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Abstract

We undertake a case study of two series of nonclassical Zariski geome-
tries. We show that these geometries can be realised as representations of
certain noncommutative C∗-algebras and introduce a natural limit con-
struction which for each of the two series produces a classical U(1)-gauge
field over a 2-dimensional Riemann surface.

1 Introduction

The notion of a Zariski geometry was introduced in [HZ] as a model-
theoretic generalisation of objects of algebraic geometry and compact
complex manifolds.

The main result of paper [HZ] was the classification of non linear
(non locally modular) irreducible Zariski geometries of dimension one.
The initial hope that every such geometry is definably isomorphic to an
algebraic curve over an algebraically closed field F had to be corrected
in the course of the study. The final classification theorem states that
given a non linear irreducible 1-dimensional Zariski geometry M there is
an algebraically closed field F definable in M and an algebraic curve C
over F such that M is a finite cover of C(F), that is there is a Zariski
continuous map p : M → C(F) which is a surjection with finite fibres.

The paper [HZ] also provides a class of examples that demonstrates
that in general we can not hope to reduce p to a bijection. Given a smooth
algebraic curve C with a big enough group G of regular automorphisms
with a nonsplitting finite extension G̃, one can produce a “smooth” irre-
ducible Zariski curve C̃ along with a finite cover p : C̃ → C and G̃ its
group of Zariski-definable automorphisms.

Typically C̃ can not be identified with any algebraic curve because G̃ is
not embeddable into the group of regular automorphisms of an algebraic
curve ([HZ], section 10).

Taking into account known reductions of covers we can say that the
above construction of C̃ is essentially the only way to produce a nonclassi-
cal Zariski curve. In other words, a general Zariski curve essentially looks
like C̃ above.
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A simple example of an unusual group G̃ for such a C̃, used in [HZ],
is the class-2-nilpotent group of two generators u and v with the central
commutator [u,v] of finite order N. The correspondent G is then the free
abelian group on two generators. One can identify this G̃ as the quotient
of the integer Heisenberg group H3(Z) by the subgroup of its centre of
index N.

Also, since the group of regular isomorphisms of the smooth curve C
must be infinite, we have very little freedom in choosing C; it has to be
either the affine line over F, or the torus F∗, or an elliptic curve.

This paper undertakes the case study of the geometries of the corre-
sponding C̃ for C an algebraic torus and an affine line.

The most comprehensive modern notion of a geometry is based on the
consideration of a coordinate algebra of the geometric object. The classi-
cal meaning of a coordinate algebra comes from the algebra of coordinate
functions on the object, that is, in our case, functions ψ : C̃(F) → F of a
certain class. The most natural algebra of functions seems to be the alge-
bra F[C̃] of Zariski continuous (definable) functions. But by the virtue of
the construction F[C̃] is naturally isomorphic to the F[C], the algebra of
regular functions on the algebraic curve C, that is the only geometry which
we see by looking into F[C̃] is the geometry of the algebraic curve C. To
see the rest of the structure we had to extend F[C̃] by introducing semi-
definable functions, which satisfy certain equations but are not uniquely
defined by these equations. The F-algebra of H(C̃) of semi-definable func-
tions contains the necessary information about C̃ but is not canonically
defined. On the other hand it is possible to define an F-algebra A(C̃) of
linear operators on H(C̃) in a canonical way, depending on C̃ only. We
proceed with this construction for both examples and write down explicit
lists of generators and defining relations for algebras A(C̃). One particular
type of a semi-definable function which we call ∗-functions, of a clearly
non-algebraic nature, plays a special role. The ∗-function induces an in-
volution ∗ on A. We show, for F = C, that A thus gets the structure of a
C∗-algebra, that is the involution ∗ associates with any X ∈ A its formal
adjoint operator X∗ satisfying usual formal requirements. Moreover there
is an A-submodule H+ of H(C̃) with an inner product for which ∗ does
indeed define adjoint operators.

Our first main theorem states that there is a reverse canonical con-
struction which recovers C̃ from the algebra A uniquely. The points of C̃
correspond to one-dimensional eigenspaces (states) of certain self-adjoint
operators, relations on C correspond to ideals of cartesian powers of a
commutative subalgebra of A and operations u and v correspond natu-
rally to actions of certain operators of A on the states. This scheme is
strikingly similar to the operator representations of quantum mechanics.
Note that this construction is similar but not identical with the one we
used in [Z1].

The final section of the paper concentrates on understanding the limit
of the structures C̃ = C̃N , depending on N by the construction of G̃, as N
tends to infinity. Amomg many possible ways to define the notion of the
limit we found metric considerations most relevant. It turns out possible,
when F = C, to consider metric on each C̃N and to use correspondingly
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the notion of Hausdorff limit. Our main result in this section states that,
for both types of examples, the Hausdorff limit C̃∞ of C̃N , as N tends
to infinity, is the structure identified as the principal U(1)-bundle over a
Riemann surface with u and v defining a connection (covariant derivative)
on the bundle. In physicists’ terminology this is a gauge field with a
connection of nonzero curvature (see e.g. [DFN] or [S]).

Combining with the results of the previous section one could speculate
that C̃N are quantum deformations of the classical structure on C̃∞, and
conversely, the latter is the classical limit of the quantum structures.

I am very grateful to Yang-Hui He and Mario Serna for helping me to
clarify some of physicists’ terminology that I am using in the paper.

2 Non-algebraic Zariski geometries

2.0.1 Theorem 1 There exists an irreducible pre-smooth Zariski struc-
ture (in particular of dimension 1) which is not interpretable in an alge-
braically closed field.

The construction

Let M = (M, C) be an irreducible pre-smooth Zariski structure,
G ≤ ZAutM (Zariski-continuous bijections) acting freely on M and for
some G̃ with finite H :

1 → H → G̃→pr G→ 1.

Consider a set X ⊆M of representatives of G-orbits: for each a ∈M,
G · a ∩X is a singleton.

Consider the formal set

M̃(G̃) = M̃ = G̃×X

and the projection map

p : (g, x) 7→ pr(g) · x.

Consider also, for each f ∈ G̃ the function

f : (g, x) 7→ (fg, x).

We thus have obtained the structure

M̃ = (M̃, {f}f∈G̃ ∪ p
−1(C))

on the set M̃ with relations induced from M together with maps {f}f∈G̃.

We set the closed subsets of M̃n to be exactly those which are definable by
positive quantifier-free formulas with parameters. Obviously, the struc-
ture M and the map p : M̃ → M are definable in M̃. Since, for each
f ∈ G̃,

∀v pf(v) = fp(v)
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the image p(S) of a closed subset S ⊆ M̃n is closed in M. We define
dimS := dimp(S).

Lemma 1 The isomorphism type of M̃ is determined by M and G̃
only. The theory of M̃ has quantifier elimination. M̃ is an irreducible
pre-smooth Zariski structure.

Proof. One can use obvious automorphisms of the structure to prove
quantifier elimination. The statement of the claim then follows by check-
ing the definitions. The detailed proof is given in [HZ] Proposition 10.1.

Lemma 2. Suppose H does not split, that is for every proper G0 < G̃

G0 ·H 6= G̃.

Then, every equidimensional Zariski expansion M̃′ of M̃ is irreducible.

Proof Let C = M̃ ′ be an |H|-cover of the variety M, so dimC =
dimM and C has at most |H| distinct irreducible components, say Ci, 1 ≤
i ≤ n. For generic y ∈ M the fiber p−1(y) intersects every Ci (otherwise
p−1(M) is not equal to C).

Hence H acts transitively on the set of irreducible components. So,
G̃ acts transitively on the set of irreducible components, so the setwise
stabiliser G0 of C1 in G̃ is of index n in G̃ and also H ∩ G̃0 is of index n
in H. Hence,

G̃ = G0 ·H, with H * G0

contradicting our assumptions. �

Lemma 3. G̃ ≤ ZAut M̃, that is G̃ is a subgroup of the group of
Zariski-continuous bijecions of M̃.

Proof Immediate by construction.�

Lemma 4 Suppose M is a rational or elliptic curve (over an alge-
braically closed field F of characteristic zero), H does not split, G̃ is nilpo-
tent and for some big enough integer µ there is a non-abelian subgroup
G0 ≤ G̃

|G̃ : G0| ≥ µ.

Then M̃ is not interpretable in an algebraically closed field.

Proof First we show.
Claim. Without loss of generality we may assume that G̃ is infinite.
Recall that G is a subgroup of the group ZAutM of rational (Zariski)

automorphisms of M. Every algebraic curve is birationally equivalent to
a smooth one, so G embeds into the group of birational transformations
of a smooth rational curve or an elliptic curve. Now remember that any
birational transformation of a smooth algebraic curve is biregular. If M
is rational then the group ZAutM is PGL(2,F). Choose a semisimple
(diagonal) s ∈ PGL(2,F) be an automorphism of infinite order such that
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〈s〉∩G = 1 and G commutes with s. Then we can replace G by G′ = 〈G, s〉
and G̃ by G̃′ = 〈G̃, s〉 with the trivial action of s on H. One can easily
see from the construction that the M̃ ′ corresponding to G̃′ is the same as
M̃, except for the new definable bijection corresponding to s.

We can use the same argument when M is an elliptic curve, in which
case the group of automorphisms of the curve is given as a semidirect
product of a finitely generated abelian group (complex multiplication)
acting on the group on the elliptic curve E(F).

Now, assuming that M̃ is definable in an algebraically closed field F′

we will have that F is definable in F′. It is known to imply that F′ is
definably isomorphic to F, so we may assume that F′ = F.

Also, since dim M̃ = dimM = 1, it follows that M̃ up to finitely many
points is in a bijective definable correspondence with a smooth algebraic
curve, say C = C(F).

G̃ then by the argument above is embedded into the group of rational
automorphisms of C.

The automorphism group is finite if genus of the curve is 2 or higher,
so by the Claim we can have only rational or elliptic curve for C.

Consider first the case when C is rational. The automorphism group
then is PGL(2,F). Since G̃ is nilpotent its Zariski closure in PGL(2,F)
is an infinite nilpotent group U. Let U0 be the connected component of
U, which is a normal subgroup of finite index. By Malcev’s Theorem (see
[Merzliakov], 45.1) there is a number µ (dependent only on the size of the
matrix group in question but not on U) such that some normal subgroup
U0 of U of index at most µ is a subgroup of the unipotent group

„

1 z
0 1

«

this is Abelian, contradicting the assumption that G̃ has no abelian sub-
groups of index less than µ.

In case C is an elliptic curve the group of automorphisms is a semidi-
rect product of a finitely generated abelian group (complex multiplication)
acting freely on the abelian group of the elliptic curve. This group has no
nilpotent non-abelian subgroups. This finishes the proof of Lemma 4 and
of the theorem.�

In general it is harder to analyse the situation when dimM > 1 since
the group of birational automorphisms is not so immediately reducible to
the group of biregular automorphisms of a smooth variety in higher dimen-
sions. But nevertheless the same method can prove the useful fact that
the construction produces examples essentially of non algebro-geometric
nature.

Proposition 1 (i) Suppose M is an abelian variety, H does not split and
G̃ is nilpotent not abelian. Then M̃ can not be an algebraic variety with
p : M̃ →M a regular map.
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(ii) Suppose M is the (semi-abelian) variety (F×)n. Suppose also that
G̃ is nilpotent and for some big enough integer µ = µ(n) has no abelian
subgroup G0 of index bigger than µ. Then M̃ can not be an algebraic
variety with p : M̃ →M a regular map.

Proof (i) If M is an abelian variety and M̃ were algebraic, the map
p : M̃ →M has to be unramified since all its fibers are of the same order
(equal to |H|). Hence M̃ being a finite unramified cover must have the
same unversal cover as M has. So, M̃ must be an abelian variety as well.
The group of automorphisms of an abelian variety A without complex
multiplication is the abelian group A(F). The contradiction.

(ii) Same argument as in (i) proves that M̃ has to be isomorphic to
(F×)n. The Malcev theorem cited above finishes the proof.�

Proposition 2 Suppose M is an F-variety and, in the construction of
M̃, the group G̃ is finite. Then M̃ is definable in any expansion of the
field F by a total linear order.

In particular, if M is a complex variety, M̃ is definable in the reals.

Proof Extend the ordering of F to a linear order of M and define

S := {s ∈M : s = min G · s}.
The rest of the construction of M̃ is definable.�

Remark In other known examples of non-algebraic M̃ (with G infi-
nite) M̃ is still definable in any expansion of the field F by a total linear
order. In particular, for the example considered in this paper, see sec-
tion ??.

Problem (i) Classify Zariski structures definable in the reals.
(ii) Classify Zariski structures definable in the reals as a smooth real

manifold.
(iii) Find new Zariski structures definable in Ran as a smooth real

manifold.

3 Examples

Let N be a positive integer and F an algebraically closed field of charac-
teristic prime to N. Consider the groups given by generators and defining
relations,

G = 〈u, v : uv = vu〉,
G̃ = G̃N = 〈u,v : [u, [u,v]] = [v, [u,v]] = 1 = [u,v]N 〉,

where [u,v] stands for the commutator vuv−1u−1.
We will consider two examples of the construction of a one-dimensional

M̃ from an algebraic curve M using the groups G and G̃. By section 2 G
is going to be a subgroup of the group of rational automorphisms of M,
so M has to be of genus 0 or 1. In our examples M is the algebraic torus
F∗ and the affine line F.
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3.1 The N-cover of the affine line.

3.1.1 We assume here that the characteristic of F is 0.
Let a, b ∈ F be additively independent.
G acts on F :

ux = a+ x, vx = b+ x.

Taking M to be F this determines, by subsection 2, a presmooth non-
algebraic Zariski curve M̃ which from now on we denote PN , and PN will
stand for the universe of this structure.

The correspondent definition for the covering map p : M̃ → M = F
then gives us

p(ut) = a+ p(t), p(vt) = b+ p(t). (1)

3.1.2 Semi-definable functions on PN .

Lemma There are functions y and z

PN → F

satisfying the following functional equations, for any t ∈ PN ,

y
N (t) = 1, y(ut) = ǫy(t), y(vt) = y(t) (2)

z
N (t) = 1, z(ut) = z(t), z(vt) = y(t)−1 · z(t). (3)

Proof Choose a subset S ⊆M = F of representatives of G-orbits, that
is F = G + S. By the construction in section 2 we can identify PN = M̃
with G̃ × S in such a way that p(g, s) = pr(g) + s. This means that, for
any s ∈ S, a t in G̃ · s is of the form t = umvn[u,v]ℓ · s and

p(um
v

n[u,v]ℓ · s) := ma+ nb+ s.

Set
y(um

v
n[u,v]ℓ · s) := ǫm

z(um
v

n[u,v]ℓ · s) := ǫl.

This satisfies (2) and (3). �

Remark. Notice, that it follows from (1)-(3):

1. p is surjective and N -to-1, with fibres of the form

p
−1(λ) = Ht, H = {[u,v]ℓ : 0 ≤ l < N}.

2. y([u,v]t) = y(t),

3. z([u,v]t) = ǫz(t).

3.1.3 Denote F[N ] = {ξ ∈ F : ξN = 1} and define the band function

on F as a function bd : F → F[N ].
Set for λ ∈ F

bd(λ) = y(t), if p(t) = λ,
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This is well-defined by the remark in 3.1.2.
Acting by u on t and using (1) and (2) we have

bd(a+ λ) = ǫbdλ. (4)

Acting by v we obtain
bd(b+ λ) = bdλ. (5)

Remark In a more general context we are going to call the band func-
tion and the angular function of the next section ∗-functions, explaining
the reasons for this at the end of this section.

Proposition The structure PN is definable in

(F,+, ·,bd).

Proof Set

PN = F × F[N ] = {〈x, ǫℓ〉 : x ∈ F, ℓ = 0, . . . , N − 1}

and define the maps

p(〈x, ǫℓ〉) := x, u(〈x, ǫℓ〉) := 〈a+ x, ǫℓ〉), v(〈x, ǫℓ〉) := 〈b+ x, ǫℓbd(x)〉.

One checks easily that the action of G̃ is well-defined and that (1) holds.�

Remark One can easily define in (F,+, ·,bd) functions x,y and z

satisfying (2) and (3).

Assuming that F = C and for simplicity that a ∈ iR and b ∈ R, both
nonzero, we may define, for z ∈ C,

bd(z) := exp(
2πi

N
[Re(

z

a
)]).

This satisfies (4) and (5) and so PN over C is definable in C equipped
with the measurable but not continuous function above.

Question Does there exist a supersimple structure of the form (F,+, ·,bd)
satisfying (4) and (5)?

3.1.4 The space of semi-definable functions.
Let H be an F-algebra containing all the functions PN → F which are

definable in PN expanded by x, y, z.

We define linear operators X,Y,Z, U and V on H :

X : ψ(t) 7→ p(t) · ψ(t),
Y : ψ(t) 7→ y(t) · ψ(t),
Z : ψ(t) 7→ z(t) · ψ(t),
U : ψ(t) 7→ ψ(ut),
V : ψ(t) 7→ ψ(vt).

(6)
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Denote G̃∗ the group generated by the operators U, V,U−1, V−1, denote
Xǫ (or simply X) the F-algebra F[X,Y,Z] and Aǫ (or simply A) the
extension of the F algebra Xǫ by G̃∗.

While elements of H and H as a whole are not uniquely defined we
prove in 3.1.6 that A is exactly the algebra of operators on H generated
by X,Y,Z,U and V satisfying the following defining relations ( E stands
below for the commutator [U,V]):

XY = YX;XZ = ZX;YZ = ZY;
YN = 1;ZN = 1;
UX − XU = aU;VX − XV = bV;
UY = ǫYU;YV = VY;
ZU = UZ;
VZ = YZV;
UE = EU;VE = EV;EN = 1.

(7)

3.1.5 Let Max(X) be the set of isomorphism classes of 1-dimensional
irreducible X-modules.

Lemma 1 Max(X) can be represented by 1-dimensional modules 〈eµ,ξ,ζ〉
(eµ,ξ,ζ generating the module) for µ ∈ F, ξ, ζ ∈ F[N ], defined by the action
on the generating vector as follows:

Xeµ,ξ,ζ = µeµ,ξ,ζ , Yeµ,ξ,ζ = ξeµ,ξ,ζ , Zeµ,ξ,ζ = ζeµ,ξ,ζ .

Proof This is a standard fact of commutative algebra.�

Remark We can find some of the eµ,ξ,ζ in H, which by definition
contains the following Dirac delta-functions, for any p ∈ PN ,

δp(t) =



1, if t = p;
0, otherwise

One checks that

Xδp = p(p) · δp, Yδp = y(p) · δp, Zδp = z(p) · δp.

That is we get ep(p),y(p),z(p) in this way.

Assuming F is endowed with a fixed function bd : F → F[N ] we call
〈µ, ξ, ζ〉 as above real oriented if

bdµ = ξ.

Correspondingly, we call the module 〈eµ,ξ,ζ〉 real oriented if 〈µ, ξ, ζ〉 is.
Max+(X) will denote the subspace of Max(X) consisting of real ori-

ented modules 〈eµ,ξ,ζ〉.

Lemma 2 〈µ, ξ, ζ〉 is real oriented if and only if

〈µ, ξ, ζ〉 = 〈p(t),y(t), z(t)〉,
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for some t ∈ PN .

Proof It follows from the definition of bd that 〈p(t),y(t), z(t)〉 is real
oriented.

Assume now that 〈µ, ξ, ζ〉 is real oriented. Since p is a surjection,
there is t′ ∈ PN such that p(t′) = µ. By the definition of bd, y(t′) = bdµ.
By the Remark in 3.1.2 both values stay the same if we replace t′ by
t = [u,v]k t′. By the same Remark, for some k, z(t) = ζ. �

Now we introduce an infinite-dimensional A-module H0. As a vector
space H0 is spanned by {eµ,ξ,ζ : µ ∈ F, ξ, ζ ∈ F[N ]}. The action of the
generators of A on H0 is defined on eµ,ξ,ζ in accordance with the defining
relations of A. So, since

XUeµ,ξ,ζ = (UX − aU)eµ,ξ,ζ = (µ− a)Ueµ,ξ,ζ ,

YUeµ,ξ,ζ = ǫ−1
UYeµ,ξ,ζ = ǫ−1ξUeµ,ξ,ζ ,

ZUeµ,ξ,ζ = UZeµ,ξ,ζ = ζUeµ,ξ,ζ ,

and
XVeµ,ξ,ζ = (VX − bV)eµ,ξ,ζ = (µ− b)Veµ,ξ,ζ ,

YVeµ,ξ,ζ = VYeµ,ξ,ζ = ξUeµ,ξ,ζ ,

ZVeµ,ξ,ζ = VY
−1

Zeµ,ξ,ζ = ξ−1ζVeµ,ξ,ζ ,

we set

Ueµ,ξ,ζ := eu〈µ,ξ,ζ〉, with u〈µ, ξ, ζ〉 = 〈µ− a, ǫ−1ξ, ζ〉

and
Veµ,ξ,ζ := ev〈µ,ξ,ζ〉, with v〈µ, ξ, ζ〉 = 〈µ− b, ξ, ξ−1ζ〉.

From now on we identify Max+(X) with the family of real oriented
1-dimensional X-eigenspaces of H0.

Theorem 2 (i) There is a bijective correspondence Ξ : Max+(X) → PN

between the set of real oriented X-eigensubspaces of H0 and PN .
(ii) The action of G̃∗ on H0 induces an action on Max(X) and leaves

Max+(X) setwise invariant. The correspondence Ξ transfers anti-isomorphically
the natural action of G̃∗ on Max+(X) to a natural action of G̃ on PN .

(iii) The map
pX : 〈eµ,ξ,ζ〉 7→ µ

is a N-to-1-surjection Max+(X) → F such that

`

Max+(X),U,V,pX ,F
´ ∼=ξ (PN ,u,v,p,F) .

Proof (i) Immediate by Lemma 2.
(ii) Indeed, by the definition above the action of U and V corresponds

to the action on real oriented N -tuples:

U : 〈p(t),y(t), z(t)〉 7→ 〈p(t)−a, ǫ−1
y(t), z(t)〉 = 〈p(u−1t),y(u−1t), z(u−1t)〉,
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V : 〈p(t) − b,y(t),y(t)−1
z(t)〉 7→ 〈p(v−1t),y(v−1t), z(v−1t)〉.

(iii) Immediate from (i) and (ii).�

3.1.6 C∗-representation.

Our aim here is to introduce a natural C∗-algebra structure on A. In
fact we will do it for an extension A# of A. recall that a C-algebra A with
a norm is called a C∗-algebra if there is a map ∗ : A → A satisfying the
following properties: for all X,Y ∈ A :

(X∗)∗ = X,

(XY )∗ = Y ∗X∗,

(X + Y )∗ = X∗ + Y ∗,

for every λ ∈ C and every X ∈ A :

(λX)∗ = λX∗

and
‖X∗X‖ = ‖X‖2.

In the last condition we do not assume that the norm is always finite.

We will assume F = C, a = 2πi
N
, b ∈ R and start by extending the

space H of semi-definable functions with a function w : PN → C such
that

expw = y, w(ut) =
2πi

N
+ w(t), w(vt) = w(t).

We can easily do this by setting as in (3.1.2)

w(um
v

n[u,v]ℓ · s) :=
2πim

N
.

Now we extend A to A# by adding the new operator

W : ψ 7→ wψ

which obviously satisfies

WX = XW, WY = YW, WZ = ZW.

UW =
2πi

N
+ WU, VW = WV.

We set
U

∗ := U
−1, V

∗ := V
−1

Y
∗ := Y

−1, W
∗ := −W, X

∗ := X − 2W,

implying that U,V and Y are unitary and iW and X − W are formally
selfadjoint.

Lemma There is a representation of A# in an inner product space
such that U,V and Y act as unitary and iW and X − W as selfadjoint
operators.
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Proof Let HR be the subspace of the inner product space H0 spanned
by vectors eµ,ξ,ζ such that

µ = x+
2πik

N
, ξ = e

2πik
N , ζ = e

2πim
N , for x ∈ R, k,m ∈ Z. (8)

One checks that HR is closed under the action of A on H0 defined in 3.1.5,
that is HR is an A-submodule. We also define the action by W

W : eµ,ξ,ζ 7→ 2πik

N
eµ,ξ,ζ

for µ = x+ 2πik
N
. This obviously agrees with the defining relations of A#.

So HR is an A#-submodule of H0.
Now U and V are unitary operators on HR since they transform the

orthonormal basis into itself. Y is unitary since its eigenvectors form the
orthonormal basis and the corresponding eigenvalues are of absolute value
1. iW and X−W are selfadjoint since their eigenvalues on the orthonor-
mal basis are the reals − 2πk

N
and x, correspondingly.�

Proposition The action of the algebras A and A# on HR are faithful,
that is an operator T of the algebra annihilates HR if and only if T = 0.

Proof We will prove the statement for A. The proof for A# is similar.
Using the defining relations (7) we can represent

T =
X

i∈I

ciX
i1Y

i2Z
i3U

i4V
i5E

i6

for some finite I ⊂ Z6, i = 〈i1 . . . i6〉 and ci ∈ C.
Given an element eµ,ξ,ζ of the basis, the action of T on it produces

Teµ,ξ,ζ =
X

i∈I

ciX
i1Y

i2Z
i3eµ(i),ξ(i),ζ(i)

where
eµ(i),ξ(i),ζ(i) = U

i4V
i5E

i6eµ,ξ,ζ

is a basis element by definition of the action of U and V, moreover one
can check that eµ(i),ξ(i),ζ(i) are distinct for distinct Ui4Vi5Ei6 .

Since the basis elements are eigenvectors of X, Y and Z

Teµ,ξ,ζ =
X

i∈I

ci · di(µ, ξ, ζ)eµ(i),ξ(i),ζ(i)

for some nonzero di(µ, ξ, ζ) ∈ C.
Now assume that T annihilates HR. Then the right-hand-side of the

above must be zero and by linear independence all ci · di(µ, ξ, ζ) = 0,
which can only happen if all ci = 0 and T = 0.�

Corollary The ∗-operation on the generators of A# defined above ex-
tends uniquely to ∗-operation on the whole A# and (A#, ∗) satisfies all
the identities of a C-algebra with adjoints. Moreover, since A# has a faith-
ful representation on an inner product space we can introduce the usual
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operator norm on A# with Y,Z,W,U and V bounded operators and X

unbounded.

Remark 1 Our choice of the C∗-structure on A# has been motivated
by

(i) the need to encode the fact that the relevant eµ,ξ,ζ must be ’real
oriented’, that is bdµ = ξ;

(ii) the natural interpretation of the band function and the related
function w (for a ∈ iR and b ∈ R and N → ∞) as functions indicating
when µ is ’almost real’. More precisely, as remarked in 3.1.3 bd can be
interpreted, for a = 2πi

N
, b ∈ R, as

bd(x+ 2πiy) = exp 2πi
[yN ]

N
,

where x, y ∈ R, and [yN ] is the entire part of yN. Since [yN ]/N converges
to y the condition bdµ = 1 says that µ is ’almost real’.

Remark 2 The natural interpretation of the band function is used in
Section 4 to obtain ’the classical limit’ P∞ of the PN .

Comments 1.We have seen that in the representation HR the eµ,ξ,ζ

are eigenvectors of the self-adjoint operator X−W. So in physics jargon
〈eµ,ξ,ζ〉 would be called states.

2. The discrete nature of the imaginary part of µ in (8) is necessitated
by two conditions: the interpretation of ∗ as taking adjoints and the non-
continuous form of the band function. The first condition is crucial for
any physical interpretation and the second one follows from the descrip-
tion of the Zariski structure PN . Comparing this to the real differentiable
structure P∞ constructed in Section 4 as the limit of the PN we suggest
to interpret the latter along with its representation via A in this section
as the quantisation of the former.

3.2 The algebraic torus case

3.2.1 Let F be an algebraically closed field of any characteristic prime
to N an a, b ∈ F∗ be multiplicatively independent.

G acts on F∗ :
ux = ax, vx = bx.

Taking M to be F∗ this determines, by subsection 2, a presmooth non-
algebraic Zariski curve M̃ which from now on we denote TN .

The correspondent definition for the covering map p : M̃ = TN →
M = F∗ then gives us

p(ut) = ap(t), p(vt) = bp(t). (9)

We also note that there exists the well-defined function p′ : TN → F
given by

p
′(t)p(t) = 1. (10)

13



For the rest of the section fix α = a
1

N and β = b
1

N , roots of a and b
of order N.

3.2.2 Semi-definable functions in TN .
Lemma There exist functions

x, ,x′,y : TN → F

satisfying the following functional equations, for any t ∈ TN ,

x
N (t) = p(t), x(ut) = αx(t), x(vt) = βy(t)x(t) (11)

x(t)x′(t) = 1 (12)

y
N (t) = 1, y(ut) = ǫy(t), y(vt) = y(t) (13)

Proof Choose a subset S ⊆ F∗ of representatives of G-orbits, that is
F = G · S. By construction 2.0.1 we can identify TN = M̃ with G̃× S in
such a way that p(γs) = pr(γ) · s. This means that, for any s ∈ S and
t ∈ G̃ · s of the form t = umvn[u,v]ℓ · s,

p(um
v

n[u,v]ℓ · s) := an · bm · s.
Fix (randomly) a root s

1

N of order N for each s ∈ S. Set

x(um
v

n[u,v]ℓ · s) := α · β · ǫ−ℓs
1

N .

Set also
y(um

v
n[u,v]ℓ · s) := ǫm.

This satisfies (11)- (13). �

Remark. Notice, that it follows from (11) and (13) that
x([u,v]t) = ǫ−1x(t)
y([u,v]t) = y(t).

3.2.3 Define the angular function on F as a function ang : F → F[N ].
Set for λ ∈ F

ang(λ) = y(t), if p(t) = λ.

This is well-defined by the remark in 3.2.2.
Acting by u on t and using (9) and (13) we have

ang(aλ) = ǫang λ. (14)

Acting by v we obtain
ang(bλ) = ang λ. (15)

PropositionThe structure TN is definable in

(F,+, ·, ang).

Indeed, set TN = F∗ and define the maps

p(t) := tN

14



and
u(t) := αt, v(t) := ang(tN )βt.

One checks easily that
vu(t) = ǫ · uv(t)

and so the action of G̃ is well-defined and that (9) holds.

Remark 1 Assuming that F = C and ǫ = exp( 2πi
N

), let for an r ∈ R,

a = exp(
2πi

N
+ r), and b ∈ R+, b 6= 1.

Then we may define, for z ∈ C,

ang z := exp(
2πi

N
[
N

2π
arg z]).

This is a well-defined function satisfying also (14) and (15), and so TN

over C is definable in C equipped with the measurable but not continuous
function above.

It is also interesting to remark that, for this angular function,

| arg z − 2π

N
[
N

2π
arg z]| ≤ 2π

N

and so ang z converges uniformly on z to exp(i arg z) as N tends to ∞.

Remark 2 In the context of noncommutative geometry it is interest-
ing to see whether there exists an abstract, model-theoretic interpretation
of ang which allows a measure theory for the semi-definable functions in-
troduced above. David Evans proved the following theorem.

Theorem (D.Evans [E]) The class of fields (F,+, ·, ang) of a fixed
characteristic endowed with a function ang satisfying (14) and (15) has
a model companion, which is a supersimple theory. The models of the
theory allow a nontrivial finite measure such that all definable sets are
measurable.

3.2.4 The space of semi-definable functions and the operator

algebra.
Let H be an F-algebra containing all the functions TN → F which are

definable in TN expanded by x and y.

We define linear operators X,X−1,Y, U and V on H :

X : ψ(t) 7→ x(t) · ψ(t),
X−1 : ψ(t) 7→ x′(t) · ψ(t),
Y : ψ(t) 7→ y(t) · ψ(t),
U : ψ(t) 7→ ψ(ut),
V : ψ(t) 7→ ψ(vt).

(16)

Denote G̃∗ the group generated by the operators U, V,U−1, V−1, denote
Xǫ the F-algebra F[X,X−1,Y] and Aǫ (or simply A) the extension of the
F algebra Xǫ by G̃∗.
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The generators of the algebra Aǫ obviously satisfy the following rela-
tions, for E standing for the commutator [U,V],

XY = YX;
YN = 1; XX−1 = 1;
XU = α−1UX;
XV = β−1Y−1VX;
YU = ǫ−1UY;
YV = VY;
UE = EU;VE = EV;EN = 1.

(17)

We prove later on, in the Proposition and Corollary of 3.1.6, that the
algebra determined by the relations (17) is exactly A and so the definition
of A does not depend on the arbitrariness in the construction of H.

3.2.5 Let Max(X) be the set of isomorphism classes of 1-dimensional
irreducible X-modules.

Lemma 1 Max(X) can be represented by 1-dimensional modules 〈eµ,ξ〉
(= Feµ,ξ) for µ ∈ F, ξ ∈ F[N ], defined by the action on the corresponding
generating vector:

Xeµ,ξ = µeµ,ξ, Yeµ,ξ = ξeµ,ξ.

Proof This is a standard fact of commutative algebra.�

Now we introduce an infinite-dimensional A-module H0. As a vector
space H0 is spanned by {eµ,ξ : µ ∈ F, ξ ∈ F[N ]}. The action of the
generators of A on H0 is defined on eµ,ξ in accordance with the defining
relations of A. So, since

XUeµ,ξ = α−1
UXeµ,ξ = α−1µUeµ,ξ,

YUeµ,ξ = ǫ−1
UYeµ,ξ = ǫ−1ξUeµ,ξ,

and
XVeµ,ξ = β−1

VY
−1

Xeµ,ξ = β−1ξ−1µVeµ,ξ,

YVeµ,ξ = VYeµ,ξ = ξVeµ,ξ,

we set
Ueµ,ξ := eν,ζ , with ν = αµ, ζ = ǫ−1ξ

and
Veµ,ξ := eν,ζ , with ν = βξ−1µ, ζ = ξ.

We may now identify Max(X) as the family of 1-dimensional X-eigenspaces
of H0.

Assuming F is endowed with an angular function ang we call 〈µ, ξ〉 as
above positively oriented if

angµN = ξ.
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Correspondingly, we call the X-module (state) 〈eµ,ξ〉 positively oriented
if 〈µ, ξ〉 is. H+

0 will denote the linear subspace of H0 spanned by the
positively oriented states 〈eµ,ξ〉. We denote Max+(X) the family of 1-
dimensional positively oriented X-eigenspaces of H0, or states as such
things are referred to in physics literature.

Lemma 2 (i) 〈µ, ξ〉 is positively oriented if and only if

〈µ, ξ〉 = 〈x(t),y(t)〉,

for some t ∈ T.
(ii) H+

0 is invariant under the action of U and V, so is an A-module.

Proof (i) Indeed, since p is a surjection, there is t′ ∈ T such that p(t′) =
µN . Hence, by the definition of x(t′) and ang(t′) we have x(t′) = ǫkµ,
y(t′) = ξ, for some k. By the Remark in 3.2.2 we have x([u,v]kt′) =
ǫ−kx(t′) = µ and y([u,v]kt′) = y(t′) = ξ. So t = [u,v]kt′ is as required.

(ii) Immediate by the definition of the action.�

Remark 2 It is immediate from the Lemma and Remark 1 that all the
positively oriented eµ,ξ are represented by the Dirac functions δt, t ∈ TN .

Theorem 3 (i) There is a bijective correspondence Ξ : Max+(X) → TN

between the set of positively oriented states and TN .
(ii) The action of G̃∗ on H0 induces an action on Max(X) and leaves

Max+(X) setwise invariant. The correspondence Ξ transfers anti-isomorphically
the natural action of G̃∗ on Max+(X) to the natural action of G̃ on TN .

(iii) The map
pX : 〈eµ,ξ〉 7→ µN

is a N-to-1-surjection Max+(X) → F such that

`

Max+(X),U,V,pX ,F
´ ∼=Ξ (TN ,u,v,p,F) .

Proof (i) Immediate by Lemma 2 of 3.2.5.
(ii) Indeed, by the definition above the action of U and V corresponds

to the action on positively oriented pairs:

u : ex(t),y(t) 7→ U
−1ex(t),y(t) = eαx(t),ǫy(t) = ex(ut),y(ut),

v : ex(t),y(t) 7→ V
−1ex(t),y(t) = eβy(t)x(t), y(t) = ex(vt),y(vt).

(iii) Immediate from (i) and (ii).�

3.2.6 C∗-structure

We add to 3.2.2 the new semi-definable function w satisfying, for some
δ, such that δN = ǫ,

y = w
N , w(ut) = δw(t), w(vt) = y(t)−1

w(t) .

In accordance with 3.2.2 we can define

w(um
v

n[u,v]l) = δmǫl.
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Now we introduce

ˆang x := w(t), for x = x(t).

Since x is a bijection this is well-defined on F. Moreover, using the unique
representation

x = x(um
v

n[u,v]l) = αmβnǫ−ls
1

N

of 3.2.2 we have
ˆang(αmβnǫ−ls

1

N ) = δmǫl.

Taking a = ǫρ, ρ ∈ R+ (positive reals), ρ 6= 1, as suggested in 3.2.3,
and α−1δ ∈ R+, we have

ˆang(αx) = δ ˆang x, ˆang(βx) = ˆang x.

Extend the list of operators on H to include

W : ψ 7→ w · ψ.

Obviously W commutes with X. As in 3.2.5 denote eµ,w an eigenvector
of X and W with eigenvalues µ and w correspondingly. The action of U

and V is defined on eµ,w similarly to 3.2.5:

U : eµ,w 7→ eα−1µ, δ−1w

V : eµ,w 7→ eβ−1w−N µ,w1−N

(18)

Consider the algebra A as a C∗-algebra with the condition that XW−1

is selfadjoint and W, U and V are unitary.
Set

W
∗ := W

−1, U
∗ := U

−1, V
∗ := V

−1

that is define these operators as unitary. Set

X
∗ := W

−1
XW

−1 = XW
−2,

so
(XW

−1)∗ = W
∗−1

X
∗ = WX

∗ = XW
−1

that is XW−1 is selfadjoint.
Of course

[U,V]∗ = [U,V]−1

so [U,V] is unitary as well.

Lemma There is an inner product space H+ with the faithful action
of A on it such that ∗ corresponds to taking adjoint operators.

Proof Consider H+ ⊆ H generated by all eµ,w satisfying the condition

µ · w−1 ∈ R+, w = exp
2πik

N2
, for k ∈ Z. (19)

We introduce the inner product in H+ assuming the eµ,w to form an
orthonormal basis.
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Now, by definition XW−1 acts as a positive selfadjoint operator

XW
−1 : eµ,w 7→ µw−1eµ,w.

W acts as unitary since w is a root of unity.
H+ is closed under U and V since α−1µδw−1 and β−1µδw−1 are in

R+.
The fact that the action is faithful (that is the only operator that an-

nihilates H is 0) is essentially proved in the Proposition and Corollary of
3.1.6. �

Comment Using the representation on H+ one clearly can interpret
the angular function ˆangµ as exp argµ, for µ satisfying (19). For general
µ we can use the interpretation as in 3.2.3:

ˆangµ = exp
2πi

N2
[
N2

2π
argµ],

where [r] stands for the integer part of a real number r. Of course, we
stress again that ˆang µ is very well approximated by exp arg µ since

|2πi
N2

[
N2

2π
arg µ] − argµ| ≤ 2π

N2
.

In other words, the condition on the states being positively oriented in
Theorem 3 is similar to conditions usually stated in terms of C∗-algebras.
This must justify the name ∗-functions for ang, ˆang and bd.

4 The metric limit

Our aim in this section is to find an interpretation of the limit, as N
tends to ∞, of structures TN or PN in “classical” terms. “Classical”
here is supposed to mean “ using function and relations given in terms
of real manifolds and analytic functions”. Of course, we have to define
the meaning of the “limit” first. We found a satisfactory solution to this
problem in case of PN which is presented below.

4.0.7 First we want to establish a connection of the group G̃N with the
integer Heisenberg group H(Z) which is the group of matrices of the form

0

@

1 k m
0 1 l
0 0 1

1

A (20)

with k, l,m ∈ Z. More precisely, G̃N is isomorphic to the group

H(Z)N = H(Z)/N.Z,

where N.Z is the central subgroup

N.Z =

8

<

:

0

@

1 0 Nm
0 1 0
0 0 1

1

A : m ∈ Z

9

=

;
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Similarly the real Heisenberg group H(R) is defined as the group of
matrices of the form (20) with k, l,m ∈ R. The analogue (or the limit
case) of H(Z)N is the factor-group

H(R)∞ := H(R)/

0

@

1 0 Z
0 1 0
0 0 1

1

A

In fact there is the natural group embedding

iN :

0

@

1 k m
0 1 ℓ
0 0 1

1

A 7→

0

B

@

1 k√
N

m
N

0 1 ℓ√
N

0 0 1

1

C

A

inducing the embedding H(Z)N ⊂ H(R)∞.

Notice the following

Lemma 1 Given the embedding iN for every 〈u, v, w〉 ∈ H(R)∞ there
is 〈 k√

N
, ℓ√

N
, m

N
〉 ∈ iN (H(Z)N) such that

|u− k√
N

| + |v − ℓ√
N

| + |w − m

N
| < 3√

N
.

In other words, the distance (given by the sum of absolute values)
between any point of H(R)∞ and the set iN (H(Z)N) is at most 3/

√
N.

Obviously, also the distance between any point of iN (H(Z)N) and the set
H(R)∞ is 0, because of the embedding. In other words, this defines that
the Hausdorff distance between the two sets is at most 3/

√
N.

In situations when the pointwise distance between sets M1 and M2 is
defined we also say that the Hausdorff distance between two L-structures
onM1 andM2 is at most α if the Hausdorff distance between the universes
M1 and M2 as well as between R(M1) and R(M2), for any L-predicate or
graph of an L-operation R, is at most α.

Finally, we say that an L-structure M is the Hausdorff limit of L-
structures MN , N ∈ N, if for each positive α there is N0 such that for all
N > N0 the distance between MN and M is at most α.

Remark It makes sense to consider the similar notion of Gromov-Hausdorff
distance and Gromov-Hausdorff limit.

Lemma 2 The group structure H(R)∞ is the Hausdorff limit of its sub-
structures H(Z)N , where the distance is defined by the embeddings iN .

Proof Lemma 1 proves that the universe of H(R)∞ is the limit of the
corresponding sequence. Since the group operation is continuous in the
topology determined by the distance, the graphs of the group operations
converge as well.�
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4.0.8 Given nonzero real numbers a, b, c the integer Heisenberg group
H(Z) acts on R3 as follows:

〈k, l,m〉〈x, y, s〉 = 〈x+ ak, y + bl, s+ acky + abcm〉 (21)

where 〈k, l,m〉 is the matrix (20).
We can also define the action of H(Z) on C × S1, equivalently on

R × R × R/Z, as follows

〈k, l,m〉〈x, y, exp 2πis〉 = 〈x+ ak, y + bl, exp 2πi(s+ acky + abcm)〉 (22)

where x, y, s ∈ R.
In the discrete version intended to model 3.1.1 we consider q

N
, q ∈ Z,

in place of s ∈ R and take a = b = 1√
N
. We replace (22) by

〈k, l,m〉〈x, y, e
2πiq

N 〉 = 〈x+
k√
N
, y +

ℓ√
N
, exp 2πi

q + k[y
√
N ] +m

N
〉

(23)
Check that this is still an action:

〈k′, ℓ′,m′〉(〈k, ℓ,m〉〈x, y, exp
2πiq

N
〉) =

〈k′, ℓ′,m′〉〈x+
k√
N
, y +

ℓ√
N
, exp 2πi

q + k[y
√
N ] +m

N
〉 =

〈x+ k√
N

+
k′√
N
, y+

ℓ√
N

+
ℓ′√
N
, exp 2πi

q + k[y
√
N ] +m+ k′[(y + ℓ√

N
)
√
N ] +m′

N
〉 =

〈x+
k + k′√
N

, y +
ℓ+ ℓ′√
N

, exp 2πi
q + (k + k′)[y

√
N ] + k′l +m+m′

N
〉 =

(〈k′, l′,m′〉〈k, l,m〉)〈x, y, exp
2πiq

N
〉

Moreover, we may take m modulo N in (23), that is 〈k, l,m〉 ∈ H(Z)N ,
and simple calculations similar to the above show the following

Lemma 1 The formula (23) defines the free action of H(Z)N on
R × R × exp 2πi

N
Z (equivalently on C × exp 2πi

N
Z).

We think of 〈x, y, exp 2πiq

N
〉 as an element t of PN (see 3.1.1), x+ iy as

p(t) ∈ C. The actions x + iy 7→ a+ x + iy and x + iy 7→ x + i(y + b) are
obvious rational automorphisms of the affine line C.

We interpret the action of 〈1, 0, 0〉 and 〈0, 1, 0〉 by (23) on C×exp 2πi
N

Z
as u and v correspondingly. Then the commutator [u,v] corresponds to
〈0, 0,−1〉, which is the generating element of the centre of H(Z)N . In other
words, the subgroup gp(u,v) of H(Z)N generated by the two elements is
isomorphic to G̃. We thus get, using Lemma 1 of 2.0.1

Lemma 2 Under the above assumption and notation the structure on
C × exp 2πi

N
Z in the language of 3.1.1 described by (23) is isomorphic to

the example PN of 3.1.1 with F = C.
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Below we identify PN with the structure above based on C×{exp 2πi
N

Z}.
Note that every group word in u and v gives rise to a definable map

in PN . We want introduce a uniform notation for such definable functions.

Let α be a monotone nondecreasing converging sequence of the form

α = { kN√
N

: kN , N ∈ Z, N > 0}.

We call such a sequence admissible if there is an r ∈ R such that

|r − kN√
N

| ≤ 1√
N
. (24)

Given r ∈ R and N ∈ N one can easily find kN satisfying (24) and so
construct an α converging to r, which we denote α̂,

α̂ := limα = lim
N

kN√
N
.

We denote I the set of all admissible sequences converging to a real
on [0, 1], so

{α̂ : α ∈ I} = R ∩ [0, 1].

For each α ∈ I we introduce two operation symbols uα and vα. We
denote P#

N the definable expansion of PN by all such symbols with the
interpretation

uα = u
kN , vα = v

kN (kN -multiple of the operation),

if kN√
N

stands in the Nth position in the sequence α.
Note that the sequence

dt := { 1√
N

: N ∈ N}

is in I and udt = u, vdt = v in all P#
N .

4.0.9 We now define the structure P∞ to be the structure on sorts C×S1

(denoted P∞) and sort C, with the field structure on C and the projection
map p : 〈x, y, e2πis〉 7→ 〈x, y〉 ∈ C, and definable maps uα and vβ , α, β ∈ I,
acting on C × S1 (in accordance with the action by H(R)∞) as follows

uα(〈x, y, e2πis〉) = 〈α̂, 0, 0〉〈x, y, e2πis〉 = 〈x+ α̂, y, e2πi(s+α̂y)〉
vβ(〈x, y, e2πis〉) = 〈0, β̂, 0〉〈x, y, e2πis〉 = 〈x, y + β̂, e2πis〉 (25)

Theorem 1 P∞ is the Hausdorff limit of structures P#
N .

Proof The sort C is the same in all structures.
The sort P∞ is the limit of its substructures PN since S1 (= exp iR)

is the limit of exp 2πi
N

Z in the standard metric of C. Also, the graph of
the projection map p : P∞ → C is the limit of p : PN → C for the same
reason.

Finally it remains to check that the graphs of u and v in P∞ are the
limits of those in PN . It is enough to see that for any 〈x, y, exp 2πiq

N
〉 ∈ PN

the result of the action by uα and vβ calculated in P#
N is at most at the
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distance 2/
√
N from the ones calculated in P∞, for any 〈x, y, exp 2πiq

N
〉 ∈

P∞. And indeed, the action in P#
N by definition is

uα : 〈x, y, exp 2πiq

N
〉 7→ 〈x+ kN√

N
, y, exp 2πi

N
(q + kN [y

√
N ])〉

vβ : 〈x, y, exp 2πiq

N
〉 7→ 〈x, y + lN√

N
, exp 2πi q

N
〉 (26)

Obviously,

|kNy√
N

− kN [y
√
N ]

N
| =

kN√
N

|y
√
N − [y

√
N ]√

N
| < kN√

N

1√
N

≤ 1√
N
,

which together with (24) proves that the right hand side of (26) is at the
distance at most 2√

N
from the right hand side of (25) uniformly on the

point 〈x, y, exp 2πiq

N
〉. �

4.0.10 The structure P∞ can be seen as the principal bundle over R×R
with the structure group U(1) (the rotations of S1) and the projection
map p. The action by the Heisenberg group allows to define a connection
on the bundle. A connection determines “a smooth transition from a point
in a fibre to a point in a nearby fibre”. As noted above u and v in the
limit process correspond to infinitesimal actions (in a nonstandard model
of P∞) which can be written in the form

u(〈x, y, e2πis〉) = 〈x+ dx, y, e2πi(s+ydx)〉
v(〈x, y, e2πis〉) = 〈x, y + dy, e2πis〉

where dx and dy are infinitesimals equal to the dt of 4.0.8.
These formulas allow to calculate the derivative of a section

ψ : 〈x, y〉 7→ 〈x, y, e2πis(x,y)〉

of the bundle in any direction on R×R. In general moving infinitesimally
from the point 〈x, y〉 along x we get 〈x+dx, y, exp 2πi(s+ds)〉. We need
to compare this to the parallel transport along x given by the formulas
above, 〈x+ dx, y, exp 2πi(s+ ydx)〉. So the difference is

〈0, 0, exp 2πi(s+ ds) − exp 2πi(s+ ydx)〉.

Using the usual laws of differentiation one gets for the third term

exp 2πi(s+ ds) − exp 2πi(s+ ydx) =
(exp 2πi(s+ ds) − exp 2πis) − (exp 2πi(s+ ydx) − exp 2πis) =

d exp 2πis− 2πiy exp 2πis dx = ( d exp 2πis

dx
− 2πiy exp 2πis)dx

which gives for a section ψ = exp 2πis the following covariant derivative
along x,

∇xψ =
d

dx
ψ − 2πiyψ = (

d

dx
+Ax)ψ.

Similarly, the covariant derivative along y

∇yψ =
d

dy
ψ = (

d

dy
+ Ay)ψ
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with the second term Ay = 0
The curvature of the connection is by definition the commutator

[∇x,∇y] =
dAy

dx
− dAx

dy
= 2πi,

that is in physicists terms this pictures an U(1)-gauge field theory over
R2 with a connection of constant nonzero curvature.

4.1 Algebraic torus

4.1.1 We think of elements of C∗ × S1 as pairs 〈z, exp is〉, where z =
exp(ix+ y) ∈ C∗ x, y, s ∈ R.

The action of H(Z) on C∗ × S1, can be given, following (21) by

u〈exp(ix+ y), exp is〉 = 〈exp(ix+ ia+ y), exp i(s+ ay)〉
v〈exp ix+ y, exp is〉 = 〈exp(ix+ y + b), exp is〉 (27)

The action by v is well-defined since it simply takes the pair 〈z, t〉 to
〈ebz, t〉.

To calculate u 〈z, t〉 one first takes

ln z = ix+ y + 2πin = i(x+ 2πn) + y, n ∈ Z.

This recovers y uniquely and so u is well-defined.
The corresponding discrete version will be

〈k, l,m〉〈exp(2πix+ y), exp 2πi
q

N
〉 =

= 〈exp(2πi(x+
k

N
) + y +

ℓ

N
), exp 2πi

q + k[Ny] +m

N
〉 (28)

This is a group action, by the same calculation as in 4.0.8.
In this discrete version t = 〈exp(2πix+ y), exp 2πi q

N
is an element of

TN and correspondingly p(t) = exp(2πix+ y). The a and b of 3.2 will be

e
2πi
N and e

1

N correspondingly.

Theorem 4 The structure on C∗ × {exp 2πiZ
N

} in the language of 3.2
described by (28) is isomorphic to the example TN of 3.2 with F = C.

We want to calculate the covariant derivative following the method of
4.0.10. We use similar notation for the infinitesimal action

dx = { 1

N
: N ∈ N} = dy,

the infinitesimal corresponding to the sequence. But the actual cooridi-
nates on C∗ are

z1 = e2πix and z2 = ey ,

so
dz1 = 2πiz1dx, dz2 = z2dy.

Now for
ψ : z 7→ 〈x, y, e2πis(z)〉
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the difference between the shift dz1 and the parallel transport along the
same shift will be, by the same formulas as in 4.0.10,

exp 2πi(s+ ds) − exp 2πi(s+ ydx).

This is equal to

( d exp 2πis

dx
− 2πiy exp 2πis) dx =

( d exp 2πis

dz1 − ln z2

z1 exp 2πis) dz1

which gives the covariant derivative along z1

∇z1ψ =
d

dz1
ψ − ln z2

z1
ψ.

Similarly, ∇z2 the covariant derivative along z2 is just d

dz2ψ, the second
term zero.

The curvature of the connection is

[∇z1 ,∇z2 ] =
1

z1z2
,

which is a nonconstant curvature (note also that z1z2 = exp(2πix + y)
does not vanish on C∗).
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