution, and
then diagonalise using the Fourier transform (specifically, insert the inversion formula for
1A ˚ 1A):

TGpAq “ ExPG1ApxqEuPG1Apx` uq1Apx´ uq

“ ExPG1Apxq1A ˚ 1Ap2xq

“ ExPG1Apxq
ÿ

γP pG

x1Apγq
2γp2xq “

ÿ

γP pG

x1Apγq
2
x1Ap2γq.

We now do a little calculation assuming that G has no 2-torsion. If A were chosen at
random with probability α (as in Examples 2.11 and 3.16) then we should expect TGpAq to
be about α3, since TGpAq|G|

2 is the number of three-term progressions in A, and there are
|G|2 possible progressions each of which (except the trivial ones) is present with probability

α3. On the other hand x1Ap0 pGq “ α, so

(4.2) TGpAq ´ α
3
“

ÿ

γ‰0
pG

x1Apγq
3.

In Example 3.16 we saw that supγ‰0
pG
|x1Apγq| was very small when A was chosen randomly,

which fits with our expectations.24 On the other hand, what (4.2) suggests is that this is
an equivalence as we now prove.

Lemma 4.4. Suppose G has no 2-torsion and A Ă G has density α. Then at least one of
the following is true.

(i) (Many progression) We have the estimate TGpAq ě α3{2;

(ii) (Large Fourier coefficient) There is some γ ‰ 0
pG such that |x1Apγq| ě α2{2.

Proof. We return to (4.2) and apply the triangle inequality to see that

|TGpAq ´ α
3
| ď

ÿ

γ‰0
pG

|x1Apγq|
3
ď sup

γ‰0
pG

|x1Ap2γq|
ÿ

γ‰0
pG

|x1Apγq|
2.

On the other hand by Parseval’s theorem we have
ÿ

γ‰0
pG

|x1Apγq|
2
ď

ÿ

γP pG

|x1Apγq|
2
“ ExPG1Apxq

2
“ α,

24The alert reader may wonder here: if we pick the elements of A independently at random with
probability α then the expected number of three-term progressions is α3p|G|2´|G|q`α|G|. This is because
there are |G|2 ´ |G| non-trivial progressions each of which has probability α3 of being included and then
|G| trivial progressions each of which has probability α of being included. It follows that TGpAq ´ α3 “

Θαp1{|G|q.

On the other hand from Example 3.16 we expect |x1Apγq| to be Θαp|G|
´1{2q in modulus so that we might

expect the right hand side of (4.2) to be about |G|.Θαp|G|
´1{2q3 “ Θαp|G|

´1{2q in size. The reader may
be concerned about these heuristics since Θαp1{|G|q ‰ Θαp|G|

´1{2q.

Of course, what we have forgotten is that the sign of x1A also behaves randomly so we expect square-root
cancellation in the right hand side of (4.2) and then our adjusted heuristic for the right hand side tells us
it is about |G|1{2.Θαp|G|

´1{2q3 “ Θαp|G|
´1q as desired.
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and it follows that

|TGpAq ´ α
3
| ď α sup

γ‰0
pG

|x1Ap2γq|.

This gives the result since if TGpAq ă α2{2 then the left hand side is at least α3{2, and if
G has no 2-torsion then 2γ is a non-trivial character if and only if γ is non-trivial. �

The reason the above lemma is useful is that a large Fourier coefficient leads to a density
increment on a coset of a subgroup. Indeed, since γ is constant on cosets of tγuK we see

that if x1Apγq “ x1A, γyL2pGq is large in modulus then A cannot have the same density on
all cosets of tγuK; this yields a density increment.

Lemma 4.5. Suppose that A Ă G has density α and γ is non-trivial (meaning γ ‰ 0
pG)

and has |x1Apγq| ě εα. Then writing V :“ tγuK we have

}1A ˚ µV }L8pGq ě p1` ε{2qα.

Proof. This is simply an averaging argument: first

}p1A ´ αq ˚ µV }L1pGq ě }p1A ´ αq ˚ µV }`8p pGq

ě |p1A ´ αq
^
pγq||xµV pγq| “ |x1Apγq| ě εα.

Note, crucially,

p1A ´ αq
^
pγq :“ p1A ´ α1Gq

^
pγq “ x1Apγq ´ αx1Gpγq “ x1Apγq ´ α1t0

pG
upγq “ x1Apγq

since γ is non-trivial. On the other hand

ExPGp1A ´ αq ˚ µV pxq “ α ´ α “ 0.

It follows that

2 max
x
p1A ´ αq ˚ µV pxq ě ExPG|p1A ´ αq ˚ µV pxq| ` ExPGp1A ´ αq ˚ µV pxq ě εα,

and we get the result. �

Our plan of action is to combine these two lemmas and iterate:

(i) either we have many three-term progressions;
(ii) or there is a coset of a subgroup on which we have increased density.

If we are in the second case we put the output back into the iteration (possible since three-
term progressions are translation invariant, so a three-term progression in the coset x` V
is the same as one in V ) and repeat. This process cannot go on forever since density is
bounded above by 1 and so we terminate in the first case.

The main problem with this plan is that the subgroup we pass to may be very small
and this is why the Roth-Meshulam theorem is easier to prove than Roth’s theorem: if
G “ pZ{3Zqn then every element has order 3 and so γpxq3 “ γp3.xq “ 1 and so γ is a
homomorphism with an image of size at most 3. It follows that | ker γ| ě |G|{3 which is
large.
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Proof of Theorem 4.3. We write α for the density of A in G and we proceed iteratively
to define a sequence of spaces G “: V0 ě V1 ě . . . ě Vk ě . . . and elements 0G “:
x0, x1, . . . , xk, . . . . We write

Ai :“ Vi X pxi ` Aq, αi :“ PVipAiq and Ki :“ |G{Vi|.

Suppose that we are at stage i of the iteration. Apply Lemma 4.4 to the set Ai considered
as a subset of Vi. It follows that either

(4.3) TVipAiq ě α3
i {2 or sup

γ‰0
xVi

|x1Aipγq| ě α2
i {2.

In the first case this means that Ai contains at least pα3
i {2q.|Vi|

2 arithmetic progressions.
Since arithmetic progressions are translation invariant it follows that A contains at least
pα3

i {2q|Vi|
2 “ pα3

i {2qK
´2
i |G|

2 arithmetic progressions, and it will turn out that we shall be
done.

On the other hand in the second case, by Lemma 4.5 there is a subgroup Vi`1 ď Vi
with |Vi{Vi`1| “ 3 (since every (non-trivial) element of G is order 3 means that every

(non-trivial) element of Vi is order 3, and hence so is every (non-trivial) element of pVi) and
some yi P Vi such that

1Ai ˚ µVi`1
pyiq “ }1Ai ˚ µVi`1

}L8pViq ě p1` αi{4qαi.

Putting xi`1 “ yi ` xi we see that

αi`1 “ PVi`1
pAi`1q “ PVi`1

pVi`1 X pxi`1 ` Aqq

“ PVi`1
pVi`1 X pyi ` xi ` Aqq

“ PVi`1
pVi`1 X pyi ` Aiqq “ 1A ˚ µVi`1

pyiq ě p1` αi{4qαi;

additionally Ki`1 “ |G{Vi`1| “ 3|G{Vi| “ 3Ki.
Since αi`1 ě p1` αi{4qαi we see that after ki “ Opα´1

i q steps we have αi`ki ě 2αi. On
the other hand α0 “ α and αi ď 1 and so the iteration terminates in the first case of (4.3)
in

Opα´1
q `Opp2αq´1

q `Opp4αq´1
q ` ¨ ¨ ¨ `Opp2rαq´1

q ` ¨ ¨ ¨ “ Opα´1
q

steps. When it terminates we conclude that Ki ě expp´Opα´1qq (and αi ě α) whence A
contains at least expp´Opα´1qq|G|2 three-term progressions.

Finally, since A contains only trivial progressions we have that

α|G| ě TGpAq|G|
2
ě expp´Opα´1

qq|G|2

from which the bound follows. �

Interestingly Behrend’s construction does not extend to the model setting of G :“
pZ{3Zqn. Indeed, the best know construction is due to Edel [Ede04] who showed that
there is a set A Ă pZ{3Zqn not containing any non-trivial three-term progressions such
that |A| ě p2.2 . . . qn.

Despite the fact that for Roth’s theorem one of the main constructions does not translate
to the model setting, the general technique of translating problems for the integers into
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model settings such as pZ{3Zqn is very useful. For more information it is recommended
that the reader take a look at the wonderful survey paper [Gre05] of Green.

One can adapt Lemma 4.5 to work for ‘approximate annihilators of characters’; such
sets are called Bohr sets.

Definition 4.6 (Bohr sets). Suppose that Γ is a set of characters on G and δ P p0, 2s.
Then the Bohr set with frequency set Γ and width δ is the set

BohrpΓ, δq :“ tx P G : |γpxq ´ 1| ď δ for all γ P Γu,

and it is said to have rank |Γ|. The rank is sometimes called the dimension, but this
term is also used for another quantity so we avoid it here. Additionally, the term Bohr
neighbourhood is also used for Bohr sets although we shall use this for any translate of a
Bohr set.

It is immediate from the definition that

ΓK Ă BohrpΓ, δq Ă G.

Since |γpxq| “ 1, the triangle inequality tells us that we have equality on the right when
δ “ 2; on the other hand if δ ă |1 ´ expp2πi{rq| where r is the maximum order of an
element in Γ then we have equality on the left.

In light of this we think of the width parameter as measuring the degree to which the
Bohr set BohrpΓ, δq approximates the annihilator ΓK.

Even with Bohr sets proving Roth’s theorem is not as easy as simply plugging in the
generalisation of Lemma 4.5 into the proof of Theorem 4.3. The problem is that instead of
getting a density increment on a coset of a subgroup we get a density increment on a Bohr
neighbourhood and so we then have to go back and adapt Lemmas 4.4 and 4.5 to subsets
of Bohr sets, rather than just subsets of groups. This can be done provided the Bohr sets
satisfy a certain technical condition called regularity. This condition does not always hold,
but is ubiquitous and so holds enough of the time to make the argument work although
the details are fierce.

Example 4.7 (Bohr sets in cyclic groups). Bohr sets are at their most interesting in cyclic
groups. Suppose that G “ Z{NZ and Γ “ tγu where γpxq “ expp2πix{Nq. Then we have
that

|1´ γpxq| “
a

2´ 2 cosp2πx{Nq “ 2π|x|{N `O|x|{NÑ0p|x|{Nq
3,

and so

BohrpΓ, δq “ tx P G : |1´ expp2πix{Nq| ď δu

“ tx`NZ : |x| ď pδ `OδÑ0pδ
3
qqN{2πu.

We see that the Bohr set is a symmetric interval of width about δN{π. Note, in particular,
that if δ is small enough then the Bohr set may only contain the identity despite being
rank 1.
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Taking other characters in the previous example leads to dilates of intervals – centred
arithmetic progressions – and taking a Bohr set with multiple characters in the frequency
set therefore leads to intersections of centred arithmetic progressions.

To understand Bohr sets better it will be useful to have an estimate for how big they
are, and in light of the example in cyclic groups it should come as little surprise that this
translates to a bound on the density (as opposed to size).

Lemma 4.8 (Bohr set size estimate). Suppose that BohrpΓ, δq is a rank k Bohr set. Then

PGpBohrpΓ, δqq ě pδp1´ oδÑ0p1qq{2πq
k.

Proof. We write T :“ R{Z and consider the homomorphism

φ : GÑ TΓ;x ÞÑ

ˆ

log γpxq

2πi

˙

γPΓ

.

Writing Q for the cube r0, ηsk `ZΓ in TΓ, we have, interchanging the order of summation,
that

EzPTΓPGptx P G : φpxq P z `Quq “ EzPTΓExPG1z`Qpφpxqq

“ ExPGEzPTΓ1z`Qpφpxqq

“ ExPGEzPTΓ1φpxq´Qpzq

“ ExPGµpφpxq ´Qq “ µpQq.

Thus, by averaging that there is some z P TΓ such that

PGptx P G : φpxq P z `Quq ě µpQq.

On the other hand if x, y P tx P G : φpxq P z ` Qu then (since φ is a homomorphism) we
have that

|1´ γpx´ yq| ď |1´ expp2πi.ηq|.

Choosing η such that |1´ expp2πi.ηq| “ δ yields the result since µpQq ě η|Γ| “ ηk. �

Up to the constant this is best possible as can be seen by considering, for example,
a cube in G “ pZ{MZqk. The cube example also motivates our thinking for arithmetic
progressions. Indeed, it turns out that every Bohr set contains a long arithmetic progression
as we can show using the above.

Lemma 4.9 (Arithmetic progressions in Bohr sets). Suppose that G is cyclic and Γ is
a set of characters on G of size k. Then the Bohr set BohrpΓ, δq contains an arithmetic
progression of length at least δ|G|1{pk`1qp1´ oδÑ0p1qq{π centred at 0G.

Proof. Write K :“
Ş

γPΓ ker γ which we note is cyclic since it is a subgroup of a cyclic

group and we write |K| “ M . First note that since K is cyclic ΓK Ă BohrpΓ, δq contains
an arithmetic progression of length M . Secondly, from the definition of K the characters
in Γ induce a set of characters Γ1 on H :“ G{K.
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In light of Lemma 4.8 we can pick ρ „ 2π|H|´1{k such that PHpBohrpΓ1, ρqq ą 1{|H|. It
follows that there is some x0 P BohrpΓ1, ρq with x0 ‰ 0H . But then if l is an integer with
|l| ď δρ´1 we have

|1´ γplx0q| ď l|1´ γpx0q| ď δ for all γ P Γ1.

It follows that tlx0 : |l| ď δρ´1u Ă BohrpΓ1, δq; the problem is that these elements might
not be distinct. However, since x0 ‰ K “ 0H we conclude that there is some γ P Γ1 such
that γpx0q ‰ 1. It follows that all the values γplx0q are distinct for |l| ď δρ´1 and hence
the arithmetic progression genuinely has length 2tδρ´1u` 1.

It remains to optimise by minimising

maxtM, 2tδρ´1u` 1u „ maxtM, δp|G|{Mq1{k{πu

which gives the result. �

The above result is easier and stronger if G is cyclic of prime order; we leave the proof
of this to the exercises.

We now turn to the last result of the section which is closely related to Roth’s theorem.
The starting point is that if we have a set A Ă t1, . . . , Nu (with more than 1 element) then
eventually if one keeps adding A to itself it will contain a translate of t1, . . . , Nu. (The
reader may wish to compare this with the work in Example 3.17.)

The following theorem, due to Frĕıman, Halberstam and Ruzsa [FHR92], shows that
even after adding the set A to itself three times we get a long arithmetic progression.

Theorem 4.10. Suppose that A Ă t1, . . . , Nu has size αN . Then A`A`A contains an

arithmetic progression of length ΩpαNΩpα3qq.

Proof. First we embed A in G :“ Z{6NZ via the usual quotient map from Z and write
A1 for the image. This has density α1 “ α{6 and if A1 ` A1 ` A1 contains an arithmetic
progression of length l then this lifts to an arithmetic progression of length l in A`A`A.

We now study A1 ` A1 ` A1 through the three-fold convolution of 1A1 with itself. Since
we have a bound on the density of A1 in G we think of the group as endowed with Haar
probability measure. By Fourier inversion we have that

1A1 ˚ 1A1 ˚ 1A1pxq “
ÿ

γP pG

p1A1 ˚ 1A1 ˚ 1A1q
^
pγqγpxq “

ÿ

γP pG

x1A1pγq
3γpxq.

We shall split this sum into three parts which we shall deal with separately. First, recall
that x1A1p0 pGq “ α1. This term is going to be the main term and we shall want to show that
the rest of the sum above is an error term. We write

Γ :“ tγ ‰ 0
pG : |x1A1pγq| ě εα1u and Γ1 :“ tγ : |x1A1pγq| ă εα1u,

so that
1A1 ˚ 1A1 ˚ 1A1pxq “ α13 ` Cpxq ` Epxq

where
Cpxq “

ÿ

γPΓ

x1A1pγq
3γpxq and Epxq “

ÿ

γPΓ1

x1A1pγq
3γpxq.
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The term Epxq will genuinely be an error term in L8; the term Cpxq will be roughly
constant on the Bohr set with frequency set Γ. To see these facts we have

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

γPΓ1

x1A1pγq
3γpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
γPΓ1

|x1A1pγq|
ÿ

γPΓ1

|x1A1pγq
2
| ď εα1

ÿ

γP pG

|x1A1pγq|
2
“ εα12,

so that |Epxq| ď εα12. Secondly, if y P BohrpΓ, δq then we have

|Cpx` yq ´ Cpxq| ď
ÿ

γPΓ

|x1A1pγq|
3
|γpx` yq ´ γpxq|

“
ÿ

γPΓ

|x1A1pγq|
3
|γpyq ´ 1| ď δ

ÿ

γP pG

|x1A1pγq|
3
ď δα12.

We are now in a position to find a Bohr neighbourhood on which 1A1 ˚ 1A1 ˚ 1A1 is large. If
γ P Γ then Exγpxq “ 0 (since γ ‰ 0

pG) so that ExCpxq “ 0 and there is some x0 such that
Cpx0q ě 0. But then for every x P x0 ` BohrpΓ, δq we have

1A1 ˚ 1A1 ˚ 1A1pxq ě α13 ` 0´ δα12 ´ εα12

by the triangle inequality. If we take ε “ α1{3 and δ “ α1{3 then we see that x P A1`A1`A1.
Finally we use Parseval’s theorem to bound the size of Γ:

|Γ|pεα1q2 ď
ÿ

γPΓ

|x1A1pγq|
2
ď α1,

so |Γ| ď α1´3. We conclude that A1 ` A1 ` A1 contains a translate of a Bohr set of width
α1{3 and rank Opα1´3q. By Lemma 4.9 this means that A1`A1`A1 contains an arithmetic

progression of length Ωpα1NΩpα13qq and we are done in light of the relationship between α
and α1. �

It should be remarked that A`A does not necessarily contain an arithmetic progression
of length NΩαp1q, so up to α-dependence the above result is best possible. The examples
showing this are due to Ruzsa [Ruz91] and are technically formidable.

Remark 4.11. It may also be worth remarking that one often chooses the embeddings in
proofs of the type given above to be into groups of prime order. This often has benefits,
although typically not of an essential nature. For example Lemma 4.9 is stronger and
easier to prove in this case, but not essentially more useful.

To get an appropriate prime we could use the prime number theorem, but a much weaker
result works. Indeed, we use (a weak version of) Bertrand’s postulate25 that there is always
a prime between n and Opnq. This is easy enough to prove: first we need an upper bound
on the Chebychev function θpnq. On the one hand every prime between r and 2r divides

25Bertrand’s postulate asserts that there is always a prime between n and 2n; in fact they are far more
common.
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`

2r
r

˘

a least once and so

(4.4)
ź

pďn

p ď

tlog2 nu
ź

i“0

ź

2iăpď2i`1

p ď

tlog2 nu
ź

i“0

ˆ

2i`1

2i

˙

ď 4
řtlog2 nu

i“0 2i
“ exppOpnqq.

On the other hand the number of times a prime p divides n! is
ř

iě1 tn{piu, and

n{p´Op1q ď
ÿ

iě1

tn{piu ď n{p`Opn{p2
q.

Hence

n log n`Opnq “ log n! “
ÿ

pďn

log p
ÿ

iě1

Z

n

pi

^

“ n
ÿ

pďn

log p

p
`

ÿ

pďn

Op1q log p`
ÿ

pďn

Opn{p2
q log p.

Inserting the log of the bound (4.4) and the fact that
ř

pďn p
´2 log p “ Op

ř

xďn x
´3{2q “

Op1q into this and dividing by n gives
ÿ

pďn

log p

p
“ log n`Op1q.

This result is called Merten’s theorem and the weak version of Bertand’s postulate follows
immediately since the sum of plog pq{p for primes between n and Dn is then at least
logD´Op1q which is positive provided D is a sufficiently large absolute constant. That is
to say there is a prime between n and Dn “ Opnq.

5. Sums of independent random variables

We have spent considerable time developing the Fourier transform and examining basic
examples of its uses. At this point we shall introduce a new tool called measure concen-
tration and some variants which are very powerful. In particular they will help us revise
and improve much of our earlier work with some much stronger estimates.

Our starting point is sums of independent random variables which, in the spirit of the rest
of the notes, will be assumed based on a finite probability space. Suppose that X1, . . . , Xn

are independent with mean 0 and variance 1. We are interested in
ř

iXi which has

E
ÿ

i

Xi “ 0 and Varp
ÿ

i

Xiq “ n

where the variance calculation is as a result of the Xis being (pair-wise) independent.
By Chebychev’s inequality we see that most of the mass of

ř

iXi is concentrated in
r´C

?
n,C

?
ns; indeed it gives

Pp|
ÿ

i

Xi|{
?
n R r´C,Csq ď 1{C2.

There are now two questions about
ř

iXi{
?
n:
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(i) What does
ř

iXi{
?
n look like inside the interval r´C,Cs? Answers to this are

called local limit theorems.
(ii) How rapidly does

ř

iXi{
?
n concentrate on the interval r´C,Cs? Answers to this

go by various names such as concentration of measure.

Our interest is more in the second of these two questions.
At this point it is instructive to consider the prototypical example. Suppose that the

Xis above are identically distributed with PpXi “ 1q “ PpXi “ ´1q “ 1{2. Then for r ” n
pmod 2q we have

Pp
ÿ

i

Xi “ rq “
1

2n

ˆ

n

pn` rq{2

˙

.

Provided n´ |r| Ñ 8 as nÑ 8 we can use Stirling’s formula to get that
ˆ

n

pn` rq{2

˙

„
nn`1{2e´n

?
2π

ppn` rq{2qpn`r`1q{2e´pn`rq{2
?

2πppn´ rq{2qpn´r`1q{2e´pn´rq{2
?

2π

“
2n`1

?
2πn

ˆ

n2

n2 ´ r2

˙pn`1q{2 ˆ
n´ r

n` r

˙r{2

,

so that

(5.1) Pp
ÿ

i

Xi “ rq „
2

?
2πn

ˆ

n2

n2 ´ r2

˙pn`1q{2 ˆ
n´ r

n` r

˙r{2

.

Initially we are looking for an upper bound on this in terms of r, and we begin by consid-
ering the range 0 ď r ď n{4. When this is the case we have

Pp
ÿ

i

Xi “ rq “ O

˜

ˆ

1

1´ pr2{n2q

˙n{2 ˆ

1´
2r

n` r

˙r{2
¸

“ Opexpp3r2
{4nq expp´r2

{pn` rqq

“ Opexpp´r2
{20nqq

since p1 ´ xq´1 ď expp3x{2q whenever x P r0, 1{3s and 1 ´ x ď expp´xq for all x P r0,8q.
Of course, binomial coefficients are decreasing away from the centre and are symmetric so
we conclude that

Pp
ÿ

i

Xi “ rq “ Opexpp´r2
{320nqq “ Opexpp´Ωpr2

{nqqq,

and hence summing gives an upper bound of

Pp|
ÿ

i

Xi| ą rq “ Opexpp´Ωpr2
{nqqq.

This bound is called a Chernoff-type bound and more information can be found in the clas-
sic text [Shi96] of Shiryaev. For comparison it is exponentially stronger than Chebychev’s
estimate, giving

(5.2) Pp|
ÿ

i

Xi|{
?
n R r´C,Csq “ Opexpp´ΩpC2

qqq.
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Of course Chebychev’s bound holds for any pairwise independent set of random variables,
whereas the estimate just proved is for the specific case of the distributions defined above.
It turns out, however, that results of this shape are true in much greater generality and
the key properties are three-fold: the Xis have mean 0; bounded L8; and are independent.

To prove this we start with a clever lemma. It is unlikely that the discovery of this
lemma was made with this proof, but it is a natural refinement of a proof.

Lemma 5.1. Suppose that X1, . . . , Xn P L8pPq are independent random variables with
mean 0. Then

E| expp
ÿ

i

Xiq| ď expp
1

2

ÿ

i

}Xi}
2
L8pPqq.

Proof. Begin by noting that

E| expp
ÿ

i

Xiq| “ EexppRe
ÿ

i

Xiq “ E
ź

i

exppReXiq.

Now we have the elementary inequality expptyq ď cosh t ` y sinh t whenever t P R and
´1 ď y ď 1, so

E| expp
ÿ

i

Xiq| ď E
ź

i

ˆ

cosh }Xi}L8pPq `
RepXiq

}Xi}L8pPq
sinh }Xi}L8pPq

˙

,

with the usual convention that t´1 sinh t is 1 if t “ 0. Since EXi “ 0 we conclude that
EReXi “ 0 and so, by independence we pass E through the product, and get

E| expp
ÿ

i

Xiq| ď
ź

i

ˆ

cosh }Xi}L8pPq `
ERepXiq

}Xi}L8pPq
sinh }Xi}L8pPq

˙

“
ź

i

cosh }Xi}L8pPq.

The result follows since coshx ď exppx2{2q. �

A rather general Chernoff-type bound follows immediately from this by a quadratic
optimisation.

Proposition 5.2. Suppose that X1, . . . , Xn are independent random variables with mean
0. Then if the Xis are real we have

P

˜

|
ÿ

i

Xi| ě C
c

ÿ

i

}Xi}
2
L8pPq

¸

ď 2 expp´C2
{2q for all C ě 0,

and if the Xis are complex we have

P

˜

|
ÿ

i

Xi| ě C
c

ÿ

i

}Xi}
2
L8pPq

¸

ď 4 expp´C2
{4q for all C ě 0,
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Proof. Write S :“
b

ř

i }Xi}
2
L8pPq and let λ be a non-negative real to be optimised later.

Apply the previous lemma to the variables λX1, . . . , λXn to get that

E| exppλ
ÿ

i

Xiq| ď exppλ2S2
{2q.

It now follows that

PpRe
ÿ

i

Xi ě CSq exppλCSq “ PpλRe
ÿ

i

Xi ě λCSq exppλCSq ď exppλ2S2
{2q.

Thus solving the quadratic we put λ “ C{S and get that

PpRe
ÿ

i

Xi ě CSq ď expp´C2
{2q.

Similarly applying the above argument to the variables irX1, . . . , i
rXn for r P t1, 2, 3u tells

us that

Pp˘Re
ÿ

i

Xi ě CSq,Pp˘ Im
ÿ

i

Xi ě CSq ď expp´C2
{2q,

and the result follows by the triangle inequality. �

Note that the above argument significantly improves the constant in the exponent we
obtained in the bound (5.2). On the other hand, by returning to (5.1) we recall that for
Xi independent with PpXi “ 1q “ PpXi “ ´1q “ 1{2 and r „ C

?
n we get

Pp
ÿ

i

Xi “ rq „
2

?
2πn

ˆ

n2

n2 ´ r2

˙pn`1q{2 ˆ
n´ r

n` r

˙r{2

„
2

?
2πn

expp´C2
{2q

provided C “ op
?
nq. By summing over the range of r P rC

?
n,C

?
n`

?
n{Cs we conclude

that

Pp|
ÿ

i

Xi| ą rq “ ΩpC´1 expp´C2
{2qq

so that the bound above is close to tight.26

Our first application of this bound is in improving the estimates in Example 3.16.

Example 5.3 (The Fourier transform of random sets, Example 3.16 contd.). As in Ex-
amples 2.11 and 3.16 suppose again that each x P G is placed in the set A independently
with probability α. Our aim is to show the previously promised statement that

(5.3) sup
γ‰0

pG

|x1Apγq| “ O

ˆ

log |G|

|G|

˙1{2

w.h.p.

26The tightness we have in mind here is in the constant of C2 in the exponent, and must disappear as
C approaches

?
n since Pp|

ř

iXi| ą n´ 1q “ 2´pn´1q whereas expp´C2{2q “ expp´n{2q in that case and
expp´1{2q ą 1{2.
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We start by fixing γ ‰ 0
pG and for each x P G let Xx :“ p1Apxq ´ αqγpxq. The random

variables pXxqxPG are independent, have mean 0, and }Xx}L8pPq “ maxt1´α, αu. It follows
from Proposition 5.2 that

Pp|
ÿ

xPG

Xx| ě C
a

|G|maxt1´ α, αuq ď 2 expp´C2
{2q.

But since γ ‰ 0
pG we have

|x1Apγq| “
1

|G|
|
ÿ

xPG

p1Apxq ´ αqγpxq| “
1

|G|
|
ÿ

xPG

Xx|,

and moreover maxt1´ α, αu ď 1, so

Pp|x1Apγq| ě C{
a

|G|q ď 2 expp´C2
{2q.

But then by the triangle inequality we get

Pp sup
γ‰0

pG

|x1Apγq| ě C{
a

|G|q ď 2p|G| ´ 1q expp´C2
{2q,

and we can take C “ Op
a

log |G|q so that (5.3) holds. It may be worth saying that even

this estimate is not best possible, and there are sets A with supγ‰0
pG
|x1Apγq| “ Op|G|´1{2q.

These sets are not typical in the sense that the upper bound above is tight up to a constant
for randomly chosen sets, but they can be constructed by more sophisticated random
arguments of Beck and Spencer (see [AS08, §12.2]) or explicitly Rudin-Shapiro polynomials.

Example 5.4 (Improving the Behrend construction). As mentioned at the end of the
Behrend construction (Theorem 4.2) with slightly more care one can construct a subset
A Ă t1, . . . , Nu containing no three-term arithmetic progressions with

|A| “ Ω

˜

N

expp2
a

2 log2Nq log1{4N

¸

.

With our Chernoff-type estimates we are in a position to make this improvement. Recall
that we were considering the sets

Sr :“ tx P t1, . . . ,Mud : x2
1 ` ¨ ¨ ¨ ` x

2
d “ ru,

and noted by that there is some r such that |Sr| ě Md{pdM2q. We shall now show that
there is some r with that |Sr| “ ΩpMd{

?
dM2q from which the claimed improvement

follows. To see this we consider the independent random variables pXiq
d
i“1 defined by

PpXi “ j2
´

1

M

M
ÿ

k“1

k2
q “ 1{M for all j P t1, . . . ,Mu.
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These variables have mean 0 and }Xi}L8pPq “ maxt 1
M

řM
k“1 k

2,M2´ 1
M

řM
k“1 k

2u ďM2. It
follows from Proposition 5.2 that

Pp|
ÿ

i

Xi| ą C
?
dM4q ď Pp|

ÿ

i

Xi| ą C

g

f

f

e

d
ÿ

i“1

}Xi}
2
L8pPqq ď 2 expp´C2

{2q.

It follows that we can pick C “ Op1q such that for at least 1{2 of x P t1, . . . ,Mud we have

|
ÿ

i

px2
i ´

1

M

M
ÿ

k“1

k2
q| “ Op

?
dM4q;

equivalently for at least 1{2 of the points x P t1, . . . ,Mud the sum
ř

i x
2
i comes from a

range of length Op
?
dM4q “ Op

?
dM2q. By averaging we conclude that there is some r

with |Sr| “ ΩpMd{
?
dM2q as required.

It may be worth saying that on a careful examination the reader will see that we did not
really use the full power of the Chernoff bound; we could have made do with Chebychev’s
inequality, but conceptually we are thinking about the result as being a statement about
concentration.

In Proposition 5.2 we looked at probabilities of the form

Pp|
ÿ

i

Xi| ě C
c

ÿ

i

}Xi}
2
L8pPqq,

whereas Chebychev’s bound looks at probabilities of the form

Pp|
ÿ

i

Xi| ě C
c

ÿ

i

}Xi}
2
L2pPqq,

since EXi “ 0 implies that VarXi “ }Xi}
2
L2pPq. We should like to recover the situation and

to some extent we can in the Marcinkiewicz-Zygmund inequality. To understand this we
first need a lemma which relates Chernoff-type bounds to inequalities about Lp-norms.

Lemma 5.5. Suppose that X is a random variable. Then the following are equivalent:

(i) (Chernoff-type bound) For all t P r0,8q we have

Pp|X| ě t}X}L2pPqq “ Opexpp´Ωpt2qqq.

(ii) (Bounded Lp-norm growth) For all p P r2,8q we have

}X}LppPq “ Op
?
p}X}L2pPqq.

Proof. There is no loss of generality in proving this for random variables with }X}L2pPq “ 1.
We start by showing that (ii) implies (i): let C ą 0 be the constant in the big-O of the
hypothesis and let c ą 0 be a constant to be optimised later. Note that

Pp|X| ě tq exppct2q ď Eexppc|X|2q “
8
ÿ

k“0

ck

k!
E|X|2k ď

8
ÿ

k“0

ck

k!
.p2C2kqk “

8
ÿ

k“0

OpcC2
q
k.
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Pick c “ Ωp1{C2q such that the right hand side is Op1q so that Pp|X| ě tq exppΩpt2qq “
Op1q, and the result follows.

Secondly we show that (i) implies (ii). By nesting of norms it suffices to show (ii) for
even integers, and then we note that there is some c ą 0 such that

}X}2kL2kpPq “

ż 8

0

2kt2k´1Pp|X| ě tqdt “ O

ˆ
ż 8

0

2kt2k´1 expp´ct2qdt

˙

.

We now proceed by parts to see that for r ą 1 we have
ż 8

0

tr expp´ct2qdt “
“

´tr´1c´1 expp´ct2q
‰8

0
` c´1

ż 8

0

pr ´ 1qtr´2 expp´ct2qdt

“ c´1

ż 8

0

pr ´ 1qtr´2 expp´ct2qdt,

hence by induction we have }X}2k
L2kpPq “ Opc´1kqk. �

The proof actually gives us that the constant in the Ω in the first case is roughly the
reciprocal of the square of the constant in the big-O of the second case. This is not quite
true, but it is asymptotically for large p. For small p the big-O in the first hypothesis has
an effect.

As an aside, behind much of the above material is the fact that one can define a Banach
space of sub-gaussian random variables following Kahane [Kah60] to be the real (we made
no such assumption above) random variables such that there is some c ą 0 for which

EexppλXq ď exppc2λ2
{2q for all λ P R;

the norm of X is the smallest c such that this holds. The fact that this is a norm is not
completely trivial. Homogeneity is easy, but the triangle inequality requires a little more
work.

An examination of Lemma 5.1 shows that we actually proved that
ř

iXi is sub-gaussian

with norm at most
b

ř

i }Xi}
2
L8pPq.

As a corollary of Proposition 5.2 and Lemma 5.5 we have Khintchine’s inequality.

Proposition 5.6 (Khintchine’s inequality). Suppose that p P r2,8q and X1, . . . , Xn are
random variables with PpXi “ aiq “ PpXi “ ´aiq “ 1{2. Then

}
ÿ

i

Xi}LppPq “ O

¨

˝

?
p

˜

ÿ

i

}Xi}
2
L2pPq

¸1{2
˛

‚.

This can be bootstrapped to the following.

Theorem 5.7 (Marcinkiewicz-Zygmund inequality). Suppose that p P r2,8q and we are
given independent random variables X1, . . . , Xn P L

ppPq with E
ř

iXi “ 0. Then

}
ÿ

i

Xi}LppPq “ O

˜

?
p}

ÿ

i

|Xi|
2
}

1{2

Lp{2pPq

¸

.
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Proof. For complex random variables the result follows from the real case by taking real
and imaginary parts and applying the triangle inequality.

We now proceed in two parts. First we prove the inequality with the Xis assumed
symmetric27 (whence the mean of each Xi is automatically 0). Partition the probability
space Ω into sets Ω1, . . . ,ΩM (and write Pj for the induced measure) such that all Xis are
symmetric and take at most 2 values on each Ωj. Then by Khintchine’s inequality we have
that

}
ÿ

i

Xi}
p
LppPjq “ Oppqp{2}

ÿ

i

|Xi|
2
}
p{2

Lp{2pPjq
.

Summing over j and taking roots gives the result in the symmetric case.
Now we suppose that the variables X1, . . . , Xn are given and Y1, . . . , Yn are such that

Xi „ Yi and X1, . . . , Xn, Y1, . . . , Yn are independent. We now apply the symmetric result
to the variables Xi ´ Yi to get that

}
ÿ

i

pXi ´ Yiq}LppPˆPq “ O

˜

?
p}

ÿ

i

|Xi ´ Yi|
2
}

1{2

Lp{2pPˆPq

¸

“ O

˜

?
p}

ÿ

i

|Xi|
2
}

1{2

Lp{2pPˆPq

¸

.

But then it follows from nesting of norms and the fact that E
ř

i Yi “ 0 that

}
ÿ

i

Xi}LppPq “ }
ÿ

i

Xi ´ E
ÿ

i

Yi}LppPq ď }
ÿ

i

pXi ´ Yiq}LppPˆPq,

and the result is proved. �

For random variables satisfying the hypotheses of Khintchine’s inequality the Lp{2-
norm on the right is an L1-norm, and there is something close to this true for variables
in the generality considered above called Rosenthal’s inequality. Indeed, suppose that
X1, . . . , Xn P L

ppPq are independent and E
ř

iXi “ 0. Then

(5.4) }
ÿ

i

Xi}LppPq “ O

¨

˝

p

log p
max

$

&

%

˜

ÿ

i

}Xi}
p
LppPq

¸1{p

, }
ÿ

i

Xi}L2pPq

,

.

-

˛

‚.

For p large the second term in the max takes over and we recover a strengthening of
Khintchine’s inequality. Of course, precisely when this takes over depends on the specific
variables Xi and how large their Lp mass is compared to their L2 – that is how often they
take very large values.

The p dependence in (5.4) is best possible (up to the precise constant; see [JSZ85] for
details), and it is weaker than that for the Marcinkiewicz-Zygmund inequality. This fits
with the fact that the critical distributions for Rosenthal’s inequality are Poisson whereas
for the Marcinkiewicz-Zygmund inequality they are Gaussians.

27That is when Xi „ ´Xi; equivalently PpXi “ aq “ PpXi “ ´aq for all a P R.
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5.8. Constants in Khintchine’s inequality. The example we considered after Proposi-
tion 5.2 to show that nothing much stronger is true also applies to show that Khintchine’s
inequality is best possible up to the constants. Of course we are not, for the most part,
actually interested in the specific constants although they are known (see [Haa81] for the
original proof, or [NP00] for a very accessible and more recent proof).

It is should be said that the price we pay for the ajs being arbitrary in Khintchine’s
inequality is that all bar one of them could be zero (or just very small) so that the term
we are looking to bound is dominated by one random variable. This shows us that while
for p P r2,8q we have

}
ÿ

i

Xi}LppPq ě }
ÿ

i

Xi}L2pPq “

˜

ÿ

i

}Xi}
2
L2pPq

¸1{2

by nesting of norms, this cannot be improved and so in particular there is no matching
lower bound to Khitchine’s inequality.

We have concentrated on comparing the Lp-norm with the L2-norm for p ě 2 so far, but
things can also be said for p P r1, 2s. On the one hand

}
ÿ

i

Xi}L1pPq ď }
ÿ

i

Xi}L2pPq

by nesting of norms; on the other it turns out that we have

(5.5) }
ÿ

i

Xi}L2pPq “ Op}
ÿ

i

Xi}L1pPqq.

To see this note by log-convexity of Lp-norms that

}
ÿ

i

Xi}
2
L2pPq ď }

ÿ

i

Xi}
4{3

L4pPq}
ÿ

i

Xi}
2{3

L1pPq,

and then apply Khintchine’s inequality for p “ 4 and rearrange. As a result of (5.5) and
the remarks immediately before it we conclude that

}
ÿ

i

Xi}L1pPq ď }
ÿ

i

Xi}LppPq “ Op
?
p}

ÿ

i

Xi}L1pPqq for all p P r1,8q

which is often the result that is actually called Khintchine’s inequality in the literature;
the result we call Khintchine’s inequality is seen as a special case.

There is a rather nice argument due to Lata la and Oleszkiewicz [LO94] using the Fourier
transform which actually gives the correct constant in (5.5). To get a lower bound on the
constant consider X1 and X2 independent random variables with mean 0 taking the values
1 and ´1. Then

}X1 `X2}L1pPq “ 1 and }X1 `X2}L2pPq “
?

2,

so the constant is at least
?

2. This turns out to be the worst case.
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Theorem 5.9. Suppose that X1, . . . , Xn are independent random variables with PpXi “

aiq “ PpXi “ ´aiq “ 1{2. Then

}
ÿ

i

Xi}L2pPq ď
?

2}
ÿ

i

Xi}L1pPq.

Proof. We put G :“ pZ{2Zqn which we think of as endowed with Haar probability measure,
γipxq :“ p´1qxi and

fpxq :“

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

aiγipxq

ˇ

ˇ

ˇ

ˇ

ˇ

.

Now by symmetry the value of fpxq and fpx`
ř

j xjq are the same and so for all i we have
pfpγiq “ 0.

The Laplacian of f is then defined via the measure ν :“ 1
2

ř

i pδ0G ´ δeiq where the eis
are the canonical basis vectors. This means the Laplacian of f is f ˚ ν.

Now, by the triangle inequality we see that

f ˚ νpxq “
1

2

˜

nfpxq ´
ÿ

i

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

ajγjpxq ´ 2aiγipxq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

ď
1

2

˜

nfpxq ´

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j

ajγpxq ´ 2
ÿ

i

aiγipxq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

“ fpxq.

On the other hand the Fourier transform of ν is easy to compute:

pνpγq “
ÿ

i

1

2
p1´ γpeiqq “ |γ|,

that is to say it is the number of 1s in γ when it is written with respect to the standard
basis.

Combining this information with Parseval’s theorem we have

}f}2L2pGq ě xf ˚ ν, fyL2pGq “
ÿ

γP pG

|γ|| pfpγq|2 ě 2
ÿ

|γ|ě2

| pfpγq|2 “ 2p}f}2L2pGq ´ |
pfp0

pGq|
2
q,

and the result follows on rearranging since f ě 0 and so pfp0
pGq “ }f}L1pGq. �

It should be remarked that this proof extends to random variables taking values in an
arbitrary normed space; for complex values the result was already known but without such
an elegant proof.

5.10. Harmonic analysis of thin sets: Rudin’s inequality. Rudin’s inequality is an
extension of Khintchine’s inequality to the case when the random variables are characters
which do not necessarily need to be totally independent. Before starting it is useful to
consider the example of G :“ pZ{2Zqn endowed with Haar probability measure. The dual

group pG can be thought of in two ways:



56 TOM SANDERS

(i) (Probabilistically) The characters in pG are random variables on G and there is a

notion of statistical independence for a sequence of characters γ1, . . . , γn P pG;

(ii) (Algebraically) The group pG is naturally a vector space over F2 and there is a

notion of algebraic independence for a sequence of characters γ1, . . . , γn P pG.

It turns out that in this setting these two notions are equivalent.28

In a general finite Abelian group G the algebraic notion of independence has a very
useful extension called dissociativity which we now define.

Definition 5.11 (Dissociativity). Suppose that G is a finite Abelian group. We say that
S Ă G is dissociated if

ÿ

sPS

εss “ 0G and ε P t´1, 0, 1uS ñ ε ” 0.

Moreover, we write

SpanpSq :“ t
ÿ

sPS

εss : ε P t´1, 0, 1uSu.

It may be useful to note that a set in G “ pZ{2Zqn is dissociated if and only if it is
independent; in G “ Z{pZ this is not the case and an example of a dissociated set of
size greater than 1 (that being the largest size of a genuinely independent set) is given by
t1, 2, 4, . . . , 2ru for r ď log3 |G|.

Algebraically a set is contained in the space generated by any maximal independent
subset. With dissociativity and span we have a similar relationship.

Lemma 5.12. Suppose that S is a maximal dissociated subset of T . Then T Ă SpanpSq.

Proof. The proof is as for the algebraic version of this: suppose that t P T zS. Then
adjoining t to S violates the dissociativity condition since otherwise we would contradict
the maximality of S. Thus there is some ε P t´1, 0, 1uSYttu with εt ‰ 0 such that

εtt`
ÿ

sPS

εss “ 0G.

It follows that t P SpanpSq. On the other hand S Ă SpanpSq trivially and so the lemma is
proved. �

28Since the characters γ are homomorphisms we see that any y, z P tx : γpxq “ wγ for all γ P Λ1u have
γpy´ zq “ 1 for all γ P Λ1 and so the set is just a translate of the annihilator of Λ1. Thus Λ is statistically
independent iff

PGpΛ1Kq “
ź

γPΛ1

PGptγuKq for all Λ1 Ă Λ.

Now, if Λ is algebraically independent then none of the γs in Λ are identically 1 and so PGptγuKq “ 1{2
for all γ P Λ. On the other hand pΛ1KqK is the subspace generated by Λ1 which has size 2d since Λ1 is
independent. Hence PGpΛ1Kq “ PGpppΛ1KqKqKq “ 2´d and we see that Λ is statistically independent.

On the other hand if Λ is statistically independent then by a similar argument the subspace generated
by Λ has size 2|Λ| and hence is |Λ|-dimensional. It follows that Λ is algebraically independent.
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Dissociativity is really a property of sets in groups endowed with Haar counting measure.
In the example at the start of the subsection where we considered G “ pZ{2Zqn endowed

with Haar probability measure, but that meant that pG was endowed with Haar counting
measure and so was the natural setting for dissociativity.

It turns out that when a set of characters is dissociated we have an analogue of Khint-
chine’s inequality (and Chernoff’s bound) which can be established in the same way as the
Chernoff bounds.29

Theorem 5.13 (Rudin’s inequality). Suppose that Γ is a dissociated set of characters and
p P r2,8q. Then

}f_}LppGq “ Op
?
p}f}`2pΓqq for all f P `2

pΓq.

Proof. We proceed as in the proof of Lemma 5.1. Suppose that f P `2pΓq and begin by
noting that

EexppRe f_q “ E
ź

γPΓ

exppRepfpγqγqq.

As before we see that

EexppRe f_q ď E
ź

γPΓ

ˆ

cosh |fpγq| `
Repfpγqγq

|fpγq|
sinh |fpγq|

˙

“

˜

ź

γPΓ

cosh |fpγq|

¸

E
ź

γPΓ

˜

1`
sinh |fpγq|

cosh |fpγq|

pfpγqγ ` fpγqγq

2|fpγq|

¸

,

with the obvious convention that the factor is 1 if fpγq “ 0. Now, when we multiply out
the second product on the right we get terms of the form

(5.6)
ź

γPS

fpγq sinh |fpγq|

2|fpγq| cosh |fpγq|
¨
ź

γPT

fpγq sinh |fpγq|

2|fpγq| cosh |fpγq|
¨
ź

γPS

γ ¨
ź

γPT

γ

where S and T are disjoint subsets of Γ. By dissociativity we have
ź

γPS

γ ¨
ź

γPT

γ “ 0
pG if and only if S “ T “ H,

since S and T are disjoint subsets of Γ. On the other hand if γ ‰ 0
pG then Eγ “ 0 and

hence the expectation of (5.6) is 0 unless S “ T “ H which which case we see that it is 1.
It follows that

EexppRe f_q ď

˜

ź

γPΓ

cosh |fpγq|

¸

ď expp
1

2

ÿ

γPΓ

|fpγq|2q.

We now have a conclusion of the shape of Lemma 5.1 and so we could follow the arguments
of Proposition 5.2 and then Lemma 5.5 to get the desired conclusion. We shall proceed

29The proof below is different from the one lectured, but seems easier to understand given the difficulties
we had with dissociativity.
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directly instead: suppose that λ P R is arbitrary. Then

E
8
ÿ

n“0

λ2npRe f_q2n

p2nq!
“

1

2
EpexppRepλfq_q ` exppRep´λfq_qq

ď expp
1

2
λ2
}f}2`2pΓqq “

8
ÿ

n“0

λ2n}f}2n`2pΓq
2nn!

.

By equating coefficients of λ and then taking 2n-th roots we conclude that

}Re f_}L2npGq ď

ˆ

p2nq!

2nn!

˙1{2n

}f}`2pΓq.

The result follows for even integers by the triangle inequality and applying this for f and
if . Nesting of norms then completes the proof. �

It is worth noting that Rudin’s inequality actually is Khintchine’s inequality when G “
pZ{2Zqn since then being dissociated is the same as being algebraically independent which,
as we noted earlier, is the same as being statistically independent.

Dissociated sets are examples of Sidon sets. The first basic result about Sidon sets is
Rudin’s inequality, and that along with some more basic results may be found in [Rud90,
§5.7]. There is also the dedicated book [LR75] of López and Ross and some material in
the book [GM79] of Graham and McGehee, although both of these are harder to find.

There is also one further remark relating to §5.8 on the constants in Khintchine’s in-
equality which may be of interest. Contained in the preceding proof of Rudin’s inequality
was a version of Khintchine’s inequality for real random variables with a particularly good
constant: we showed that

}
ÿ

i

Xi}L2npPq ď

ˆ

p2nq!

2nn!

˙1{2n
˜

ÿ

i

}Xi}
2
L2pPq

¸1{2

.

It turns out that this constant is tight. Of course, we use nesting of norms to deduce
Khintchine’s inequality for Lp-norms where p is not an even integer, and so it will not be
surprising that for these other values of p the constants are not tight. In fact for other
values of p P r2,8q the tight inequality is

}
ÿ

i

Xi}LppPq ď

ˆ

2pp´2q{2 Γppp` 1q{2q

Γp3{2q

˙1{p
˜

ÿ

i

}Xi}
2
L2pPq

¸1{2

,

which coincides with the above for p an even integer. The critical example arises by taking
the Xis to be identically distributed.

BWarning B In number theory the term Sidon set is used for something also called a
B2r1s-set. It refers to any set of positive integers A such that ay n P N has at most one
representation n “ a` b with a, b P A and a ď b. The reader should compare this with the
condition of having no proper additive quadruples considered in Proposition 1.5. In general
these number theoretic Sidon sets are much bigger than analytic Sidon sets.
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5.14. Application: structure of the large spectrum. We have often found ourselves
with some A Ă G of density α, examining the set of characters at which its Fourier
transform is large30:

Γ :“ tγ P pG : |x1Apγq| ě εαu.

There are two trivial pieces of structural information about Γ:

(i) Γ is symmetric since 1A is real;
(ii) 0

pG P Γ since 1A is non-negative.

Moreover, we have the so-called ‘Parseval bound’ which says that31

(5.7) |Γ| ď ε´2α´1.

The question we now consider is whether we can say anything more about the structure of
the set Γ. It turns out when A has density tending to 0 we can and we have a celebrated
result of Chang [Cha02].

Theorem 5.15 (Chang’s theorem). Suppose that A is a subset of G of density α ą 0 and

Γ is a dissociated subset of tγ P pG : |x1Apγq| ě εαu. Then

|Γ| “ Opε´2 logα´1
q.

Proof. Given such a Γ, by Rudin’s inequality the operator

T : `2
pΓq Ñ LppGq; f ÞÑ f_

has norm Op
?
pq. It follows that its adjoint T ˚ also has norm Op

?
pq, but a short calcula-

tion32 shows us that the adjoint is just the restriction of the Fourier transform:

T ˚ : Lp
1

pGq Ñ `2
pΓq; f ÞÑ pf |Γ

where 1{p` 1{p1 “ 1. It follows that

|Γ|pεαq2 ď
ÿ

γPΓ

|x1Apγq|
2
“ }T ˚1A}

2
`2pΓq “ Opp}1A}

2
Lp1 pGq

q “ Oppα2{p1
q “ α2Oppα´2{p

q.

We optimise this by setting p “ 2` logα´1 and arrive at the result on rearranging. �

Chang’s theorem has a huge number of applications and a number of proofs. When
comparing it with the Parseval bound (5.7) it should be clear that we gain when αÑ 0.

We now turn to a sample application where we improve the dependencies in Theorem
4.10.

Theorem 5.16 (Theorem 4.10, improved). Suppose that A Ă t1, . . . , Nu has size αN .

Then A` A` A contains an arithmetic progression of length Ωpα3`op1qNΩpα2`op1qqq.

30As usual, since we are considering density we regard G as endowed with Haar probability measure.
31 The proof is simply the usual application of Parseval’s theorem to show us that

pεαq2|Γ| ď
ÿ

γPΓ

|x1Apγq|
2 ď

ÿ

γP pG

|x1Apγq|
2 “ α.

32Simply check that xf, TgyL2pGq “ xT
˚f, gy`2pΓq for all f P Lp

1

pGq and g P `2pΓq.
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Sketch proof. We proceed as in the proof before to get a set A1 (which is morally the same
as the set A), a set

Γ :“ tγ ‰ 0
pG : |x1A1pγq| ě α12{3u,

and an element x0 such that for all y P BohrpΓ, α1{3q we have

1A1 ˚ 1A1 ˚ 1A1px0 ` yq ą 0.

Let Λ Ă Γ be maximal dissociated and suppose that y P BohrpΛ, α1{3|Λ|q. Then by Lemma
5.12 we have that Γ Ă SpanpΛq and so given γ P Γ there is some ε P t´1, 0, 1uΛ such that
γ “

ś

λPΛ λ
ελ . Thus, by the triangle inequality

|γpyq ´ 1| “ |
ź

λPΛ

λελpyq ´ 1| ď
ÿ

λPΛ

|λελpyq ´ 1| ď |Λ|.pα1{3|Λ|q “ α1{3,

and hence BohrpΛ, α1{3|Λ|q Ă BohrpΓ, α1{3q. Now by Chang’s theorem we have the
bound |Λ| “ Opα1´2 logα1´1q and the result now follows from Lemma 4.9 applied to
BohrpΛ, α1{3|Λ|q. �

In fact it is possible to use the Marcinkiewicz-Zygmund inequality in a rather clever way
to improve this further and get an arithmetic progression of length ΩpαOp1qNΩpα1`op1qqq. The
details of this may be found in [Hen12, Theorem 1.5] and make use of the rather powerful
techniques of Croot and Sisask as developed in [CS10] and [C LS11].

5.17. Application: limitations on the structure of the large spectrum. In the
same setting as above we can ask about what happens if α “ Ωp1q; in this case Chang’s
bound is no better than Parseval’s bound since α´1 “ Op1q and logα´1 “ Op1q. One
might be hopeful since 12

A “ 1A and so

x1A ˚x1Apγq “ x1Apγq for all γ P pG,

which looks like it places restrictions on what x1A can look like. It turns out somewhat
surprisingly that it does not significantly impact the modulus, and we have the following
theorem.

Theorem 5.18. Suppose that Γ Ă pG is a symmetric neighbourhood of 0
pG of size k. Then

there is a set A Ă G of density Ωp1q such that

|x1Apγq| “ Ωpk´1{2
q for all γ P Γ

provided k is sufficiently small.33

We prove this in two parts. First we need a lemma which shows that L8 functions are
much the same as sets.

Lemma 5.19. Suppose that f P CpGq is a real-valued function with }h}L8pGq ďM . Then
there is some set A Ă G with PGpAq “ Ωp1{Mq and

ˇ

ˇ

ˇ

ˇ

ˇ

x1Apγq ´
phpγq

3M

ˇ

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

log |G|

|G|

˙1{2

for all γ ‰ 0
pG.

33Taking k “ op|G|{ log |G|q works and this can hardly be said to be a major restriction.
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Sketch proof. The argument is essentially the same as that for Example 5.3. We pick x P G
with independently with probability phpxq ` 2Mq{3M and let A be the resulting set. �

With this information at hand we have the following theorem of de Leeuw, Kahane and
Katznelson [dLKK77].

Theorem 5.20. Suppose that f P `2p pGq. Then there is some real-valued h P CpGq such

that |phpγq| ě |fpγq| for all γ P pG and }h}L8pGq “ Op}f}`2p pGqq.

Proof. If f is symmetric then it is easy to check that the argument below produces a real
function, and if it is not symmetric then we replace f by γ ÞÑ |fpγq| ` |fp´γq| (which is
symmetric) and apply the argument to that from which the result follows (with slightly
worse constants).

Our starting point, then, is a ‘99%’ version of the conclusion which we distill into the
following claim which illustrates the power of Khintchine’s inequality already for p “ 4.

Claim. Given k P `2p pGq and η P p0, 1{2s there is some choice of signs ε on the support of
k (meaning ε : supp k Ñ t´1, 1u) and a function g with

}pg ´ εk}`2p pGq ď η}k}`2p pGq and }g}L8pGq “ Opη´1
}k}`2p pGqq.

Proof. We suppose that pεγqγPsupp k are independent and Ppεγ “ ´1q “ Ppεγ “ 1q “ 1{2,
and examine

gεpxq “
ÿ

γPsupp k

εγkpγqγpxq.

By linearity, uniqueness and Fourier inversion we have pgεpγq “ εγkpγq for all γ P pG. Now
|γpxq| “ 1 for all x P G and so

}k}2
`2p pGq

“
ÿ

γP pG

|kpγq|2 “
ÿ

γPsupp k

|kpγqγpxq|2

for all x P G. It follows by Khintchine’s inequality (for fixed x P G with random variables
Xγ :“ εγkpγqγpxq) that we have

E}gε}4L4pGq “ ExPGE|gεpxq|4 “ ExPGOp}k}4`2p pGqq.

It follows that we can make a choice of signs ε (supported on supp k) such that

}gε}
4
L4pGq “ Op}k}4

`2p pGq
q.

Finally we let

gpxq :“

#

gεpxq if |gεpxq| ď C}k}`2p pGq
0 otherwise,

and note that
}g ´ gε}

2
L2pGqpC}k}`2p pGqq

2
“ Op}k}4

`2p pGq
q.

By Parseval’s theorem and our earlier calculation of pgε we conclude that

}g ´ εk}`2p pGq “ OpC´1
}k}`2p pGqq.
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Optimising we can take C “ Opη´1q such that the right hand side is at most η}k}`2p pGq and
the claim is proved. �

We define functions h1, . . . , hr iteratively as better and better approximations to our
eventual function h. We think of them as ‘almost-majorants’34 and to measure their quality
we introduce a sequence of positive real parameters pδiqi and sets

Γr :“ tγ P pG : | phrpγq| ă p1` δrq|fpγq|u;

this set is the set where phr fails to ‘robustly majorise’ f . A sensible choice for the δis
emerges from the proof below.

We write fr :“ f |Γr and the plan is to use the above claim to produce a function gr such
that |pgr| is a good approximation to |fr| and then add this to hr to get hr`1. The hope is
that this new function is ‘better’ in the sense that Γr`1 is smaller than Γr.

We let pηiqi be another sequence of parameters which will be optimised later. Applying
the claim to 4fr with parameter ηr we get gr such that

}pgr ´ 4εfr}`2p pGq ď ηr}fr}`2p pGq and }gr}L8pGq “ Opη´1
r }fr}`2p pGqq,

and then put hr`1 :“ hr ` gr. Suppose that γ P Γr`1. Then we have two possibilities:

(i) γ P Γr: which is to say that γ was ‘bad’ for hr and we have not succeeded in
dealing with it in hr`1. In this case we have

|pgrpγq| ď |yhr`1pγq| ` | phrpγq| ă p2` δr ` δr`1q|fpγq|,

and so

|pgrpγq ´ 4εγfrpγq| ě 4|fpγq| ´ |pgrpγq|

ě p2´ δr ´ δr`1q|fpγq| ě pδr ´ δr`1q|fpγq|.

This last inequality holds if we take δr ď 1 for all r which we can certainly do and
is, in any case, very weak. It can easily be replaced with a lower bound of |fpγq|
for example, but we make the estimate in light of the next case.

(ii) γ R Γr: which is to say that γ was ‘good’ but adding in our new approximation
has made things worse and it is now ‘bad’. In this case we have

|pgrpγq| ě | phrpγq| ´ |yhr`1pγq|

ě p1` δrq|fpγq| ´ p1` δr`1q|fpγq| ě pδr ´ δr`1q|fpγq|.

Of course frpγq “ 0 and so it follows that

|pgrpγq ´ 4εγfrpγq| ě pδr ´ δr`1q|fpγq|.

In both cases we have shown the same inequality and so we conclude that

}f}2`2pΓr`1q
“

ÿ

γPΓr`1

|fpγq|2 ď pδr ´ δr`1q
´2
}pgr ´ 4εfr}

2
`2p pGq

ď pδr ´ δr`1q
´2η2

r}fr}
2
`2p pGq

“ pδr ´ δr`1q
´2η2

r}f}
2
`2pΓrq

.

34A function F majorises a function G if F pxq ě Gpxq for all x.
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Now, since G is finite, f has a minimum non-zero modulus and so taking ηr :“ pδr´δr`1q{2
we see that after a finite number, say r, iterations Γr “ H at which point we terminate

and put h :“ hr. Since Γr is empty we certainly have that ph majorises f ; it remains to
note that

}h}L8pGq “ O

˜

8
ÿ

i“1

2´ipδi ´ δi`1q
´1

¸

}f}`2p pGq.

For the right hand side to converge we can take, for example, δi “ 1{i2 and the result is
proved. �

It should be noted that the proof only really needed Khintchine’s inequality for some
p ą 2, although since we deduced Khintchine for p P p2, 4q from Khintchine for p “ 4 this
is not immediately useful. It turns out, however, that there is a wonderful generalisation
due to Nazarov [Naz97] which takes an even weaker input.

Suppose that pφjqj of unit vectors in L1pνq satisfying an L1pνq´`2 Khintchine inequality,
that is to say such that

}
ÿ

j

ajφj}L1pνq ďM

˜

ÿ

j

a2
j

¸1{2

for all real sequences pajqj. Then Nazarov proved that for any sequence pfjqj of positive
numbers there is a function g P L8pνq with

}g}L8pνq “ OpM2
}f}`2q and |xφj, gyL2pνq| ě fj for all j.

In our case the φjs were characters and the fjs were the values of f . Of course when the
φjs are characters, (5.17) follows from Khintchine’s inequality for any p ą 2 by the same
argument we used to deduce (5.5), but it is a strictly weaker assumption.

Proof of Theorem 5.18. We simply take f “ 1Γ which is symmetric and apply Theorem
5.20 to get a function h. Lemma 5.19 then completes the argument. �

BWarning B Note that the function produced in Theorem 5.20 is a majorant not an
approximation, so that its Fourier transform may be large at more characters than just
those at which f is large. In particular this result can be used to find counter-examples of
the form ‘there are continuous functions whose large spectrum contains the following bad
structure’, but is not useful for showing that ‘there are continuous functions whose large
spectrum does not contain the following good structure’.
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