Disjoint paths in tournaments $Maria\ Chudnovsky^1$ Columbia University, New York, NY 10027, USA Alex Scott Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK > Paul Seymour² Princeton University, Princeton, NJ 08544, USA $^{^1{\}rm Supported}$ by NSF grants DMS-0758364 and DMS-1001091. $^2{\rm Supported}$ by NSF grant DMS-0901075 and ONR grant N00014-10-1-0680. #### Abstract Given k pairs of vertices (s_i, t_i) $(1 \le i \le k)$ of a digraph G, how can we test whether there exist k vertex-disjoint directed paths from s_i to t_i for $1 \le i \le k$? This is NP-complete in general digraphs, even for k = 2 [2], but for k = 2 there is a polynomial-time algorithm when G is a tournament (or more generally, a semicomplete digraph), due to Bang-Jensen and Thomassen [1]. Here we prove that for all fixed k there is a polynomial-time algorithm to solve the problem when G is semicomplete. #### 1 Introduction Let $s_1, t_1, \ldots, s_k, t_k$ be vertices of a graph or digraph G. The k vertex-disjoint paths problem is to determine whether there exist vertex-disjoint paths P_1, \ldots, P_k (directed paths, in the case of a digraph) such that P_i is from s_i to t_i for $1 \le i \le k$. For undirected graphs, this problem is solvable in polynomial time for all fixed k; this was one of the highlights of the Graph Minors project of Robertson and the third author [4]. The directed version is a natural and important question, but it was shown by Fortune, Hopcroft and Wyllie [2] that, without further restrictions on the input G, this problem is NP-complete for digraphs, even for k = 2. This motivates the study of subclasses of digraphs for which the problem is polynomial-time solvable. In this paper, all graphs and digraphs are finite, and without loops or parallel edges; thus if u, v are distinct vertices of a digraph then there do not exist two edges both from u to v, although there may be edges uv and vu. Also, by a "path" in a digraph we always mean a directed path. A digraph is a tournament if for every pair of distinct vertices u, v, exactly one of uv, vu is an edge; and a digraph is semicomplete if for all distinct u, v, at least one of uv, vu is an edge. It was shown by Bang-Jensen and Thomassen [1] that - the k vertex-disjoint paths problem (for digraphs) is NP-complete if k is not fixed, even when G is a tournament; - the two vertex-disjoint paths problem is solvable in polynomial time if G is semicomplete. We shall show: **1.1** For all fixed $k \geq 0$, the k vertex-disjoint paths problem is solvable in polynomial time if G is semicomplete. In fact we will prove a result for a wider class of digraphs, that we define next. Let P be a path of a digraph G, with vertices v_1, \ldots, v_n in order. We say P is minimal if $j \leq i+1$ for every edge v_iv_j of G with $1 \leq i, j \leq n$. Let $d \geq 1$; we say that a digraph G is d-path-dominant if for every minimal path P of G with d vertices, every vertex of G either belongs to V(P) or has an out-neighbour in V(P) or has an in-neighbour in V(P). Thus a digraph is 1-path-dominant if and only if it is semicomplete; and 2-path-dominant if and only if its underlying simple graph is complete multipartite. We will show: **1.2** For all fixed $d, k \ge 1$, the k vertex-disjoint paths problem is solvable in polynomial time if G is d-path-dominant. We stress here that we are looking for vertex-disjoint paths. One can ask the same for edgedisjoint paths, and that question has also been recently solved for tournaments, and indeed for digraphs with bounded independence number [3], but the solution is completely different. We do not know a polynomial-time algorithm for the two vertex-disjoint paths problem for digraphs with independence number two. But we can extend 1.2 in a different way: **1.3** For all $d, k \geq 1$, there is a polynomial-time algorithm as follows: - Input: Vertices $s_1, t_1, \ldots, s_k, t_k$ of a d-path-dominant digraph G, and integers $x_1, \ldots, x_k \geq 1$. - Output: Decides whether there exist pairwise vertex-disjoint directed paths P_1, \ldots, P_k of G such that for $1 \le i \le k$, P_i is from s_i to t_i and has at most x_i vertices. Let $s_1, t_1, \ldots, s_k, t_k$ be vertices of a digraph G. We call $(G, s_1, t_1, \ldots, s_k, t_k)$ a problem instance. A linkage in a digraph G is a sequence $L = (P_i : 1 \le i \le k)$ of vertex-disjoint paths, and L is a linkage for a problem instance $(G, s_1, t_1, \ldots, s_t t_k)$ if P_i is from s_i to t_i for each i. (With a slight abuse of notation, we shall call k the "cardinality" of L, and P_1, \ldots, P_k its "members". Also, every subsequence of $(P_i : 1 \le i \le k)$ is a linkage L', and we say L "includes" L'.) If $x = (x_1, \ldots, x_k)$ is a k-tuple of integers, we say a linkage $(P_i : 1 \le i \le k)$ is an x-linkage if each P_i has x_i vertices. We say a k-tuple of integers $x = (x_1, \ldots, x_k)$ is a quality of $(G, s_1, t_1, \ldots, s_k, t_k)$ if there is an x-linkage for $(G, s_1, t_1, \ldots, s_i, t_k)$. If $x = (x_1, \ldots, x_k)$ and $y = (y_1, \ldots, y_k)$, we say $x \le y$ if $x_i \le y_i$ for $1 \le i \le k$; and x < y if $x \le y$ and $x \ne y$. We say a quality x of $(G, s_1, t_1, \ldots, s_k, t_k)$ is k if there is no quality y with y < x. Our main result is the following: - **1.4** For all d, k, there is an algorithm as follows: - Input: A problem instance $(G, s_1, t_1, \dots, s_k, t_k)$ where G is d-path-dominant. - Output: The set of all key qualities of $(G, s_1, t_1, \ldots, s_k, t_k)$. - Running time: $O(n^t)$ where $t = 6k^2d(k+d) + 13k$. The idea of the algorithm for 1.2 is easy described. We define an auxiliary digraph H with two special vertices s_0, t_0 , and prove that there is a path in H from s_0 to t_0 if and only if there is a linkage for $(G, s_1, t_1, \ldots, s, t_k)$. Thus to solve the problem of 1.2 it suffices to construct H in polynomial time. The more general question of 1.4 is solved similarly, by assigning appropriate weights to the edges of H. Recently we have been able to extend 1.1 to a more general class of digraphs, namely the digraphs whose vertex set can be partitioned into a bounded number of subsets such that each subset induces a semicomplete digraph. The proof is by a modification of the method of this paper, but it is considerably more difficult and not included here. #### 2 A useful enumeration If P is a path of a digraph G, its length is |E(P)| (every path has at least one vertex); and s(P), t(P) denote the first and last vertices of P, respectively. If F is a subdigraph of G, a vertex v of $G \setminus V(F)$ is F-outward if no vertex of F is adjacent from v in G; and F-inward if no vertex of F is adjacent to v in G. If F is a digraph and $v \in V(F), F \setminus v$ denotes the digraph obtained from F by deleting v; if $X \subseteq V(F), F | X$ denotes the subdigraph of F induced on X; and $F \setminus X$ denotes the subdigraph obtained by deleting all vertices in X. Now let $L = (P_i : 1 \le i \le k)$ be a linkage in G. We define V(L) to be $V(P_1) \cup \cdots \cup V(P_k)$. A vertex v is an internal vertex of L if $v \in V(L)$, and v is not an end of any member of L. A linkage L is internally disjoint from a linkage L' if no internal vertex of L belongs to V(L') (note that this does not imply that L' is internally disjoint from L); and we say that L, L' are internally disjoint if each of them is internally disjoint from the other (and thus all vertices in $V(L) \cap V(L')$ must be ends of paths in both L and L') Let Q, R be vertex-disjoint paths of a digraph G. A planar (Q, R)-matching is a linkage $(M_j : 1 \le j \le n)$ for some $n \ge 0$, such that - M_1, \ldots, M_n each have either two or three vertices; - $s(M_1), \ldots, s(M_n)$ are vertices of Q, in order in Q; and - $t(M_1), \ldots, t(M_n)$ are vertices of R, in order in R. Fix $d, k \geq 1$, and let $L = (P_1, \ldots, P_k)$ be a linkage in a d-path-dominant digraph G. A subset $B \subseteq V(L)$ is said to be *acceptable* (for L) if - for $1 \leq j \leq k$, if uv is an edge of P_j and $v \in B$ then $u \in B$ (and so $Q_j = P_j | B$ and $R_j = P_j | (V(G) \setminus B)$ are paths if they are non-null); - for $1 \le i, j \le k$, there is no planar (Q_i, R_j) -matching of cardinality $(k-1)d + k^2 + 2$ internally disjoint from L. Thus \emptyset and V(L) are acceptable. **2.1** Let $d \ge 1$, let $(G, s_1, t_1, \ldots, s_k, t_k)$ be a problem instance, where G is d-path-dominant, let x be a key quality, and let $L = (P_1, \ldots, P_k)$ be an x-linkage for $(G, s_1, t_1, \ldots, s_k, t_k)$. Suppose that $B \subseteq V(L)$ is acceptable for L and $B \ne V(L)$. Then there exists $v \in V(L) \setminus B$ such that $B \cup \{v\}$ is acceptable for L. **Proof.** Let $A = V(G) \setminus B$. For $1 \le j \le k$, let $Q_j = P_j | B$ and $R_j = P_j | A$. Let q_j, r_j be the last vertex of Q_j and the first vertex of R_j , respectively (if they exist). (1) For $1 \leq j \leq k$, P_j is a minimal path of G. In particular, the only edge of G from $V(Q_j)$ to $V(R_j)$ (if there is one) is $q_j r_j$. Moreover, every three-vertex path from $V(Q_j)$ to $V(R_j)$ with internal vertex in $V(G) \setminus V(L)$ uses at least one of q_j, r_j . Consequently, there is no planar (Q_j, R_j) -matching of cardinality three internally disjoint from L. For suppose there is an edge uv of G such that $u, v \in V(P_j)$ and u is before v in P_j , and there is at least one vertex of P_j between u and v. If we delete from P_j the vertices of P_j strictly between u and v, and add the edge uv, we obtain a path from s_j to t_j disjoint from every member of L except P_j , and with strictly fewer vertices than P_j , contradicting that x is key. Thus P_j is induced. Similarly there is no three-vertex path from $V(Q_j)$ to $V(R_j)$ with internal vertex in $V(G) \setminus V(L)$ containing neither of q_j, r_j . The final assertion follows. This proves (1). From (1), the theorem holds if k=1, so we may assume that $k\geq 2$. (2) We may assume that for all $i \in \{1, ..., k\}$, if R_i is non-null then for some $j \in \{1, ..., k\}$ with $j \neq i$, there is a planar $(Q_i, R_j \setminus r_j)$ -matching of cardinality $(k-1)d + k^2$ internally disjoint from L. For suppose that some i does not satisfy the statement of (2). Thus R_i is non-null, and there is no j as in (2). Since R_i is non-null, it follows that r_i exists. We may assume that $B \cup \{r_i\}$ is not acceptable. Consequently, one of the two conditions in the definition of "acceptable" is not satisfied by $B \cup \{r_i\}$. The first is satisfied since r_i is the first vertex of R_i . Thus the second is false, and so for some $i', j \in \{1, \ldots, k\}$, there is a planar $(P_{i'}|(B \cup \{r_i\}), P_j|(A \setminus \{r_i\}))$ -matching of cardinality $(k-1)d+k^2+2$ internally disjoint from L. Since there is no planar $(Q_{i'}, R_j)$ -matching of cardinality $(k-1)d+k^2+2$ internally disjoint from L, and $P_j|(A \setminus \{r_i\})$ is a subpath of R_j , it follows that $P_{i'}|(B \cup \{r_i\}) \neq Q_{i'}$, and so i' = i. Since only one vertex of $P_i|(B \cup \{r_i\})$ does not belong to Q_i , it follows that there is a planar $(Q_i, R_j \setminus r_j)$ -matching of cardinality $(k-1)d+k^2$ internally disjoint from L. Since $(k-1)d+k^2 \geq 4$ (because $k \geq 2$), (1) implies that $j \neq i$. This proves (2). (3) We may assume that for some $p \geq 2$, and for all i with $1 \leq i < p$, there is a planar $(Q_i, R_{i+1} \setminus r_{i+1})$ -matching of cardinality $(k-1)d+k^2$ internally disjoint from L, and there is a planar $(Q_p, R_1 \setminus r_1)$ -matching of cardinality $(k-1)d+k^2$ internally disjoint from L. For by hypothesis, there exists $i \in \{1, ..., k\}$ such that R_i is non-null. By repeated application of (2), there exist distinct $h_1, ..., h_p \in \{1, ..., k\}$ such that for $1 \le i \le p$ there is a planar $(Q_{h_i}, R_{h_{i+1}} \setminus r_{h_{i+1}})$ -matching of cardinality $(k-1)d + k^2$ internally disjoint from L, where $h_{p+1} = h_1$; and $p \ge 2$ by (1). Without loss of generality, we may assume that $h_i = i$ for $1 \le i \le p$. This proves (3). Let us say a planar (Q, R)-matching is s-spaced if no subpath of Q with at most s vertices meets more than one member of the matching, and no subpath of R with at most s vertices meets more than one member of the matching. - (4) We may assume that for some $p \geq 2$, and for all i with $1 \leq i < p$, there is a planar $(Q_i, R_{i+1} \setminus r_{i+1})$ -matching L_i , and there is a planar $(Q_p, R_1 \setminus r_1)$ -matching L_p , such that - L_1, \ldots, L_p all have cardinality k; - they are pairwise internally disjoint; - each of L_1, \ldots, L_p is internally disjoint from L; and - each of L_1, \ldots, L_p is (d+1)-spaced. For let L'_i be a planar $(Q_i, R_{i+1} \setminus r_{i+1})$ -matching of cardinality $(k-1)d + k^2$ internally disjoint from L, for $1 \leq i < p$, and let L'_p be a planar $(Q_p, R_1 \setminus r_1)$ -matching of cardinality $(k-1)d + k^2$ internally disjoint from L. We choose $L_i \subseteq L'_i$ inductively. Suppose that for some h < p, we have chosen L_1, \ldots, L_h , such that - L_1, \ldots, L_h all have cardinality k; - they are pairwise internally disjoint; - each of L_1, \ldots, L_h is internally disjoint from L; and - each of L_1, \ldots, L_h is (d+1)-spaced. We define L_{h+1} as follows. The union of the sets of internal vertices of L_1, \ldots, L_h has cardinality at most $hk \leq k(k-1)$, and so L'_{h+1} includes a planar $(Q_{h+1}, R_{h+2} \setminus r_{h+2})$ -matching (or $(Q_p, R_1 \setminus r_1)$ -matching, if h = p - 1) of cardinality $(k-1)d + k^2 - k(k-1) = 1 + (k-1)(d+1)$, internally disjoint from each of L_1, \ldots, L_h . By ordering the members of this matching in their natural order, and taking only the *i*th terms, where $i = 1, 1 + (d+1), 1 + 2(d+1), \ldots$, we obtain a (d+1)-spaced matching of cardinality k. Let this be L_{h+1} . This completes the inductive definition of L_1, \ldots, L_p , and so proves (4). For $1 \leq i \leq p$, let $L_i = \{M_i^1, \ldots, M_i^k\}$, numbered in order; thus, if q_i^h and r_{i+1}^h denote the first and last vertices of M_i^h , then q_i^1, \ldots, q_i^k are distinct and in order in Q_i , and $r_{i+1}, r_{i+1}^1, \ldots, r_{i+1}^k$ are distinct and in order in R_{i+1} (or in R_1 if i = p). For $1 \leq i \leq p$ and $2 \leq h \leq k$, let Q_i^h be the subpath of P_i with d vertices and with last vertex q_i^h . (Thus q_i^{h-1} does not belong to Q_i^h since L_i is d-spaced, and indeed (d+1)-spaced.) Since P_i and hence Q_i^h is a minimal path of G, and G is d-path-dominant, it follows that for $1 \leq i \leq p$ and $2 \leq h \leq k$, r_i^{h-1} is adjacent to or from some vertex v of Q_i^h . Since $r_i^{h-1} \neq r_i$, (1) implies that r_i^{h-1} is not adjacent from any vertex of Q_i^h ; and so there is a path R_i^{h-1} from r_i^{h-1} to q_i^h of length at most d, such that all its internal vertices belong to Q_i^h . For $1 \leq i \leq p$, and $1 \leq h < k$, let S_i^h be the path $$q_i^h - M_i^h - r_{i+1}^h - R_{i+1}^h - q_{i+1}^{h+1},$$ or $$q_p^h$$ - M_p^h - r_1^h - R_1^h - q_1^{h+1} if i=p; then S_i^h is a path from q_i^h to q_{i+1}^{h+1} (or to q_1^{h+1} if i=p), of length at most d+2. Thus (reading subscripts modulo p) concatenating $S_i^1, S_{i+1}^2, \ldots, S_{i+p-2}^{p-1}$ and M_{i-1}^p gives a path T_i' from q_i^1 to r_i^p of length at most (p-1)(d+2)+2. The subpath T_i of P_i from q_i^1 to r_i^p has length at least (p+k-2)(d+1)+2, since L_{i-1}, L_i are (d+1)-spaced and r_i is different from r_i^1 ; and since $p+k-2 \geq 2(p-1)$ and d+1 > (d+2)/2, it follows that T_i has length strictly greater than that of T_i' . Let P_i' be obtained from P_i by replacing the subpath T_i by T_i' , for $1 \leq i \leq p$, and let $P_{i'} = P_i$ for $p+1 \leq i \leq k$. Then $\{P_1', \ldots, P_k'\}$ is a linkage for $(G, s_1, t_1, \ldots, s, t_k)$, contradicting that x is key. This proves 2.1. We deduce: **2.2** Let $d \ge 1$, let $(G, s_1, t_1, \ldots, s_k, t_k)$ be a problem instance where G is d-path-dominant, let x be a key quality, and let $L = (P_1, \ldots, P_k)$ be an x-linkage for $(G, s_1, t_1, \ldots, s_k, t_k)$. Let $c = (k-1)d + k^2 + 2$. Then there is an enumeration (v_1, \ldots, v_n) of V(L), such that - for $1 \le h \le k$ and $1 \le p, q \le n$, if $v_p v_q$ is an edge of P_h then p < q; - for $1 \le h, i \le k$ and $1 \le p \le n-1$, and every cd-vertex subpath Q of $P_h|\{v_1, \ldots, v_p\}$, and every cd-vertex subpath R of $P_i|\{v_{p+1}, \ldots, v_n\}$, there are at most c(2k+1) vertices of G that are both Q-outward and R-inward. **Proof.** Since \emptyset is acceptable for L, by repeated application of 2.1 implies that there is an enumeration (v_1, \ldots, v_n) of V(L), such that $\{v_1, \ldots, v_p\}$ is acceptable for $0 \le p \le n$. We claim that this enumeration satisfies the theorem. For certainly the first bullet holds; we must check the second. Thus, let $1 \le p \le n$, and let $B = \{v_1, \ldots, v_p\}$ and $A = \{v_{p+1}, \ldots, v_n\}$. For $1 \le h \le k$, let $Q_h = P_h|B$ and $R_h = P_h|A$. Now let $1 \le h, i \le k$, and let Q, R be cd-vertex subpaths of Q_h, R_i respectively. Let X be the set of all vertices of G that are both Q-outward and R-inward. We must show that $|X| \le c(2k+1)$. (1) If $x_1, \ldots, x_c \in X$ are distinct, then there exist $y_1, \ldots, y_c \in V(Q)$, distinct and in order in Q, such that $y_j x_j$ is an edge for $1 \leq j \leq c$. For Q has cd vertices; let its vertices be q_1, \ldots, q_{cd} in order. Let $1 \leq j \leq c$. The subpath of Q induced on $\{q_s: (j-1)d < s \leq jd\}$ has d vertices, and since Q is a minimal path of G and G is d-path-dominant, and $X \cap V(Q) = \emptyset$, it follows that x_j is in- or out-adjacent to a vertex of this subpath, say y_j . Since $x_j \in X$ and hence is Q-outwards, it follows that $x_j y_j$ is not an edge, and so $y_j x_j$ is an edge. But then y_1, \ldots, y_c satisfy (1). This proves (1). (2) The sets $X \setminus V(L)$, $X \cap V(Q_g)$ $(1 \leq g \leq k)$ and $X \cap V(R_g)$ $(1 \leq g \leq k)$ all have cardinality at most c-1, and hence $|X| \leq (2k+1)(c-1)$. For suppose that there exist distinct $x_1,\ldots,x_c\in X\setminus V(L)$. By (1) there exist distinct $y_1,\ldots,y_c\in V(Q)$, in order in Q, such that y_jx_j is an edge for $1\leq j\leq c$; and similarly there exist $z_1,\ldots,z_c\in V(R)$, in order in R, such that x_jz_j is an edge for $1\leq j\leq c$. But then the c paths $y_j\text{-}x_j\text{-}z_j$ ($1\leq j\leq c$) form a planar (Q_h,R_i) -matching of cardinality c, internally disjoint from L, contradicting that $\{v_1,\ldots,v_p\}$ is acceptable. Thus $|X\setminus V(L)|\leq c-1$. Now suppose that for some $g\in\{1,\ldots,k\}$, there exist distinct x_1,\ldots,x_c in $X\cap V(R_g)$, numbered in order in R_g . Choose y_1,\ldots,y_c as in (1); then the paths y_jx_j ($1\leq j\leq c$) form a planar (Q_h,R_g) -matching of cardinality c, internally disjoint from L, contradicting that $\{v_1,\ldots,v_p\}$ is acceptable. Thus $|X\cap V(R_g)|\leq c-1$, and similarly $|X\cap V(Q_g)|\leq c-1$, for $1\leq g\leq k$. This proves (2). I From (2), the theorem follows. ## 3 Confusion and the auxiliary digraph Let $(G, s_1, t_1, \ldots, s_k, t_k)$ be a problem instance, and let $L = (M_1, \ldots, M_k)$ be a linkage in G (not necessarily a linkage for $(G, s_1, t_1, \ldots, s_k, t_k)$). Let A(L) be the set of all vertices in $V(G) \setminus V(L)$ that are $M_j \setminus t(M_j)$ -inward for some $j \in \{1, \ldots, k\}$ such that $t(M_j) \neq t_j$ and let B(L) be the set of all vertices in $V(G) \setminus V(L)$ that are $M_j \setminus s(M_j)$ -outward for some $j \in \{1, \ldots, k\}$ such that $s(M_j) \neq s_j$. We call $|A(L) \cap B(L)|$ the *confusion* of L; and it is helpful to keep the confusion small, as we shall see. A (k, m, c)-rail in a problem instance $(G, s_1, t_1, \ldots, s_k, t_k)$ is a triple (L, X, Y), where - L is a linkage in G consisting of k paths (M_1, \ldots, M_k) (but not necessarily a linkage for $(G, s_1, t_1, \ldots, s_k, t_k)$); - for $1 \leq j \leq k$, M_j has at most 2m vertices, and if it has fewer than 2m vertices then M_j either has first vertex s_j or last vertex t_j ; - L has confusion at most c; - X, Y are disjoint subsets of $V(G) \setminus V(L)$; and - $X \subseteq A(L)$, $Y \subseteq B(L)$, and $X \cup Y = A(L) \cup B(L)$. - **3.1** For all $k, m, c \ge 0$, if $(G, s_1, t_1, \ldots, s_k, t_k)$ is a problem instance and G has n vertices then there are at most $2^c n^{2km} (2km)^k$ (k, m, c)-rails in $(G, s_1, t_1, \ldots, s_k, t_k)$. Moreover, for all fixed $k, m, c \ge 0$, there is an algorithm which, with input a problem instance $(G, s_1, t_1, \ldots, s_k, t_k)$, finds all its (k, m, c)-rails in time $O(n^{2km+1})$, where n = |V(G)|. **Proof.** First, if L is a linkage with k paths each with at most 2m vertices, then $|V(L)| \leq 2km$, and so the number of such linkages is at most $n^{2km}(2km)^k$, as is easily seen. Now fix a linkage L satisfying the first two bullets in the definition of (k, m, c)-rail; let us count the number of pairs (X, Y) such that (L, X, Y) is a (k, m, c)-rail. There are none unless $|A(L) \cap B(L)| \leq c$; and in that case, there are at most 2^c possibilities for the pair (X, Y), since X consists of $A(L) \setminus B(L)$ together with some subset of $A(L) \cap B(L)$, and $Y = (A(L) \cup B(L)) \setminus X$. For the algorithm, we first find all linkages L with k paths each with at most 2m vertices, by examining all ordered 2km-tuples of distinct vertices of G. For each such L, we check whether it satisfies the first three bullets in the definition of (k, m, c)-rail (this takes time O(n)); if not we discard it and otherwise we partition $A(L) \cap B(L)$ into two subsets in all possible ways, and output the corresponding (k, m, c)-rails. The result follows. Let (L, X, Y) and (L', X', Y') be distinct (k, m, c)-rails in G, and let $L = (P_1, \ldots, P_k)$ and $L' = (P'_1, \ldots, P'_k)$. We write $(L, X, Y) \to (L', X', Y')$ if the following hold: - for $1 \le i \le k$, $P_i \cup P'_i$ is a path from the first vertex of P_i to the last vertex of P'_i ; - for $1 \le i \le k$, $V(P'_i) \subseteq V(P_i) \cup X$, and $V(P_i) \subseteq V(P'_i) \cup Y'$; and - $X' \subseteq X$, and $Y \subseteq Y'$. Let $(G, s_1, t_1, \ldots, s_k, t_k)$ be a problem instance, and let \mathcal{T} be the set of all (k, m, c)-rails in $(G, s_1, t_1, \ldots, s_k, t_k)$. Take two new vertices s_0, t_0 , and let us define a digraph H with vertex set $\mathcal{T} \cup \{s_0, t_0\}$ as follows. Let $u, v \in V(H)$. If $u, v \in \mathcal{T}$ are distinct, then $uv \in E(H)$ if and only if $u \to v$. If $u = s_0$ and $v \in \mathcal{T}$, let v = (L, X, Y) where $L = (M_1, \ldots, M_k)$; then $uv \in E(H)$ if and only if M_j has first vertex s_j for all $j \in \{1, \ldots, k\}$. Similarly, if $u \in \mathcal{T}$ and $v = t_0$, let u = (L, X, Y) where $L = (M_1, \ldots, M_k)$; then $uv \in E(H)$ if and only if M_j has last vertex t_j for all $j \in \{1, \ldots, k\}$. This defines H. We call H the (k, m, c)-tracker of $(G, s_1, t_1, \ldots, s_k, t_k)$. We shall show that with an appropriate choice of m, c, when G is d-path-dominant we can reduce our problems about linkages for $(G, s_1, t_1, \ldots, s_k, t_k)$ to problems about paths from s_0 to t_0 in the (k, m, c)-tracker. Let $(G, s_1, t_1, \ldots, s_k, t_k)$ be a problem instance, let (P_1, \ldots, P_k) be a linkage for $(G, s_1, t_1, \ldots, s_k, t_k)$, and let P be a path from s_0 to t_0 in the (k, m, c)-tracker. Let P have vertices $$s_0, (L_1, X_1, Y_1), \dots, (L_n, X_n, Y_n), t_0$$ in order, and let $L_p = (M_{p,1}, \ldots, M_{p,k})$ for $1 \le p \le n$. We say that P traces (P_1, \ldots, P_k) if P_j is the union of $M_{1,j}, \ldots, M_{n,j}$ for all $j \in \{1, \ldots, k\}$. **3.2** Let $k, m, c \ge 0$ be integers, and let $(G, s_1, t_1, \ldots, s_k, t_k)$ be a problem instance, with (k, m, c)-tracker H. Every path in H from s_0 to t_0 traces some linkage for $(G, s_1, t_1, \ldots, s_k, t_k)$. **Proof.** Let P be a path of H, with vertices $$s_0, (L_1, X_1, Y_1), \dots, (L_n, X_n, Y_n), t_0$$ in order, and let $L_p = (M_{p,1}, \ldots, M_{p,k})$ for $1 \le p \le n$. For $1 \le p \le n$ and $1 \le j \le k$, let $P_{p,j}$ be the union of $M_{1,j}, \ldots, M_{p,j}$. (1) For $1 \le p \le n$ and $1 \le j \le k$, every vertex of $P_{p,j}$ belongs to $Y_p \cup V(M_{p,j})$. We prove this by induction on p. If p=1 the claim is true, since then $P_{1,j}=M_{1,j}$. We assume then that p>1 and the result holds for p-1. Let $v\in V(P_{p,j})$. If $v\in V(M_{p,j})$ then the claim is true, so we assume not. Since $v\in V(P_{p,j})$, and $P_{p,j}=P_{p-1,j}\cup M_{p,j}$, it follows that $v\in V(P_{p-1,j})$, and so from the inductive hypothesis, $v\in Y_{p-1}\cup V(M_{p-1,j})$. But since $(L_{p-1},X_{p-1},Y_{p-1})\to (L_p,X_p,Y_p)$, we deduce that $Y_{p-1}\subseteq Y_p$, and $V(M_{p-1,j})\subseteq V(M_{p,j})\cup Y_p$, and so $v\in V(M_{p,j})\cup Y_p$. This proves (1). (2) For $1 \le p \le n$ and $1 \le j \le k$, $P_{p,j}$ is a path from s_j to the last vertex of $M_{p,j}$. The claim holds if p=1; so we assume that p>1 and the claim holds for p-1. Thus $P_{p-1,j}$ is a path from s_j to the last vertex of $M_{p-1,j}$; and also, $M_{p-1,j} \cup M_{p,j}$ is a path, from the first vertex of $M_{p-1,j}$ to the last vertex of $M_{p,j}$, since $(L_{p-1}, X_{p-1}, Y_{p-1}) \to (L_p, X_p, Y_p)$. We claim that every vertex v that belongs to both of $P_{p-1,j}, M_{p,j}$ also belongs to $M_{p-1,j}$. For suppose not; then by (1), $v \in Y_{p-1}$ since $v \in V(P_{p-1,j}) \setminus V(M_{p-1,j})$, and $v \in X_{p-1}$, since $v \in V(M_{p,j}) \setminus V(M_{p-1,j})$. This is impossible since $X_{p-1} \cap Y_{p-1} = \emptyset$. This proves that every vertex that belongs to both of $P_{p-1,j}, M_{p,j}$ also belongs to $M_{p-1,j}$. Since $M_{p-1,j}$ is non-null, we deduce that $P_{p-1,j} \cup M_{p,j}$ is a path from s_j to the last vertex of $M_{p,j}$. This proves (2). (3) For $1 \le p \le n$, the paths $P_{p,1}, \ldots, P_{p,k}$ are pairwise vertex-disjoint. For again we proceed by induction on p, and may assume that p > 1 and the result holds for p-1. Suppose that v belongs to two of the paths $P_{p,1}, \ldots, P_{p,k}$, say to $P_{p,1}$ and $P_{p,2}$. From the inductive hypothesis, v does not belong to both of $P_{p-1,1}$ and $P_{p-1,2}$, so we may assume that $v \in V(M_{p,1})$. Now $v \notin V(M_{p,2})$, because L_p is a linkage, and so $v \in V(P_{p-1,2})$. From (1) we deduce that $v \in Y_{p-1} \cup V(M_{p-1,2})$. But $Y_{p-1} \subseteq Y_p$, and $V(M_{p-1,2}) \setminus V(M_{p,2}) \subseteq Y_p$, and so $v \in Y_p$; but $Y_p \cap V(L_p) = \emptyset$ since (L_p, X_p, Y_p) is a (k, m, c)-rail, a contradiction. This proves (3). From (2) and (3) we deduce that $(P_{n,1}, \ldots, P_{n,k})$ is a linkage L for $(G, s_1, t_1, \ldots, s_k, t_k)$. Thus P traces L. This proves 3.2. The next result is a kind of partial converse; but we have to choose m, c carefully, and we need G to be d-path-dominant, and the proof only works for linkages that realize a key quality. **3.3** Let $d, k \ge 1$ be integers, and let $$c = ((k-1)d + k^2 + 2)(2k+1)k^2$$ $$m = ((k-1)d + k^2 + 2)d + 1.$$ Let $(G, s_1, t_1, \ldots, s_k, t_k)$ be a problem instance where G is d-path-dominant, let x be a key quality, and let (P_1, \ldots, P_k) be an x-linkage for $(G, s_1, t_1, \ldots, s_k, t_k)$. Let H be the (k, m, c)-tracker of $(G, s_1, t_1, \ldots, s_k, t_k)$. Then there is a path in H from s_0 to t_0 tracing (P_1, \ldots, P_k) . **Proof.** Let $L = (P_1, \ldots, P_k)$. By 2.2, there is an enumeration (v_1, \ldots, v_n) of V(L), such that - for $1 \le j \le k$ and $1 \le p, q \le n$, if $v_p v_q$ is an edge of P_j then p < q; - for $1 \le i, j \le k$ and $1 \le p \le n-1$, and every (m-1)-vertex subpath Q of $P_i | \{v_1, \ldots, v_p\}$, and every (m-1)-vertex subpath R of $P_j | \{v_{p+1}, \ldots, v_n\}$, there are at most $((k-1)d+k^2+2)(2k+1)$ vertices of G that are both Q-outward and R-inward. For each $v \in V(L)$, let $\phi(v) = i$ where $v = v_i$; thus ϕ is a bijection from V(L) onto $\{1, \ldots, n\}$. For all $p \in \{0, ..., n\}$ and all $j \in \{1, ..., k\}$, if $\phi(s_j) \leq p$, let $Q_{p,j}$ be the maximal subpath of P_j with at most m vertices and with last vertex v_q , where $q \leq p$ is maximum such that $v_q \in V(P_j)$. If $\phi(s_j) > p$, let $Q_{p,j}$ be the null digraph. Similarly, if $\phi(t_j) > p$, let $R_{p,j}$ be the maximal subpath of P_j with at most m vertices and with first vertex v_r , where r > p is minimum such that $v_r \in V(P_j)$. If $\phi(t_j) \leq p$, let $R_{p,j}$ be the null digraph. Thus, if $Q_{p,j}, R_{p,j}$ are both non-null, then $t(Q_{p,j})$ and $s(R_{p,j})$ are consecutive in P_j . For all $p \in \{0, ..., n\}$ and all $j \in \{1, ..., k\}$, let $M_{p,j}$ be the subpath of P_j defined as follows: if both $Q_{p,j}, R_{p,j}$ are non-null, $M_{p,j}$ consists of $Q_{p,j} \cup R_{p,j}$ together with the edge of P_j from $t(Q_{p,j})$ to $s(R_{p,j})$, while if one of $Q_{p,j}, R_{p,j}$ is null, $M_{p,j}$ equals the other (not both can be null). We see that, for all $p, j, M_{p,j}$ has at most 2m vertices; and either it has exactly 2m, or its first vertex is s_j , or its last vertex is t_j . For all $p \in \{0, ..., n\}$, let L_p be the linkage $(M_{p,1}, ..., M_{p,k})$. (1) For all $p \in \{0, ..., n\}$, L_p has confusion at most c. Let $v \in A(L_p) \cap B(L_p)$, where $A(L_p), B(L_p)$ are as in the definition of confusion. Thus there exists $j \in \{1, \ldots, k\}$ such that v is $M_{p,j} \setminus t(M_{p,j})$ -inward and $t(M_{p,j}) \neq t_j$. Since $t(M_{p,j}) \neq t_j$, it follows from the choice of $R_{p,j}$ that $R_{p,j}$ has exactly m vertices. Moreover, v is $R_{p,j} \setminus t(R_{p,j})$ -inward, since v is $M_{p,j} \setminus t(M_{p,j})$ -inward. Similarly, there exists $i \in \{1, \ldots, k\}$ such that v is $Q_{p,i} \setminus s(Q_{p,i})$ -outward and $Q_{p,i}$ has m vertices. For each choice of $i, j \in \{1, \ldots, k\}$, there are at most $((k-1)d+k^2+2)(2k+1)$ vertices that are both $Q_{p,i} \setminus s(Q_{p,i})$ -outward and $R_{p,j} \setminus t(R_{p,j})$ -inward, from the choice of the enumeration (v_1, \ldots, v_n) . Consequently in total there are only c possibilities for v, and so $|A(L_p) \cap B(L_p)| \leq c$. This proves (1). (2) For $0 \le p \le n$ and each $v \in V(L) \setminus V(L_p)$, if $\phi(v) > p$ then $v \in A(L_p)$, and if $\phi(v) \le p$ then $v \in B(L_p)$. For let $v \in V(P_j)$ say. Assume first that $\phi(v) > p$. Since $v \notin V(L_p)$, it follows that $M_{p,j}$ does not have last vertex t_j ; and since x is key, v is not adjacent from any vertex in $M_{p,j}$ except possibly $t(M_{p,j})$. Consequently v is $M_{p,j} \setminus t(M_{p,j})$ -inward, and hence belongs to $A(L_p)$. Similarly, if $\phi(v) \leq p$ then $v \in B(L_p)$. This proves (2). For all $p \in \{0, ..., n\}$, define X_p, Y_p as follows: $$X_p = \{v \in V(L) \setminus V(L_p) : \phi(v) > p\} \cup (A(L_p) \setminus B(L_p))$$ $$Y_p = (A(L_p) \cup B(L_p)) \setminus X_p.$$ (3) For all $p \in \{0, ..., n\}$, (L_p, X_p, Y_p) is a (k, m, c)-rail. From (1), it suffices to check that - X_p, Y_p are disjoint subsets of $V(G) \setminus V(L_p)$; - $X_p \subseteq A(L_p), Y_p \subseteq B(L_p)$; and - $X_p \cup Y_p = A(L_p) \cup B(L_p)$. Certainly they are disjoint, and have union $A(L_p) \cup B(L_p)$. Moreover, from (2), $X_p \subseteq A(L_p)$. It remains to show that $Y_p \subseteq B(L_p)$. Let $v \in Y_p$. Thus $v \in A(L_p) \cup B(L_p)$; and $v \notin A(L_p) \setminus B(L_p)$, since $v \notin X_p$. Consequently $v \in B(L_p)$ as required. This proves (3). (4) For all $p \in \{0, ..., n-1\}$, and all $j \in \{1, ..., k\}$, $M_{p,j} \cup M_{p+1,j}$ is a path from the first vertex of $M_{p,j}$ to the last vertex of $M_{p+1,j}$. For $M_{p,j}$, $M_{p+1,j}$ are both subpaths of P_j , and we may assume they are distinct, and so $v_{p+1} \in V(P_j)$. Hence, since m > 0, v_{p+1} is the first vertex of $R_{p,j}$, and the last vertex of $Q_{p+1,j}$; and so $M_{p,j} \cup M_{p+1,j}$ is a path. Moreover, it follows from the definition of the paths $M_{p,j}$ that $M_{p,j} \cup M_{p+1,j}$ is a path from the first vertex of $M_{p,j}$ to the last vertex of $M_{p+1,j}$. This proves (4). (5) For all $p \in \{0, ..., n-1\}$, and all $j \in \{1, ..., k\}$, $A(L_{p+1}) \subseteq A(L_p) \cup V(L)$ and $B(L_p) \subseteq B(L_{p+1}) \cup V(L)$. For let $v \in A(L_{p+1})$. We need to prove that $v \in A(L_p) \cup V(L)$, and so we may assume that $v \notin V(L)$. Choose j with $1 \leq j \leq k$ such that v is $M_{p+1,j} \setminus t(M_{p+1,j})$ -inward and $t(M_{p+1,j}) \neq t_j$. Consequently $t(M_{p,j}) \neq t_j$, and so if v is $M_{p,j} \setminus t(M_{p,j})$ -inward then $v \in A(L_p)$ as required, so we may assume that v is adjacent from some vertex of $M_{p,j}$. In particular, $M_{p,j} \neq M_{p+1,j}$ and so $v_{p+1} \in V(P_j)$, and $v_{p+1} = s(R_{p,j}) = t(Q_{p+1,j})$. Moreover, since $s(M_{p,j})$ is the only vertex of $M_{p,j}$ that may not belong to $M_{p+1,j}$, we deduce that $s(M_{p,j})$ is adjacent to v, and $s(M_{p,j})$ does not belong to $M_{p+1,j}$. Consequently $s(M_{p+1,j}) \neq s_j$, and so $Q_{p+1,j}$ has m vertices. Since v is $M_{p+1,j} \setminus t(M_{p+1,j})$ -inward, and G is d-path-dominant, and $M_{p+1,j} \setminus t(M_{p+1,j})$ is a minimal path of G, and it has $m-1 \geq d+2$ vertices, there is a subpath of $M_{p+1,j} \setminus t(M_{p+1,j})$ with d vertices, not containing the first or second vertex of $M_{p+1,j} \setminus t(M_{p+1,j})$; and so v is adjacent to some vertex w of $M_{p+1,j} \setminus t(M_{p+1,j})$ different from its first and second vertices. But v is adjacent from u, so by replacing the subpath of P_j between u and w by the path u-v-w, we contradict that x is key. This proves that $v \in A(L_p)$, and so $A(L_{p+1}) \subseteq A(L_p) \cup V(L)$. Similarly $B(L_p) \subseteq B(L_{p+1}) \cup V(L)$. This proves (5). (6) For all $p \in \{0, ..., n-1\}$, $X_{p+1} \subseteq X_p$, and $Y_p \subseteq Y_{p+1}$. Let $v \in X_{p+1}$. Suppose first that $v \notin V(L)$. Then $v \in A(L_{p+1}) \setminus B(L_{p+1})$. By (5), $v \in A(L_p) \setminus B(L_p)$, and so $v \in X_p$ as required. Thus we may assume that $v \in V(L)$. Since $v \in X_{p+1}$, it follows that either $\phi(v) > p+1$, or $v \notin B(L_{p+1})$. If $\phi(v) > p+1$, then since $v \notin V(L_{p+1})$, it follows that $v \notin V(L_p)$, and hence $v \in X_p$ from the definition of X_p . Thus we may assume that $\phi(v) \leq p+1$ and $v \notin B(L_{p+1})$, contrary to (2). This proves that $X_{p+1} \subseteq X_p$. For the second inclusion, let $v \in Y_p$. Suppose first that $v \notin V(L)$. Then $v \in B(L_p)$; and so $v \in B(L_{p+1})$ by (5), and hence $v \in Y_{p+1}$ as required. Thus we may assume that $v \in V(L)$. Since $v \in Y_p$, it follows that $\phi(v) \leq p$. Now $v \notin V(L_p)$, and therefore $v \notin V(L_{p+1})$. But $\phi(v) \leq p + 1$, and so by (2), $v \in B(L_{p+1})$, and consequently $v \notin X_{p+1}$. Thus $v \in Y_{p+1}$, as required. This proves that $Y_p \subseteq Y_{p+1}$, and so proves (6). (7) For all $p \in \{0, ..., n-1\}$, and all $j \in \{1, ..., k\}$, $V(P_{p+1,j}) \subseteq V(P_{p,j}) \cup X_p$, and $V(P_{p,j}) \subseteq V(P_{p+1,j}) \cup Y_{p+1}$. To prove the first assertion, let $v \in V(P_{p+1,j}) \setminus V(P_{p,j})$. It follows that $\phi(v) > p$; but then $v \in X_p$ from the definition of X_p . For the second assertion, let $v \in V(P_{p,j}) \setminus V(P_{p+1,j})$; then $\phi(v) \leq p+1$, and so $v \in B(L_{p+1})$ by (2). Consequently $v \notin X_{p+1}$, and so $v \in Y_{p+1}$ as required. This proves (7). (8) For all $p \in \{0, \ldots, n-1\}$, $(L_p, X_p, Y_p) \to (L_{p+1}, X_{p+1}, Y_{p+1})$. This is immediate from (4), (6) and (7). Now $(L_1, X_1, Y_1), \ldots, (L_n, X_n, Y_n)$ are not necessarily all distinct. But we have: (9) For all p, r with $0 \le p \le r \le n$, if $(L_p, X_p, Y_p) = (L_r, X_r, Y_r)$, then $(L_p, X_p, Y_p) = (L_q, X_q, Y_q)$ for all q with $p \le q \le r$. For (6) implies that $X_q \subseteq X_p$, and $X_r \subseteq X_q$, and so $X_p = X_q$, and similarly $Y_p = Y_q$. If some vertex v belongs to $V(L_q) \setminus V(L_p)$, then by (7) and (6), $v \in X_p = X_q$, a contradiction. Similarly, if $v \in V(L_p) \setminus V(L_q)$ then $v \in Y_q = Y_p$, a contradiction. This proves (9). (10) For all $j \in \{1, ..., k\}$, $M_{0,j}$ has first vertex s_j , and $M_{n,j}$ has last vertex t_j . This follows from the definitions of $M_{0,j}$ and $M_{n,j}$. We recall that H is the (k, m, c)-tracker, with two special vertices s_0, t_0 . Now (10) implies that s_0 is adjacent to (L_1, X_1, Y_1) in H, and (L_n, X_n, Y_n) is adjacent to t_0 . From (8) and (9), there is a subsequence of the sequence $$s_0, (L_1, X_1, Y_1), \dots, (L_n, X_n, Y_n), t_0,$$ which lists the vertex set in order of a path of H from s_0 to t_0 . By 3.2, this path traces some linkage L' for $(G, s_1, t_1, \ldots, s_k, t_k)$. But for all $j \in \{1, \ldots, k\}, M_{0,j}, M_{1,j}, \ldots, M_{n,j}$ are all subpaths of P_j ; and since their union is a path from s_j to t_j , it follows that their union is P_j . Hence L' = L. This proves 3.3. ### 4 The algorithm Next, we need a polynomial algorithm to solve a kind of vector-valued shortest path problem. If $n \ge 0$ is an integer, K_n denotes the set of all k-tuples (x_1, \ldots, x_k) of nonnegative integers such that $x_1 + \cdots + x_k \le n$. - **4.1** There is an algorithm as follows: - Input: A digraph H, and distinct vertices $s_0, t_0 \in V(H)$; an integer $n \geq 0$; and for each edge e of H, a member l(e) of K_n . - Output: The set of all minimal (under component-wise domination) vectors l(P), over all paths P of H from s_0 to t_0 ; where for a path P with edge set $\{e_1, \ldots, e_p\}$, $l(P) = l(e_1) + \cdots + l(e_p)$. - Running time: $O(n^k|V(H)||E(H)|)$. **Proof.** Let $Q_0(s_0) = \{(0, ..., 0)\}$, and let $Q_0(v) = \emptyset$ for every other vertex v of D. Inductively, for $1 \le i \le |V(H)|$, let $Q_i(v)$ be the set of minimal vectors in K_n that either belong to $Q_{i-1}(v)$ or are expressible in the form l(e) + x for some edge e = uv of H and some $x \in Q_{i-1}(u)$. Now here is an algorithm for the problem: - For i = 1, ..., |V(H)| in turn, compute $Q_i(v)$ for every $v \in V(H)$. - Output $Q_{|V(H)|}(t_0)$. It is easy to check that this output is correct, and we leave it to the reader. To compute $Q_i(v)$ at the *i*th step takes time $O(n^k)d^-(v)$, where $d^-(v)$ is the in-degree of v in H (since K_n has at most $(n+1)^k$ members), and so the *i*th step in total takes time $O(n^k|E(H)|)$. Thus the running time is $O(n^k|V(H)||E(H)|)$. Finally, we can give the main algorithm, 1.4, which we restate. - **4.2** For all $d, k \ge 1$, there is an algorithm as follows: - Input: A problem instance $(G, s_1, t_1, \ldots, s_k, t_k)$ where G is d-path-dominant. - Output: The set of all key qualities of $(G, s_1, t_1, \ldots, s_k, t_k)$. - Running time: $O(n^t)$ where $t = 6k^2d(k+d) + 13k$. **Proof.** Here is the algorithm. • Compute the (k, m, c)-tracker H, where $$c = ((k-1)d + k^2 + 2)(2k+1)k^2$$ $$m = ((k-1)d + k^2 + 2)d + 1.$$ • For each edge e = uv of H, define l(e) as follows: ``` - if u = s_0 and v = (L, X, Y) where L = (M_1, ..., M_k), let l(e) = (|V(M_1)|, ..., |V(M_k)|); - if u = (L, X, Y) where L = (M_1, ..., M_k), and v = (L', X', Y') where L' = (M'_1, ..., M'_k), let l(e) = (|V(M'_1) \setminus V(M_1)|, ..., |V(M'_k) \setminus V(M_k)|); - if v = t_0 let l(e) = (0, ..., 0). ``` - Run the algorithm of 4.1 with input H, s_0, t_0, l . - Output its output. To see its correctness, we must check that every key quality is in the output, and everything in the output is a key quality. We show first that every vector in the output is a quality. For let x be in the output, and let P be a path in H from s_0 to t_0 with l(P) = x. By 3.2, P traces some linkage $L = (P_1, \ldots, P_k)$ for $(G, s_1, t_1, \ldots, s_k, t_k)$; and so $(|V(P_1)|, |V(P_2)|, \ldots, |V(P_k)|) = l(P) = x$. Hence x is a quality. Next, we show that every key quality is in the output. For let x be a key quality. Let L be an x-linkage for $(G, s_1, t_1, \ldots, s_k, t_k)$. By 3.3, there is a path P of H from s_0 to t_0 tracing L; and hence l(P) = x (where l(P) is defined as in the statement of 4.1). Thus the output of 4.1 contains a vector dominated by x. But x does not dominate any other quality, since it is key; and since every member of the output is a quality, it follows that x belongs to the output. Third, we show that every member of the output is key. For let x be in the output, and suppose it is not key. Hence x dominates some other quality, and hence dominates some other key quality y say. Consequently y is in the output. But no two members of the output dominate one another, a contradiction. This proves that every member of the output is key, and so completes the proof that the output of the algorithm is as claimed. Finally, for the running time: by 3.1, we can find all (k, m, c)-rails in time $O(n^{2km+1})$; and since there are at most $O(n^{2km})$ of them (by 3.1), we can compute H and the function l in time $O(n^{4km})$. Then running 4.1 takes time $O(n^k|V(H)|^3)$, and hence time at most $O(n^{6km+k})$. Thus the total running time is $O(n^{6km+k})$. Since $m = ((k-1)d+k^2+2)d+1$, the running time is $O(n^t)$ where $$t = 6k(k-1)d^2 + 6k(k^2+2)d + 7k = 6k^2d^2 + 6k^3d + 12kd + 7k - 6kd^2 \le 6k^2d(k+d) + 13k^2d + 6k(k^2+2)d + 7k - 6kd^2 \le 6k^2d(k+d) + 13k^2d + 6k(k^2+2)d + 7k - 6kd^2 \le 6k^2d(k+d) + 13k^2d + 6k(k^2+2)d + 7k - 6kd^2 \le 6k^2d(k+d) + 12kd 7kd 7$$ as claimed. This proves 4.2. #### References [1] Jørgen Bang-Jensen and Carsten Thomassen, "A polynomial algorithm for the 2-path problem for semicomplete digraphs", SIAM Journal on Discrete Mathematics 5 (1992), 366–376. - [2] S.Fortune, J.Hopcroft and J.Wyllie, "The directed subgraphs homeomorphism problem", *Theoret. Comput. Sci.* 10 (1980), 111–121. - [3] Alexandra Fradkin and Paul Seymour, "Edge-disjoint paths in digraphs with bounded independence number", *J. Combinatorial Theory*, *Ser.B*, in press, 2014 (DOI: 10.1016/j.jctb.2014.07.002). - [4] N. Robertson and P.D. Seymour, "Graph minors. XIII. The disjoint paths problem", *J. Combinatorial Theory, Ser. B*, 63 (1995), 65–110.