
Introduction
D-manifolds

Differential geometry of d-manifolds
D-manifold and d-orbifold structures on moduli spaces

Derived differential geometry

Dominic Joyce, Oxford University

December 2015

see website
people.maths.ox.ac.uk/∼joyce/dmanifolds.html,

and papers arXiv:1001.0023, arXiv:1104.4951, arXiv:1206.4207,
arXiv:1208.4948, arXiv:1409.6908, arXiv:1509.05672,

and arXiv:1510.07444.
These slides available at

people.maths.ox.ac.uk/∼joyce/talks.html.

1 / 24 Dominic Joyce Derived differential geometry

Introduction
D-manifolds

Differential geometry of d-manifolds
D-manifold and d-orbifold structures on moduli spaces

Plan of talk:

1 Introduction

2 D-manifolds

3 Differential geometry of d-manifolds

4 D-manifold and d-orbifold structures on moduli spaces

2 / 24 Dominic Joyce Derived differential geometry



Introduction
D-manifolds

Differential geometry of d-manifolds
D-manifold and d-orbifold structures on moduli spaces

1. Introduction

Derived Differential Geometry (DDG) is the study of derived
smooth manifolds and derived smooth orbifolds, where ‘derived’ is
in the sense of the Derived Algebraic Geometry (DAG) of Jacob
Lurie and Toën–Vezzosi. Derived manifolds include ordinary
smooth manifolds, but also many singular objects.
Derived manifolds and orbifolds form higher categories –
2-categories dMan,dOrb or mKur,Kur in my set-up, and
∞-categories in the set-ups of Spivak–Borisov–Noel.
Many interesting moduli spaces over R or C in both algebraic and
differntial geometry are naturally derived manifolds or derived
orbifolds, including those used to define Donaldson,
Donaldson–Thomas, Gromov–Witten and Seiberg–Witten
invariants, Floer theories, and Fukaya categories.
A compact, oriented derived manifold or orbifold X has a virtual
class in homology (or a virtual chain if ∂X 6= ∅), which can be
used to define these enumerative invariants, Floer theories, . . . .

3 / 24 Dominic Joyce Derived differential geometry

Introduction
D-manifolds

Differential geometry of d-manifolds
D-manifold and d-orbifold structures on moduli spaces

Different definitions of derived manifolds and orbifolds

There are several versions of ‘derived manifolds’ and ‘derived
orbifolds’ in the literature, in order of increasing simplicity:

Spivak’s ∞-category DerManSpi of derived manifolds (2008).
Borisov–Noël’s ∞-category DerManBN (2011,2012).
My d-manifolds and d-orbifolds (2010–2016), which form
strict 2-categories dMan,dOrb.
My µ-Kuranishi spaces, m-Kuranishi spaces and Kuranishi
spaces (2014), which form a category mKur and weak
2-categories mKur,Kur.
Here µ-, m-Kuranishi spaces are types of derived manifold,
and Kuranishi spaces a type of derived orbifold.

In fact the Kuranishi space approach is motivated by earlier work
by Fukaya, Oh, Ohta and Ono in symplectic geometry
(1999,2009–) whose ‘Kuranishi spaces’ are really a prototype kind
of derived orbifold, from before the invention of DAG.
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Relation between these definitions

Borisov–Noel (2011) prove an equivalence of ∞-categories
DerManSpi ' DerManBN.
Borisov (2012) gives a 2-functor π2(DerManBN)→ dMan
which is nearly an equivalence of 2-categories (e.g. it is a 1-1
correspondence on equivalence classes of objects), where
π2(DerManBN) is the 2-category truncation of DerManBN.
I prove (2016) equivalences of 2-categories dMan ' mKur,
dOrb ' Kur and of categories Ho(dMan) ' Ho(mKur)
' µKur, where Ho(· · · ) is the homotopy category.

Thus all these notions of derived manifold are more-or-less
equivalent. Kuranishi spaces are easiest. There is a philosophical
difference between DerManSpi,DerManBN (locally modelled on
X ×Z Y for smooth maps of manifolds g : X → Z , h : Y → Z ) and
dMan,µKur,mKur (locally modelled on s−1(0) for E a vector
bundle over a manifold V with s : V → E a smooth section).
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Two ways to define ordinary manifolds

Definition 1.1

A manifold of dimension n is a Hausdorff, second countable
topological space X with a sheaf OX of R-algebras (or C∞-rings)
locally isomorphic to (Rn,ORn), where ORn is the sheaf of smooth
functions f : Rn → R.

Definition 1.2

A manifold of dimension n is a Hausdorff, second countable
topological space X equipped with an atlas of charts
{(Vi , ψi ) : i ∈ I}, where Vi ⊆ Rn is open, and ψi : Vi → X is a
homeomorphism with an open subset Imψi of X for all i ∈ I , and
ψ−1
j ◦ ψi : ψ−1

i (Imψj)→ ψ−1
j (Imψi ) is a diffeomorphism of open

subsets of Rn for all i , j ∈ I .

If you define derived manifolds by generalizing Definition 1.1, you
get something like d-manifolds; if you generalize Definition 1.2, you
get something like (m-)Kuranishi spaces.
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2. D-manifolds
2.1. C∞-rings

Let X be a manifold, and write C∞(X ) for the smooth functions
c : X→R. Then C∞(X ) is an R-algebra: we can add smooth
functions (c , d) 7→ c + d , and multiply them (c , d) 7→ cd , and
multiply by λ ∈ R.
But there are many more operations on C∞(X ) than this, e.g. if
c : X → R is smooth then exp(c) : X → R is smooth, giving
exp : C∞(X )→ C∞(X ), which is algebraically independent of
addition and multiplication.
Let f : Rn → R be smooth. Define Φf : C∞(X )n → C∞(X ) by
Φf (c1, . . . , cn)(x) = f

(
c1(x), . . . , cn(x)

)
for all x ∈ X . Then

addition comes from f : R2 → R, f : (x , y) 7→ x + y , multiplication
from (x , y) 7→ xy , etc. This huge collection of algebraic operations
Φf make C∞(X ) into an algebraic object called a C∞-ring.
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Definition

A C∞-ring is a set C together with n-fold operations Φf : Cn → C
for all smooth maps f : Rn → R, n > 0, satisfying:
Let m, n > 0, and fi : Rn → R for i = 1, . . . ,m and g : Rm → R
be smooth functions. Define h : Rn → R by

h(x1, . . . , xn) = g(f1(x1, . . . , xn), . . . , fm(x1 . . . , xn)),

for (x1, . . . , xn) ∈ Rn. Then for all c1, . . . , cn in C we have

Φh(c1, . . . , cn) = Φg (Φf1(c1, . . . , cn), . . . ,Φfm(c1, . . . , cn)).

Also defining πj : (x1, . . . , xn) 7→ xj for j = 1, . . . , n we have
Φπj : (c1, . . . , cn) 7→ cj .
A morphism of C∞-rings is φ : C→ D with
Φf ◦ φn = φ ◦ Φf : Cn → D for all smooth f : Rn → R. Write
C∞Rings for the category of C∞-rings.
Any C∞-ring C is automatically an R-algebra. A module over a
C∞-ring C is a module over C as an R-algebra.
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Examples of C∞-rings

Then C∞(X ) is a C∞-ring for any manifold X , and from C∞(X )
we can recover X up to canonical isomorphism.
If f : X → Y is smooth then f ∗ : C∞(Y )→ C∞(X ) is a morphism
of C∞-rings; conversely, if φ : C∞(Y )→ C∞(X ) is a morphism of
C∞-rings then φ = f ∗ for some unique smooth f : X → Y . This
gives a full and faithful functor F : Man→ C∞Ringsop by
F : X 7→ C∞(X ), F : f 7→ f ∗.
Thus, we can think of manifolds as examples of C∞-rings, and
C∞-rings as generalizations of manifolds. But there are many
more C∞-rings than manifolds. For example, C 0(X ) is a C∞-ring
for any topological space X .
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2.2. C∞-schemes

We can now develop the whole machinery of scheme theory in
algebraic geometry, replacing rings by C∞-rings throughout.
A C∞-ringed space X = (X ,OX ) is a topological space X with a
sheaf of C∞-rings OX . It is local if the stalks OX ,x for x ∈ X are
local R-algebras with residue field R. Write LC∞RS for the
category of local C∞-ringed spaces.
The global sections functor Γ : LC∞RS→ C∞Ringsop maps
Γ : (X ,OX ) 7→ OX (X ). It has a right adjoint, the spectrum
functor Spec : C∞Ringsop → LC∞RS. That is, for each C∞-ring
C we construct a local C∞-ringed space SpecC. Points x ∈ SpecC
are R-algebra morphisms x : C→ R. We don’t use prime ideals.
On the subcategory of complete C∞-rings, Spec is full and faithful.
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A local C∞-ringed space X is called an affine C∞-scheme if
X ∼= SpecC for some C∞-ring C. It is a C∞-scheme if X can be
covered by open U ⊆ X with (U,OX |U) an affine C∞-scheme.
Write C∞Sch for the full subcategory of C∞-schemes in LC∞RS.
If X is a manifold, define a C∞-scheme X = (X ,OX ) by
OX (U) = C∞(U) for all open U ⊆ X . Then X ∼= SpecC∞(X ).
This defines a full and faithful embedding Man ↪→ C∞Sch. So we
can regard manifolds as examples of C∞-schemes.
All fibre products exist in C∞Sch. In manifolds Man, fibre
products X ×g ,Z ,h Y need exist only if g : X → Z and h : Y → Z
are transverse. When g , h are not transverse, the fibre product
X ×g ,Z ,h Y exists in C∞Sch, but is not a manifold.
We also define quasicoherent sheaves on a C∞-scheme X , and
write qcoh(X ) for the abelian category of quasicoherent sheaves.
A C∞-scheme X has a well-behaved cotangent sheaf T ∗X .
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2.3. Differential graded C∞-rings

We can define derived C-schemes by replacing C-algebras A by dg
C-algebras A• in the definition of C-scheme — commutative
differential graded C-algebras in degrees 6 0, of the form

· · · → A−2 d−→A−1 d−→A0, where A0 is an ordinary C-algebra.
The corresponding ‘classical’ C-algebra is H0(A•) = A0/d[A−1].
There is a parallel notion of dg C∞-ring C•, of the form

· · · → C−2 d−→C−1 d−→C0, where C0 is an ordinary C∞-ring, and
C−1,C−2, . . . are modules over C0. The corresponding ‘classical’
C∞-ring is H0(C•) = C0/d[C−1].
One could use dg C∞-rings to define ‘derived C∞-schemes’; an
alternative is to use simplicial C∞-rings, see Spivak
arXiv:0810.5175, Borisov–Noel arXiv:1112.0033, and Borisov
arXiv:1212.1153.
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Square zero dg C∞-rings

My d-spaces are a 2-category truncation of derived C∞-schemes.
To define them, I use a special class of dg C∞-rings called square
zero dg C∞-rings, which form a 2-category SZC∞Rings.
A dg C∞-ring C• is square zero if Ci = 0 for i < −1 and

C−1 · d[C−1] = 0. Then C is C−1 d−→C0, and d[C−1] is a square
zero ideal in the (ordinary) C∞-ring C0, and C−1 is a module over
the ‘classical’ C∞-ring H0(C•) = C0/d[C−1].
A 1-morphism α• : C• → D• in SZC∞Rings is maps
α0 : C0 → D0, α−1 : C−1 → D−1 preserving all the structure.
Then H0(α•) : H0(C)→ H0(D) is a morphism of C∞-rings.
For 1-morphisms α•, β• : C• → D• a 2-morphism η : α• ⇒ β• is a
C∞-derivation η : C0 → D−1 with β0 = α0 + d ◦ η, β−1 = α−1 + η ◦ d.
There is an embedding of (2-)categories C∞Rings ⊂ SZC∞Rings
as the (2-)subcategory of C• with C−1 = 0.
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Examples of square zero dg C∞-rings

Let V be a manifold, E → V a vector bundle, and s : V → E a
smooth section. Then we call (V ,E , s) a Kuranishi neighbourhood
(compare Kuranishi spaces); for d-orbifolds, we take V an orbifold.

Associate a square zero dg C∞-ring C−1 d−→C0 to (V ,E , s) by

C0 = C∞(V )/I 2
s , C−1 = C∞(E ∗)/Is · C∞(E ∗),

d(ε+ Is · C∞(E ∗)) = ε(s) + I 2
s ,

where Is = C∞(E ∗) · s ⊂ C∞(V ) is the ideal generated by s.
The d-manifold X associated to (V ,E , s) is SpecC•. It only knows
about functions on V up to O(s2), and sections of E up to O(s).
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2.4. D-spaces and d-manifolds

A d-space X is a topological space X with a sheaf of square zero

dg-C∞-rings O•X = O−1
X

d−→O0
X, such that X = (X ,H0(O•X)) and

(X ,O0
X) are C∞-schemes, and O−1

X is quasicoherent over X . We
call X the underlying classical C∞-scheme.
D-spaces form a strict 2-category dSpa, with 1-morphisms and
2-morphisms defined using sheaves of 1-morphisms and
2-morphisms in SZC∞Rings in the obvious way.
All (2-category) fibre products exist in dSpa.
C∞-schemes include into d-spaces as those X with O−1

X = 0.
Thus we have inclusions of (2-)categories Man ⊂ C∞Sch ⊂ dSpa,
so manifolds are examples of d-spaces.
A d-space X has a cotangent complex L•X, a 2-term complex

L−1
X

dX−→L0
X of quasicoherent sheaves on X . Such complexes form

a 2-category qcoh[−1,0](X ).
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D-manifolds and generalizations

A d-manifold X of virtual dimension n ∈ Z is a d-space X whose
topological space X is Hausdorff and second countable, and such
that X is covered by open d-subspaces Y ⊂ X with equivalences
Y ' U ×g ,W ,h V , where U,V ,W are manifolds with
dimU + dimV − dimW = n, and g : U →W , h : V →W are
smooth maps, and U ×g ,W ,h V is the fibre product in the
2-category dSpa. (The 2-category structure is essential here.)
Write dMan for the full 2-subcategory of d-manifolds in dSpa.
Alternatively, we can write the local models as Y ' V ×0,E ,s V ,
where V is a manifold, E → V a vector bundle, s : V → E a
smooth section, and n = dimV − rankE . We call such
V ×0,E ,s V affine d-manifolds.
I also define 2-categories dManb,dManc of d-manifolds with
boundary and corners, and orbifold versions dOrb,dOrbb,dOrbc,
d-orbifolds, using Deligne–Mumford C∞-stacks.
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3. Differential geometry of d-manifolds
Tangent and obstruction spaces of d-manifolds

If X is a d-manifold, its cotangent complex L•X is perfect, that is,
L•X is equivalent locally on X in the 2-category qcoh[−1,0](X ) of
2-term complexes of quasicoherent sheaves on X to a complex of
vector bundles E−1 → E0, and rank E0 − rank E−1 = vdimX.
For x ∈ X, define the tangent space TxX=H0(LX|x)∗ and the
obstruction space OxX = H−1(LX|x)∗, with dimTxX− dimOxX
=vdimX. A 1-morphism of d-manifolds f : X→ Y induces functorial
linear maps Tx f : TxX→ Tf (x)Y and Ox f : OxX→ Of (x)Y.

Theorem

A 1-morphism f : X→ Y in dMan is étale (a local equivalence) if
and only if Tx f : TxX→ Tf (x)Y and Ox f : OxX→ Of (x)Y are
isomorphisms for all x ∈ X.
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3.1. D-transversality and fibre products

Let g : X → Z , h : Y → Z be smooth maps of manifolds. Then
g , h are transverse if for all x ∈ X , y ∈ Y with g(x) = h(y) = z in
Z , the map Txg ⊕ Tyh : TxX ⊕ TyY → TzZ is surjective.
Similarly, we call 1-morphisms g : X→ Z, h : Y → Z in dMan
d-transverse if for all x ∈ X, y ∈ Y with g(x) = h(y) = z in Z, the
map Oxg ⊕ Oyh : OxX⊕ OyY → OzZ is surjective.

Theorem

Let g : X→ Z and h : Y → Z be d-transverse 1-morphisms in
dMan. Then a fibre product W = X×g,Z,h Y exists in the
2-category dMan, with vdimW = vdimX + vdimY − vdimZ.

If Z is a manifold, OzZ = 0 and d-transversality is trivial, giving:

Corollary

All fibre products of the form X×Z Y with X,Y d-manifolds and
Z a manifold exist in dMan.
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3.2. Gluing by equivalences

A 1-morphism f : X→ Y in dMan is an equivalence if there exist
g :Y→X and 2-morphisms η : g ◦ f ⇒ idX and ζ : f ◦ g⇒ idY.

Theorem

Let X,Y be d-manifolds, ∅ 6= U ⊆ X, ∅ 6= V ⊆ Y open
d-submanifolds, and f : U→ V an equivalence. Suppose the
topological space Z = X ∪U=V Y made by gluing X ,Y using f is
Hausdorff. Then there exists a d-manifold Z, unique up to
equivalence, open X̂, Ŷ
⊆ Z with Z = X̂ ∪ Ŷ, equivalences g : X→ X̂ and h : Y → Ŷ, and
a 2-morphism η : g|U ⇒ h ◦ f.

The theorem generalizes to gluing families of d-manifolds Xi : i ∈ I
by equivalences on double overlaps Xi ∩Xj , with (weak) conditions
on triple overlaps Xi ∩ Xj ∩ Xk .
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3.3. D-manifold bordism, and virtual classes

Let Y be a manifold. Define the bordism group Bk(Y ) to have
elements ∼-equivalence classes [X , f ] of pairs (X , f ), where X is a
compact oriented k-manifold and f : X → Y is smooth, and
(X , f ) ∼ (X ′, f ′) if there exists a (k + 1)-manifold with boundary
W and a smooth e : W → Y with ∂W ∼= X q−X ′ and
e|∂W ∼= f q f ′. It is an abelian group, with
[X , f ] + [X ′, f ′] = [X q X , f q f ′].
Similarly, define the derived bordism group dBk(Y ) with elements
≈-equivalence classes [X, f] of pairs (X , f ), where X is a compact
oriented d-manifold with vdimX = k and f : X→ Y = F dMan

Man (Y )
is a 1-morphism in dMan, and (X, f) ≈ (X′, f ′) if there exists a
d-manifold with boundary W with vdimW = k + 1 and a
1-morphism e : W→ Y in dManb with ∂W ' Xq−X′ and
e|∂W

∼= f q f ′. It is an abelian group, with
[X, f] + [X′, f ′] = [Xq X, f q f ′].
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There is a morphism Πdbo
bo : Bk(Y )→ dBk(Y ) mapping

[X , f ] 7→ [F dMan
Man (X ),F dMan

Man (f )].

Theorem (first proved by Spivak for his derived manifolds)

Πdbo
bo : Bk(Y )→ dBk(Y ) is an isomorphism for all k ∈ Z.

This holds because every d-manifold can be perturbed to a
manifold. Composing (Πdbo

bo )−1 with the projection
Bk(Y )→ Hk(Y ,Z) gives a morphism
Πhom
dbo : dBk(Y )→ Hk(Y ,Z). We can interpret this as a virtual

class map for compact oriented d-manifolds. Virtual classes (in
homology over Q) also exist for compact oriented d-orbifolds.
In arXiv:1509.0672 I define new (co)homology theories of
manifolds, called M-(co)homology. I will give direct constructions
of virtual classes (or virtual chains) for compact d-manifolds and
d-orbifolds (with corners) in M-(co)homology.
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4. D-manifold and d-orbifold structures on moduli spaces

Theorem 4.1

Let V be a Banach manifold, E → V a Banach vector bundle, and
s : V → E a smooth Fredholm section, with constant Fredholm
index n ∈ Z. Then there is a canonical d-manifold X with
topological space X = s−1(0) and vdimX = n.

Nonlinear elliptic equations, when written as maps between suitable
Hölder or Sobolev spaces, are the zeroes of Fredholm sections of a
Banach vector bundle over a Banach manifold. Thus we have:

Corollary 4.2

Let M be a moduli space of solutions of a nonlinear elliptic
equation on a compact manifold, with fixed topological invariants.
Then M extends to a d-manifold M.

The virtual dimension of M at x ∈M is the index of the
linearization of the elliptic p.d.e. at x , given by the A–S Index Theorem.
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Truncation functors from other structures

Theorem 4.3

Suppose X is a Hausdorff, second countable topological space
equipped with any of the following geometric structures, each of
constant virtual dimension n ∈ Z :
(a) A C-scheme or Deligne–Mumford C-stack with perfect

obstruction theory in the sense of Behrend and Fantechi
(where X is the underlying complex analytic space).

(b) A quasi-smooth derived C-scheme or D–M C-stack.
(c) An M-polyfold or polyfold Fredholm structure in the sense of

Hofer, Wysocki and Zehnder.
(d) A Kuranishi structure in the sense of Fukaya–Oh–Ohta–Ono.
(e) A Kuranishi atlas in the sense of McDuff and Wehrheim.

Then X may be given the structure of a d-manifold or d-orbifold,
natural up to equivalence in dMan,dOrb, with vdimX = n. We
can also allow corners in (c)–(e), with X ∈ dManc,dOrbc.
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Combining Theorem 4.3 with results from the literature shows that
many interesting moduli spaces over R or C, in both differential
and algebraic geometry, have the structure of d-manifolds or
d-orbifolds, natural up to equivalence. This includes almost every
moduli space used in any enumerative invariant problem over R or C.
I hope in future to develop a new approach to defining d-orbifold
structures on moduli spaces, based on Grothendieck’s method of
representable functors in algebraic geometry. Given a moduli
problem, the idea is to define a weak ‘moduli 2-functor’

F : (dManaff)op −→ Groupoids

such that F (S) is the groupoid of families of objects in the moduli
problem over a base affine d-manifold S, and then prove by
verifying some representability criteria that F is ‘representable’,
that is, F is 2-naturally equivalent to Hom(−,M) for a d-orbifold
M, which is then unique up to equivalence in dOrb.
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