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Abstract. Let F be a finite extension of Qp, let ΩF be Drinfeld’s upper half-

plane over F and let G0 the subgroup of GL2(F ) consisting of elements whose
determinant has norm 1. Let L be a torsion G0-equivariant line bundle with

connection on ΩF . We show that the strong dual of L (ΩF ) is an admissible

locally F -analytic representation of G0 of topological length at most 2. It
is topologically irreducible if and only if the underlying connection on L is

non-trivial. We give an explicit formula for the length of the strong dual of

the space of globally-defined rigid analytic functions on a G0-equivariant finite
étale rigid analytic covering of ΩF with abelian Galois group as an admissible

locally F -analytic representation of G0.
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1. Introduction

1.1. Main results. Let p be a prime number, let F be a finite field extension of
Qp with residue field kF of size q and let K be a complete discretely valued field
extension of F . For any rigid F -analytic variety X, we denote by XK := K ×F X
its base-change to a rigid K-analytic variety. Let ΩF be the rigid F -analytic p-
adic upper half plane and let G0 denote the group of 2 × 2 matrices with entries
in F whose determinant has absolute value 1. In [8] the authors classified torsion
G0-equivariant line bundles with connection on Ω := ΩF ×F K. As explained
there, this was motivated by wanting to understand the first covering in Drinfeld’s
tower. In this paper we seek to understand the global sections of these line bundles
as modules over the locally F -analytic distribution algebra D(G0,K) of G0, or
equivalently by [44, p.176, Definition] and [43, Corollary 3.3], the strong duals of
these global sections as locally F -analytic representations of G0.

Theorem A. Let L be a torsion G0-equivariant line bundle with connection on
Ω. Then L (Ω) is a coadmissible D(G0,K)-module of length at most 2. Moreover
L (Ω) is topologically irreducible as aD(G0,K)-module if and only if the underlying
connection on L is non-trivial.

Let C denote a complete and algebraically closed field extension of K. Theorem
A has the following consequence.

Corollary B. Let f : X → Ω be a G0-equivariant finite étale rigid K-analytic
covering of Ω, with abelian Galois group Γ of exponent e, where we assume that
K contains a primitive e-th root of unity. Let H be a closed subgroup of G0 that
contains an open subgroup of SL2(F ). Then O(X) is a coadmissible D(H,K)-
module, whose length is given by

`D(H,K) (O(X)) = |Γ|+ |H\P1(F )| · |π0(XC)|.

Following [8, Introduction] we write Σ1 := M1 ×M0 Ω, defined with respect to
some inclusion Ω ↪→M0 into the level-zero Rapoport-Zink spaceM0, so that for a
suitable choice of the ground field K, Σ1 is a G0-equivariant F×q2 -Galois covering of Ω

arising in Drinfeld’s tower. It follows from Corollary B that O(Σ1) is a coadmissible
D(G0,K)-module of length q2 + q− 2. We note in passing that the coadmissibility
part of this statement was already addressed by Patel, Schmidt and Strauch in [38].

1.2. Summary of this paper.



GLOBAL SECTIONS OF EQUIVARIANT LINE BUNDLES 3

1.2.1. Chapter 2. We consider the rigid analytic affine line A equipped with a fixed

local coordinate x. We view the K-algebra ÙD(A) of infinite-order differential op-
erators on A that was introduced in [7] as a ‘rigid analytic quantisation’ of the
cotangent bundle T ∗A. The choice of coordinate x on A gives us a coordinate (x, y)

on T ∗A ∼= A2, and we study various completions of ÙD(A). For every affinoid subdo-
main X of A, we consider the ‘affinoid box’ X×{|y| 6 r} ⊆ T ∗A and we show that
provided the positive real number r is big enough (depending on X) we can define

a completion Dr(X) of ÙD(A) which we regard as a ‘rigid analytic quantisation‘ of
this box: Dr(X) is isomorphic to O(X×{|y| 6 r}) as a Banach O(X)-module. We
show that this construction, as well as its overconvergent version D†r, satisfies an
analogue of Tate’s Acyclicity Theorem - see Theorem 2.3.10. With an eye on the
applications in later chapters, we also consider certain ‘twisting-automorphisms’
θu,d of the algebra of finite-order differential operators D(X) that are morally given
by the conjugation by a d-th root of a unit u ∈ O(X), and we show in Theorem
2.4.9 that these automorphisms extend to Dr(X) whenever d is coprime to p.

1.2.2. Chapter 3. In this more technical section, we establish Noetherianity of the
rings Dr(X) at Corollary 3.1.11. We show in Theorem 3.3.1 that Dr(Y ) is (ab-
stractly) flat as a Dr(X)-module on both sides whenever Y is an affinoid subdomain
X such that both Dr(X) and Dr(Y ) are well-defined. We also show in Theorem
3.4.1 that Dr(X) is (abstractly) flat as a Ds(X)-module whenever s > r. These
results further support the ‘rigid-analytic quantisation’ intuition: more general pre-
cise conjectures in the direction of this philosophy can be found at [20, Chapter 5].
The proofs in Chapter 3 borrow heavily from the earlier work of Berthelot [13].

1.2.3. Chapter 4. Here we begin to study in earnest the torsion line bundles with
connection L on the upper half plane Ω. Write D and wD for the two closed
subdiscs of P1 of radius 1, centred at 0 and∞ respectively. With an eye on the rigid-
analytic Beilinson-Bernstein theorem [9], we view the two-element affinoid covering
{D, wD} of the projective line P1 as fundamental. Our approach is therefore to first
restrict these line bundles to what we call the ‘local Drinfeld space’ Υ := D∩Ω, and
then to study their further restrictions to the affinoid subdomains Υn of D obtained
by removing from D all open discs of radius |πnF | centred at the F -rational points,
simultaneously for all n > 0. Since {Υn : n > 0} forms an admissible affinoid
open covering of Υ, no information about L is lost in this way. Actually, we study
the sections of L on Υn that overconverge into those holes of Υn that are wholly
contained within D. These sections form a sheaf Ln on Υ that could reasonably
be viewed as a ‘truncation’ of L .

Logically, our first major result of Chapter 4 is Theorem 4.3.7 which ensures that
the torsion overconvergent line bundle with connection Ln is algebraic: assuming
that the order d of L in PicCon(Υ) is coprime to p, we show that for any fixed
(finite) set Sn of coset representatives for πn+1

F OF in OF , there is a rational function
un with zeroes and poles contained in Sn such that Ln can be extended as a
D-module to a d-torsion line bundle with connection M(Sn, un, d) on D that is
generated as an O-module by a d-th root of un and has singularities in Sn only.

In §4.2, we perform a more general study of the line bundles with connection
M(S, u, d) on the affine line that are generated as an O-module by u

1
d and have

singularities constrained to a finite set S. Again, assuming that d is coprime to p,
we show in Theorem 4.2.21 that the corresponding subsheafM(S, u, d)Ut of sections
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ofM(S, u, d) overconverging into the open discs of radius t centred at the finite set
of (possible) singularities S of M(S, u, d) is in fact finitely presented as a module

over the appropriate sheaf of infinite order differential operators D†$/t that was

introduced earlier on in Chapter 2. More precisely, we recall a certain well-known
order-one differential operator R(u, d) at Definition 4.2.10(b), and show that the
well-known classical presentation D/D ·R(u, d) for the algebraic-D-module version

of M(S, u, d) in fact induces ‘the same’ presentation of M(S, u, d)Ut as a D†$/t-
module: M(S, u, d)Ut

∼= D†$/t/D
†
$/t ·R(u, d).

We conclude Chapter 4 by applying methods of Berthelot in §4.4 — notably, his
theory of Frobenius descent — to show that the simplest possible examples of the
cyclic one-relator D†$-modules of this form, namely those where the relator R(u, d)
equals x∂x − λ for some scalar λ, are in fact irreducible for generic values of λ.

1.2.4. Chapter 5. Returning to the truncation Ln to Υn of our line bundle with
connection L on Υ, Theorem 4.3.7 and Theorem 4.2.21 give us a presentation

(1) Ln
∼= Dn/Dn ·R(un, d)

for a certain rational function un: here Dn is a convenient abbreviation for the sheaf
of infinite-order differential operators D†$/|πF |n that is of relevance when studying

Υn and Ln. Chapter 5 forms the core of our paper: we investigate what happens
with these presentations as we begin to vary the parameter n. Since for any affinoid
subdomain X of D, the inverse limit of the rings Dn(X) over all sufficiently large n

can be shown to be isomorphic to the algebra ÙD(X) from [7] — see Corollary 7.2.9
— one may wonder, writing j : Υ ↪→ D to denote the open inclusion, whether j∗L

is in fact a coadmissible ÙD-module on D in the sense of [7]. Although we cannot
rule this out, we believe this not to be the case, the main reason being that the
divisors div(un) of the rational functions un grow without bound in complexity as
n increases: consequently, the characteristic cycles of the algebraic approximations
D/DR(un, d) to L grow without bound with n as well. In fact, one can use
Berthelot–Abe’s characteristic cycles from [14] and [2] to show that the natural
comparison map

(2) Dn ⊗
Dn+1

Ln+1 → Ln

is in fact not an isomorphism.
In this situation, the underlying equivariance of the line bundle L comes to the

rescue. Let I denote the Iwahori subgroup: it is of interest to us as it maps onto
the stabiliser of D in GL2(F ) under the natural Möbius action of GL2(F ) on P1.
Under the assumption that L is I-equivariant, the action of Dn on the truncated
line bundles Ln naturally extends to the (rather large) skew-group ring DnoI. We
show in Theorem 5.3.6 that that sufficiently small open subgroups In+1 of I act on
Ln through certain infinite-order differential operators contained in the unit group
of Dn: this is done as a consequence of the contents of §5.2, where we show that
the natural action of elements g ∈ GL2(K) on rigid analytic functions by Möbius
transformations can in fact be expressed using certain infinite-order differential
operators β(g) ∈ D×n , provided g is sufficiently close to 1: see Proposition 5.2.10
for a more precise statement. Consequently, the action of Dn o I on Ln factors
through a particular crossed product DnoIn+1

I of Dn with I/In+1. These crossed
products are of relevance to us for two reasons: firstly, they are more manageable
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than the skew-group ring DnoI as the group I/In+1 is finite, and secondly, for any
affinoid subdomain X of D, the inverse limit of the crossed products Dn(X)oIn+1 I
over all sufficiently large n is naturally isomorphic to the completed skew-group

ring ÙD(X, I) that underpins the definition of coadmissible equivariant D-modules
given in [9] — see Corollary 7.2.9.

With these crossed products acting on Ln, we have the natural comparison map

(3) Dn o
In+1

I ⊗
Dn+1 o

In+2

I
Ln+1 −→ Ln.

In §5.1 we explain how to work with the complicated-looking tensor product ap-
pearing on the left hand side: we show in Theorem 5.1.8 that it is isomorphic to
a particular quotient of the Dn-module Dn ⊗

Dn+1

Ln+1 appearing in (2) above. In

fact, we explain how the operators β(g) from Definition 5.2.8 give rise to a certain
left Dn-linear action of the finite group In+1/In+2 on Dn ⊗

Dn+1

Ln+1 that we call the

‘secret action’: the left hand side of (3) can then be identified with the Dn-module
of coinvariants of Dn ⊗

Dn+1

Ln+1 under this secret action.

The main result of Chapter 5 is then Theorem 5.3.16, which (essentially) says
that the comparison map (3) is always an isomorphism.

1.2.5. Chapter 6. Here we give a proof of Theorem 5.3.16. Working locally on D, at
the end of §5.3 we reduce the problem to showing that the comparison map (3) is an
isomorphism upon restriction to a particular affinoid subdomain Wa,n contained in
a closed disc of radius |πF |n centred at some a ∈ OF — see Theorem 5.3.12. Some
further work reduces us further to the case where n = 0 and where the algebraic
approximations to L1 and L0 given by (1) take a particularly simple explicit form
— see Theorem 6.5.8. Sections §6.1 and §6.2 are devoted to the calculation of the
characteristic cycles of D0 ⊗D1

L1 and L0, building on the work of Abe [2], where
it becomes apparent that the cycle of D0 ⊗D1

L1 is larger than that of L0. An
abstract criterion given by Theorem 5.1.11 then provides three conditions that we
must verify in order to deduce Theorem 5.3.12. The last two of these are relatively
straightforward, however the first one, namely the non-triviality of the secret action,
turns out to be surprisingly difficult to check. Arguing by contradiction and working
with some microlocalisation of Dn, we show in §6.3 that the triviality of this secret
action would imply that a certain p-adic differential equation would have a rigid
analytic solution ζw,d everywhere on Wa,n. We find an explicit local formal solution
of this differential equation at Proposition 6.3.16. Looking at the growth rate of
the p-adic valuations of the Taylor coefficients of this solution then provides the
required contradiction — see Theorem 6.3.18. This relies on detailed estimates of
p-adic valuations of certain binomial coefficients, which we perform in §6.4.

1.2.6. Chapter 7. Here we draw everything together and invoke the results of [9] by
the first author to establish Theorem A and Corollary B. In §7.1 and §7.2 we carry
out the necessary preliminary work to establish Corollary 7.2.9 that was mentioned
above. In §7.3 we crucially use Theorem 5.3.16 together with the elementary fact
that j∗L ∼= lim←−Ln as an I-equivariant locally Fréchet D-module on D to establish

that j∗L ∈ CD/I in Theorem 7.3.7. It is interesting to point out that for this local
coadmissibility statement, we do not need to use the action of the entire Iwahori
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subgroup I on L : we are able to show that j∗L ∈ CD/J for any closed subgroup

J of I that contains an open subgroup of the ‘translation subgroup’

Å
1 F
0 1

ã
of

GL2(F ). In §7.4 we globalise the material in §7.3 from D to P1 and apply the
equivariant Beilinson-Bernstein Localisation Theorem — Theorem 7.4.8 — to prove
the coadmissibility assertion on L (Ω) in Theorem A. Along the way we apply the
local irreducibility results from §4.4 to establish Theorem 7.4.7 which deals with
those L in Theorem A that are non-trivial as line bundles with connection. Finally,
in §7.5, we treat the case of the trivial line bundle with connection OΩ. We use the
Induction Equivalence and the equivariant Kashiwara equivalence from [5] to show
that the pushforward of OΩ to P1 is a coadmissible G0-equivariant D-module on
P1 of length 2, and use this to deduce Theorem A together with Corollary B.

1.3. Conventions and Notation. F will denote a finite extension of Qp with
ring of integers OF , uniformiser πF and residue field kF of order q. K will denote
a field containing F that is complete with respect to a non-archimedean norm | · |
such that |p| = 1/p. We will write:

•
√
|K×| to denote the divisible subgroup of R× generated by |K×|,

• K◦ := {a ∈ K : |a| 6 1} for the valuation ring of K,
• K◦◦ := {a ∈ K : |a| < 1} for the maximal ideal of K◦,
• K for a fixed algebraic closure of K, and
• C for the completion of K.

Note that
√
|K×| =

∣∣∣K×∣∣∣.
A K-Banach space will be a K-vector space V equipped with a norm | · | com-

patible with the norm on K. A morphism of Banach spaces T : V → W will be
a bounded linear map from V to W and ||T || will denote the operator norm of

T : ||T || = supv∈V \0
|Tv|
|v| . Thus a K-Banach algebra A will be a K-Banach space

equipped with an associative unital multiplication map A×A→ A that is bounded:
there is a constant C such that |ab| 6 C|a||b| for all a, b ∈ A.

Given a K-Banach space V we will write B(V ) to denote the Banach algebra of
endomorphisms of V equipped with the operator norm. Following [30, Definition
6.1.3] the spectral radius of T ∈ B(V ) is defined to be

|T |sp,V := lim
k→∞

||T k||1/k.

When V and W are K-Banach spaces we recall [41, §17] that the tensor product
norm on V ⊗K W is given by

|u| = inf

{
max

16i6r
|vi||wi| : u =

r∑
i=1

vi ⊗ wi, vi ∈ V,wi ∈W

}
and that V“⊗KV is the completion of V ⊗KW with respect to this norm. When we
write V ⊗W or V“⊗W unadorned we will always mean tensor product or completed
tensor product over K.

Let X be a rigid K-analytic variety. When Y is a subset X, we will say that Y
is an affinoid subdomain of X to mean that Y is an admissible open subspace of X,
itself isomorphic to an affinoid K-variety. When X itself happens to be a K-affinoid
variety, this agrees by [17, Corollary 8.2.1/4] with the standard definition found at
[17, Definition 7.2.2/2]. We will write
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• | · |X to denote the (power-multiplicative) supremum seminorm on X,
• O(X)◦ := {f ∈ O(X) : |f |X 6 1},
• O(X)◦◦ := {f ∈ O(X) : |f |X < 1}, and
• O(X)×× := 1 +O(X)◦◦, the subgroup of small units in O(X)×.

When X is a K-affinoid variety, g0, . . . , gn ∈ O(X) generate the unit ideal, and

r ∈
√
|K|× we will write X(rg1/g0, . . . , rgn/g0) to denote the rational subdomain

of X given by

X(rg1/g0, . . . , rgn/g0) := {x ∈ X | r|gi(x)| 6 |g0(x)| for i = 1, . . . , n}
c.f. [21, Example 2.1.9]. We note that when a ∈ K×,

X(|a|g1/g0, . . . , |a|gn/g0) = X((ag1)/g0, . . . , (agn)/g0).

When X is a smooth rigid analytic variety over K we may form the tangent sheaf
TX which together with its identity map forms a Lie algebroid on X. The sheaf of
enveloping algebras DX of (finite order) differential operators is given on affinoid
subdomains Y of X by the enveloping algebra U(TX(Y )). See [7] for more details.
As in [8, Definition 3.1], PicCon(X) will denote the group of the isomorphism
classes of line bundles with flat connection on X with the group operation given by
tensor product and Con(X) will denote the subgroup of PicCon(X) consisting of
isomorphism classes of line bundles with flat connection on X that are trivial after
forgetting the connection.

We will write A := AK := A1,an
K to denote the rigid K-analytic affine line,

equipped with a fixed choice of local coordinate x ∈ O(A) and D to denote the unit
disc SpK〈x〉 in A with respect to this coordinate. We write P1 to denote the rigid
K-analytic projective line.

We recall [8, §4.1] that a K-cheese is an affinoid subdomain of A of the form

SpK

≠
x− α0

s0
,

s1

x− α1
, · · · , sg

x− αg

∑
for some α0, . . . , αg ∈ K and s0, . . . , sg ∈ K× satisfying certain conditions. An
affinoid subdomain of A splits over a finite field extension K ′/K if XK′ is a finite
union of pairwise disjoint K ′-cheeses. Every affinoid subdomain of A splits for some
finite extension K ′/K by [8, Theorem 4.1.8].

Let A be an abelian group and let d be a non-zero integer. We will write

• A[d] = {a ∈ A | da = 0} to denote the d-torsion subgroup of A,
• A[p′] :=

⋃
(d,p)=1A[d] to denote the prime-to-p torsion subgroup of A,

• A[p∞] :=
⋃∞
n=1A[pn] to denote the p-power torsion subgroup of A.

Let a group G act on a set X. We will write

• Gx := {g ∈ G : gx = x} for the stabilizer of a point x ∈ X, and
• XG := {x ∈ X : gx = x for all g ∈ G} for the set of elements fixed by G.

It will be convenient to define $ = p−
1
p−1 ∈ R>0 and ε :=

ß
1 if p > 2,
2 if p = 2.

2. Sheaves of completed differential operators

2.1. Skew-Ore and skew-Laurent extensions. We recall [25, p27] that if A is
a ring and δ : A → A is a derivation, then one can form the skew-Ore extension
A[T ; δ] which is an over-ring of A that as a left A-module is free on the symbols
{T i | i > 0} and satisfies Ta−aT = δ(a) for all a ∈ A and T iT j = T i+j for i, j > 0.
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We recall that A[T ; δ] satisfies a natural looking universal property.

Proposition 2.1.1. ([25, Exercise 2F]) For every ring homomorphism φ : A → B
and element b ∈ B such that bφ(a)−φ(a)b = φ(δ(a)) for all a ∈ A, there is a unique
ring homomorphism ψ : A[T ; δ]→ B such that ψ|A = φ and ψ(T ) = b.

We wish to form a kind of skew-Laurent-polynomial ring A[T, T−1; δ] by formally
inverting T in A[T ; δ] and also understand its subring generated by A and T−1. This
is not possible in general but we will see that it is possible if δ is locally nilpotent;
i.e. for each a ∈ A there is n > 0 such that δn(a) = 0. The first step is to prove that
the set {Tn | n > 0} satisfies the Ore condition (both left and the right versions)
under this locally nilpotent hypothesis.

We recall a criterion for a multiplicatively closed subset of a ring to satisfy Ore’s
condition.

Proposition 2.1.2. ([23, p457]) If S is a multiplicatively closed subset of a ring A
such that ad(s) is locally nilpotent for all s ∈ S then S satisfies both the left and
right Ore conditions.

Lemma 2.1.3. If s, t ∈ A such that ad(s) and ad(t) are both locally nilpotent and
st = ts then ad(st) is locally nilpotent.

Proof. If we write ls : A → A to denote left multiplication by a and rt : A → A to
denote right multiplication by t then for a ∈ A

ad(st)(a) = sta− ast = (sta− sat) + (sat− ast) = ls ◦ ad(t)(a) + rt ◦ ad(s)(a).

Thus since ad(s), ls, rt and ad(t) all commute

(ad(st))n =
n∑
i=0

Ç
n

i

å
lisr

n−i
t ad(t)i ad(s)n−i

and it is follows easily from the local nilpotence of ad(s) and ad(t) that ad(st) is
locally nilpotent. �

Corollary 2.1.4. If δ : A → A is a locally nilpotent derivation then {Tn | n > 0}
is a left and right Ore set in A[T ; δ].

Proof. By Proposition 2.1.2 it suffices to show that ad(Tn) acts locally nilpotently
on A[T ; δ] and by Lemma 2.1.3 this can be reduced to the case n = 1.

But

ad(T )

(
m∑
i=0

aiT
i

)
=

m∑
i=0

δ(ai)T
i

so local nilpotence of ad(T ) on A[T ; δ] is a straightforward consequence of the local
nilpotence of δ on A. �

Notation 2.1.5. For δ a locally nilpotent derivation of A we write A[T, T−1; δ] to
denote the localisation of A[T ; δ] at the Ore set {Tn | n > 0}.

We can perform the following calculation in A[T, T−1; δ]:

Lemma 2.1.6. For each a ∈ A, T−1a =
∞∑
n=0

(−1)nδn(a)T−n−1.
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Proof. First note that the right-hand side always makes sense because δ is locally
nilpotent. Since T is a unit in A[T, T−1; δ] it thus suffices to show that

T

Ñ∑
n>0

(−1)nδn(a)T−n−1

é
= a.

But Tδn(a) = δn(a)T + δn+1(a) so

T

Ñ∑
n>0

(−1)nδn(a)T−n−1

é
=

∑
n>0

(−1)n
(
δn(a)T−n + δn+1(a)T−n−1

)
= a+

∑
n>0

(
(−1)n + (−1)n+1

)
δn+1(a)T−n−1

= a. �

It follows immediately that the subring of A[T, T−1; δ] generated by A and T−1

is the (free) left A-submodule of A[T, T−1; δ] on the set {T−n | n > 0}.

Definition 2.1.7. For δ a locally nilpotent derivation of A we write A[T−1; δ] to
denote the subring of A[T, T−1; δ] generated by A and T−1.

This algebra satisfies the following universal property.

Proposition 2.1.8. Let f : A→ B be a ring homomorphism and let δ be a locally
nilpotent derivation of A. Suppose that b ∈ B is such that

bf(a) =
∑
n>0

(−1)nf(δn(a))bn+1 for all a ∈ A.

Then there is a unique ring homomorphism

g : A[T−1; δ]→ B

extending f such that g(T−1) = b.

Proof. Given a pair (f, b) as in the statement, we define g : A[T−1; δ]→ B by

g

Ñ∑
n>0

anT
−n

é
:=
∑

f(an)bn for all an ∈ A.

It suffices to prove that this is a ring homomorphism. Since for a ∈ A and m > 0,

g(T−1aT−m) = g

Ñ∑
n>0

(−1)nδn(a)T−n−1−m

é
=

∑
n>0

(−1)nf(δn(a))bn+1+m

= bf(a)bm,

we see that g(T−1aT−m) = g(T−1)g(aT−m). An easy induction argument together
with left A-linearity of g shows that g respects multiplication. �
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2.2. Skew-Laurent and skew-Tate algebras. We recall from §2.1 that for a
ring A and a derivation δ : A → A one can form the skew-Ore extension A[∂; δ].
As noted previously, the set {∂n | n > 0} is not an Ore set in A[∂; δ] in general
so we cannot form a Laurent polynomial-style ring extension A[∂, ∂−1; δ] of A[∂; δ];
though by Corollary 2.1.4 this is possible when δ is locally nilpotent. In this section
we will show that when A is a K-Banach algebra and δ is topologically nilpotent in
a suitable sense we can form certain completed versions of A[∂; δ] and A[∂, ∂−1; δ]
that are K-Banach algebras. These will satisfy suitable analogues of Proposition
2.1.1. In the case where A = O(X) is the K-affinoid algebra of rigid analytic
functions on a K-affinoid variety X, we might think of O(X)〈∂/r, s/∂〉 as being
the algebra of ‘rigid analytic functions on a non-commutative annulus over X’, and
we refer the reader to Schneider’s Appendix in [49] for some related constructions.

Let r > s denote arbitrary positive real numbers; frequently it will be convenient
to restrict our attention to only those r and s lying in

√
|K×|.

Definition 2.2.1. Let A be a K-Banach space and let ∂ be a formal variable. We
define

A〈∂/r, s/∂〉 :=

∑
j∈Z

aj∂
j ∈

∏
j∈Z

A∂j : lim
|j|→∞

|aj |tj = 0 if s 6 t 6 r


and give it the norm ∣∣∣∣∣∣∑j∈Z aj∂j

∣∣∣∣∣∣ := sup
s6t6r

sup
j∈Z
|aj |tj .

Of course this norm can be written in the somewhat less symmetric form

(4)

∣∣∣∣∣∣∑j∈Z aj∂j
∣∣∣∣∣∣ = max

®
sup
j>0
|aj |rj , sup

j<0
|aj |sj

´
.

Note that A〈∂/r, s/∂〉 becomes K-Banach space when equipped with this norm.
We will now explain how to give it the structure of an associative non-commutative
K-Banach algebra.

Lemma 2.2.2. Let A be a K-Banach algebra and let δ ∈ B(A) be such that

|δ|sp,A < s.

Let u, v ∈ A〈∂/r, s/∂〉.
(a) For each k ∈ Z, the following limit exists in A:

(5) u ∗k v := lim
I→∞

I∑
i=−I

ui lim
M→∞

M∑
m=0

Ç
i

m

å
δm(vk−i+m).

(b) There is a constant C > 0 depending only on A and δ such that

sup
k∈Z
|u ∗k v|tk 6 C · |u| · |v| for all t ∈ [s, r].

(c) For all t ∈ [s, r], |u ∗k v|tk → 0 as |k| → ∞.



GLOBAL SECTIONS OF EQUIVARIANT LINE BUNDLES 11

Proof. (a) and (b). We can find C1 such that |ab| 6 C1|a||b| for all a, b ∈ A; let
C2 = sup

`>0
||δ`||/s` <∞. Fix k, i ∈ Z and t ∈ [s, r]. Then for all m > 0,

(6)

∣∣∣ui( im)δm(vk−i+m)
∣∣∣ · tk 6 C1 · |ui| · ||δm|| · |vk−i+m| · tk

6 C1 · |ui|ti · C2 · |vk−i+m|tk−i+m

which tends to 0 as m→∞ because v ∈ A〈∂/r, s/∂〉. Therefore the inner series in
the definition of u ∗k v converges to an element (u ∗k v)i ∈ A, such that

|(u ∗k v)i| · tk 6 C1 · |ui|ti · C2 · |v|.
Since |ui|ti → 0 as |i| → ∞ because u ∈ A〈∂/r, s/∂〉, we see that the partial sums
I∑

i=−I
(u ∗k v)i converge to an element u ∗k v ∈ A as |i| → ∞, which satisfies

|u ∗k v|tk 6 C1 · |u| · |v| · C2.

We may therefore take C := C1C2.
(c) Let ε > 0 be given, and choose positive integers I,M and J such that

• |ui|ti < ε
C1C2|v| whenever |i| > I,

• ||δm||/sm < ε
C1|u| |v| whenever m > M , and

• |vj |rj < ε
C1C2|u| whenever |j| > J .

Now suppose that |k| > I +M + J .
Firstly, if |i| > I, then using (6) we see that

|uiδm(vk−i+m)| · tk < C1 ·
ε

C1C2|v|
· C2 · |v| = ε.

Next, if m > M then again using (6) we have

|uiδm(vk−i+m)| · tk < C1 · |u| ·
ε

C1|u||v|
· |v| = ε.

Finally if |i| 6 I and m 6 M , then since |i|+m+ |k − i+m| > |k| > I +M + J ,
we must have |k − i+m| > J and so (6) gives

|uiδm(vk−i+m)| · tk < C1 · |u| · C2 ·
ε

C1C2|u|
= ε.

We conclude that in all cases, we have the inequality

|u ∗k v|tk < ε whenever |k| > I + J +M

and part (c) follows. �

Definition 2.2.3. Let A be a K-Banach algebra and let δ : A→ A be a bounded
K-linear derivation such that |δ|sp,A < s. We define the star product of two elements
u, v ∈ A〈∂/r, s/∂〉 to be

u ∗ v :=
∑
k∈Z

(u ∗k v)∂k.

It is not hard to see that this star product gives a K-bilinear map E × E → E
where E := A〈∂/r, s/∂〉. Our next task will be to show that this star product on E is
associative. Because δ : A→ A is a derivation we have at our disposal the skew-Ore
extension A[∂; δ]. Its associated graded ring with respect to the filtration F•A[∂; δ]
by degree in ∂ is the polynomial ring A[y] where y = gr ∂ is the principal symbol of
∂; we now consider the classical algebraic microlocalisation Q := QSA[∂, δ], where
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S := ∪∞n=0(∂n +Fn−1A[∂, δ]); see, for example, [11, §3]. By construction, this is an
associative ring (Q, ·) equipped with a complete and exhaustive Z-filtration, whose
associated graded ring is A[y, y−1]. In this way, we can identify Q with the following
set of formal Laurent power series:

Q = A[[∂−1]][∂] :=

{∑
k∈Z

ak∂
k : ak = 0 for all k >> 0

}
.

The ring Q, as well as the A-module E , both contain the A-submodule A[∂, ∂−1]
whose elements are finite A-linear combinations of integer powers of the formal
symbol ∂. Also, note that Q and E are both contained in the large A-module of all
bi-directional power series P :=

∏
k∈Z

A∂k.

Lemma 2.2.4. For all n ∈ Z and a ∈ A, ∂ · (∂n ∗ a) = ∂n+1 ∗ a.

Proof. A direct computation using Definition 2.2.3 gives that

(7) ∂n ∗ a =
n∑

k=−∞

Ç
n

n− k

å
δn−k(a)∂k.

Thus, since (Q, ·) is associative and ∂ · a = δ(a) + a∂ is the defining property of the
skew-Ore extension A[∂; δ], we can further compute

∂ · (∂n ∗ a) = ∂ ·

(
n∑

k=−∞

Ç
n

n− k

å
δn−k(a)∂k

)

=
n∑

k=−∞

Ç
n

n− k

å
δn−k+1(a)∂k +

n∑
k=−∞

Ç
n

n− k

å
δn−k(a)∂k+1

=
n+1∑
k=−∞

ÇÇ
n

n− k

å
+

Ç
n

n− k + 1

åå
δn−k+1(a)∂k

=
n+1∑
k=−∞

Ç
n+ 1

n+ 1− k

å
δn+1−k(a)∂k

= δn+1 ∗ a
as required. �

Lemma 2.2.5. We have u · v = u ∗ v in P for all u, v ∈ A[∂, ∂−1].

Proof. First we note that for a ∈ A and n ∈ Z an easy computation gives that

(au) ∗ (v∂n) = a · (u ∗ v) · ∂n.
Next, using the Z-bilinearity of both products we may reduce to the case u = a∂n

and v = b∂n
′

with a, b ∈ A and n, n′ ∈ Z. Then u∗v = (a∂n)∗(b∂n′) = a·(∂n∗b)·∂n′

so as · is associative we may further reduce to the case a = 1 and n′ = 0. So, it
remains to prove that

∂n · b = ∂n ∗ b for all n ∈ Z and b ∈ A.
When n > 0 we can verify this directly by induction on n using Lemma 2.2.4 and
associativity of (Q, ·):

∂n+1 ∗ b = ∂ · (∂n ∗ b) = ∂ · ∂n · b = ∂n+1 · b.
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We also prove the case n < 0 by induction, this time on −n. Suppose inductively
that ∂n · b = ∂n ∗ b. Then using Lemma 2.2.4 we have

∂ · (∂n−1 ∗ b) = ∂n ∗ b = ∂ · (∂−1 · (∂n ∗ b)) = ∂ · (∂n−1 · b).

Now ∂n−1 · b ∈ Q and ∂n−1 ∗ b ∈ Q by equation (7). Since ∂ is a unit in the
associative ring (Q, ·), we conclude that ∂n−1 · b = ∂n−1 ∗ b. �

Theorem 2.2.6. Suppose that A is a K-Banach algebra and that δ ∈ B(A) is
a derivation such that |δ|sp,A < s. Then A〈∂/r, s/∂〉 becomes an associative K-
Banach algebra when equipped with the star product ∗.

Proof. We have to show that the star product ∗ on E := A〈∂/r, s/∂〉 is associative.
Using Lemma 2.2.5, we see that the two possible P =

∏
k∈Z

A∂k-valued multiplica-

tions on A[∂, ∂−1] ⊆ Q ∩ E coincide in the sense that the diagram

Q2
mQ // Q

��
A[∂, ∂−1]2

::

$$

P

E2
mE
// E

@@

is commutative. Because (Q, ·) is an associative ring, the associator Φ : E3 → E
must vanish on A[∂, ∂−1]3. Since A[∂, ∂−1] is dense in E and Φ is continuous, we
conclude that Φ must be identically zero. �

Because of Lemma 2.2.5 and Theorem 2.2.6, we will now drop the symbol ∗
and simply write ab to denote the product in the associative skew-Laurent algebra
A〈∂/r, s/∂〉. Next, we establish a universal property for this algebra.

Proposition 2.2.7. Suppose that A, δ and 0 < s 6 r are as in Theorem 2.2.6. Let
B be a K-Banach algebra, let θ : A → B is a K-Banach algebra homomorphism
and b ∈ B. Then the following are equivalent:

(a) the map θ : A → B extends to a K-Banach algebra homomorphism
φ : A〈∂/r, s/∂〉 → B which sends ∂ to b;

(b) (i) b ∈ B×,
(ii) bθ(a)− θ(a)b = θ(δ(a)) for all a ∈ A,

(iii) sup
n>0
|bn|/rn <∞ and sup

n60
|bn|/sn <∞.

Proof. (a) ⇒ (b). Let C := A〈∂/r, s/∂〉 and suppose that φ : C → B is a bounded
K-algebra homomorphism that extends θ and that sends ∂ to b. The first two
conditions hold because ∂ ∈ C× and ∂a− a∂ = δ(a) holds for all a ∈ A.

For the last condition: since θ : C → B is bounded, there is a constant L such
that |θ(c)| 6 L|c| for all c ∈ C. Hence |bn| = |θ(∂n)| 6 L|∂n| for all n ∈ Z. By
Definition 2.2.1, we get |bn| 6 Lrn for all n > 0 and |bn| 6 Lsn for all n 6 0.

(b) ⇒ (a). Note first that bn makes sense for all n ∈ Z by condition (i). Choose
constants M,D > 0 such that |θ(a)| 6 M |a| for all a ∈ A and |b1b2| 6 D|b1||b2|
for all b1, b2 ∈ B; then for all a ∈ A and all n ∈ Z we have |θ(a)bn| 6 MD|a||bn|.
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Using (iii), choose L > 0 such that |bn| 6 Lrn for all n > 0 and |bn| 6 Lsn for all
n 6 0. Then for any

∑
n∈Z

an∂
n ∈ C we have

(8) |θ(an)bn| 6
ß
LMD|an|rn for all n > 0,
LMD|an|sn for all n 6 0.

Since |an|rn → 0 as n → +∞ and |an|sn → 0 as n → −∞ by Definition 2.2.1, we
obtain |θ(an)bn| → 0 as |n| → ∞. So, we can define a map φ : C → B by setting

φ

(∑
n∈Z

an∂
n

)
:=
∑
n∈Z

θ(an)bn for any
∑
n∈Z

an∂
n ∈ C.

It is easy to check that φ is K-linear. Using (8) and (4), we see that for all∑
n∈Z

an∂
n ∈ C we have∣∣∣∣∣φ
(∑
n∈Z

an∂
n

)∣∣∣∣∣ 6 LMDmax{sup
n>0
|an|rn, sup

n60
|an|sn} = LMD

∣∣∣∣∣∑
n∈Z

an∂
n

∣∣∣∣∣ .
Thus φ is a bounded K-linear map which satisfies ||φ|| 6 LMD.

To see that φ is a ring homomorphism, by its continuity and K-linearity it suffices
to verify that φ(∂na) = φ(∂n)φ(a) for all n in Z. By induction on n we can reduce
to the cases n = ±1. The case n = 1 is immediate from condition (iii). For the
case n = −1, we know from Lemma 2.2.5 together with equation (7) that

∂−1a =
∑
m>0

Ç
−1

m

å
δm(a)∂−m−1.

Since
(−1
m

)
= (−1)m we must prove that b−1θ(a) =

∑
m>0

(−1)mθ(δm(a))b−m−1.

Since b is a unit in B it suffices to prove that θ(a) =
∑
m>0

(−1)mbθ(δm(a))b−m−1.

But, by condition (iii), the right-hand side of this formula is∑
m>0

(−1)m
(
θ(δm(a))b−m + θ(δm+1(a))b−m−1

)
.

We can now see that this sum telescopes down to θ(a). �

We will now discuss the skew-Tate algebra A〈∂/r〉.

Definition 2.2.8. Let A be a K-Banach space and let ∂ be a formal variable. We
define the Skew-Tate algebra

A〈∂/r〉 :=

{ ∞∑
j=0

aj∂
j ∈ A[[∂]] : lim

j→∞
|aj |rj = 0

}
and give it the norm ∣∣∣∣∣∣

∞∑
j=0

aj∂
j

∣∣∣∣∣∣ := sup
j>0
|aj |rj .

Again, A〈∂/r〉 is a K-Banach space when equipped with this norm.

Lemma 2.2.9. Suppose that A and δ are as in Theorem 2.2.6.
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(a) The natural map A〈∂/r〉 → A〈∂/r, s/∂〉 is an isometric embedding of K-
Banach spaces with closed image.

(b) A〈∂/r〉 is closed under the star product in A〈∂/r, s/∂〉.

Proof. (a) This is evident.
(b) We have to check that u ∗k v = 0 for any u, v ∈ A〈∂/r〉 and any k < 0. Fix

m > 0 and consider the term
(
i
m

)
δm(vk−i+m) appearing in the definition of u ∗k v

in Lemma 2.2.2(a). If m > i then the binomial coefficient is zero, so suppose that
m 6 i. But then k − i+m 6 k < 0 so vk−i+m = 0 as v ∈ A〈∂/r〉. �

When ||δ|| 6 r and the norm on A satisfies |ab| = |a| · |b| for all a, b ∈ A, it also
follows from the work of Pangalos — see [37, Proposition 2.1.2] — that A〈∂/r〉 is
an associative K-Banach algebra.

Lemma 2.2.10. Let B be another K-Banach algebra. Given a bounded K-Banach
algebra homomorphism f : A→ B and an element b ∈ B, the following are equiva-
lent.

(a) There is a bounded K-Banach algebra homomorphism g : A〈∂/r〉 → B
extending f such that g(∂) = b;

(b) (i) bf(a)− f(a)b = f(δ(a)) for all a ∈ A and
(ii) sup

`>0
|b`|/r` <∞.

Moreover when such a g exists it is unique.

Proof. (a) ⇒ (b). Since for all a ∈ A, ∂a− a∂ = δ(a), we have

bf(a)− f(a)b = g(∂)g(a)− g(a)g(∂) = g(δ(a)) = f(δ(a)),

so (i) holds. Moreover, because |∂`| = r` in A〈∂/r〉 for all ` > 0,

||g|| > |g(∂`)|/r` = |b`|/r` for all ` > 0,

so (ii) holds.
(b)⇒ (a) Let L := sup

`>0
|b`|/r` and choose constants M,D > 0 such that |f(a)| 6

M |a| for all a ∈ A and |b1b2| 6 D|b1||b2| for all b1, b2 ∈ B.
By condition (i), together with the universal property of the skew-Ore exten-

sion A[T ; δ] — see Proposition 2.1.1 — f extends uniquely to a K-algebra map
h : A[T ; δ]→ B such that h(T ) = b. We compute that for a0, . . . , an ∈ A∣∣∣∣∣ n∑

i=0

h(aiT
i)

∣∣∣∣∣ =

∣∣∣∣∣ n∑
i=0

f(ai)b
i

∣∣∣∣∣ 6 D sup
i>0

(|f(ai)||bi|) 6 DML sup
i>0
|ai|ri.

Thus, identifying A[T ; δ] with its image in A〈∂/r〉 under the map ϕ in the proof
of Lemma 2.2.9 we see that h is bounded with respect to the subspace norm on
A[T ; δ] and so h extends uniquely to a bounded K-linear map g : A〈∂/r〉 → B.
Finally, consider the continuous map Ψ: A〈∂/r〉 ×A〈∂/r〉 → B given by

Ψ(u, v) = g(uv)− g(u)g(v).

Since Ψ vanishes on the dense subset A[T, δ]×A[T, δ] of its domain, it is identically
zero and so g is a K-algebra homomorphism. �

It turns out that the skew-Tate algebra A〈∂/r〉 admits a natural involution.
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Lemma 2.2.11. Let A be a K-Banach algebra and let δ ∈ B(A) be a derivation
such that |δ|sp,A < r. Then there is a bounded K-Banach algebra isomorphism

(−)T : A〈∂/r〉 → A〈∂/r〉op

such that aT = a for all a ∈ A, ∂T = −∂ and (QT )T = Q for all Q ∈ A〈∂/r〉.

Proof. We apply Lemma 2.2.10 with A = O(X), δ = ∂x ∈ B(A), B := A〈∂/r〉op,
b = −∂ and f : A → B the natural inclusion. Writing · for the product in the
K-Banach algebra B, we compute that for all a ∈ A we have

b · f(a)− f(a) · b = a(−∂)− (−∂)a = [∂, f(a)] = f(δ(a)),

so the condition (b)(i) in Lemma 2.2.10 holds. The condition (b)(ii) is clear since
|b`| = |(−∂)`| = r` holds in B for all ` > 0 by the definition of the norm on B found
at Definition 2.2.8. So by Lemma 2.2.10 we obtain a bounded K-Banach algebra
homomorphism (−)T : A〈∂/r〉 → B such that aT = a for all a ∈ A and ∂T = −∂.

It remains to check that this map is self-inverse. To this end, note that the map
(−)TT : A〈∂/r〉 → A〈∂/r〉 fixes A and ∂ pointwise. Since it is also a bounded K-
Banach algebra homomorphism and since A and ∂ generate a dense K-subalgebra
of A〈∂/r〉, we see that (−)TT is the identity map on all of A〈∂/r〉. �

2.3. The sheaf on Dr on ∂x/r-admissible subdomains of A. In this section,
on we will be interested in affinoid subdomains of the rigid-analytic affine line A.
Let ∂x denote the derivation d

dx of OA.

Definition 2.3.1. Let X be an affinoid subdomain of A.

(a) We define the spectral radius of X to be r(X) := |∂x|sp,O(X).
(b) Let r ∈ R>0. We say that X is ∂x/r-admissible if and only if

r > r(X).

We emphasise that this notion of spectral radius r(X) depends on the choice of
global vector field ∂x on A, i.e. on the choice of coordinate x on A.

Proposition 2.3.2. Let X,Y be two affinoid subdomains of A. Then

r(X ∩ Y ) 6 max{r(X), r(Y )}.
For any r ∈ R>0, if X and Y are ∂x/r-admissible, then so is X ∩ Y .

To prove this result, we will need the following elementary statements from p-adic
functional analysis that we were unable to find in the literature.

Proposition 2.3.3. Let V,W be two K-Banach spaces, let S : V → V and T :
W →W be bounded K-linear maps.

(a) Let U : V“⊗W → V“⊗W be the bounded K-linear map U := S“⊗1 + 1“⊗T .

|U |sp,V “⊗W 6 max{|S|sp,V , |T |sp,W }.

(b) Suppose that W 6 V is closed and that T is the restriction of S to W . Let
S : V/W → V/W be the induced bounded K-linear map. Then

|S|sp,V/W 6 |S|sp,V .
(c) Suppose that K ′ is a complete field extension of K and that V is of count-

able type. Let V ′ := V“⊗K ′ and let S′ := S“⊗1 : V ′ → V ′. Then

|S|sp,V = |S′|sp,V ′ .
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Proof. (a) Write s := |S|sp,V and t := |T |sp,W . It follows from the definition of
spectral radius that there are real constants A,B > 1 such that

|Sn(v)| 6 Asn and |Tn(w)| 6 Btn for all n > 0, v ∈ V,w ∈W.

Given v ∈ V and w ∈W , we compute that

Un(vi ⊗ wi) =

(
n∑

m=0

Ç
n

m

å
Sm ⊗ Tn−m

)
(v ⊗ w) =

n∑
m=0

Sm(v)

Ç
n

m

å
Tn−m(w).

Hence, given an element u ∈ V ⊗W , whenever we can write u =
∑r
i=1 vi⊗wi with

vi ∈ V and wi ∈W , we can calculate that

|Un(u)| 6 max
16i6r

max
06m6n

|Sm(vi)| · |
(
n
m

)
| · |Tn−m(wi)| 6

6 Asm ·Btn−m · max
16i6r

|vi||wi| =

= AB max
16i6r

|vi||wi| ·max{s, t}n.

Taking the infimum over all ways of writing u in this form, and using the density
of V ⊗W in V“⊗W , we conclude that

|Un|V “⊗W 6 ABmax{s, t}n

for all n > 0. Extracting nth-roots and letting n→∞ gives the result.
(b) Write s := |S|sp,V and choose a real number A > 1 such that ||Sn|| 6 Asn

for all n > 0. Then

|Sn(v +W )|V/W = inf
w∈W

|Sn(v + w)| 6 inf
w∈W

Asn|v + w| = Asn|v +W |.

We conclude that ||Sn|| 6 Asn for all n > 0. Again, extracting nth-roots and letting
n→∞ gives the result.

(c) Because V is of countable type, by [22, Proposition 1.2.1(3)] we can find a K-

Banach space isomorphism ϕ : c0(K)
∼=−→ V . We identify c0(K ′) with c0(K)“⊗K ′;

this gives us an induced isomorphism ϕ′ : c0(K ′)
∼=−→ V ′ given by ϕ′ = ϕ“⊗1.

Let U : c0(K) → c0(K) be the bounded K-linear endomorphism defined by U :=
ϕ−1 ◦S ◦ϕ, and let U ′ : c0(K ′)→ c0(K ′) be defined by U ′ = (ϕ′)−1 ◦S′ ◦ϕ′. Then
we can find positive real constants a, b, a′, b′ > 0 such that for all n > 0 we have

a||Un|| 6 ||Sn|| 6 b||Un|| and a′||U ′n|| 6 ||S′n|| 6 b′||U ′n||.

This quickly implies that |S|sp,V = |U |sp,c0(K) and |S′|sp,V ′ = |U ′|sp,c0(K′).
Let {e1, e2, · · · } be the standard orthonormal basis for the K-Banach space

c0(K); then it also forms an orthonormal basis for c0(K ′) as a K ′-Banach space.

Since S′ = S“⊗1 and ϕ′ = ϕ“⊗1, we see that U ′ = U“⊗1, and we can calculate

||Un|| = sup
m>0
|Un(em)| = sup

m>0
|U ′n(em)| = ||U ′n|| for all n > 0.

Hence |U |sp,c0(K) = |U ′|sp,c0(K′) and the result follows. �

Proof of Proposition 2.3.2. We can give O(X)“⊗O(Y ) the structure of a K[∂x]-

module by making ∂x act by ∂x“⊗1 + 1“⊗∂x as in Proposition 2.3.3(a). Then there
is a bounded surjective K[∂x]-linear map

O(X)“⊗O(Y )� O(X ∩ Y )
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induced by the map O(X)×O(Y )→ O(X ∩ Y ) that sends (f, g) to f |X∩Y g|X∩Y .
Since the kernel of this map is closed and ∂x-stable, by Proposition 2.3.3 we have

r(X ∩ Y ) = |∂x|sp,O(X∩Y )

6 |∂x“⊗1 + 1“⊗∂x|sp,O(X)“⊗O(Y )

6 max{|∂x|sp,O(X), |∂x|sp,O(Y )}
= max{r(X), r(Y )}.

The second statement is an easy consequence of the first. �

Definition 2.3.4. Let r ∈ R>0. The ∂x/r-admissible G-topology on A has the
∂x/r-admissible affinoids as its admissible sets, and finite coverings as its admissible
coverings. We denote this G-topology by A(∂x/r).

It follows easily from Proposition 2.3.2 that A(∂x/r) is indeed a G-topology in
the sense of [17, Definition 9.1.1/1].

Definition 2.3.5. For any affinoid subdomain X of A, let Dr(X) denote K-Banach
space O(X)〈∂/r〉 from Definition 2.2.8.

Proposition 2.3.6. Let Y ⊆ X be (∂x/r)-admissible affinoid subsets of A.

(a) Dr(X) carries an associative, unital K-Banach algebra structure.

(b) The function Dr(X) → Dr(Y ) that sends
∞∑
n=0

an∂
n to

∞∑
n=0

(an)|Y ∂
n is a

bounded homomorphism of K-Banach algebras.

Proof. Since r(X) < r, it follows from Definition 2.3.1(a) that

lim
`→∞

||∂`x||O(X)/r
` = 0.

Now Lemma 2.2.9 gives the required associative, unital, K-Banach algebra structure
on Dr(X) = O(X)〈∂/r〉, proving part (a).

For part (b), we apply Lemma 2.2.10 with A = O(X), B = Dr(Y ) and b = ∂ ∈ B
to obtain a bounded K-algebra homomorphism Dr(X)→ Dr(Y ) which extends the
restriction map O(X)→ O(Y ) and sends ∂ ∈ Dr(X) to ∂ ∈ Dr(Y ). �

In this way, Dr becomes a presheaf of K-Banach algebras on A(∂x/r). Evidently,
we are thinking of Dr(X) as a particular Banach completion of the usual ring of
finite-order differential operators D(X) on X. The following Lemma makes this
more precise.

Lemma 2.3.7. There is an injective homomorphism j : D → Dr from the restric-
tion of D to A(∂x/r) to Dr. The image of j(X) is dense for all X ∈ A(∂x/r).

Proof. Let X ∈ A(∂x/r). Then D(X) is the skew-polynomial ring O(X)[∂; ∂x];
this gives us an injective left O(X)-linear map j(X) : D(X)→ Dr(X) which sends
∂n ∈ D(X) to ∂n ∈ Dr(X) for all n > 0. Lemma 2.2.4 implies that j(X) is a ring
homomorphism. The image of j(X) is dense by the definition of Dr(X), and it is
clear that the maps j(X) commute with the restriction maps in the (pre)sheaves
D and Dr. �

Proposition 2.3.8. Suppose that r ∈
√
|K×|. Then Dr is a sheaf of K-Banach

algebras on A(∂x/r), with vanishing higher Čech cohomology.
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Proof. By Proposition 2.3.6, Dr is a presheaf of K-Banach algebras on the G-
topology A(∂x/r); here we regard it only as a presheaf of K-Banach spaces. Let
Dr denote the closed disc of radius r: the condition we imposed on r ensures that
Dr is a K-affinoid variety. Then for every X ∈ A(∂x/r), there is an isomorphism
of K-Banach spaces

Dr(X) = O(X)〈∂/r〉 ∼= O(X × Dr)

which is functorial in X. Let U := {X1, · · · , Xm} be a finite affinoid covering in
A(∂x/r). Then because Dr is itself an affinoid variety, V := {X1×Dr, · · · , Xm×Dr}
is a finite affinoid covering of X×Dr, so by Tate’s Acyclicity Theorem [22, Theorem
4.2.2], the natural map O(X×Dr)→ Ȟ0(V,O) is an isomorphism, and Ȟj(V,O) =
0 for j > 0. The result follows. �

We will also need an overconvergent version of these definitions.

Definition 2.3.9. Let r ∈ R>0.

(a) An affinoid subdomain X of A is (∂x/r)
†-admissible if and only if

r > r(X).

(b) The (∂x/r)
†-admissible G-topology on A has the (∂x/r)

†-admissible affi-
noids as its admissible sets, and finite coverings as the admissible coverings.

(c) We denote this G-topology by A(∂x/r)
†.

(d) For each X ∈ A(∂x/r)
†, we define

D†r(X) := colim
c>r

Dc(X).

Note that this colimit is computed in the category of associative unital K-
algebras. The connecting maps Dc(X) → Dc′(X) appearing in this colimit are
all injective, so one should think of D†r(X) as the union of the Dc(X) as c runs over
all real numbers strictly bigger than r.

Theorem 2.3.10. For any r ∈ R>0, D†r is a sheaf of K-algebras on A(∂x/r)
† with

vanishing higher Čech cohomology.

Proof. It is clear from the definitions that A(∂x/r)
† ⊂ A(∂x/c) whenever c > r.

Hence D†r(X) is a K-algebra for every X ∈ A(∂x/r)
† by Proposition 2.3.6. The

restriction maps in D†r respect the K-algebra structure, so D†r is a presheaf of K-

algebras on A(∂x/r)
†. We can find a decreasing sequence c0 > c1 > · · · in

√
|K×|

converging to r from above, so that as presheaves on A(∂x/r)
† we have

D†r = colim
n→∞

Dcn .

The sheaf property and the vanishing of higher Čech cohomology of D†r now follow
from Corollary 2.3.8 and the exactness of direct limits. �

For future use, we record here how the functors Dr and D†r behave with respect
to finite base change of the ground field. We leave the easy proof to the reader.

Lemma 2.3.11. Let X be an affinoid subdomain of A and let K ′ be a finite field
extension of K.

(a) For all r > r(X), Dr(XK′) ∼= Dr(X)⊗K ′ as K ′-Banach algebras.
(b) For all r > r(X), D†r(XK′) ∼= D†r(X)⊗K ′ as K ′-algebras.
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The sheaf of rings Dr acts naturally on O; more precisely, we have the following
Lemma which will be frequently useful in performing explicit calculations.

Lemma 2.3.12. Let r > 0 and X ∈ A(∂x/r).

(a) The natural action of D(X) on O(X) induces a bounded K-algebra map

σr : Dr(X)→ B(O(X))

such that σr(a)(b) = ab for all a, b ∈ O(X), and σr(∂) = ∂x.
(b) The map σr is injective.

Proof. (a) The map σr : O(X)→ B(O(X)) which sends a ∈ O(X) to the operator
of multiplication by a is a bounded K-algebra homomorphism. Definition 2.3.1
directly implies that ||∂kx ||O(X)/r

k → 0 as k → ∞. Hence sup
`>0
||∂`x||O(X)/r

` < ∞,

so by Lemma 2.2.10, σr extends uniquely to a bounded K-algebra homomorphism
σr : Dr(X) = O(X)〈∂/r〉 → B(O(X)) with the required properties.

(b) Suppose that Q =
∑
n>0 an∂

n ∈ Dr(X) with an ∈ O(X) not all zero. Let
m > 0 be least such that am 6= 0. Then xm ∈ O(X) and

σr

Ñ∑
n>0

an∂
n

é
(xm) = m!am.

Therefore Q /∈ kerσr and σr is injective. �

We now turn to the question of calculating, at least in theory, the spectral
radius r(X) of an affinoid subdomain X of A. See [8, §4.1] for the terminology and
notation. The spectral radius behaves well with respect to base change:

Lemma 2.3.13. Let K ′ be a complete field extension of K and let X be an affinoid
subdomain of A. Then

r(X) = r(XK′).

Proof. The K-affinoid algebra O(X) is a quotient of a Tate algebra, and is therefore
of countable type as a K-Banach space. Now apply Proposition 2.3.3(c) to the

bounded K-linear operator ∂x : O(X) → O(X), noting that O(XK′) = O(X)“⊗K ′
by definition of XK′ . �

In view of [8, Theorem 4.1.8], we finish §2.3 by explicitly calculating the spectral
radius of affinoid subdomains of the affine line which are finite unions of cheeses.

Definition 2.3.14.

(a) We define ρ(C(α, s)) := min
16i6g

|si|.

(b) If X = X1 ∪ · · · ∪Xm is a disjoint union of cheeses Xi, we define

ρ(X) := min
i
ρ(Xi).

Recall that ∂
[n]
x := ∂nx/n! : O(X)→ O(X) denotes the nth divided power of ∂x.

Lemma 2.3.15. Let X be an affinoid subdomain of A that is split over K. Then

||∂[n]
x ||O(X) =

1

ρ(X)n
for all n > 0.
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Proof. If X1, . . . , Xm are the connected components of X, then O(X) is the orthog-
onal direct sum of K-Banach spaces O(X1)⊕· · ·⊕O(Xm), and the differential oper-

ators ∂
[n]
x respects this decomposition. Therefore ||∂[n]

x ||O(X) = max
16i6m

||∂[n]
x ||O(Xi).

On the other hand, by definition we have that ρ(X)−n = max
16i6m

ρ(Xi)
−n, and this

reduces us to the case where X = C(α, s) is a cheese.
For all n, ` > 0 and all i = 1, . . . , g we have the estimate∣∣∣∣∣∂[n]

x

Å
si

x− αi

ã`∣∣∣∣∣
X

=

∣∣∣∣∣(−1)n
Ç
`− n+ 1

n

åÅ−1

si

ãn Å si
x− αi

ã`+n∣∣∣∣∣
X

6 |si|−n,

as well as ∣∣∣∣∣∂[n]
x

Å
x− α0

s0

ã`∣∣∣∣∣
X

=

∣∣∣∣∣
Ç
`

n

åÅ
1

s0

ãn Åx− α0

s0

ã`−n∣∣∣∣∣
X

6 |s0|−n.

Since ρ(X) = min
16i6g

|si| by definition and since min
16i6g

|si| 6 |s0| by [8, Definition

4.1.1], we can apply the explicit description of O(C(α, s)) given in [35, Proposition

2.4.8(a)] to obtain ||∂[n]
x ||O(X) 6 ρ(X)−n. For the reverse inequality, say ρ(X) = |si|

for some 1 6 i 6 g. Then taking ` = 1 in the first estimate above shows that

||∂[n]
x ||O(X) >

∣∣∣∣(−1)n
Å−1

si

ãn Å si
x− αi

ã∣∣∣∣
X

/

∣∣∣∣Å si
x− αi

ã∣∣∣∣
X

= |si|−n = ρ(X)−n. �

Recall from §1.3 that |p| := 1/p and that $ := p−
1
p−1 ∈ R>0.

Lemma 2.3.16. For all n > 0, we have 1 6 |n!|
$n 6 pn.

Proof. vp(n!) =
n−sp(n)
p−1 where sp(n) is the sum of the p-adic digits of n, so

|n!|
$n

= |p|vp(n!)− n
p−1 = |p|−

sp(n)

p−1 = p
sp(n)

p−1 .

Now 0 6 sp(n) 6 (p− 1)(logp(n) + 1), so 1 6 |n!|
$n 6 p

logp(n)+1 = pn. �

Corollary 2.3.17. For X as in Lemma 2.3.15, we have

r(X) = $/ρ(X).

For r ∈ R>0, X is ∂x/r-admissible if and only if r > $/ρ(X).

Proof. By Lemma 2.3.15 we have ||∂nx ||O(X) = |n!| · ||∂[n]
x ||O(X) = |n!|

ρ(X)n . Take

nth-roots, let n → ∞ and apply Lemma 2.3.16 to obtain the first statement. The
second one follows directly from Definition 2.3.1(b). �

It will be useful to know that for a general affinoid subdomain X of A, the
spectral radius r(X) is in fact completely determined by ||∂x||O(X); for this we
need the following elementary

Lemma 2.3.18. Let V be a K-Banach space, let K ′ be a finite field extension
of K and let V ′ := V“⊗K ′. Let T : V → V be a bounded K-linear map and let
T ′ := T“⊗1 : V ′ → V ′. Then

||T ′|| = ||T ||.
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Proof. Because [K ′ : K] < ∞ we can find a basis {a1, . . . , an} for (K ′)◦ as a K◦-

module, where a1 = 1. Then V ′ =
⊕n

i=1 V“⊗ai, and by [41, Lemma 17.2] the tensor
product norm on V ′ is given by∣∣∣∣∣ n∑

i=1

vi“⊗ai∣∣∣∣∣ = max
16i6n

|vi||ai|.

Therefore∣∣∣∣∣T ′
(

n∑
i=1

vi“⊗ai)∣∣∣∣∣ = max
16i6n

|T (vi)||ai| 6 ||T || · max
16i6n

|vi||ai| = ||T ||
∣∣∣∣∣ n∑
i=1

vi“⊗ai∣∣∣∣∣
which implies that ||T ′|| 6 ||T ||. For the reverse inequality, note that for any v ∈ V
we have |T (v)| = |T ′(v ⊗ a1)| 6 ||T ′|||v ⊗ a1| = ||T ′|| |v|; hence ||T || 6 ||T ′||. �

Corollary 2.3.19. Let X be an affinoid subdomain of A. Then

r(X) = $ ||∂x||O(X).

Proof. Both sides of the equation are invariant under passing to a finite field ex-
tension, by Lemma 2.3.13 and Lemma 2.3.18. By [8, Theorem 4.1.8], we may
then assume that X splits over K. But now r(X) = $/ρ(X) by Corollary 2.3.17,
whereas 1/ρ(X) = ||∂x||O(X) by Lemma 2.3.15. �

2.4. Twisting-automorphisms of Dr. In this section we study the line bundles
with connectionn that arise from certain Kummer-étale coverings of X, and we
investigate when the action of D on these line bundles extends to an action of Dr.

Lemma 2.4.1. Let X be a smooth rigid K-analytic variety, let u ∈ O(X)× and
let d be a non-zero integer. There is an O(X)-linear ring automorphism

θu,d : D(X)→ D(X)

such that

(9) θu,d(δ) = δ − 1

d

δ(u)

u
for all δ ∈ T (X).

Proof. By considering an affinoid covering of X, we quickly reduce to the case
where X is itself affinoid. Let Z → X be any étale map such that Z is affinoid
and O(Z) contains a unit z such that zd = u; for example we could take Z :=
SpO(X)[T ]/(T d − u). There is a canonical K-algebra homomorphism D(X) →
D(Z); it is injective, and we will identify D(X) with its image in D(Z).

Since z is a unit in D(Z), conjugation by z is defines an O(Z)-linear ring au-
tomorphism θu,d : D(Z) → D(Z) with inverse θu−1,d. Let δ ∈ T (X). Then

δ(u) = δ(zd) = dzd−1δ(z) = duz−1δ(z), and 0 = δ(zz−1) = zδ(z−1) + δ(z)z−1

together show that

(10) zδ(z−1) = −δ(z)z−1 = −1

d

δ(u)

u
.

Therefore for all f ∈ O(X) we have

θu,d(δ)(f) = (zδz−1)(f) = zδ(z−1f) = zδ(z−1)f + δ(f) = δ(f)− 1

d

δ(u)

u
,

which shows that θu,d preserves the image of O(X) + T (X) inside D(Z). Since X
is smooth, D(X) is generated by O(X) and T (X), so θu,d also preserves the entire
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image of D(X) in D(Z), and therefore defines an endomorphism θu,d of D(X).
Since the same is true for θu−1,d, this endomorphism must be bijective. �

As our notation suggests, θu,d only depends on u and d and not on any par-
ticular choice of the étale map Z → X. It could have been also defined without
introducing the covering space Z of X. For future use, we record the following
useful observation, obtained by taking Z → X to be the identity map.

Lemma 2.4.2. Let z ∈ O(X)×. Then θzd,d(Q) = zQz−1 for all Q ∈ D(X).

Our main aim of the remainder of this section is to show that when X is an
∂x/r-admissible affinoid subdomain of A then θu,d extends to a bounded K-algebra
automorphism of Dr(X) and thus that θu,d extends to a K-algebra automorphism
of D†r(X) whenever X is (∂x/r)

†-admissible. To do this we will use Lemma 2.2.10
and so we must estimate the norms of the images of the elements θu,d(δ

`) under
the natural inclusion D(X)→ Dr(X).

Lemma 2.4.3. For all u, v ∈ O(X)× we have

θuv,d = θu,d ◦ θv,d.

Proof. This is a straightforward calculation on the covering space of X obtained
by adjoining a dth-root of both u and v, thinking of θuv,d as being conjugation by
the dth root of uv. It can also be checked directly using the formula (9). �

Our next result tells us how to rewrite θu,d(∂
[n]) in standard form as a differential

operator of finite order.

Proposition 2.4.4. For every n > 0 and every δ ∈ T (X) we have

θu,d(δ
[n]) =

n∑
α=0

θu,d(δ
[n−α])(1) δ[α].

Proof. Choose any étale map Z → X as in the proof of Lemma 2.4.1. For each a ∈
D(Z), let `a and ra denote the operations of left, respectively, right, multiplication
by the element a, and let ada := `a − ra. Then

ad
[k]
δ (f) = δ[k](f)

for each k > 0 and each f ∈ O(Z). Using the binomial theorem, we now have

δ[n]z−1 = `
[n]
δ (z−1) = (rδ + ad(δ))

[n]
(z−1)

=
n∑
α=0

r
[α]
δ ad

[n−α]
δ (z−1) =

n∑
α=0

δ[n−α](z−1)δ[α].

Hence θu,d(δ
[n]) = z δ[n]z−1 =

n∑
α=0

z δ[n−α](z−1)δ[α]. Evaluating both sides of this

equation at 1 ∈ O(X) shows that zδ[n](z−1) = θu,d(δ
[n])(1). �

After these generalities, we return to the affine line A with its local coordinate
x ∈ OA. We fix an affinoid subdomain X of A until the end of §2.4.

Definition 2.4.5. For every n > 0, we define

h
[n]
u,d := θu,d(∂

[n]
x )(1) ∈ O(X).
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Note that for any étale map Z → X as in the proof of Lemma 2.4.1, we have

h
[n]
u,d = z ∂[n]

x (z−1).

Our next task will be to obtain an upper bound for |h[n]
u,d|X . Using Proposition

2.4.4 this will enable us to estimate the norms |θu,d(∂nx )|Dr(X).

Corollary 2.4.6. Suppose that α ∈ K such that x − α ∈ O(X)× and Y → X is
an étale cover such that there is y ∈ O(Y ) with yd = x− α. Then

∂[m]
x (yk) =

Ç
k
d

m

å
yk(x− α)−m for all k ∈ Z and m > 0.

Proof. The case m = 0 is trivial. Since 1 = ∂x(yd) = d∂x(y)yd−1 we see that

∂x(y) = 1
dyd

y = 1
d(x−α)y which implies by the Leibniz rule that ∂x(yk) = k

d
yk

x−α as

required for the case m = 1. Now we proceed by induction on m:

∂m+1
x (yk) = ∂x

Ç
m!

Ç
k
d

m

å
yk

(x− α)m

å
= m!

Ç
k
d

m

åÇ
k

d

yk

x− α
· (x− α)−m −myk(x− α)−m−1

å
= m!

Ç
k
d

m

å
yk

(x− α)m+1

Å
k

d
−m

ã
= (m+ 1)!

Ç
k
d

m+ 1

å
yk

(x− α)m+1
.

This completes the induction. �

Here is our upper bound.

Proposition 2.4.7. Let X be an affinoid subdomain of A, let u ∈ O(X)× and
suppose that p - d. Then

|h[n]
u,d|X 6

Å
r(X)

$

ãn
for all n > 0.

Proof. Suppose first that X = C(α, s) is a cheese. Using [35, Proposition 2.4.8(b)],
write u = λ · ν · (x−α1)k1 · · · (x−αg)kg for some λ ∈ K×, ν ∈ O(X)×× and ki ∈ Z.
We form the étale cover Y → X given by

O(Y ) = O(X)[T±1
1 , . . . , T±1

g ]/
〈
T d1 − (x− α1), · · · , T d1 − (x− αd)

〉
.

For each i = 1, . . . , g, let zi denote the image of Ti in O(Y ) so that zdi = x − αi.
Since p - d, by [8, Lemma 3.3.5(a)] we can find ε ∈ O(X)×× such that ν = εd, so

that u = λ · (zk1
1 · · · z

kg
g ε)d. Note that θλ,d is the identity map because ∂(λ) = 0;

using Lemma 2.4.3 we see that we can assume λ = 1 so that z := zk1
1 · · · z

kg
g ε

satisfies zd = u. Using the Leibniz rule, and Corollary 2.4.6, we obtain

(11)
z ∂

[n]
x (z−1) = ε zk1

1 · · · z
kg
g ∂

[n]
x (z−k1

1 · · · z−kgg ε−1)

=
∑
|m|=n

Å
g∏
i=1

(− kid
mi

)
(x− αi)−mi

ã
· ε ∂[mg+1]

x (ε−1)
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where the sum runs over all m ∈ Ng+1 such that |m| :=
g+1∑
i=1

mi equals n. Now

|ε ∂[mg+1]
x (ε−1)|X 6 |ε|X · ||∂[mg+1]

x ||O(X) · |ε−1|X = ρ(X)−mg+1

by Lemma 2.3.15 because |ε|X = 1. Using (11) together with Corollary 2.3.17, we
now obtain the required estimate

|h[n]
u,d|X = |z ∂[n]

x (z−1)|X 6 max
|m|=n

g∏
i=1

|si|−mi · ρ(X)−mg+1 6 ρ(X)−n =

Å
r(X)

$

ãn
.

Next we consider the case where X splits over K; that is every connected component
Xi of X is a cheese. Once again, choose any étale map Z → X as in the proof
of Lemma 2.4.1. Let ui denote the restriction of u to Xi and let zi denote the
restriction of z to Zi := Z ×X Xi. Then using Definition 2.3.14(b) together with
Corollary 2.3.17, we have

|h[n]
u,d|X = |z ∂[n]

x (z−1)|X = max
i
|zi ∂[n]

x (z−1
i )|Xi

6 max
i
ρ(Xi)

−n = ρ(X)−n =
Ä
r(X)
$

än
.

Finally, suppose that X is arbitrary. By [8, Theorem 4.1.8], we can find a finite
extension K ′ of K such that X splits over K ′. Since r(X) = r(XK′) by Lemma
2.3.13, we obtain

|h[n]
u,d|X = |h[n]

u,d|XK′ =

Å
r(XK′)

$

ãn
=

Å
r(X)

$

ãn
for all n > 0. �

Our next main result, Theorem 2.4.9, requires the following elementary estimate.

Lemma 2.4.8. Let 0 < ρ < 1. Then max
t>0

t ρt = (e log(ρ−1))−1.

Proof. Write λ := log(ρ−1) > 0, and consider the function f : R>0 → R defined by
f(t) := t ρt = te−λt. Then f ′(t) = e−λt − λte−λt vanishes precisely when t = λ−1,
and f ′′(t) = −λe−λt − λ(1 − λt)e−λt is strictly negative at t = λ−1. So t = λ−1 a
global maximum of f(t) with value f(λ−1) = λ−1e−1 = (e log(ρ−1))−1. �

Theorem 2.4.9. Let r > 0, let X be an ∂x/r-admissible affinoid subdomain of
A, let u ∈ O(X)× and suppose that p - d. Then θu,d ∈ AutK D(X) extends to a
bounded K-algebra automorphism θu,d of Dr(X).

Proof. By Lemma 2.3.7, there is an injectiveO(X)-linearK-algebra map j : D(X)→
Dr(X) such that j(∂x) = ∂. We will show that the K-algebra homomorphism

f := j ◦ θu,d : O(X)→ Dr(X)

extends to a bounded K-algebra homomorphism

θu,d : Dr(X) = O(X)〈∂/r〉 → Dr(X)

which sends ∂ ∈ Dr(X) to b := j(θu,d(∂x)) = ∂ − 1
d
∂x(u)
u ∈ Dr(X). This follows

from Lemma 2.2.10, provided we can verify conditions (i) and (ii) in this Lemma.
(i) Let a ∈ O(X). Then because θu,d and j are K-algebra homomorphisms,

[b, f(a)] = [j(θu,d(∂x)), j(θu,d(a))] = j(θu,d([∂x, a])) = f(∂x(a)).
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(ii) Let ` > 0. Then by Proposition 2.4.4 we have

b` = f(∂`x) = `!
∑̀
α=0

h
[`−α]
u,d ∂[α] =

∑̀
α=0

h
[`−α]
u,d (`− α)!

Ç
`

α

å
∂α

inside Dr(X). Using Proposition 2.4.7 we can now estimate

|b`|/r` 6 sup
06α6`

∣∣∣h[`−α]
u,d

∣∣∣
X
· |(`− α)!| · rα−` 6

6 sup
06α6`

Ä
r(X)
$

ä`−α
· |(`−α)!|

r`−α
=

= sup
06n6`

Ä
r(X)
r

än
· |n!|
$n .

Since X is ∂x/r-admissible, the ratio ρ := r(X)/r is strictly less than 1. Lemma
2.3.16 together with Lemma 2.4.8 now show that

sup
`>0
|b`|/r` 6 sup

`>0

Ç
p sup
n>0

nρn
å
<∞.

Lemma 2.2.10 now gives the required K-algebra endomorphism θu,d of Dr(X),
which is in fact bijective because θu,d ◦ θu−1,d = θu−1,d ◦ θu,d = 1Dr(X). �

Remark 2.4.10. It can be shown that the operator norm of the automorphism
θu,d of Dr(X) satisfies

||θu,d|| 6 p
ï
e log

Å
r

r(X)

ãò−1

.

We omit the proof as we do not need this estimate.

Inspecting the definition of θu,d : D(X) → D(X) given in the statement of
Lemma 2.4.1 shows that it commutes with the restriction maps D(X)→ D(Y ) for
any affinoid subdomain Y of X. Therefore these automorphisms assemble to give
an automorphism θu,d : DX → DX of the sheaf of K-algebras DX for any admissible
open subspace X of A and any u ∈ O(X)×. If X is an admissible open subset of
A we define X(∂x/r)

† to be the G-topology obtained by restricting the G-topology
A(dx/r)

† from Definition 2.3.9 to those affinoid open sets contained in X.

Corollary 2.4.11. Let X be an admissible open subspace of A, let u ∈ O(X)×

and suppose that p - d. Then for every r > 0, the restriction of θu,d : D → D to
the G-topology X(∂x/r)

† extends to an automorphism θu,d : D†r → D†r of sheaves
of K-algebras on X(∂x/r)

†.

Proof. This follows immediately from Theorem 2.4.9. �

For future use, we record the fact that the automorphisms θu,d are inner when-
ever u happens to be a power of d in O(X)×. More precisely, we have the following

Lemma 2.4.12. Let r > 0, let X be an ∂x/r-admissible affinoid subdomain of A,
let v ∈ O(X)× and suppose that p - d. Then

θzd,d(Q) = z Q z−1 for all Q ∈ Dr(X).

Proof. Conjugation by z is a bounded K-linear automorphism of Dr(X), which
agrees with θzd,d on D(X) by Lemma 2.4.2. Also, θzd,d is bounded and K-linear on
Dr(X) by Theorem 2.4.9. The result now follows since D(X) is dense in Dr(X). �
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2.5. Affine transformations of A. In this section we consider how the action of
the group of affine transformations of A relates to various constructions we have
made. Let B := {g ∈ GL2 : g21 = 0} be the subgroup scheme of upper-triangular
matrices in GL2.

Definition 2.5.1. Let % : B(K)→ K× be the character given by

%

ÅÅ
a b
0 d

ãã
7→ a

d
.

For the necessary background on equivariant structures and equivariant sheaves,
we refer the reader to [9, §2.3].

Lemma 2.5.2.

(a) OP1 has a natural GL2(K)-equivariant structure as a sheaf of K-algebras
given by (g · f)(z) = f(g−1z).

(b) The action of GL2(K) on P1 preserves affinoid subdomains.
(c) If X is an affinoid subdomain of P1 and G 6 GL2(K) stabilises X then

there is a natural group homomorphism ρ : G→ B(O(X))×.
(d) The GL2(K)-equivariant structure onOP1 extends to an GL2(K)-equivariant

structure as a sheaf of K-algebras on DP1 viaÅ
a b
c d

ã
· ∂x =

(−cx+ a)2

ad− bc
∂x.

(e) The GL2(K)-equivariant structure on DP1 restricts to a B(K)-equivariant
structure on DA which satisfies

g · ∂x = %(g)∂x and g · (x− z) = %(g)−1(x− g · z) for all z ∈ K.

Proof. (a) The affine algebraic group GL2 acts on the scheme P1 by Möbius trans-
formations. By [9, Theorem 6.3.4], the action of GL2(K) on the rigid analytic
variety P1 is continuous. In the proof of [9, Lemma 3.4.3] it is explained how the
structure sheaf OX and the sheaf of finite-order differential operators DX on a
smooth rigid analytic variety X equipped with a continuous action of a p-adic Lie
group G can be endowed in a standard way with natural G-equivariant structures.
These constructions do not require G to be a p-adic Lie group, so they can also be
applied in our setting to the continuous GL2(K)-action on P1.

(b) For any affinoid subdomain X of P1, each g ∈ GL2(K) induces an isomor-
phism of rigid analytic K-varieties (X,OX) → (g(X),Og(X)). Thus g(X) is an

affinoid subdomain of P1.
(c) is an immediate consequence of (a) together with [17, Theorem 6.1.3/1].
(d) Using [9, Example 2.1.4 and Corollary 2.1.9] we see that for all g ∈ GL2(K)

stabilising X, the g-action on T (X) is given by

(g · ∂)(f) = g · ∂(g−1 · f) for all ∂ ∈ T (X), f ∈ O(X).(12)

This implies that

ÅÅ
a b
c d

ã
· ∂x
ã

(x) = (−cx+a)2

ad−bc , and (d) follows.

(e) The first statement is now immediate given the formula in part (d). For the

second one, we write g =

Å
a b
0 d

ã
and compute

g · (x− z) =
dx− b
a
− z =

d

a

Å
x−

Å
az + b

d

ãã
= %(g)−1(x− g · z). �
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Proposition 2.5.3. Let X be an affinoid subdomain of A and let g ∈ B(K). Then

r(g(X)) =
r(X)

|%(g)|
.

Proof. We note that the isomorphism of Banach algebras gO(X) : O(X)→ O(gX)
is even an isometry since for every f ∈ O(X) we have

|g · f |gX = sup
x∈X

f(g−1gx) = |f |X .

Using Lemma 2.5.2(e), we see that for any f ∈ O(gX) and n > 0, we have

|∂nx (f)|g(X) = |g−1 · (∂nx (f)) |X = |%(g)|−n|∂nx (g−1 · f)|X .

Hence r(g(X)) = |∂x|sp,O(g(X)) = 1
|%(g)| |∂x|sp,O(X) = r(X)

|%(g)| as required. �

In view of Definitions 2.3.1(b) and 2.3.9(a), Proposition 2.5.3 and Lemma 2.5.2(b)
together imply the following

Corollary 2.5.4. Let r ∈ R>0. Then every g ∈ B(K) induces homeomorphisms

g : A(∂x/r)
∼=−→ A(|%(g)|∂x/r) and g : A(∂x/r)

† ∼=−→ A(|%(g)|∂x/r)†.

Lemma 2.5.5. Let g ∈ B(K) and let r ∈ R>0.

(a) There is an equivalence of categories

g∗ : PreSh(A(∂x/r))
∼=−→ PreSh(A(|%(g)|∂x/r))

given by (g∗F)(X) = F(g−1X) for all F ∈ PreSh(A(∂x/r)).
(b) gD induces an isomorphism of presheaves of K-Banach algebras on A(∂x/r)

gr : Dr
∼=−→ g∗D r

%(g)
.

Proof. (a) This follows immediately from Corollary 2.5.4.
(b) Let X ∈ A(∂x/r). We will apply Lemma 2.2.10 with the following param-

eters: A = O(X), B = D r
%(g)

(gX), δ = ∂x ∈ B(A), f : A → B is the compo-

sition of gO(X) : O(X) → O(gX) and the inclusion O(gX) ↪→ D r
%(g)

(gX), and

b := %(g)∂ ∈ B. First, we must verify conditions (b)(i) and (b)(ii) of this Lemma.
(i) Let a ∈ O(X). Using Lemma 2.5.2(e) and (12), we compute in B as follows:

[b, f(a)] = [%(g)∂, g · a] = %(g)∂x(g · a) = (g · ∂x)(g · a) = g · (∂x · a) = f(δ(a)).

(ii) Let ` > 0; then |∂`| = (r/|%(g)|)` in B = D r
%(g)

(gX) by Definition 2.2.8. Hence

sup
`>0
|b`|/r` = sup

`>0
|%(g)|`|∂`|/r` = 1.

Hence by Lemma 2.2.10(b) ⇒(a), the map f : A → B extends to a bounded
K-Banach algebra homomorphism gr(X) : A〈∂/r〉 = Dr(X) → D r

%(g)
(gX). By

construction, this map makes the following diagram commutative:

(13) D(X)
gD(X) //

jr(X)

��

D(gX)

j r
|%(g)|

(gX)

��
Dr(X)

gr(X)
// D r
|%(g)|

(gX)
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where the vertical maps come from Lemma 2.3.7. Since the images of these maps
are dense by Lemma 2.3.7, the fact that (g−1)D(gX) is a two-sided inverse to
gD(X) implies that (g−1) r

%(g)
(gX) is a two-sided inverse for gr(X). By construction,

the maps gr commute with restriction maps in Dr and D r
|%(g)|

. Hence gr is an

isomorphism of sheaves of K-Banach algebras as claimed. �

Corollary 2.5.6. Let g ∈ B(K) and let r ∈ R>0.

(a) There is an equivalence of categories

g∗ : PreSh(A(∂x/r)
†)→ PreSh(A(|%(g)|∂x/r)†)

given by (g∗F)(X) = F(g−1X) for all F ∈ PreSh(A(∂x/r)).
(b) gD induces an isomorphism of sheaves of K-algebras on A(∂x/r)

†

g†r : D†r
∼=−→ g∗D† r

%(g)
.

Proof. (a) follows from Proposition 2.5.3. (b) follows from (a), Definition 2.3.9 and

Lemma 2.5.5(b), noting that D†r and D† r
%(g)

are in fact sheaves on A(∂x/r)
† and

A(%(g)∂x/r)
†, respectively, by Theorem 2.3.10. �

Finally, we record a purely algebraic calculation which tells us how the maps
gD : D → g∗D defining the G-equivariant structure on D interact with the twisting
automorphisms θu,d from §2.4.

Lemma 2.5.7. Let g ∈ B(K) and let W be an affinoid subdomain of A. For each
u ∈ O(W )× and d > 1, the following diagram commutes:

D(W )
θu,d //

gD(W )

��

D(W )

gD(W )

��
D(gW )

θg·u,d

// D(gW ).

Proof. Because D(W ) is generated as a ring by O(W ) and ∂x, it is enough to check
that g · θu,d(f) = θg·u,d(g · f) when f = ∂x and when f ∈ O(W ). Now

g · θu,d(∂x)) = g · (∂x − 1
d
∂x(u)
u ) = g · ∂x − 1

d
g·∂x(u)
g·u =

= g · ∂x − 1
d

(g·∂x)(g·u)
g·u = θg·u,d(g · ∂x),

which gives the first equality, and the second one holds because the twisting auto-
morphisms θu,d and θg·u,d are O-linear. �

3. Noetherianity of Dr and flatness of connecting maps

In this section we will establish a different interpretation of Dr(X), based on
work of Berthelot [13], when X is a ∂x/r-admissible affinoid subdomain of the
rigid-analytic affine line A and use it to prove some basic structural facts about
these Banach algebras and the relationships between them. In particular we will
prove that they are Noetherian whenever r ∈

√
|K×| and X ∈ D(∂x/r), and that

Ds(X) → Dr(Y ) is flat on both sides whenever s > r with r, s ∈
√
|K×| and

Y ⊆ X ∈ A(∂x/r).
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3.1. Sections of Dr as divided power algebras. We will discuss a construction
essentially due to Berthelot involving level m divided powers of ∂x.

Throughout §3, we fix the non-negative integer m.

Definition 3.1.1. We recall some notation from [13, §1.1.2].
For k, k′, k′′ > 0 with k′ + k′′ = k:

(a) qk := bk/pmc so that k = qkp
m + rk with 0 6 rk < pm;

(b)
{
k
k′

}
:= qk!

qk′ !qk′′ !
∈ N;

(c)
〈
k
k′

〉
:=
(
k
k′

){
k
k′

}−1 ∈ Zp; and given a formal variable ∂,

(d) ∂〈k〉 := qk!∂[k] = qk!
k! ∂

k.

It is understood that all of these quantities depend on the parameter m, so it
would be more correct to write 〈k〉m instead of 〈k〉 everywhere. However, following
Berthelot, we suppress the parameter m from this notation.

Now we suppose that X is an affinoid variety and that ∂ is a derivation of O(X).

Lemma 3.1.2. The following relations hold in D(X):

(a) for all k, k′ > 0, we have

∂〈k〉∂〈k
′〉 =

Æ
k + k′

k

∏
∂〈k+k′〉;

(b) for all k > 0 and f ∈ O(X), we have

∂〈k〉f =
∑

k′+k′′=k

®
k

k′

´
∂〈k
′〉(f)∂〈k

′′〉.

Proof. This follows from [25, p27] together with an easy computation using Nota-
tion 3.1.1. �

Definition 3.1.3. We define O(X)◦[∂](m) to be the O(X)◦-subalgebra of D(X)
generated by the set

{
∂〈k〉|k > 0

}
.

We note that in particular O(X)◦[∂](0) = O(X)◦[∂].

Proposition 3.1.4.

(a) If supk>1 ||∂〈k〉||O(X) 6 1, then {∂〈k〉 | k > 0} is a free generating set

for O(X)◦[∂](m) as a left O(X)◦-module; in particular O(X)◦[∂](m) is p-
adically separated flat K◦-algebra.

(b) If there is π ∈ K◦◦ with |π| > max(|p|, sup
k>1
||∂〈k〉||), then O(X)◦[∂](m)/(π)

is a commutative O(X)◦/(π)-algebra of finite presentation.

Proof. (a) That the set S = {∂〈k〉 | k > 0} is O(X)◦-linearly independent in the
left module D(X) follows from its O(X)-linear independence. It thus suffices to
show that the (free left) O(X)◦-submodule of D(X) generated by S is a subring of
D(X). This follows from Lemma 3.1.2 and the assumption ∂〈k〉(O(X)◦) ⊂ O(X)◦

for all k > 0.
(b) Now suppose that π is as in the statement. As in [13, Corollaire 2.2.5] we

see that if k =
∑m−1
j=0 cjp

j + cpm with 0 6 cj < p for all j then

(14) ∂〈k〉 = u

(
m−1∏
j=0

(∂〈p
j〉)cj

)
(∂〈p

m〉)c
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for some u ∈ Z×p . ThusO(X)◦[∂](m)/(π) is generated overO(X)◦/(π) by the images

of ∂〈p
j〉 for 0 6 j 6 m. Moreover these generators commute with O(X)◦/(π) by

Lemma 3.1.2(b) together with the assumption on π and they obviously commute
with each other.

Now for any 0 6 j < m we have

(∂〈p
j〉)p =

pj+1!

(pj !)p
∂〈p

j+1〉 ∈ pO(X)◦[∂](m) ⊆ πO(X)◦[∂](m).

Using this together with part (a) and equation (14), we conclude that

O(X)◦[∂](m)/(π) ∼= O(X)◦/(π)[t0, . . . , tm]/(tp0, . . . , t
p
m−1).

Hence O(X)◦[∂](m)/(π) is finitely presented over O(X)◦/(π), as required. �

Definition 3.1.5. Suppose that X is an affinoid subdomain of A. We write

D(m)
s (X) := O(X)◦[∂x/s]

(m)

for any non-zero s ∈ K.

This algebra is only well-behaved under specific restrictions on the parameter s.

Corollary 3.1.6. Suppose that X is an affinoid subdomain of A that is split over
K. Let s ∈ K× satisfy |s| > 1/ρ(X).

(a) D(m)
s (X) is a free left O(X)◦-module on {(∂x/s)〈k〉 | k > 0}; in particular

D(m)
s (X) is p-adically separated flat K◦-algebra.

(b) Suppose further that there exists π ∈ K× such that

max

ß
|p|, 1

sρ(X)

™
6 |π| < 1.

Then D(m)
s (X)/(π) is a finitely presented commutative K◦/(π)-algebra.

Proof. (a) By Lemma 2.3.15, for all k > 1 we have

||(∂x/s)〈k〉||X 6
||∂[k]

x ||X
|s|k

6
Å

1

|s|ρ(X)

ãk
6

1

|s|ρ(X)
< 1.

Now we can apply Proposition 3.1.4(a).
(b) The above inequality shows that |π| > 1

|s|ρ(X) > sup
k>1
||(∂x/s)〈k〉||X . Hence

by Proposition 3.1.4(b), O(X)◦[∂](m)/(π) is a commutative O(X)◦/(π)-algebra of
finite presentation. It remains to prove that O(X)◦/(π) is a finitely presented
K◦/(π)-algebra.

Now, O(X)◦ is a topologically finitely generated K◦-algebra by [34, 2.4.8(a)].
Thus O(X)◦ is a topologically finitely presented K◦-algebra by [18, Proposition
1.1(c)] and so O(X)◦/(π) is a finitely presented K◦/(π)-algebra as required. �

Definition 3.1.7. When X and s satisfy the hypotheses of Corollary 3.1.6 we let“D(m)
s (X) denote the p-adic completion of D(m)

s (X) and“D(m)
s (X)K = K ⊗K◦ “D(m)

s (X).



32 KONSTANTIN ARDAKOV AND SIMON WADSLEY

It follows from the presentation of D(m)
s (X) as a free O(X)◦-module in Proposi-

tion 3.1.4 that elements of “D(m)
s (X)K can be written uniquely as convergent sums∑

k>0

fk(∂x/s)
〈k〉 with fk ∈ O(X) and |fk|X → 0 as k →∞.

We will view “D(m)
s (X)K as a K-Banach algebra with unit ball “D(m)

s (X), so that

the defining Banach norm on “D(m)
s (X)K is given by∣∣∣∣∣∣∑k>0

fk(∂x/s)
〈k〉

∣∣∣∣∣∣ = sup
k>0
|fk|X .

Notation 3.1.8. Let $m := (pm)!
1
pm ∈ K so that |$m| = p−

pm−1
pm(p−1) > $.

Theorem 3.1.9. Let X be an affinoid subdomain of A that is split over K. Let
s ∈ K× be such that |s| > 1/ρ(X). There is an isomorphism of K-Banach algebras

D|$ms|(X) ∼= “D(m)
s (X)K .

Before we prove Theorem 3.1.9 we need another p-adic binomial estimate.

Lemma 3.1.10. For all k > 0, 1 6 |k!|
|qk!||$m|k 6 p

m.

Proof. Recalling from Notation 3.1.1(a) that k = qkp
m + rk with 0 6 rk < pm, and

that sp(n) denotes the sum of the p-adic digits of n, we compute directly

(p− 1) logp

Å |k!|
|qk!||$m|k

ã
= (qk − sp(qk))− (k − sp(k)) +

k(pm − 1)

pm

= sp(rk)− rk
pm
6 (p− 1)m

since 0 6 rk < pm. Since also sp(rk)− rk
pm > 0 the result follows. �

Proof of Theorem 3.1.9. Let r = |$ms| so that Dr(X) = O(X)〈∂/r〉. Since B :=“D(m)
s (X)K is a K-Banach algebra we may use Lemma 2.2.10 to construct a K-

Banach algebra homomorphism

φ : O(X)〈∂/r〉 → B :

the inclusion ι : O(X)→ B is a K-Banach algebra homomorphism and ∂xf−f∂x =
∂x(f), so there is a unique way to define φ that extends ι and sends ∂ to ∂x provided
sup`>0

(
|∂`x|B/r`

)
<∞. But∣∣∣∂`x∣∣∣

B
=

∣∣∣∣ `!q`!s`∂〈`〉
∣∣∣∣
B

=

∣∣∣∣ `!

q`!$`
m

∣∣∣∣ r` 6 pmr`
by Lemma 3.1.10. Now if f0, f1, . . . ∈ O(X) with |fk|rk → 0 as k →∞, then

φ

Ñ∑
n>0

fk∂
k

é
=
∑
k>0

fk
k!

qk!
sk∂〈k〉.

Therefore, because ∣∣∣∣∣∣∑k>0

fk
k!

qk!
sk∂〈k〉

∣∣∣∣∣∣
B

= sup
k>0

Å
|fk|rk

∣∣∣∣ k!

qk$k
m

∣∣∣∣ã ,
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we see, using Lemma 3.1.10 again, that φ is a bijection with continuous inverse.
Therefore it is an isomorphism of K-Banach algebras. �

Corollary 3.1.11. Suppose that X is an affinoid subdomain of A and r ∈
√
|K×|

with r > r(X). Then Dr(X) is Noetherian.

Proof. Using [8, Theorem 4.1.8], choose a finite extension K ′ of K such that X is
split over K ′. Then Lemma 2.3.13 and Corollary 2.3.17 tell us that

r > r(X) = r(XK′) = $/ρ(XK′).

Since (|$m|)∞m=0 is a decreasing sequence converging to $ from above, there is
some m > 0 such that r > |$m|/ρ(XK′). By enlarging K ′ if necessary we may also
assume that r/|$m| = |s| for some s ∈ K ′×.

Now by Theorem 3.1.9, Dr(XK′) ∼= “D(m)
s (XK′)K′ and the latter is Noetherian

by Corollary 3.1.6 and [9, Theorem 4.1.5], so the former is too.
Lemma 2.3.11(a) now gives an isomorphism of K ′-Banach algebras

Dr(XK′) ∼= K ′ ⊗Dr(X).

Since K ′ is faithfully flat over K, we deduce that Dr(X) is also Noetherian. �

3.2. Discussion of flatness. Our main goal for the remainder of §3 is to prove
the following theorem about the rings introduced at Definition 2.3.9(d).

Theorem 3.2.1. If s > r > 0 and Y ⊆ X both lie in A(∂x/r)
†, then D†r(Y ) is a

flat D†s(X)-module on both sides.

In this section will will perform some reductions and record some technical results
from [9] that we will use to prove Theorem 3.2.1. First, we recall some very general
results about flatness and direct limits.

Lemma 3.2.2. Let U be a ring and suppose Mi is a directed system of flat U -
modules. Then colimMi is a flat U -module.

Proof. This is [28, Proposition 5.4.6]. �

Lemma 3.2.3. Let U be a K-algebra, M a U -module and K ′ a field extension of
K. If MK′ := K ′ ⊗M is flat over UK′ := K ′ ⊗ U then M is flat over U .

Proof. We assume that M is a left module but the same argument works for right
modules. Let N be any right U -module and write NK′ = K ′ ⊗N . For i > 0,

K ′ ⊗ TorUi (N,M) ∼= Tor
UK′
i (NK′ ,MK′) = 0

sinceMK′ is flat over UK′ . AsK ′ is faithfully flat overK it follows that TorUi (N,M) =
0 for all i > 0 and so M is flat as claimed. �

The following lemma can be found for commutative rings at [45, 05UU] with
essentially the same proof.

Lemma 3.2.4. Let Ri be a directed system of rings and R = colimRi. Suppose
that M is an R-module that is flat over Ri for each i. Then M is flat as an
R-module.
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Proof. Again we assume that M is a left module but an identical argument works
for right modules.

Let I be a finitely generated right ideal of R. By [28, Proposition 5.4.11] it
suffices to show that I ⊗RM →M is an injection. Since I is finitely generated we
can find an index i such that a set of its generators lies in the image of Ri → R.
That is we may choose a finitely generated right ideal Ii of Ri such that I = IiR
(suitably interpreted). Then I = colimj>i IiRj and I ⊗RM →M is the colimit of
the maps IiRj ⊗Rj M → M over all j > i. Since M is flat over each Rj the maps
in this directed family are all injective by [28, Proposition 5.4.11] again. Since
colimits commute with tensor products and colimits over directed sets are exact
we’re done. �

We now reduce Theorem 3.2.1 to proving the flatness of the restriction maps in
the sheaves Dr constructed in Proposition 2.3.6(a).

Proposition 3.2.5. Suppose that Dr(Y ) is a flat Ds(X)-module on both sides

whenever s, r ∈
√
|K×| with s > r and Y ⊆ X both lie in A(∂x/r). Then Theorem

3.2.1 holds.

Proof. Suppose that whenever s′, r′ ∈
√
|K×| with s′ > r′ and Y ⊆ X both lie

A(∂x/r
′) then Ds′(X)→ Dr′(Y ) is flat on both sides.

To prove Theorem 3.2.1, pick s > r > 0, Y ⊆ X in A(∂x/r)
†. Then for every

r′ > r, X,Y ∈ A(∂x/r
′). Now Lemma 3.2.2 gives that Ds′(X) → D†r(Y ) is flat

on both sides whenever s′ ∈
√
|K×| and s′ > r, since D†r(Y ) = colimr′>r Dr′(Y )

and we may view the colimit as only running over r′ ∈ (r, s′) ∩
√
|K×|. Then

Lemma 3.2.4 gives that D†s(X) → D†r(Y ) is flat on both sides, as required, since
D†s(X) = colims′>sDs′(X) and again we may view the colimit as only running over

s′ ∈
√
|K×|. �

Finally, we recall a couple of results from [9, §4.1] that will help us prove the
flatness of the maps between the Banach algebras that appear in Proposition 3.2.5.
For both, we suppose that π ∈ K◦◦ such that:

• U is a π-adically complete and separated and flat K◦-algebra,
• U/πU is a commutative K◦/πK◦-algebra of finite presentation,
• U := K ⊗K◦ U .

Proposition 3.2.6 (Proposition 4.1.7 of [9]). Suppose that V is another π-adically
complete, separated and flat K◦-algebra which contains U . Let y ∈ V, and sup-
pose that the map U/πU → V/πV extends to an K◦/πK◦-algebra isomorphism
(U/πU)[Y ] ∼= V/πV which sends Y to y + πV. Let C be the centraliser of y in U .
Then

(a) V := K ⊗K◦ V is a flat U -module on both sides, and
(b) for every finitely generated U -module M there is a natural isomorphism of

C〈Y 〉-modules ηM : M〈Y 〉
∼=−→ V ⊗U M .

Theorem 3.2.7 (Theorem 4.1.8 of [9]). Suppose that y ∈ U is such that [y,U ] ⊆
πU , that V is the π-adic completion of U [Y ; ad(y)] and V = K ⊗K◦ V. Then
V/(Y − y)V is a flat U -module on both sides.

3.3. Flatness of divided power algebras under change of base. Our goal for
this section is to prove the following theorem.
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Theorem 3.3.1. If r ∈
√
|K×| and Y ⊆ X both lie in A(∂x/r), then Dr(Y ) is a

flat Dr(X)-module on both sides.

Let s ∈ K× and consider the following two affinoid subdomains of X:

X1 := X
(x
s

)
and X2 := X

( s
x

)
.

Thus, we might have something like the following picture.

X X1 X2

Define ρ := min(ρ(X), |s|) and note that ρ 6 min ρ(X1), ρ(X2). Recall from No-

tation 3.1.8 that $m = (pm)!
1
pm . We will first deal with the special case where

the following Hypothesis holds; we will see in the proof of Theorem 3.3.1 that the
general case can be reduced to this one.

Hypothesis 3.3.2.

• r ∈ |K×|;
• X ∈ A(∂x/r) is split over K;
• Y is non-empty, and Y = X1 = X(xs ) or Y = X2 = X( sx ) for some s ∈ K×,
• there exists m ∈ N such that $m ∈ K× and |$m|/r < ρ.

We will assume that Hypothesis 3.3.2 holds throughout §3.3. The above
conditions imply that there exists an element t ∈ K× such that |t| = r/|$m|, which
we fix from now on. Then since |t| > 1/ρ(X) and |t| > 1/ρ(Xi) for i = 1, 2, Theorem
3.1.9 gives us isomorphisms

Dr(X) ∼= “D(m)
t (X)K and Dr(Xi) ∼= “D(m)

t (Xi)K for i = 1, 2.

Thus proving the flatness of Dr(X) → Dr(Xi) for i = 1, 2 amounts to proving the

flatness of “D(m)
t (X)K → “D(m)

t (Xi)K .
Let Z := X × D with a coordinate y on D. Then O(Z) = O(X)〈y〉, and

the projection map Z → X induces K-Banach algebra isomorphisms O(X1) ∼=
O(Z)/(sy − x) and O(X2) ∼= O(Z)/(xy − s) via maps pi : O(Z) → O(Xi) for
i = 1, 2.

Let δ1, δ2 be the bounded K-linear derivations of O(Z) that extend ∂x on O(X)
and which satisfy δ1(y) = 1/s and δ2(y) = −y2/s. Thus δ1(sy − x) = 0 and
δ2(xy − s) = −(xy − s)y/s, so

D(X1) ∼= O(Z)[δ1]/(sy − x) and D(X2) ∼= O(Z)[δ2]/(xy − s).

Lemma 3.3.3. Let i = 1 or i = 2. Then for all n > 0 we have

(15) ||δ〈n〉i ||Z 6 ρ
−n.
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Proof. Since δ
〈n〉
i = qn!δ

[n]
i with qn! ∈ N, it suffices to show that ||δ[n]

i ||Z 6 ρ−n.
We compute that for all k,m > 0, we have

δ
[k]
1 (ym) =

Ç
m

k

å
ym−k/sk

and

δ
[k]
2 (ym) =

Ç
m+ k − 1

k

å
ym+k/(−s)k.

This means that |δ[k]
i (ym)|Z 6 1/|s|k for all k,m > 0. Let f ∈ O(X) and m,n > 0.

Using Lemma 2.3.15 and the fact that ρ = min(ρ(X), |s|), we have∣∣∣δ[n]
i (fym)

∣∣∣
Z

=

∣∣∣∣∣∣ ∑j+k=n

∂[j]
x (f)δ

[k]
i (ym)

∣∣∣∣∣∣
Z

6 sup
j+k=n

|f |X
ρ(X)j

· 1

|s|k
6
|f |X
ρn

.

Hence ||δ[n]
i ||Z 6 ρ−n for all n > 0 as required. �

The following Lemma will enable us to perform the construction of Definition

2.1.7 with A = D(m)
t (X) and δ = ad(x/s).

Lemma 3.3.4. ad(xs ) : D(m)
t (X) → D(m)

t (X)K is locally nilpotent and has image

contained in 1
tsD

[m]
t (X).

Proof. Suppose k > 1. Then by Lemma 3.1.2(b), we have[
(∂x/t)

〈k〉,
x

s

]
=

k∑
i=1

®
k

i

´
(∂x/t)

〈i〉
(x
s

)
(∂/t)〈k−i〉

=
1

ts

®
k

1

´
(∂x/t)

〈k−1〉 ∈ 1

ts
D(m)
t (X).

By Proposition 3.1.4(a) applied with ∂ = ∂x/t, we know that {(∂x/t)〈k〉 | k > 0} is

a free generating set for D(m)
t (X) = O(X)◦[∂x/t]

(m) as a left O(X)◦-module. Now
use the fact that ad(xs ) is an O(X)◦-linear derivation. �

Notation 3.3.5. The following notation will be used in the remainder of §3.3:

• D = D(m)
t (X) and D = “DK ;

• Di = D(m)
t (Xi) and Di = (D̂i)K for i = 1, 2;

• Ui = O(Z)◦[δi/t]
(m) and Ui = (“Ui)K for i = 1, 2;

• V1 = D[T ; ad(x/s)] and V1 = (V̂1)K ;

• V2 = D[T−1; ad(x/s)] and V2 = (V̂2)K .

We will establish that, for i = 1, 2, there is an isomorphism of K-Banach algebras

Vi
∼=−→ Ui, and also that Di

∼= Vi/(vi) for explicit central elements vi of Vi. Together
with Propositions 3.2.6 and 3.2.7, this will allow us to prove that Di is flat over D.

Proposition 3.3.6. The K◦-algebras D, D1, D2, U1 and U2 are all p-adically
separated and flat K◦-algebras. There exists π ∈ K with 0 < |π| < 1, such that
their reductions mod π are all finitely presented commutative algebras over K◦/(π).
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Proof. Since X is split over K, we know that ρ(X) ∈ |K×|. Since also s, t ∈ K×,
we can find an element π ∈ K such that

(16) |π| = max

ß
|p|, 1

ρ|t|

™
.

Since |p| < 1 and 1
ρ|t| < 1 by Hypothesis 3.3.2, we see that 0 < |π| < 1. Now,

because X, X1 and X2 are split over K and

|t| > ρ−1 > max{ρ(X)−1, ρ(X1)−1, ρ(X2)−1},
the cases D, D1 and D2 follow from Corollary 3.1.6. To deal with Ui for i = 1 or
i = 2, we can apply Lemma 3.3.3 to see that

sup
n>1
||(δi/t)〈n〉|| 6 sup

n>1

1

(ρ|t|)n
6

1

|ρ|t
< 1.

Now we can apply Proposition 3.1.4 with X = Z and ∂ = δi/t. �

Lemma 3.3.7. For n > 0, i = 1, 2 and π given by Proposition 3.3.6:

(a) O(Z)◦/(πn) is a free O(X)◦/(πn)-module on {y` + (πn) | ` > 0};
(b) Ui/(πn) is a free O(X)◦/(πn)-module on {∂〈k〉i y` + (πn) | k, ` > 0};
(c) V1/(π

n) is a free O(X)◦/(πn)-module on {∂〈k〉x T ` + (πn) | k, ` > 0};
(d) V2/(π

n) is a free O(X)◦/(πn)-module on {∂〈k〉x T ` + (πn) | k > 0, ` 6 0}.

Proof. (a) O(Z) = O(X)〈y〉, so O(Z)◦ = O(X)◦〈y〉 and the result follows easily.

(b) Since ∂
〈k〉
i y` ≡ y`∂

〈k〉
i modπ this follows from (a) together with Proposition

3.1.4 and [32, I.2.3.17].
(c) and (d) follow from Proposition 3.1.4 together with the definitions of A[T ; δ]

and A[T−1; δ] from §2.1. �

Lemma 3.3.8. For each k > 0 we have the following equality in U2:

y(δ2/t)
〈k〉 =

∑
n>0

(− ad(x/s))n
Ä
(δ2/t)

〈k〉
ä
yn+1.

Proof. By Lemma 3.3.4, ad(x/s) acts locally nilpotently on D. Hence the sum on
the right hand side of the formula is finite. Since U2 is flat over K◦ we may invert
p and then after multiplication by a scalar in K reduce to proving that

yδk2 =
∑
n>0

(− ad(x/s))n(δk2 )yn+1

holds inside O(Z)[δ2]. Now we recall that `δ2 = ad(δ2)+rδ2 so, using a computation
from the proof of Lemma 3.3.3, we have

yδk2 = (`δ2 − ad(δ2))k(y)

=
k∑

n=0

Ç
k

n

å
δk−n2 (−δ2)n(y)

=
k∑

n=0

Ç
k

n

å
δk−n2

Ç
n

n

å
n!yn+1/sn.

On the other hand, we saw in the proof of Lemma 3.3.4 that

(− ad(x/s))n(δk2 ) = 1/sn
Ç
k

n

å
n!δk−n2 .



38 KONSTANTIN ARDAKOV AND SIMON WADSLEY

The result now follows easily. �

Proposition 3.3.9. There are D(X)-linear isomorphisms of K-Banach algebras
φi : Vi → Ui with φ1(T ) = y and φ2(T−1) = y.

Proof. Since δi|O(X) = ∂x, the natural map O(X)→ O(Z) arising from the projec-
tion Z → X extends to maps D(X) → D(Z) sending ∂x to δi. It is easy to verify
that these in turn restrict to ring homomorphisms gi : D → Ui.

Since y − x/s is central in U1 it is easy to verify that for each P ∈ D,

yg1(P )− g1(P )y = (x/s)g1(P )− g1(P )(x/s) = g1(ad(x/s)(P )).

The universal property of V1 given by Proposition 2.1.1 thus provides that g1 ex-
tends to a unique ring homomorphism h1 : V1 → U1 such that h1(T ) = y. This
in turn induces ring homomorphisms h1,n : V1/(π

n) → U1/(π
n) that we claim are

isomorphisms. To see this is suffices to observe that h1,n is O(X)◦/(πn)-linear and

sends ∂
〈k〉
x T ` + (πn) to δ

〈k〉
1 y` + (πn); now apply Lemma 3.3.7(b,c). It follows that

ĥ1 : V̂1 → Û1 is an isomorphism and we may take φ1 = (ĥ1)K .
Similary, since every element ofD is anO(X)◦-linear combination of the elements

(∂x/t)
〈k〉 by Proposition 3.1.4(a), and since O(Z) is commutative, it follows from

Lemma 3.3.8 that inside U2, for all P ∈ D we have

yg2(P ) =
∑
n>0

g2((− ad(x/s))n(P ))yn+1.

Then the universal property of V2 given by Proposition 2.1.8 shows that g2 extends
to a unique ring homomorphism h2 : V2 → U2 sending T−1 to y. Again this induces
ring homomorphisms h2,n : V2/(π

n) → U2/(π
n) that we claim are isomorphisms.

To see this is suffices to observe that each map h2,n is O(X)◦/(πn)-linear and sends

∂〈k〉T−` + (πn) to ∂〈k〉y` + (πn) so we can appeal to Lemma 3.3.7(b,d) again and

then see that φ2 = (ĥ2)K is an isomorphism as before. �

Proposition 3.3.10. Let i = 1 or i = 2. There is an exact sequence of Vi-modules

0→ Vi
·vi−→ Vi → Di → 0,

where the vi is the central element of Vi given by

v1 = sT − x and v2 = xT−1 − s.

Proof. Let u1 = sy − x and u2 = xy − s. By Proposition 3.3.9 it suffices to show
that the sequences

0→ U1
·u1−→ U1 → D1 → 0 and 0→ U2

·u2−→ U2 → D2 → 0

are exact. We may pick n > 0 such that πnu1, π
nu2 ∈ O(Z)◦. Since

0→ O(Z)
·ui→ O(Z)

pi→ O(Xi)→ 0

is exact, it follows that

0→ O(Z)◦
·πnui−→ O(Z)◦ → O(Xi)

◦ → 0

has π-torsion cohomology. Moreover the Banach Open Mapping Theorem, [41,
Proposition 8.6] tells us that the maps ·ui and pi are open onto their image and so
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there is some N > 0 such that πN annnihilates the cohomology groups. We can
then use Proposition 3.1.4 to deduce that

0→ Ui
·πnui→ Ui → Di → 0

also has cohomology groups annihilated by πN . Now apply [7, Lemma 3.6]. �

Proposition 3.3.11. Suppose that Hypothesis 3.3.2 holds. Then D1 and D2 are
flat as D-modules on both sides.

Proof. Let π be given by Proposition 3.3.6. Since “D is a π-adically complete and

separated K◦-algebra, flat over K◦ and “D/(π) is a commutative K◦/(π)-algebra of

finite presentation we will apply the results from §3.2 with U := “D.
By Proposition 3.3.10, D1

∼= V1/(sT −x)V1. By Lemma 3.3.4, [xs ,D] ⊆ 1
tsD. By

(16) we have |πts| > |s|/ρ. Since ρ = min(ρ(X), |s|) 6 |s|, we see that | 1
ts | 6 |π|

which implies that 1
tsD ⊆ πD. We can now apply Theorem 3.2.7 with y = x/s to

deduce that D1
∼= V1/(T − x

s )V1 is a flat D-module.
Next, by Proposition 3.3.10, we have a presentation D2

∼= V2/v2V2 where v2 =
xT−1 − s ∈ V2. By [7, Proposition 4.4] applied to the ring map U → V2 and the
element v2 ∈ V2, to prove the flatness of D2 as a D-module it suffices to prove that
v2 is a regular element in V2, V2 is flat as a right U -module and that V2 ⊗D M is
v2-torsion-free for all finitely generated left D-modules M .

Note that in V2 we can use Lemma 2.1.6 to see that for all P ∈ D we have

ad(T−1)(P ) =
∞∑
n=1

(−1)n ad(x/s)n(P )T−n−1.

We saw above that Lemma 3.3.4 implies that ad(x/s)n(D) ⊆ 1
tsD ⊆ πD for all n >

1. Hence ad(T−1)(D) ⊆ πV2, so the hypotheses of Proposition 3.2.6 are satisfied

with U = “D, V = V̂2 and y = T−1. The centraliser of T−1 in D certainly contains
O(X). Proposition 3.2.6 now tells us that V2 is a flat U -module on both sides, and
that for every finitely generated D-module M there is a natural isomorphism of
O(X)〈T−1〉-modules M〈T−1〉 ∼= V2 ⊗D M . We can now apply [7, Lemma 4.1(a)]
with t = T−1 and f = x/s to see that V2 ⊗D M is v2-torsion-free for every finitely
generated D-module M . In particular, setting M = D shows that v2 is a regular
element in V2. �

Proof of Theorem 3.3.1. We may certainly assume that Y 6= ∅ as the result is trivial
otherwise. By Lemma 3.2.3 and Lemma 2.3.11(a) we may replace K by any finite
extension. In particular, by [8, Theorem 4.1.8] we may assume that X and Y are
both split over K and r ∈ |K×|.

If Y =
⋃n
i=1 Yi is a disjoint union of cheeses then Dr(Y ) =

⊕n
i=1Dr(Yi) and so

by [28, Proposition 5.4.2] we may further assume that Y is a single cheese.
Next we observe that as r(Y ) < r, ρ(Y ) > $/r by Corollary 2.3.17. That is

Y = CK(α, s) for some α, s satisfying the conditions of [8, Definition 4.1.1] and
moreover |si| > $/r for all i = 0, . . . , g. Since Y ⊂ X if we define X0 = X(x−α0

s0
)

and Xi = Xi−1( si
x−αi ) for i = 1, . . . , g then we see that Xg = Y . Then, since

a composition of flat morphisms is flat, an induction argument reduces us to the
cases Y = X(x−αs ) and Y = X( s

x−α ) where α ∈ K and s ∈ K×. By a change of
coordinate x 7→ x− α, we may assume that α = 0.
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Since Y lies in A(∂x/r) by assumption, applying Corollary 2.3.17 shows that

|s| > ρ(Y ) = $/r(Y ) > $/r.

Since $m/r is a decreasing sequence converging to $/r from above, we can find a
sufficiently large m such that ρ(Y ) > |$m|/r. Since Y = X(x/s) or X(s/x), it is
clear from Definition 2.3.14 that ρ(X) > ρ(Y ). Hence

ρ = min(ρ(X), |s|) > ρ(Y ) > |$m|/r.
By further enlarging K if necessary, we may assume that $m ∈ K×, and now all
conditions of Hypothesis 3.3.2 are satisfied.

Choose any t ∈ K× with |t| = r/|$m|. Theorem 3.1.9 tells us that

Dr(X) ∼= ÿ�D(m)
t (X) = D and Dr(Xi) ∼= Di for i = 1, 2.

Hence Dr(X1) and Dr(X2) are flat Dr(X)-modules on both sides by Proposition
3.3.11. Since either Y = X1 = X(x/s) or Y = X2 = X(s/x), we conclude that
Dr(Y ) is a flat Dr(X)-module on both sides. �

3.4. Flatness of divided power algebras in cotangent direction. Our goal
in this section is to prove the following Theorem and then use it to complete the
proof of Theorem 3.2.1.

Theorem 3.4.1. Let s, r ∈
√
|K×| be given with s > r, and suppose that X lies

in A(∂x/r). Then Dr(X) is a flat Ds(X)-module on both sides.

As in §3.3, we can enlarge K to reduce to the case where X is split over K. We
can also assume that |K|× contains any particular finite set of elements in

√
|K|×.

We will first deal with the special case where the following Hypothesis holds; we
will see in the proof of Theorem 3.4.1 given at the end of §3.4 below that the general
case can be reduced to this one.

Hypothesis 3.4.2.

• X is an affinoid subdomain of A split over K;
• m ∈ N is such that p−1/pm ∈ K×;
• s, r ∈ K× are such that |s| > |r| > 1/ρ(X) and |s/r| < |p|−1/pm ;

• π ∈ K× is such that max
¶
|p|, 1

|r|ρ(X)

©
6 |π| < 1.

We will assume that Hypothesis 3.4.2 holds until the end of the proof
of Corollary 3.4.9 below.

Definition 3.4.3. Let U0 = D(m)
s (X). For each i = 0, . . . ,m, define inductively

U i+1 := U i[(∂x/r)〈p
i〉] ⊂ D(m)

r (X)

so that U0 ⊂ U1 = D(m)
s (X)[∂x/r] ⊂ U2 ⊂ · · · ⊂ Um+1 = D(m)

r (X).

We will show that for each i = 0, · · · ,m, ‘U i+1
K is flat as a ”U iK-module on both

sides. Then we will appeal to transitivity of flatness to deduce that “D(m)
r (X)K is

flat as a “D(m)
s (X)K-module on both sides. Then Theorem 3.1.9 will imply that

D|r$m|(X) is flat over D|s$m|(X).
First we prove an important generalisation of Proposition 3.1.4.

Proposition 3.4.4. Let i = 1, . . . ,m.
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(a) U i is a free O(X)◦-module with basis

Ti :=
¶

(∂x/r)
〈α〉(∂x/s)

〈piβ〉 : 0 6 α < pi, β > 0
©
.

(b) U i/(π) is a finitely presented commutative K◦/πK◦-algebra.

Proof. (a) Let k > 0. Recall from (14) that when we write k =
∑m−1
j=0 cjp

j + cpm

for some c0, . . . , cm−1 ∈ {0, . . . , p− 1} and c > 0, there is a unit u ∈ Z×p such that

(17) ∂〈k〉x = u

(
m−1∏
j=0

(∂〈p
j〉

x )cj

)
(∂〈p

m〉
x )c.

Using this equation together with Proposition 3.1.4, we see that Ti is a generating
set for U i as a O(X)◦-algebra and Ti is linearly independent over O(X)◦. To
show that U i = O(X)◦ · Ti it will suffice to prove that O(X)◦ · Ti is closed under
multiplication. Since O(X)◦ is closed under multiplication and K◦ ⊂ O(X)◦, it
will suffice to show that

(1) Ti · O(X)◦ ⊆ O(X)◦ · Ti, and
(2) Ti · Ti ⊆ K◦ · Ti.

(1) Let 0 6 α < pi and β > 0 be given, so that tα,β := (∂x/r)
〈α〉(∂x/s)

〈piβ〉 is a

typical element of Ti. We can of course rewrite tα,β = (r/s)p
iβ(∂x/r)

〈α〉(∂x/r)
〈piβ〉.

By applying (17) to ∂
〈α〉
x , ∂

〈piβ〉
x and ∂

〈α+piβ〉
x in turn, and using the fact that

0 6 α < pi, we find that

(18) tα,β = uα,β(r/s)p
iβ(∂x/r)

〈α+piβ〉 for some uα,β ∈ Z×p .

Let f ∈ O(X)◦. Then Lemma 3.1.2(b) tells us that

(19) ftα,β = uα,β(r/s)p
iβ

α+piβ∑
k=0

®
α+ piβ

k

´
(∂x/r)

〈α+piβ−k〉(f)(∂x/r)
〈k〉.

For each 0 6 k 6 α + piβ, write k = αk + piβk with 0 6 αk < pi and βk > 0, so
that necessarily we have βk 6 β. Then using (18) we have

(r/s)p
iβ(∂x/r)

〈k〉 =
(r/s)p

i(β−βk)

uαk,βk
tαk,βk ∈ K◦ · Ti.

This allows us to rewrite (19) as follows:

(20) ftα,β = uα,β

α+piβ∑
k=0

®
α+ piβ

k

´
(∂x/r)

〈α+piβ−k〉(f)
(r/s)p

i(β−βk)

uαk,βk
tαk,βk .

We have chosen π ∈ K× to satisfy max
¶
|p|, 1

|r|ρ(X)

©
6 |π| < 1, so D(m)

r (X)/(π) is

a commutative algebra by Corollary 3.1.6(b). This implies that

(21) (∂x/r)
〈j〉(f) ∈ πO(X)◦ for all j > 1.

Using (20), we can now see that ftα,β ∈ O(X)◦Ti, and hence Ti·O(X)◦ ⊆ O(X)◦·Ti.
(2) Let 0 6 α, α′ < pi be given. Using Lemma 3.1.2(a) together with (17) we

see that if α+ α′ < pi then

(∂x/r)
〈α〉(∂x/r)

〈α′〉 =

Æ
α+ α′

α

∏
(∂x/r)

〈α+α′〉,
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whereas if pi 6 α+ α′ < 2pi then

(∂x/r)
〈α〉(∂x/r)

〈α′〉 = u(s/r)p
i

Æ
α+ α′

α

∏
(∂x/r)

〈α+α′−pi〉(∂x/s)
〈pi〉

for some u ∈ Z×p . Similarly for β, β′ > 0, we have

(∂x/s)
〈piβ〉(∂x/s)

〈piβ′〉 =

Æ
pi(β + β′)

piβ

∏
(∂x/s)

〈pi(β+β′)〉.

Thus to see that K◦Ti is closed under multiplication it suffices to show that

(s/r)p
i〈α+α′

α

〉
∈ K◦ whenever 0 6 α, α′ < pi but α+ α′ > pi.

Now 0 6 α, α′ < pi implies that
{
α+α′

α

}
= 1. If in addition we have α+ α′ > pi,

there must be at least one carry when adding α and α′ p-adically. Therefore by
Kummer’s Theorem (Theorem 6.4.3) we have

vp

ÇÆ
α+ α′

α

∏å
= vp

ÇÇ
α+ α′

α

åå
> 1.

However we have assumed that |s| and |r| are sufficiently close, in the sense that

|s/r| 6 |p|−1/pm . This implies that |(s/r)pi | 6 |p|−pi/pm 6 |p|−1 as i 6 m, so

p(s/r)p
i ∈ K◦. Hence (s/r)p

i〈α+α′

α

〉
∈ K◦ as required.

(b) The commutativity of U i/(π) is clear given equations (20) and (21).
It follows from (a) that U i/(π) is a free O(X)◦-module on the image of Ti.

Moreover writing τα,β for the image of tα,β in U i/(π) we see, by (14), that the
O(X)◦/(π)-submodule U generated by {τ0,pm−iγ | γ > 0} is a polynomial algebra

U = O(X)◦/(π)[τ0,pm−i ]. Moreover U i is a free U -module on the finite set {τα,β |
0 6 α < pi, 0 6 β < pm−i}.

By the proof of Corollary 3.1.6(b), O(X)◦/(π) is a finitely presented K◦/(π)-
algebra. Thus, by [45, 00F4], U is also a finitely presented K◦/(π)-algebra. Finally
U i/(π) is a finitely presented K◦/(π)-algebra by [45, 0D46]. �

Recall that for each u ∈ D(X), ad(u) : D(X)→ D(X) is a K-linear derivation.

Lemma 3.4.5. For any i = 0, . . . ,m, we have ad
Ä
(∂x/r)

〈pi〉
ä

(U i) ⊆ πU i.

Proof. Let f ∈ O(X)◦. By Lemma 3.1.2(b), we have

ad
Ä
(∂x/r)

〈pi〉
ä

(f) =

pi−1∑
k=0

®
pi

k

´
(∂x/r)

〈pi−k〉(f) · (∂x/r)〈k〉.

Now (∂x/r)
〈pi−k〉(f) ∈ πO(X)◦ by (21) and (∂x/r)

〈k〉 ∈ U i for all k < pi by (17),
so the sum on the right hand side lies in πU i. By Proposition 3.4.4(a), we know
that U i is a free left O(X)◦-module with basis Ti. The result follows because

[(∂x/r)
〈pi〉, ft] = [(∂x/r)

〈pi〉, f ]t ∈ πU i for all t ∈ Ti. �

Lemma 3.4.6. For each i = 0, . . . ,m− 1,
Ä
(∂x/r)

〈pi〉
äp
∈ U0.

Proof. The assumption i+ 1 6 m implies that qpi = qpi+1 = 0. Hence ∂〈p
i〉 = ∂[pi]

and ∂〈p
i+1〉 = ∂[pi+1] by Definition 3.1.1(d), soÄ

(∂x/r)
〈pi〉
äp

=
pi+1!

(pi!)p
(∂x/r)

〈pi+1〉 =
pi+1!

(pi!)p
(s/r)p

i+1

(∂x/s)
〈pi+1〉.
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Now as vp(p
i!) = pi−1

p−1 , we can see that vp
Ä
pi+1!
(pi!)p

ä
= 1. Since i 6 m − 1 and

|s/r| 6 |p|−1/pm , we see that |(s/r)pi+1 | 6 |p|−1. Hence pi+1!
(pi!)p (s/r)p

i+1 ∈ K◦, soÄ
(∂x/r)

〈pi〉
äp
∈ K◦ · (∂x/s)〈p

i+1〉 ⊂ D(m)
s (X) = U0 as required. �

Notation 3.4.7. Let i = 0, . . . ,m.

• Let yi = (∂x/r)
〈pi〉.

• Let δi be ad(yi) viewed as a derivation of U i.
• Let Vi be the skew-Ore extension U i[Yi; δi].
• Let si = (r/s)p

i ∈ K◦.

Note that δi : U i → U i is well-defined by Lemma 3.4.5.

Proposition 3.4.8. For each 0 6 i 6 m there is a surjective ring homomorphism
φi : Vi � U i+1 extending the inclusion map U i → U i+1 and sending Yi to yi. The

kernel contains the central element siYi − (∂x/s)
〈pi〉 and

s2p−1
i ·

Ä
kerφi/Vi(siYi − (∂x/s)

〈pi〉)
ä

= 0.

Proof. We write zi = (∂x/s)
〈pi〉 = siyi ∈ U i. Note that zi and Yi commute in Vi.

The existence of φi follows from the universal property of the skew-Ore extension,
Proposition 2.1.1. Note that φi is surjective because U i+1 is generated by U i to-
gether with yi, by Definition 3.4.3. The element siYi− zi is central in the skew-Ore
extension Vi because siδi, ad(siyi) and ad(zi) define the same derivation U i → U i.
Moreover, φi (siYi − zi) = siyi − zi = 0, so Vi(siYi − zi) ⊆ kerφi.

We suppose first that i 6 m − 1. Lemma 3.4.6 gives that ypi ∈ U i, so that
(zi/si)

p ∈ U i. Then, writing n = qp+ r with 0 6 r < p and q > 0 we see that

(22) sp−1
i (zi/si)

n = sp−1−r
i zri (zi/si)

qp ∈ U i for all n > 0.

It follows that for any n > 0 we have

(23) sp−1
i (Yi − zi/si)n = sp−1

i

n∑
k=0

Ç
n

k

å
(−zi/si)kY n−ki ∈ Vi.

Take an element u =
l∑

n=0
unY

n
i ∈ kerφi with u0, · · · , ul ∈ U i. Then

s2p−1
i u =

l∑
n=0

s2p−1
i un(Yi − zi/si + zi/si)

n

=
l∑

n=0

n∑
k=0

Ç
n

k

å
uns

p−1
i (zi/si)

n−kspi (Yi − zi/si)
k.

When k > 1, we can rewrite the summand on the right hand side as follows:ÇÇ
n

k

å
un

å
·
Ä
sp−1
i (zi/si)

n−k
ä
·
Ä
sp−1
i (Yi − zi/si)k−1

ä
· (siYi − zi).

The first factor lies in U i, the second factor lies in U i by (22) and the third factor
lies in Vi by (23). Hence

s2p−1
i u ≡

l∑
n=0

s2p−1
i un(zi/si)

n modVi(siYi − zi).
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But since u ∈ kerφi, we have

(24) 0 = φi(s
2p−1
i u) =

l∑
n=0

s2p−1
i uny

n
i =

l∑
n=0

uns
2p−1
i (zi/si)

n

and we deduce that s2p−1
i u ∈ Vi(siYi − zi) as claimed.

Now we consider the case i = m. Again we suppose that u =
l∑

n=0
unY

n
m ∈ kerφm

with u0, · · · , ul ∈ Um. This time

0 = φm(slmu) =
l∑

n=0

slmuny
n
m =

l∑
n=0

sl−nm unz
n
m.

Thus

slmu =
l∑

n=0

sl−nm un(smYm − zm + zm)n

=
l∑

n=0

n∑
k=0

sl−nm

Ç
n

k

å
un(smYm − zm)kzn−km

∈ Vm(smYm − zm) +
l∑

n=0

sl−nm unz
n
m = Vm(smYm − zm).

So for all u ∈ kerφm, we can find t ∈ K◦ and v =
∑
n>0

vnY
n
m ∈ Vm such that

tu = v(smYm − zm). Expanding out this equation givesÑ
−tu0 +

∑
n>1

(smvn−1 − tun)Y nm

é
=
∑
n>0

vnY
n
mzm

and equating coefficients of Y nm we obtain

v0zm = −tu0 and vnzm = (smvn−1 − tun) for all n > 1.(25)

Now we recall from Proposition 3.4.4(a) that Um is a free O(X)◦-module on

Tm = {(∂x/r)〈α〉(∂x/s)〈p
mβ〉 : 0 6 α < pm, β > 0}.

Using (14), we see that (∂x/s)
〈pmβ〉 only differs from zβm =

(
(∂x/s)

〈pm〉)β by a
p-adic unit, for any β > 0. Therefore

T ′m := {(∂x/r)〈α〉zβm : 0 6 α < pm, β > 0}

is also a basis for Um as a O(X)◦-module. Now right multiplication by zm in
Um maps T ′m to T ′m and so if wzm ∈ tUm for some w ∈ Um then w ∈ tUm.
Using (25) we thus see inductively that vn ∈ tUm for all n > 0. It follows that
v/t ∈ Vm and so u = (v/t)(smYm − zm) ∈ Vm(smYm − zm). We have shown that
kerφm = Vm(smYm − zm), which is even stronger than what we need. �

Corollary 3.4.9. The homomorphism ‘φi,K : ”ViK → ‘U i+1
K induces an isomorphism”ViK/(Yi − yi) ∼=−→ ‘U i+1

K .
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Proof. By Proposition 3.4.8, the complex 0 → Vi(siYi − zi) → Vi
φi−→ U i+1 → 0

has cohomology killed by s2p−1
i . In this situation, [7, Lemma 3.6] tells us that the

functor “()K turns this complex into a short exact sequence. Hence the result. �

Proof of Theorem 3.4.1. We note that by Lemma 3.2.3 and Lemma 2.3.11(a) it will
suffice to prove this result after replacing K by a finite extension. In particular by
[8, Theorem 4.1.8] we may assume that X splits over K and s, r ∈ |K×|. Then
r > r(X) = $/ρ(X) by Corollary 2.3.17. We may also assume s > r.

Since the sequence |$m| converges to $ from above, we may choose m sufficiently
large, so that r > |$m|/ρ(X). We fix this m for the rest of this proof. Now, we
enlarge K if necessary, to ensure that $m ∈ K× and p−1/pm ∈ K×. We can then
choose s′, r′ ∈ K such that |$ms

′| = s and |$mr
′| = r. By enlarging K further, we

may assume that K× contains an element π such that max
¶
|p|, 1

|r′|ρ(X)

©
6 |π| < 1.

Now since r < s we see that 1/ρ(X) < |r′| < |s′|. Then by Theorem 3.1.9,

Ds(X) ∼= “D(m)
s′ (X)K and Dr(X) ∼= “D(m)

r′ (X)K .

We first consider the case when s and r are sufficiently close, in the sense that

1 < s/r < |p|−1/pm .

After this assumption, since |s′/r′| = s/r, we note that all conditions of Hypothesis
3.4.2 are satisfied for the elements s′ and r′ of K× in place of s and r, respectively.

We form U0 := D(m)
s′ (X), and inductively, U i+1 := U i[(∂x/r′)〈p

i〉] ⊂ D(m)
r′ (X)

as in Definition 3.4.3, for each i = 0, · · · ,m. We let Vi be the skew-Ore extension

U i[Yi; δi] where δi : U i → U i is the derivation ad(yi) with yi := (∂x/r
′)〈p

i〉, as
in Notation 3.4.7. Lemma 3.4.5 ensures that [yi,U i] ⊆ πU i. Now Theorem 3.2.7

together with Corollary 3.4.9 imply that ‘U i+1
K
∼= ”ViK/(Yi−yi) is a flat ”U iK-module on

both sides. By the transitivity of flatness, we see that ’Um+1
K = “D(m)

r′ (X)K = Dr(X)

is a flat ”U0
K = “D(m)

s′ (X)K = Ds(X)-module on both sides, as claimed.
Returning to full generality, we can find a sequence r = r0 < r1 < . . . < rN = s,

all in |K×|, such that 1 < ri/ri−1 6 |p|−1/pm for each 1 6 i 6 N . The transitivity
of flatness now reduces us to the special case considered above. �

Proof of Theorem 3.2.1. By Proposition 3.2.5 it suffices to show that if s, r ∈√
|K×| with s > r and Y ⊆ X both lie in A(∂x/r), the map Ds(X) → Dr(Y )

is flat on both sides. By Theorem 3.4.1 Ds(X)→ Dr(X) is flat on both sides, and
by Theorem 3.3.1, Dr(X) → Dr(Y ) is flat on both sides. We’re now done by the
transitivity of flatness. �

4. Overconvergent D-modules

4.1. The Huber space and overconvergent sheaves. Recall from [48, §5] that

to every rigid analytic space X we can associate a topological space X̃ which we call
the Huber space of X. The elements of X̃ are the prime filters on the admissible
open subsets of X. The sets of the form Ũ := {p ∈ X̃ : U ∈ p} as U ranges

over the admissible open subsets of X form a basis for the topology on X̃. If X is
quasi-compact and quasi-separated (qcqs), then X̃ is quasi-compact but in general

not Hausdorff. There is a set-theoretic embedding X ↪→ X̃ given by x 7→ mx,
where mx is the principal maximal filter consisting of the admissible open subsets
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of X containing x. We will identify X with its image in X̃ via this embedding.
By [48, §5] there is an equivalence of categories between the abelian sheaves on X

and the abelian sheaves on X̃. Given an abelian sheaf F on X, we will denote the
corresponding sheaf on X̃ by F̃ ; it follows from the proof of [48, Theorem 1] that

F̃(W̃ ) = F(W ) for any admissible open subset W of X.

Definition 4.1.1. Let X be a rigid analytic space, let U be an admissible open
subset of X and let F be an abelian sheaf on X.

(a) Let i : Ũ → X̃ denote the inclusion of the closure of Ũ into X̃.
(b) Let FU be the abelian sheaf on X defined by›FU = i∗i

−1F̃ .

In the setting of Definition 4.1.1, i−1 is left adjoint to i∗, and the counit of the
adjunction gives a natural morphism F → FU called restriction.

Note that ›FU is denoted F̃
Ũ

in [29, §2.3]. This construction is local, in the
following sense.

Lemma 4.1.2. Let X be a rigid analytic space, let U be an admissible open subset
of X and let F be an abelian sheaf on X. Let Y be another admissible open subset
of X. Then there is a natural isomorphism of abelian sheaves on Y

(FU )|Y ∼= (F|Y )U∩Y .

Proof. Because Ỹ is open in X̃, we deduce from [19, Chapter I, §1.6, Proposition

5] that Ỹ ∩ Ũ is the closure in Ỹ of Ỹ ∩ Ũ = ‡Y ∩ U . Let f : Ỹ ↪→ X̃ be the open

inclusion. Applying the formula [29, (2.3.19)] with Z := Ũ gives·�(FU )|Y = f−1(F̃
Ũ

) = (f−1F̃)
f−1(Ũ)

= (f−1F̃)‡U∩Y Ỹ = „�(F|Y )U∩Y .

Now use the equivalence of categories Ab(Y ) ∼= Ab(Ỹ ) mentioned above. �

The following result will prove useful later.

Proposition 4.1.3. Suppose that U is an admissible cover of X that is totally
ordered by inclusion and F is an abelian sheaf on X. Then the restriction maps
F → FU for U ∈ U induce an isomorphism

F
∼=→ lim
←−
FU .

Proof. If U, V ∈ U with U ⊂ V then, by [29, Proposition 2.3.6(iii)]

FU = (FV )U

and so it is easy to verify that there is a natural morphism F → lim
←−
FU with the

connecting maps in the limit also given by restriction.
Moreover, by Lemma 4.1.2, for U ⊂ V in U we can compute

FV |U = (F|U )U∩V = F|U .

Since for all W ∈ U there is V ∈ U containing both U and W , {V ∈ U | U ⊂ V }
is cofinal in U , and it follows that F|U ∼=

(
lim
←−
FV
)
|U for all U ∈ U . Since U is a

cover of X the result follows. �
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We note that the proof above works whenever U is a directed set under inclusion;
that is whenever any two elements of U have a common upper bound in U under
inclusion.

The operation F 7→ FU on OX -modules behaves well with respect to tensor
products.

Lemma 4.1.4. If F and G are two OX -modules and U is an admissible open subset
of X then there is a natural isomorphism

(F ⊗
OX
G)U
∼= FU ⊗

(OX)U

GU .

Proof. By [29, Proposition 2.3.10] we have

FU ∼= (OX)U ⊗OX
F and GU ∼= (OX)U ⊗OX

G.

Now tensor these together over (OX)U and contract tensors. �

We will now restrict to the case where X is an affinoid variety, and explain how
FU is related to the more well-known operations in rigid analytic geometry.

Definition 4.1.5. Suppose that X is affinoid, and U = X
Ä
g1

g0
, g2

g0
, · · · , gng0

ä
is a

rational subdomain of X, where g0, . . . , gn ∈ O(X) generate the unit ideal in O(X).

Following [22, Exercise 7.1.12(5)], for each s ∈
√
|K×| such that s > 1, define

U(s) := {a ∈ X : |gi(a)| 6 s|g0(a)| for all i = 1, . . . , n}.

These slightly larger rational subdomains of X form a cofinal system of wide open
neighbourhoods of U in X, by [22, Exercise 7.1.12(5)(a)]. Note that this notation
is slightly misleading because the sets U(s) depend in general on the choice of

presentation U = X
Ä
g1

g0
, g2

g0
, · · · , gng0

ä
of U as a rational subdomain of X.

Lemma 4.1.6. Let V be an admissible open subset of X. Then Ṽ contains the

closure Ũ in X̃ if and only if V contains U(s) for some s ∈
√
|K×| with s > 1.

Proof. Let r : X̃ →M (X) be the retraction map onto the Berkovich space M (X)

associated to X. We claim that Ũ = r−1(M (U)). To see this, note that M (U) =

r(Ũ) is closed in M (X) because M (U) is compact and M (X) is Hausdorff; since r is

continuous this gives Ũ ⊆ r−1(M (U)). For the other inclusion, let x ∈ r−1(M (U))

so that r(x) = r(y) for some y ∈ Ũ . Therefore x ∈ r−1(r(y)) = {y}, by [48, Lemma

3.2ii], and thus x ∈ {y} ⊆ Ũ as claimed.

It follows that Ṽ ⊇ Ũ if and only if r−1(a) ⊂ Ṽ for all a ∈M (U). Now, Ṽ ⊇ Ũ
implies that V is a wide open neighbourhood of U in the sense of [22, Exercise
7.1.12(4)]. Hence V contains some U(s) by [22, Exercise 7.1.12(5)(a)]. Conversely,
if V contains some U(s) then V is a wide open neighbourhood of U so for all
a ∈M (U) we can find an open neighbourhood Wa of r−1(a) contained in V . But

then Ũ = r−1(M (U)) =
⋃

a∈M (U)

r−1(a) ⊆
⋃

a∈M (U)

W̃a ⊆ Ṽ as required. �

Lemma 4.1.7. Let F be an abelian presheaf on an affinoid variety X, let U be a

rational subdomain of X, and let F†U be the presheaf

F†U : Y 7→ colim
s∈
√
|K×|,s>1

F(Y ∩ U(s))
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on the weak G-topology of X. Then F†U is a sheaf whenever F is a sheaf, and F†U
is acyclic whenever F is acyclic.

Proof. If Y := {Y1, . . . , Yn} is a finite affinoid covering of an affinoid subdomain Y

of X, and if s ∈
√
|K×| and s > 1, then Ys := {Y1 ∩U(s), . . . , Yn ∩U(s)} is a finite

affinoid covering of Y ∩ U(s). Hence there is an isomorphism of augmented Čech
complexes

C•aug(Y,F†U ) = colim
s∈
√
|K×|,s>1

C•aug(Ys,F).

The result follows, because cohomology commutes with filtered colimits. �

Theorem 4.1.8. We have FU = F†U for every abelian sheaf F on an affinoid variety
X and every rational subdomain U of X.

Proof. For every open subset V of C := Ũ , let

(i−1
preF̃)(V ) = colim F̃(W )

where the colimit runs over all open subsets W of X̃ containing i(V ) = V . This

defines a presheaf i−1
preF̃ on C, and i−1F̃ is the sheafification of this presheaf. We

will first show that

(26) (i−1
preF̃)(Z̃ ∩ C) = colim

s∈
√
|K×|,s>1

F(Z ∩ U(s))

for every affinoid subdomain Z of X. Consider the open subsets W of X̃ containing
Z̃∩C. Clearly those W already contained in Z̃ are cofinal; since Z̃∩C is the closure

of Z̃∩Ũ = ‡Z ∩ U in Z̃, Lemma 4.1.6 tells us that the subsets of the form (Z∩U)(s)˜

are cofinal amongst these. Now (26) follows since (Z ∩U)(s) = Z ∩U(s) for each s.
Because the functor Z 7→ colim

s∈
√
|K×|,s>1

F(Z ∩ U(s)) satisfies the sheaf con-

dition with respect to finite coverings of Z by affinoid subdomains of Z by Lemma
4.1.7, and because the Z̃ ∩ C form a basis for the topology of C, (26) now implies

that the values of i−1F̃ agree with those of i−1
preF̃ on these basic open sets.

Hence we can calculate that

FU (Y ) = (i∗i
−1F̃)(Ỹ ) = (i−1F̃)(Ỹ ∩ C) = colim

s∈
√
|K×|,s>1

F(Y ∩ U(s))

for every affinoid subdomain Y of X as claimed. �

Theorem 4.1.8 implies, in particular, that the sheaf F†U in fact does not depend
on the choice of presentation of U as a rational subdomain of X. We also see that
we should think of FU as being the sheaf of sections of F overconvergent into the
complement of U .

Corollary 4.1.9. Let U be a rational subdomain of the affinoid variety X and let
F be a coherent OX -module. Then the higher Čech cohomology of FU is zero.

Proof. This follows from Theorem 4.1.8, Lemma 4.1.7 and Tate’s Acyclicity Theo-
rem [22, Theorem 4.5.2 and Theorem 4.2.2]. �
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4.2. The D†$/t-module M(S, u, d)Ut . In this section we study a Kummer-type

finite étale covering of the rigid-analytic affine line minus finitely many rational
points. We recall that any K-scheme X of locally finite type has an analytification
Xan that is a rigid analytic space over K. The construction X 7→ Xan is functorial
in X, and we refer the reader to [35, §1.6] or [16, §5.4] for more details.

We fix S = {a1, . . . , ah}, a finite subset of K.

Definition 4.2.1. Given u ∈ K(x) a rational function with factorisation in K(x)

u = λ
n∏
i=1

(x− bi)ki ∈ K(x)

for some λ ∈ K×, pairwise distinct b1, . . . , bn ∈ K and non-zero integers k1, . . . , kn.
The set of finite zeroes/poles of u is

S(u) := {bi | i = 1, . . . n}.

We write vbi(u) = ki for i = 1, . . . n and vb(u) = 0 for b ∈ K\{b1, . . . , bn}.
We fix u such that S(u) is a subset of S. Thus

u = λ
∏
a∈S

(x− a)va(u)

with the va(u) integers that may be zero and some λ ∈ K×. We consider the open
embedding of rigid K-analytic spaces

j := A− S ↪→ A := (SpecK [x])an,

and we introduce the finite étale covering

f : Z(u, d)→ A− S

where

(27) Z(u, d) :=

Å
SpecK

ï
x,

1

x− a1
, · · · , 1

x− ah

ò
[z]/(zd − u)

ãan

.

Note that f∗OZ(u,d) is a free OA−S -module of rank d:

f∗OZ(u,d) =
d−1⊕
m=0

OA−Sz
m.

Since f : Z(u, d) → A − S is étale, the discussion in §2.4 shows that f∗OZ(u,d) is
in fact a DA−S -module, and that this is a decomposition of f∗OZ(u,d) into a direct
sum of d line bundles with flat connection on A−S. Applying (10) with u replaced
by u−m shows that the DA−S -action on each summand in the above decomposition
is given by

(28) ∂x · zm =
m

d

(∑
a∈S

va(u)

x− a

)
zm.

Our main goal in §4.2 is to study the following DA-module.

Definition 4.2.2. Define M(S, u, d) := j∗(OA−Sz).

The other line bundles with connection OA−Sz
m can be dealt with by replacing

u by um so no generality is lost by restricting to the case m = 1.
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Definition 4.2.3. For each t ∈
√
|K×| we define

U(S)t := Ut := {z ∈ A : |z − a| > t for all a ∈ S}.

Clearly Ut is a subset of A− S, we have Ut ⊆ Ut′ whenever t′ < t, and

A− S =
⋃
t>0

Ut.

We will study the D-module M(S, u, d) through its approximations M(S, u, d)Ut ,
as t shrinks to zero: one can use Proposition 4.1.3 to see that

M(S, u, d) = lim
←−
t>0

M(S, u, d)Ut .

We will give a proof of another form of this statement in Lemma 4.3.3.
We assume until the end of §4.2 that t ∈

√
|K×|.

Next let us see what the local sections of these objects M(S, u, d)Ut look like.

Lemma 4.2.4. Let F be an abelian sheaf on A. Then

(FUt)(X) = colim
s∈
√
|K×|,s<t

F(X ∩ Us).

for every affinoid subdomain X of A.

Proof. It is easy to verify by looking at the C-points that

X ∩ Ut = X

Å
t

x− a1
, . . .

t

x− ah

ã
.

Recall now the wide open neighbourhoods (X ∩ Ut)(r) of the affinoid subdomain
X ∩ Ut of X from Definition 4.1.5. We can now apply Lemma 4.1.2 together with
Theorem 4.1.8 to compute

(FUt)(X) = (F|X)X∩Ut(X) = colim
r∈
√
|K×|,r>1

F((X ∩ Ut)(r)).

But for any r ∈
√
|K×| with r > 1, we have

(X ∩ Ut)(r)(C) =
h⋂
i=1

{y ∈ X(C) : t 6 r|(y − ai)|} = X ∩ Ut/r,

so (FUt)(X) = colim
s∈
√
|K×|,s<t

F(X ∩ Us) as required. �

Corollary 4.2.5. We have M(S, u, d)Ut = (OA)Ut z as sheaves of OA-modules.

Proof. Let X be an affinoid subdomain of A and let s ∈
√
|K×|. Since X ∩ Us ⊂

A\S, we see that M(S, u, d)(X ∩ Us) = O(X ∩ Us)z. So by Lemma 4.2.4,

�(29) M(S, u, d)Ut(X) = colim
s∈
√
|K×|,s<t

O(X ∩ Us) z.

Recall from Definition 2.3.9(a) that A(t∂x/$)† is the G-topology on A which
consists of those affinoid subdomains such that r(X) 6 $/t. In view of Corollary
2.3.17, we see that X ∈ A(t∂x/$)† if and only if ρ(X) > t. The following technical
Lemma is necessary to prove Lemma 4.2.7 and Proposition 4.2.9.

Lemma 4.2.6. Let X be a (t∂x/$)†-admissible affinoid subdomain of A, and let

s ∈
√
|K×| be such that s < t. Then r(X ∩ Us) 6 $/s.
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Proof. In view of Lemma 2.3.13, we can replace K by some finite field extension
and thereby assume that s ∈ K×. Choose a disc D := SpK〈x/s0〉 with s0 ∈ K×
large enough to contain X and note that D∩Us = C(α, s) where s1 := s2 := · · · :=
sh := s, α0 = 0 and αi := ai for each i = 1, . . . , h. Then X ∩Us = X ∩C(α, s) and
r(C(α, s)) = $

ρ(C(α,s)) = $
s by Corollary 2.3.17, so

r(X ∩ Us) = r(X ∩ C(α, s)) 6 max{r(X), r(C(α, s))} = max{r(X), $/s}

by Proposition 2.3.2. Our assumptions on X, s and t imply that r(X) 6 $/t <
$/s, so max{r(X), r(C(α, s))} = $/s. �

Lemma 4.2.7. The D-action on the restriction of (OA)Ut to A(t∂x/$)† extends

to D†$/t.

Proof. Let X ∈ A(t∂x/$)†; we must show that the D(X)-action on (OA)Ut(X)

extends to an action of D†$/t(X).

Let f ∈ OUt(X) and Q ∈ D†$/t(X). Then by Lemma 4.2.4 and Definition

2.3.9(d) we can find some s′ < t and r > $/t such that f ∈ O(X ∩ Us′) and

Q ∈ Dr(X). Choose s ∈
√
|K×| such that

max{$/r, s′} < s < t.

Then f ∈ O(X∩Us) and r > $/s, so Q ·f ∈ O(X∩Us) ⊂ OUt(X) by Lemma 4.2.6
and Lemma 2.3.12(a). Thus the D(X)-action on (OA)Ut(X) extends to an action

of D†$/t(X) as required. �

We assume for the remainder of §4.2 that p - d.

Lemma 4.2.8. Let r > 0 and let Y be a ∂x/r-admissible affinoid subdomain of
A− S. Then the natural D(Y )-action on O(Y )z extends to a Dr(Y )-action.

Proof. Since ∂x(z) = 1
d
∂x(u)
u z, the D(Y )-action on O(Y )z is given by

(P, fz) 7→ σr(θu−1,d(P ))(f)z,

where θu−1,d was defined in Lemma 2.4.1 and σr was defined in Lemma 2.3.12.
Thus to extend it to a Dr(Y )-action it suffices to extend the automorphism θu−1,d

of D(Y ) to an automorphism of Dr(Y ); that this can be done is guaranteed by
Theorem 2.4.9. �

This result enables us to extend Lemma 4.2.7 in the following manner.

Proposition 4.2.9. The D-action on the restriction ofM(S, u, d)Ut to A(t∂x/$)†

extends to D†$/t.

Proof. Let X ∈ A(t∂x/$)† and suppose that f ∈ M(S, u, d)Ut(X) and Q ∈
D†$/t(X). Then by (29) and Definition 2.3.9(d) we can find some s′ < t and

r > $/t such that f ∈ O(X ∩ Us′)z and Q ∈ Dr(X).

Choose s ∈
√
|K×| such that

max{$/r, s′} < s < t.

Then f ∈ O(X ∩ Us)z so if the D(X)-action on O(X ∩ Us)z extends to Dr(X)
then Q · f ∈M(S, u, d)Ut(X).
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Now r(X∩Us) 6 $/s by Lemma 4.2.6 and $/s < r, so X∩Us is ∂x/r-admissible.
Hence the D(X∩Us)-action on O(X∩Us)z extends to Dr(X∩Us) by Lemma 4.2.8.
Since X and X ∩ Us are both ∂x/r-admissible, by Proposition 2.3.6(b) there is a
ring homomorphism Dr(X)→ Dr(X ∩ Us) extending D(X)→ D(X ∩ Us), and we
deduce that the D(X)-action on O(X ∩ Us)z extends to Dr(X) as required. �

In the remainder of this section we will establish an explicit presentation of

M(S, u, d)Ut as a D†$/t-module, assuming t ∈
√
|K×| is sufficiently small and a

positivity condition on the exponents of u.

Definition 4.2.10. We define

(a) ∆S :=
∏
a∈S

(x− a), and

(b) RS(u, d) := ∆S∂x − 1
d

∑
a∈S

va(u)
∏

b∈S\{a}
(x− b) = ∆S(∂x − 1

d dlog(u)).

Note that RS(u, d) ∈ D(A). We will write R(u, d) = RS(u)(u, d) and ∆ = ∆S(u).

Lemma 4.2.11. There is a complex of D†$/t-modules on A(t∂x/$)†

0→ D†$/t
·RS(u,d)−→ D†$/t

·z−→M(S, u, d)Ut → 0.

Proof. Note that the restriction of M(S, u, d)Ut to A(t∂x/$)† is a D†$/t-module

by Proposition 4.2.9. The second non-zero arrow sends Q ∈ D†$/t to Q · z ∈
M(S, u, d)Ut . By definition, RS(u, d) = ∆S∂x − 1

d

∑h
i=1 vai(u)

∏
j 6=i(x − aj) ∈ D,

so RS(u, d) ∈ D†$/t as well. A direct calculation shows that RS(u, d) · z = 0. �

We will now carry out three local calculations that will be used to prove that the
complex appearing in Lemma 4.2.11 is exact, at least when the ai live in different

holes of Ut, and thus provides a finite presentation forM(u, d)Ut as a D†$/t-module.

The first shows that the restriction of the complex to Ut is exact.

Proposition 4.2.12. Let Y be an (t∂x/$)†-admissible affinoid subdomain of Ut.
Then the following complex is exact:

0→ D†$/t(Y )
·RS(u,d)−→ D†$/t(Y )

·z−→M(S, u, d)Ut(Y )→ 0.

Proof. Since Y is contained in Ut, u and ∆ are both units in O(Y ) and it follows
from Lemma 4.1.2 that O(Y )z →M(S, u, d)Ut(Y ) is an isomorphism. By Corollary

2.4.11, Q 7→ z Q z−1 induces an automorphism θu,d of D†$/t(Y ), then by Definition

4.2.10(b) and Lemma 2.4.1

θ−1
u,d(RS(u, d)) = ∆∂x.

Since ∆ is a unit in O(Y ), we see that D†$/t(Y ) ·RS(u, d) = D†$/t(Y ) · θu,d(∂x).

By construction of the rings Dr(Y ), there is a direct sum decomposition of O(Y )-
modules: Dr(Y ) = O(Y ) ⊕ Dr(Y ) · ∂x whenever r > $/t. Therefore we also have
the decomposition

D†$/t(Y ) = O(Y )⊕D†$/t(Y )θu,d(∂x)

and the result now follows easily. �

We record an easy but important consequence of the proof of Proposition 4.2.12.
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Corollary 4.2.13. Let Y be a (t∂x/$)†-admissible subdomain of Ut. Then the

O(Y )-module M(S, u, d)Ut(Y ) is free of rank 1, and it is simple as a D†$/t(Y )-

module whenever Y is connected as an affinoid domain.

Proof. The first statement follows from the proof of Proposition 4.2.12.
For the second statement it suffices to show that M(S, u, d)Ut(Y ) is a simple

D(Y )-module via restriction whenever Y is connected. Given the first part this
follows from [8, Lemma 3.1.2], because T (Y ) is freely generated by ∂x as a O(Y )-
module. �

Our next step is to prove that the complex in Lemma 4.2.11 is exact in the case
when |S| = 1 under appropriate mild conditions on u. First we need a couple of
technical results to enable us to a make a certain estimate. Together, they amount
to a slightly more general version of [12, Lemme 4.2.1].

Lemma 4.2.14. Suppose that V is a a reduced K-affinoid variety and f ∈ O(V ).

Then there is s ∈
√
|K|× with s < t such that whenever g ∈ O(V ) vanishes on

V (t/f), g also vanishes on V (s/f).

Proof. We first consider the case where V is irreducible so that O(V ) is an integral
domain. Suppose first that V (t/f) is non-empty. Then the restriction map O(V )→
O(V (t/f)) is injective by the proof of [10, Proposition 4.2], so any choice of s will
do. On the other hand, if V (t/f) = ∅, then |f |V < t by the maximum modulus
principle, so choosing |f |V < s < t ensures that V (s/f) = ∅ and yields the result.

In the general case, let V1, . . . , Vn be the irreducible components of V and let
fi := f|Vi be the restriction of f to Vi for each i = 1, · · · , n. Now, for each s < t

with s ∈
√
|K×| there is a commutative diagram

O(V ) //

��

O(V (s/f)) //

��

O(V (t/f))

��
n⊕
i=1
O(Vi) //

n⊕
i=1
O(Vi(s/fi)) //

n⊕
i=1
O(Vi(t/fi)).

.

The vertical arrow on the left is injective because V is reduced. Hence the middle
vertical arrow is injective, because the restriction map O(V )→ O(V (s/f)) is flat.

Since each Vi is irreducible, we may find si < t in
√
|K×| such that every

g ∈ O(Vi) vanishing on Vi(t/fi) also vanishes on Vi(si/fi). By enlarging each si if
necessary, we may assume that s1 = · · · = sn =: s, say.

Suppose now that g ∈ O(V ) vanishes on V (t/f). Then by the commutativity
of the diagram, g|Vi vanishes on Vi(t/fi) for all i. Hence by the above paragraph,
g|Vi also vanishes on Vi(s/fi) for all i. Using the fact that the middle arrow in the
diagram is injective, we deduce that g also vanishes on V (s/f) as required. �

Lemma 4.2.15. Let V be a reduced K-affinoid variety and f ∈ O(V ). Suppose
moreover that (vn) is a sequence in O(V ) such that

(i)
∞∑
n=0

vnT
n ∈ O(V )[[T ]] has radius of convergence greater than 1/t, and

(ii) the series
∞∑
n=0

vnf
−n converges to zero in O(V (t/f)).
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Then, writing wm :=
m∑
n=0

vnf
m−n ∈ O(V ) for each m > 0, the radius of convergence

of
∞∑
m=0

wmT
m ∈ O(V )[[T ]] is also greater than 1/t.

Proof. By condition (i) we may choose r ∈
√
|K|× such that r < t and

lim
n→∞

|vn|V /rn = 0.

Thus we may define L := supn>0 |vn|V /rn < ∞ and W := V (r/f). Because

|f−1|W 6 1/r, we have |vnf−n|W 6 |vn|V /rn → 0 as n → ∞, so the series
∞∑
n=0

vnf
−n converges in O(W ) to an element w, say. Note that condition (ii) implies

that w vanishes on W (t/f).

Using Lemma 4.2.14 we may choose s ∈
√
|K|× with s < t such that whenever

g ∈ O(W ) vanishes on W (t/f), g also vanishes on W (s/f). By enlarging s if
necessary, we may also assume that r < s. Thus, w|W (s/f) = 0.

We cover V by its two affinoid subdomains V (f/s) and V (s/f). Noting that
w|V (s/f) = 0 because V (s/f) = W (s/f), we can estimate |wm|V (s/f) as follows:

|wm|V (s/f) =

∣∣∣∣∣−∑
n>m

vnf
m−n

∣∣∣∣∣
V (s/f)

6 sup
n>m

Lr−nsm−n 6 Lsm.

To estimate |wm|V (f/s), we note that |vn|V (f/s) 6 |vn|V 6 Lrn for all n > 0, so

|wm|V (f/s) 6 max
06n6m

|vnfm−n|V1
6 max

06n6m
Lrnsm−n 6 Lsm

since r < s. Therefore |wm|V = max{|wm|V (f/s), |wm|V (s/f)} 6 Lsm and hence
∞∑
m=0

wmT
m has radius of convergence at least 1/s. �

We’re now ready for our next local calculation, dealing with the critical case
when |S| = 1. Note that, in this case, if X ∈ A(t∂x/$)† and a1 6∈ X(K) then
X ⊆ Ut since if X splits over K ′ then ρ(XK′) > t. Thus, given Proposition 4.2.12,
we might as well assume a1 ∈ X(K).

Theorem 4.2.16. Suppose that X ∈ A(t∂x/$)† and a1 ∈ X(K). Suppose also
that h = 1 and write a := a1 and k = va(u) so that u = (x−a)k. Then the complex

0→ D†$/t(X)
·RS(u,d)−→ D†$/t(X)

·z−→M(S, u, d)Ut(X)→ 0

is exact whenever k
d /∈ N.

Proof. This is based on [12, Proposition 5.1.2(ii)], which Berthelot attributes to
Laumon. Recall that the sequence is a complex follows from Lemma 4.2.11. Note
also that RS(u, d) = R(u, d) since k 6= 0.

First we prove that the last non-zero map is surjective. To the end we consider

a typical element P =
∞∑
n=0

Pn∂
n
x ∈ D

†
$/t(X) with Pn ∈ O(X). The required

convergence condition is that there is some r > $/t such that |Pn|rn → 0 as
n→∞. We furthermore compute that

(30) P · z =
∞∑
n=0

Ç
k
d

n

å
n!Pn(x− a)−n z.
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Take an element g ∈M(S, u, d)(X)Ut . Using (29), we can find some s ∈
√
|K|×

with s < t such that g = fz for some f ∈ O(X ∩ Us). Since O(X ∩ Us) =
O(X)〈s/(x− a)〉, we can find a sequence (bn) in O(X) such that

f =
∞∑
n=0

bn(x− a)−n with lim
n→∞

|bn|s−n = 0.

Thus to prove surjectivity, it suffices to show that if |bn|s−n → 0 as n → ∞ for

some s < t, then

∣∣∣∣ bnn!

( k
d
n

)−1
∣∣∣∣ rn → 0 as n→∞ for some r > $/t.

Now as noted in [30, Proposition 13.1.5, Corollary 13.1.7], the rational number
k
d is p-adic non-Liouville and so the radius of convergence of the series

∞∑
n=0

Tn

n!

Ç
k
d

n

å−1

is at least $; that is supn>0

∣∣∣∣ 1
n!

( k
d
n

)−1
∣∣∣∣wn <∞ for all w < $. Now, because s < t,

we can choose w such that $s/t < w < $. Then r := w/s > $/t works.
Next we prove the injectivity of the first non-zero map. From Definition 4.2.10(b)

we can see that

R(u, d) = (x− a)∂x −
k

d
.

It follows from this that for every Q =
∞∑
n=0

Qn∂
n
x ∈ D

†
$/t(X) we have

(31) Q ·R(u, d) =
∞∑
n=0

Å
(n− k

d
)Qn + (x− a)Qn−1

ã
∂nx

and so if Q ·R(u, d) = 0 then

(n− k

d
)Qn + (x− a)Qn−1 = 0 for all n > 0,

where a−1 := 0. Since k
d /∈ N, an easy recurrence gives that an = 0 for all n.

It remains to show that the kernel of ·z is contained in the image of ·R(u, d). So

we suppose that P =
∞∑
n=0

Pn∂
n
x ∈ D

†
$/t(X) satisfies P · z = 0, and deduce using

(30) that
∞∑
n=0

Ç
k
d

n

å
n!Pn(x− a)−n = 0 ∈ O(X)Ut ⊂ O

Å
X

Å
t

x− a

ãã
.

Let bm :=
m∑
n=0

( k
d
n

)
n!Pn(x−a)m−n. Because k

d /∈ N by assumption, we can define

Q :=
∞∑
n=0

cn
n!
∂nx where cn :=

ñÇ
k
d

n

å
(n− k

d
)

ô−1

bn for all n > 0.

We wish to show that Q ∈ D†$/t(X). Granted this, it is an easy computation,

using (31), to check that Q ·R(u, d) = P giving the result.

Since P ∈ D†$/t, there is some r > $/t such that |Pn|rn → 0 as n → ∞.

Moreover, for any s > $, |n!|/sn is bounded by Lemma 2.3.16 and
∣∣∣(k/dn )∣∣∣ 6 1
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for all n since p - d. Thus, choosing s ∈ ($, tr), we see that
∞∑
n=0

(
k/d
n

)
n!PnT

n

has radius of convergence at least r/s > 1/t in O(X)[[T ]]. Now we may appeal

to Lemma 4.2.15, with f = x − a and vn =
(
k/d
n

)
n!Pn to see that

∞∑
m=0

bmT
m

has radius of convergence greater than 1/t. Since k
d is non-Liouville,

∞∑
n=0

Tn
k
d−n

has

radius of convergence 1 and as noted above
∞∑
n=0

Tn

n!

( k
d
n

)−1
has radius of convergence

$. Combining all of these estimates, we see that there is some u > $/t such that
| cnn! |u

n → 0 as n→∞ as required. �

Next, we collect several basic facts about the linear differential operator RS(u, d).

Lemma 4.2.17.

(a) RS(u, d) = ∆Sθu,d(∂x).
(b) RS(u, d) = θu∆d

S ,d
(∂x)∆S .

(c) Let v ∈ K(x) with S(v) ⊂ S. Then

RS(uv, d) = θu,d(RS(v, d)).

Proof. (a) This follows directly from Definition 4.2.10(b) and Lemma 2.4.1.
(b) For any v ∈ O(X)×, θvd,d is conjugation by v in D(X) by Lemma 2.4.1.

Applying Lemma 2.4.3 together with part (a), we see that

θu∆d
S ,d

(∂x)∆S = θ∆d
S ,d

(θu,d(∂x)) ∆S = ∆Sθu,d(∂x) = RS(u, d).

(c) We can compute

RS(uv, d) = ∆Sθuv,d(∂x) = ∆Sθu,d(θv,d(∂x)) = θu,d(RS(v, d))

using part (a), Lemma 2.4.3 and the fact that θu,d is O(X)-linear. �

Here is our final local calculation.

Proposition 4.2.18. Let Y ∈ A(t∂x/$)† containing at most one ai. Then

0→ D†$/t(Y )
·RS(u,d)−→ D†$/t(Y )

·z−→M(S, u, d)Ut(Y )→ 0.

is exact, provided that vai(u)/d /∈ N.

Proof. If none of the ai live in Y then we’re done by Proposition 4.2.12. So we may
suppose ai ∈ Y (K) and define a := ai, k := vai(u) and v = u/(x−a)k so that v is a

unit in O(Y ). In particular θv,d induces an automorphism of D†$/t(Y ) by Corollary

2.4.11. Moreover by Lemma 4.2.17(c),

RS(u, d) = θv,d(RS((x− a)k, d)).

Thus D†$/t(Y )RS(u, d) = D†$/t(Y )θv,d(RS((x − a)k, d)). Under θ−1
v,d the D†$/t(Y )-

moduleM(S, u, d)Ut(Y ) corresponds to theD†$/t(Y )-moduleM(S, (x−a)k, d)Ut(Y ).

Now we can apply Theorem 4.2.16. �

Definition 4.2.19. For i = 1, . . . , h let Wi be the affinoid subdomain of A whose
C-points are obtained by removing the open discs {z ∈ C | |z − aj | < t} for j 6= i
from the closed disc {z ∈ C | |z − ai| 6 t}.
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We note that the condition t 6 min
i6=j
|ai−aj | means that each Wi contains ai but

does not contain aj for i 6= j.

Lemma 4.2.20.

(a) Each Wi is A(t∂x/$)†-admissible.
(b) Let X ∈ A(t∂x/$)†, and suppose that

t 6 min{|ai − aj | : ai, aj ∈ X(C) and i 6= j}.
Then {X ∩W1, . . . , X ∩Wh, X ∩ Ut} is an admissible covering of X.

Proof. (a) We choose a finite field extension K ′ of K such that t ∈ |K ′|; then
Wi ×K K ′ becomes a cheese such that ρ(Wi ×K K ′) = t. Hence

r(Wi) = r(Wi ×K K ′) = $/t

by Lemma 2.3.13 and Corollary 2.3.17.
(b) Applying Lemma 2.3.13 and Corollary 2.3.17 again shows

ρ(X ×K C) = $/r(X ×K C) >
$

$/t
= t.

Suppose that a ∈ X(C) and |a − ai| < t for some i. If ai /∈ X(C), then because
ρ(X ×K C) > t, the intersection of X(C) with the open disc of radius t around ai
is empty. But |a− ai| < t and a ∈ X(C) — contradiction — so in fact ai ∈ X(C)
whenever a ∈ X(C) and |a− ai| < t. We will now show that

X(C) = (X ∩ Ut)(C) ∪ (X ∩W1)(C) ∪ · · · ∪ (X ∩Wh(C).

Indeed, if a ∈ X(C) − (X ∩ Ut)(C) then a ∈ X(C) and |a − ai| < t for some i,
so that ai ∈ X(C) by the above. But if also |a − aj | < t for some j 6= i, then
aj ∈ X(C) by the above as well, and then

|ai − aj | 6 max{|a− ai|, |a− aj |} < t

contradicts our hypothesis on t. So in fact |a − aj | > t for all j 6= i which forces
a ∈ (X ∩Wi)(C) and establishes our claim. Since {X ∩Ut, X ∩W1, . . . , X ∩Wh} is
a finite set of affinoid subdomains of X, which covers X on C-points, we conclude
that it is an admissible covering of X. �

Here is the main result of §4.2.

Theorem 4.2.21. Let X ∈ A(t∂x/$)†. Suppose that

• t ∈
√
|K×| and p - d,

• t 6 min{|ai − aj | : ai, aj ∈ X(C) and i 6= j}, and
• ki/d 6∈ N whenever ai ∈ X(C).

Then the complex of D†$/t(X)-modules

0→ D†$/t(X)
·RS(u,d)−→ D†$/t(X)→M(S, u, d)Ut(X)→ 0

from Lemma 4.2.11 is exact.

Proof. Lemma 4.2.20(b) tells us that {X∩Ut, X∩W1, . . . , X∩Wh} is an A(t∂x/$)†-
admissible covering of X. By Theorem 2.3.10 and Theorem 4.1.9, we know that

D†$/t and M(S, u, d)Ut are sheaves on A(t∂x/$)† with vanishing higher Čech co-

homology. Therefore it suffices to show that the sequence

0→ D†$/t(Y )
·RS(u,d)−→ D†$/t(Y )→M(S, u, d)Ut(Y )→ 0
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is exact whenever Y is an intersection of any members of our covering; note that
this Y is still (t∂x/$)†-admissible. Since each member of our covering contains at
most one ai the exactness follows from Proposition 4.2.18. �

Finally, we record a purely algebraic calculation which tells us how the the
relators RS(u)(u, d) from Definition 4.2.10 interact with the maps gD : D → g∗D
defining the G-equivariant structure on D. Recall from §2.5 that B denotes the
subgroup scheme {g ∈ GL2 : g21 = 0} of upper-triangular matrices in GL2. Recall

also the isomorphism g†r : D†r
∼=−→ g∗D† r

%(g)
from Corollary 2.5.6(b).

Lemma 4.2.22. Let g ∈ B(K), let W be an affinoid subdomain of A and let
u ∈ K(x) ∩ O(W )×.

(a) We have g ·RS(u)(u, d) = %(g)1−|S(u)| RS(g·u)(g · u, d).

(b) Suppose that W ∈ A(∂x/r)
† for some r ∈ R>0. Then

g†r(W )
(
RS(u)(u, d)

)
= %(g)1−|S(u)| RS(g·u)(g · u, d).

Proof. (a) By Lemma 2.5.2(e), we have g · (x−z) = %(g)−1(x−g ·z) for any z ∈ K.
Therefore vg·z(g · u) = vz(u), so S(g · u) = g · S(u) and

g ·∆u =
∏

z∈S(u)

%(g)(x− g · z) = %(g)−|S(u)|∆g·u.

Because we also have g · ∂x = %(g)∂x by Lemma 2.5.2(e), Lemma 2.5.7 gives

g ·RS(u)(u, d) = g ·∆u g · θu,d(∂x) = %(g)−|S(u)|∆g·u θg·u,d(g · ∂x)
= %(g)1−|S(u)|RS(g·u)(g · u, d).

�

(b) This follows from part (a) and the commutative square (13).

4.3. Line bundles with connection on the local Drinfeld space. In §4.3, we
work with the following data.

Notation 4.3.1.

(a) Ω := P1,an − P1(F ) is the the Drinfeld upper half plane,
(b) Υ = D ∩ Ω,
(c) j : Υ ↪→ D is the open embedding,
(d) [L ] ∈ PicCon(Υ)[p′],
(e) d is the order of [L ] in PicCon(Υ). Thus d is coprime to p.

We refer the reader to [8, Definition 3.2.1] for the terminology, and we fix a

D-linear isomorphism ψ : L ⊗d
∼=−→ OΥ.

Definition 4.3.2. Let n > 0 be an integer.

(a) Vn := A\
⋃

a∈OF
{|z − a| < |πF |n},

(b) Υn := Vn ∩ D,
(c) Ln := j∗(LΥn

), and

(d) hn := qn+1.

See Definition 4.1.1 for the meaning of the sheaf LΥn
on Υ.

We note that if S := {a1, . . . , ahn} ⊂ OF is any set of coset representatives for
the group OF /πn+1

F OF , then Vn was denoted U(S)|πF |n in §4.2.
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We also note that Υn is the cheese obtained by removing hn open balls of radius
|πF |n from D with centres at a1, . . . , ahn and {Υn}n>0 forms an admissible cover
of Υ totally ordered by inclusion.

Lemma 4.3.3. The maps j∗L → Ln given by restriction induce an isomorphism
j∗L ∼= lim←−Ln of D-modules on D.

Proof. Since j∗ is a right adjoint it commutes with limits, and so it suffices to show
that the restriction maps induce an isomorphism L ∼= lim←−LΥn

of D-modules on Υ.

Since the Υn forms an admissible cover of Υ which is totally ordered by inclusion,
by Proposition 4.1.3, the restriction maps induce such an isomorphism of abelian
sheaves on Υ. It is easy to see that all relevant maps are D-linear. �

Note that there is a natural bijection

h(Υn)\{D∞} → OF /πn+1OF
sending D to D ∩ OF for each D ∈ h(Υn)\{D∞}.

Notation 4.3.4. For each a ∈ OF and n > 0, letDa,n be the element of h(Υn)\{D∞}
corresponding to a+ πn+1

F OF under this bijection.

We introduce the natural map abelian groups

Mn,d : PicCon(Υ)[d]→M0(h(Υn),Z/dZ)

obtained by composing the restriction map

PicCon(Υ)[d]→ Con(Υn)[d]; L 7→ L |Υn
with the isomorphisms θd and µΥn,d from [8, Definition 3.1.15 and Corollary 4.3.2]:

Con(Υn)[d] ∼=
θd // O(Υn)×

K×O(Υn)×d ∼=

µΥn,d // M0

(
h(Υn), Z

dZ
)
.

For each n > 0, there is a unique Z/dZ-valued measure on h(Υn) of total value
zero, whose value on each Da,n is 1:

νn(Da,n) = 1 + dZ for all a ∈ OF , and νn(D∞) = −qn+1 + dZ.

Lemma 4.3.5. Let n > 0.

(a) M0(h(Υn),Z/dZ)I is freely generated as a Z/dZ-module by νn.
(b) The restriction map rn+1 : M0(h(Υn+1),Z/dZ)I → M0(h(Υn),Z/dZ)I

sends νn+1 to qνn.
(c) rn+1 is an isomorphism of Z/dZ-modules.
(d) The restriction map PicCon(Υ)I [d]→ Con(Υn)I [d] is an isomorphism.
(e) PicCon(Υ)I [d] is a free Z/dZ-module of rank 1.

Proof. (a) The natural I-action on OF /πn+1
F OF ∪{∞} has two orbits: OF /πn+1

F OF
and {∞}. Therefore the natural I-action on h(Υn) also has two orbits, namely
{Db,n : b ∈ OF } and {D∞}. If ν is an I-invariant measure on h(Υn), then it must
be constant on these orbits. If, in addition, it has total value zero, then we easily
see that ν = ν(D0,n)νn as required.

(b) Fix b ∈ OF . In view of part (a), the map rn+1 must send νn+1 to some integer
multiple of νn. However the restriction map h(Υn+1)→ h(Υn) sends Db+πn+2

F c,n+1
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to Db,n for each c ∈ OF , and the preimage of Db,n under this map consists of
precisely q such holes. Hence rn+1(νn+1) = qνn.

(c) This follows immediately from parts (a) and (b) since d and q are coprime.
(d) For each m > n there is a natural commutative square

Con(Υm+1)I //

∼=µΥm+1,d
◦θd
��

Con(Υm)I

∼= µΥm,d◦θd
��

M0(h(Υm+1),Z/dZ)I
rm+1

// M0(h(Υm),Z/dZ)I

whose vertical arrows are isomorphisms by [8, Corollary 4.3.3]. Using part (b) we
see that the top horizontal arrow is bijective. Hence the connecting maps in the
inverse system (Con(Υm)I)m>n are all isomorphisms, so the projection map

lim←−Con(Υm)I → Con(Υn)I

is an isomorphism as well. Next, we have PicCon(Υm) = Con(Υm) by [8, Proposi-
tion 4.1.11]. The family (Υm)m>n forms an increasing admissible covering of Υ by
geometrically connected affinoid subdomains, so [8, Proposition 3.1.9] implies that
the restriction map

PicCon(Υ)I −→ lim←−PicCon(Υm)I

is an isomorphism. The composition of this restriction map with the projection
PicCon(Υm)I → PicCon(Υn)I is the restriction map PicCon(Υ)I → PicCon(Υn)I

in the statement of (d), and it is therefore an isomorphism as required.
(e) Use part (d), [8, Corollary 4.3.3] and part (a). �

Definition 4.3.6. Let X be an affinoid subdomain of D. A section ż ∈ Ln(X) is
said to be an algebraic generator if there exists u ∈ K(x) such that

(a) Ln|X = (OX)X∩Vn ż,

(b) ψ(ż⊗d) = u,
(c) S(u) ⊂ F (see Definition 4.2.1 for this notation),
(d) |a− b| > |πF |n for all a 6= b ∈ S(u) ∩X, and

(e) va(u)
d 6∈ N for all a ∈ S(u) ∩X.

We call u the associated rational function.

We will now prove that algebraic generators exist.

Theorem 4.3.7. Let X be an affinoid subdomain of D.

(a) Let S ⊂ OF be any set of coset representatives for the group OF /πn+1OF
and let (ka)a∈S be a family of integers such that for all a ∈ S we have

(32)
ka
d
/∈ N and Mn,d([L ])(Da,n) = ka + dZ.

Then there exists an algebraic generator ż ∈ Ln(X) with associated ratio-
nal function of the form

u = λ
∏
a∈S

(x− a)ka for some λ ∈ K×.

(b) Algebraic generators always exist.
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Proof. (a) Using Lemma 4.1.2 we can see that if ż ∈ Ln(D) is algebraic generator
then ż|X is an algebraic generator with the same associated rational function and
so we only need to consider the case X = D itself.

Let u0 :=
∏
a∈S

(x− a)ka ∈ O(Υn)×. Then the assumption (32) tells us that

µΥn,d(u0K
×O(Υn)×d) = Mn,d([L |) = µΥn,d(θd(L |Υn)).

Since µΥn,d is an isomorphism, we see that

(33) θd(L |Υn) = u0K
×O(Υn)×d.

Write S = {a1, . . . , ahn}, choose an integer ` coprime to p and define

V := SpK

Æ
x,

π`n+1
F

(x− a1)`
, · · · ,

π`n+1
F

(x− ahn)`

∏
.

This is a K-form of the C-cheese VC obtained from DC by removing the open balls
of radius |πF |n+ 1

` around the ai. Observe that V is a wide open neighbourhood of
Υn contained in Υn+1. Since V and Υn are geometrically connected, we have the
following commutative square whose vertical arrows are given by restriction:

Con(V )[d]
θd
∼=

//

��

O(V )×/K×O(V )×d

rn

��
Con(Υn)[d]

θd

∼= // O(Υn)×/K×O(Υn)×d.

We claim that rn is injective. Assuming this, and noting that u0 also lies in O(V )×,
it follows from (33) that θd([L |V ]) = u0K

×O(V )×d inside O(V )×/K×O(V )×d.
Using the construction of θd given at [8, Proposition 3.1.14], we can find a section
ż ∈ L (V ) and some λ ∈ K× such that L (V ) = O(V )ż and ψ(ż⊗d) = u := λu0.
Since V is affinoid and L is a coherent O-module, in fact we also have L|V = O|V ż.
Since V is a wide open neighbourhood of Υn, i.e. ‹V contains the closure of ›Υn, we
may view ż as an element of Ln(D) and deduce that Ln|D = (OD)Υn

ż.
Finally, va(u) = ka for all a ∈ S. As none of the ka can be zero, given the

assumption that ka
d /∈ N for all a ∈ S, we have S(u) = S and this is contained

in OF . We now see that Definition 4.3.6(c,d,e) is satisfied and ż ∈ Ln(D) is an
algebraic generator, once we have checked the injectivity of rn claimed above.

Let L = K(π
1
`

F ). Then in the notation of [8, Definition 4.1.1], VL is isomorphic

to the L-cheese CL(0, a1, · · · , ahn , 1, π
n+ 1

`

F , · · · , πn+ 1
`

F ) as an L-affinoid variety. The
map rn appears in the following commutative diagram:

O(V )×/K×O(V )×d //

rn

��

O(VL)×/L×O(VL)×d
µVL,d // M0(h(VL), Z

dZ )

��
O(Υn)×/K×O(Υn)×d // O(Υn,L)×/L×O(Υn,L)×d

µΥn,L,d

// M0(h(Υn,L), Z
dZ ).

Since |h(VL)| = |h(Υn,L)| = hn, the vertical arrow on the right is bijective. Since
µVL,d is an isomorphism by [8, Corollary 4.3.2(c)], it remains to show that the first
horizontal arrow in the top row is injective, or equivalently, that

L×O(VL)×d ∩ O(V )× ⊆ K×O(V )×d.
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Let S denote the subgroup of O(V )× generated by x − a1, · · · , x − ahn . View S
also as a subgroup of O(VL)×. Applying [8, Proposition 4.1.10] to VL, we have

O(VL)× = O(VL)×× · L× · S.

Now L× = L×× ·K× · π
1
` Z
F because L = K(π

1
`

F ) is a totally ramified extension of
K. Using [8, Lemma 3.3.5(a)] we then see that

L×O(VL)×d = π
d
` Z · O(VL)×× ·K×d · Sd.

Since K×dSd ⊆ K×O(V )×d, by the modular law it remains to show that

π
d
` Z
F O(VL)×× ∩ O(V )× ⊆ K×O(V )×d.

Let ζ ∈ K be a primitive `th root of unity and let M := L(ζ), a Galois extension

of K with Galois group G. Let u ∈ π
d
` Z
F O(VL)×× ∩ O(V )×. Then u is fixed by the

natural action of G on O(VM ) and we can write u = π
m
`

F (1 + ε) for some m ∈ dZ
and ε ∈ O(VL)◦◦. Choose σ ∈ G which sends π

1
`

F to ζπ
1
`

F ; then

σ(π
m
`

F )(1 + σ(ε)) = π
m
`

F (1 + ε), so ζm =
σ(π

m
`

F )

π
m
`

F

=
1 + ε

1 + σ(ε)
∈ O(VM )××.

Since p 6= ` and (ζm)` = 1, it follows from [8, Lemma 3.3.5(a)] that ζm = 1. We

conclude that ` | m. Therefore π
m
`

F ∈ K× and ε = π
−m`
F u − 1 ∈ O(V ). Since

ε ∈ O(VL)◦◦, we see that ε ∈ O(V )◦◦ and u ∈ K×O(V )××. Applying [8, Lemma
3.3.5(a)] again shows that u ∈ K×O(V )×d and completes the proof.

(b) Choose any set S of coset representatives for πn+1
F OF in OF , and choose any

family (`a)a∈S of integers such that Mn,d([L ])(a+πn+1
F OF ) = `a

d +Z for all a ∈ S.

Let M be any positive integer such that M > maxa∈S
`a
d and let ka := `a−Md < 0

for all a ∈ S. Then ka
d /∈ N and `a

d + Z = ka
d + Z for all a ∈ S. We can now apply

part (a) to the family of integers (ka)a∈S to conclude. �

We recall the Definition 4.2.2 of M(S, u, d) for any u ∈ K(x) with S(u) ⊂ S.

Proposition 4.3.8. Let X be an affinoid subdomain of D and Sn be a set of
coset representatives for the group OF /πn+1

F OF . Moreover, let ż ∈ Ln(X) be an
algebraic generator, with associated rational function un such that S(un) ⊂ Sn.
There is a DX -linear isomorphism(

M(Sn, un, d)Vn
)
|X

∼=−→ Ln|X

which sends z to ż.

Proof. By Corollary 4.2.5 applied with t = |πF |n, and by Lemma 4.1.2, we have(
M(Sn, un, d)Vn

)
|X =

(
(OA)Vn

)
|Xz = (OX)Vn∩Xz.

By Definition 4.3.6(a) we know that Ln|X = (OX)X∩Vn ż. Hence sending z to ż
defines an OX -linear isomorphism(

M(Sn, un, d)Vn
)
|X

∼=−→ Ln|X .

The fact that ψ(ż⊗d) = un implies that this isomorphism is in fact D-linear. �

We are now in the situation of §4.2 and can begin to reap the rewards.

Definition 4.3.9. Let n > 0.
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(a) Dn will denote the G-topology Dn := D(|πF |n∂x/$)† on D.

(b) Dn will denote the sheaf D†$/|πF |n on Dn.

In view of Corollary 2.3.17 and Lemma 2.3.13, we see that an affinoid subdomain
X of D lies in Dn if and only if ρ(XC) > |πF |n. We note the following flatness
properties that follow from work done in §3.

Lemma 4.3.10.

(a) Dn(X) is a flat right Dn+1(X)-module whenever X ∈ Dn+1.
(b) Dn(Y ) is a flat right Dn(X)-module whenever Y ⊆ X in Dn.

Proof. This is a consequence of Theorem 3.2.1. �

Corollary 4.3.11. The natural action of the sheaf of finite order differential op-
erators D on the restriction of Ln to Dn extends to Dn.

Proof. Let Sn be any set of coset representatives for the group OF /πn+1OF . The-
orem 4.3.7 and Proposition 4.3.8 together give us a DD-linear isomorphism

M(Sn, un, d)Vn
∼=−→ Ln.

We can now apply Proposition 4.2.9 with t = |πF |n to transport the Dn-action on
M(Sn, un, d)Vn to Ln along this isomorphism. �

Recall the relator RS(u)(u, d) from Definition 4.2.10(b).

Corollary 4.3.12. Let X ∈ Dn and let ż ∈ Ln(X) be an algebraic generator, with
associated rational function un. Then Ln(X) is a finitely presented Dn(X)-module:

Ln(X) = Dn(X) · ż ∼= Dn(X)/Dn(X)RS(un)(un, d).

Proof. By Proposition 4.3.8, there is a DX -linear isomorphism(
M(S(un), un, d)Vn

)
|X

∼=−→ (Ln)|X

sending z to ż. Note that |a − b| > |πF |n for all a 6= b ∈ S(un) ∩X by Definition

4.3.6(d) and va(un)
d /∈ N for all a ∈ S(un) ∩X by Definition 4.3.6(e). Now we may

apply Theorem 4.2.21 with t = |πF |n. �

4.4. Local irreducibility. We assume throughout §4.4 that our ground field K
is discretely valued, with uniformiser πK and residue field k. Let X be an affinoid
subdomain of the closed unit disc D obtained by removing finitely many open discs
of radius 1 not containing the point x = 0. Thus

X = SpK

≠
x,

1

x− α1
, · · · , 1

x− αv

∑
for some α1, . . . , αv ∈ K with |α1| = · · · = |αv| = 1. We also consider the case
where v = 0 when X = D. The main result of §4.4 is the following

Theorem 4.4.1. Let λ ∈ K\Z and let X be as above. Then the D†$(X)-module
D†$(X)/D†$(X)(x∂ − λ) is simple if λ ∈ Zp, and zero otherwise.

Let X := Spf O(X)◦ and note that X is the formal completion of the punctured

affine line SpecK◦
î
x, 1

x−α1
, · · · , 1

x−αd

ó
along its special fibre. Recall Berthelot’s

ring “D (m)
X ,Q(X ) of level-m arithmetic differential operators on X for some fixed

integer m > 0 from [13, p. 46, (2.4.1.4)].
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Definition 4.4.2. For each λ ∈ K, define

M (m)(λ) :=
“D (m)

X ,Q“D (m)
X ,Q(x∂ − λ)

∈ coh(“D (m)
X ,Q).

We will actually prove the following stronger statement.

Theorem 4.4.3. Let λ ∈ K\Z, let X be as above and let m > 0. Then the“D (m)
X ,Q(X )-module M (m)(λ)(X ) is simple if λ ∈

pm−1⋃
i=0

i+pmK◦, and zero otherwise.

The following elementary statement may help to explain the sets appearing in
Theorem 4.4.3.

Lemma 4.4.4. We have Zp =
∞⋂
m=0

pm−1⋃
i=0

i+ pmK◦.

Proof. Certainly the forward inclusion holds. On the other hand, if λ /∈ Zp then
because Zp is compact and K is Hausdorff, we can find m > 0 sufficiently large so

that |λ− α| > |pm| for all α ∈ Zp. Then λ /∈
pm−1⋃
i=0

i+ pmK◦. �

Proof of Theorem 4.4.1. Write D := D†$(X) and Dm := “D (m)
X ,Q(X ) for each m > 0.

Let rm := |pm!|
1
pm ; then by Theorem 3.1.9 there is a (not necessarily isometric)

isomorphism of K-Banach algebras Dm
∼= Drm(X). Because the sequence of real

numbers rm approaches $ as m → ∞, it follows from Definition 2.3.9(d) that
D = colimm>0Dm.

Suppose that λ /∈ Zp. Then by Lemma 4.4.4, λ /∈
pm−1⋃
i=0

i+pmK◦ for some m > 0,

and then Mm := M (m)(λ)(X ) is zero by Theorem 4.4.3. Therefore D/D(x∂−λ) =
D ⊗Dm Mm is zero as well.

Now suppose that λ ∈ Zp. Since colimits are exact, the D-module M :=
D/D(x∂ − λ) is the colimit of the Dm-modules Mm = Dm/Dm(x∂ − λ). Note
that the image of the canonical generator vm of Mm inside M equals the canonical
generator v of M . Now given any non-zero w ∈M , because M = colimm>0Mm we
can find m > 0 such that w is the image in M of some non-zero wm ∈ Mm. Since
λ ∈ Zp, Mm is a simple Dm-module by Theorem 4.4.3 and Lemma 4.4.4, we can
find Qm ∈ D such that Qm · wm = vm in Mm. Hence Qm · w = v in M . So any
non-zero D-submodule of M contains v and is hence equal to M . �

We will now use Berthelot’s theory of Frobenius descent to reduce Theorem 4.4.3
to the case m = 0. Let q := pm, let x′ be a new local coordinate and let X ′ be

the formal completion of the punctured affine line SpecK◦
î
x′, 1

x′−αq1
, · · · , 1

x′−αqd

ó
along its special fibre. There is a natural lift of the relative Frobenius morphism

F : X →X ′

which sends x′ ∈ OX ′ to xq ∈ OX and which is completely determined by this
property as a morphism of formal K◦-schemes. In this situation, Berthelot’s Frobe-
nius descent theorem, [15, Théorème 2.3.6], tells us that the functors of Frobenius
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pullback and Frobenius descent

F ∗ : coh(D
(0)
X ′) −→ coh(D

(m)
X ), N 7→ OX ⊗

OX ′
N , and

F \ : coh(D
(m)
X ) −→ coh(D

(0)
X ′), M 7→

Å
D

(0)
X ′ ⊗
OX ′
O∨X

ã
⊗

D
(m)
X

M

are mutually inverse equivalences of categories, where O∨X := HomOX ′ (OX ,OX ′).
These equivalences extend in a natural way to p-adic completions

F \ : coh(“D (m)
X )

∼=−→ coh(“D (0)
X ′) and F \ : coh(“D (m)

X ,Q)
∼=−→ coh(“D (0)

X ′,Q)

which, abusing notation, we will denote by the same symbols. We are now in a
position to be able to compute the Frobenius descent of M (m)(λ).

Proposition 4.4.5. Let λ ∈ K and set λi := λ−i
q for each i = 0, . . . , q − 1. Then

F \(M (m)(λ)) ∼=
q−1⊕
i=0

“D (0)
X ′,Q“D (0)

X ′,Q(x′∂′ − λi)

where ∂′ ∈ TX ′ is the unique derivation such that ∂′(x′) = 1.

Proof. In [15, Proposition 4.1.2(ii)], Berthelot established a canonical isomorphism

of “D (m)
X -bimodules

Φ : F ∗F [“D (0)
X ′ := OX ⊗

OX ′

“D (0)
X ′ ⊗
OX ′
O∨X

∼=−→ “D (m)
X .

We will use the following explicit description of Φ due to Garnier [24]; we will follow
the clear exposition of Garnier’s results found at [4, §2.2]. Note that OX is a free
OX ′ -module with basis {1, x, · · · , xq−1}; let {θ0, θ1, · · · , θq−1} be the dual basis for
O∨X so that

OX ⊗
OX ′

“D (0)
X ′ ⊗
OX ′
O∨X =

q−1⊕
i,j=0

xi ⊗ “D (0)
X ′ ⊗ θj .

Then the isomorphism Φ is defined as follows:

• Φ(xi ⊗Q⊗ θj) = xiQ◦Hx−j for any Q ∈ “D (0)
X ′ and 0 6 i, j < q, where

• H := 1
q

∑
ζq=1

∞∑
k=0

(ζ − 1)kxk∂[k] ∈ “D (m)
X xq−1 is the Dwork operator, and

• Q 7→ Q◦ is the non-unital ring homomorphism “D (0)
X ′ ↪→ “D (m)

X determined
by the rules 1◦ = H, (x′)◦ = xqH and (∂′)◦ = (qxq−1)−1∂H.

Note that (x′∂′)◦ = xq(qxq−1)−1∂H = 1
qx∂H. Therefore

Φ(xi ⊗ (x′∂′ − λi)⊗ θi) = xi
Å

1

q
x∂H − λ− i

q
H

ã
Hx−i =

1

q
(x∂ − λ)xiHx−i

for any i = 0, . . . , q − 1, where we used the relations xi(x∂) = (x∂ − i)xi and

H2 = H. Because
q−1∑
i=0

xiHx−i = 1 in “D (m)
X by [24, Proposition 2.5.1], we see that

(34) Φ−1

Å
x∂ − λ
q

ã
=

q−1∑
i=0

xi ⊗ (x′∂′ − λi)⊗ θi.
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By the Frobenius descent theorem, [15, Théorème 2.3.6],

F \(“D (m)
X ,Q)

F \(Φ−1)−→∼= F \F ∗F [“D (0)
X ′

∼= F [(“D (0)
X ′,Q) =

q−1⊕
j=0

“D (0)
X ′,Q ⊗ θj

which is a free left “D (0)
X ′,Q-module of rank q. By definition, M (m)(λ) is the cok-

ernel of right-multiplication by x∂−λ
q on “D (m)

X ,Q. Using (34), we conclude that

F \(M (m)(λ)) is the cokernel of the ‘diagonal’ left “D (0)
X ′,Q-linear endomorphism

q−1⊕
i=0

·(x′∂′ − λi)⊗ 1 :

q−1⊕
j=0

“D (0)
X ′,Q ⊗ θj →

q−1⊕
j=0

“D (0)
X ′,Q ⊗ θj .

The result follows. �

Corollary 4.4.6. Let λ ∈ K.

(a) If λ /∈
q−1⋃
i=0

i+ qK◦, then x∂ − λ is a unit in “D (m)
X ,Q and M (m)(λ) = 0.

(b) Otherwise there exists a unique integer i such that 0 6 i < q and λ ∈
i+ qK◦, and then

F \(M (m)(λ)) ∼=
“D (0)

X ′,Q“D (0)
X ′,Q(x′∂′ − λ−i

q )
.

Proof. (a) In this case, λi = λ−i
q /∈ K◦ for all i = 0, . . . , q − 1, so |λi| > 1 for all i.

But then x′∂′ − λi is a unit in “D (0)
X ′,Q, so F \(M (m)(λ)) = 0 by Proposition 4.4.5.

So M (m)(λ) = 0 and x∂ − λ is a unit in “D (m)
X ,Q because F \ is an equivalence of

categories.
(b) Note that if 0 6 i < j < q, then q does not divide j − i, so |j − i| > |q|.

Hence (i + qK◦) ∩ (j + qK◦) = ∅, and if λ ∈ i + qK◦ then λ /∈ j + qK◦ for any
other j. This means that |λj | > 1 whenever j 6= i, and then x′∂′ − λj is a unit in“D (0)

X ′,Q as above. Now apply Proposition 4.4.5. �

We now assume that m = 0 and focus on the algebra D := “D (0)
X (X ), which is

πK-adically complete and separated. It is a lattice inside the Tate-Weyl algebra

DK = “D (0)
X ,Q(X ). If I is a left ideal in D, then we say that I is πK-closed if the

K◦-module D/I is torsionfree, or equivalently, if I = IK ∩D.

Lemma 4.4.7.

(a) The algebra D is Noetherian.
(b) Let J 6 I be two left ideals of D and suppose that I is πK-closed. Then

I + πKD = J + πKD implies that I = J .

Proof. (a) D := D/πKD is the skew-polynomial ring B[∂; d
dx ] where

B := k

ï
x,

1

x− α1
, · · · , 1

x− αd

ò
= O(X ×K◦ k)

and αi denotes the image of αi in the residue field k of K◦. Since k is a field, both
B and D are Noetherian rings 1. The associated graded ring of D with respect to

1This uses the assumption that K◦ is a discrete valuation ring.
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the πK-adic filtration is isomorphic to a polynomial ring D[s] and is therefore is
Noetherian. Hence D is Noetherian by [33, Chapter II, §1.2, Proposition 3(1)].

(b) Note that I ∩ πKD = πKI since I is πK-closed. Hence, by the modular law

I = I ∩ (I + πKD) = I ∩ (J + πKD) = J + (I ∩ πKD) = J + πKI

Now I is finitely generated by part (a), and πK lies in the Jacobson radical of D
because D is πK-adically complete, so I = J by Nakayama’s Lemma. �

We will assume until the end of §4.4 that λ ∈ K◦.

Lemma 4.4.8. Let I be a πK-closed left ideal of D containing t := x∂ − λ. Then

I is stable under the operators En :=
(

ad(x∂)
n

)
: DK → DK for all n > 0.

Proof. We first consider the case where I = D itself. For any f ∈ O(X ) and any
m > 0 we calculate ad(x∂)(f∂m) = [x∂, f∂m] = (x∂−m)(f)∂m. Therefore for any
n > 0 we see that

(35)

Ç
ad(x∂)

n

å
(f∂m) =

Ç
x∂ −m

n

å
(f)∂m =

n∑
i=0

Ç
−m
n− i

å
xi∂[i](f) ∂m

which implies that
(

ad(x∂)
n

)
preserves D as required. Now, ad(x∂) = ad(t). Letting

ad(t)[n] := ad(t)(ad(t)− 1) · · · (ad(t)− n+ 1) = n!

Ç
ad(t)

n

å
we see that ad(t)[n](D) ⊆ n!D. Returning to the general case where I is not
necessarily equal to D, note that ad(t)(I) = [t, I] ⊆ I because t ∈ I by assumption.
Hence

ad(t)[n](I) ⊆ I ∩ n!D = n!I

because D/I is torsionfree. Dividing through by n! we conclude that I is stable

under
(

ad(t)
n

)
=
(

ad(x∂)
n

)
as required. �

Proposition 4.4.9. Let I be a πK-closed left ideal of D properly containing Dt.
Then for some n > 0, either xn ∈ I + πKD or ∂n ∈ I + πKD.

Proof. Let I := (I + πKD)/πKD. Since I is πK-closed, we see that I strictly
contains Dt = (Dt + πKD)/πKD by Lemma 4.4.7(b). Now I is a left ideal in
D = B[∂; d

dx ] which is an Ore localisation of the Weyl algebra W := k[x][∂; d
dx ] at

the Ore set consisting of powers of the polynomial
∏d
i=1(x−αi). Therefore, by [36,

Proposition 2.1.16(iii)], I = D · J where J := I ∩W ; note that J strictly contains
Wt because I strictly contains Dt.

Now, W/Wt is a k-vector space with basis {vm : m ∈ Z} where vm := xm +Wt

if m > 0 and vm := ∂−m +Wt if m < 0. It follows from (35) that

En(vm) =

Ç
m

n

å
vm for all n > 0,m ∈ Z.

Pick a non-zero element u ∈ J/Wt ; then we can write u as a finite sum

u =
∑
m∈Z

umvm

for some um ∈ k, not all zero. Suppose that in fact ur 6= 0 for some r ∈ Z.
The binomial coefficients

(
z
n

)
form a basis for the ring of locally constant k-valued
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functions on Zp. We can find such a function, ε say, such that ε(r) = 1 and ε(m) = 0

for all m ∈ Z\{r} such that um 6= 0. Write ε =
N∑
n=0

εn
(
z
n

)
; then(

N∑
n=0

εnEn

)
(u) =

N∑
n=0

∑
m∈Z

εnum

Ç
m

n

å
vm =

∑
m∈Z

umvmε(m) = urvr.

Now En(J) ⊆ J for all n > 0 by Lemma 4.4.8, so urvr ∈ J/Wt. Since k is a field,
we conclude that vr ∈ J/Wt and the result follows. �

Corollary 4.4.10. Let I be a πK-closed left ideal of D properly containing Dt.
Then either

(a) there exist an, an−1, · · · , a0 ∈ K◦〈∂〉 with an 6= 0 and

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ I, or

(b) there exist an, an−1, · · · , a0 ∈ O(X ) with an 6= 0 and

an∂
n + an−1∂

n−1 + · · ·+ a1∂ + a0 ∈ I.

Proof. By Proposition 4.4.9, we know that either xn ∈ I or ∂
n ∈ I for some n > 0.

Suppose first that xn ∈ I, and let S := {1, x, · · · , xn−1}. Because the image of S
in B/Bxn spans it as a k-vector space, its image also generates D/Dxn as a k[∂]-

module; hence its image in D/I = D/I generates it as a k[∂]-module. Since D/I
is πK-adically separated by Lemma 4.4.7(a) and [33, Chapter II, §1.2, Theorem
10(1)], we conclude using [33, Chapter I, Theorem 5.7] that the image of S in
D/I generates it as a K◦〈∂〉-module. Hence we may write xn as a K◦〈∂〉-linear

combination vectors in this image, and hence (a) holds. Alternatively, if ∂
n ∈ I then

the same argument using T := {1, ∂, · · · , ∂n−1} instead of S and O(X ) instead of
K◦〈∂〉 shows that (b) holds. �

Proposition 4.4.11. Let I be a πK-closed left ideal of D properly containing Dt
and suppose that λ ∈ K◦\Z. Then either I ∩K◦〈∂〉 6= {0} or I ∩ O(X ) 6= {0}.

Proof. Let vλ be the canonical generator of D/Dt and let m > 1. Then

∂ · xmvλ = ∂x · xm−1vλ = (xm−1∂x+ [∂x, xm−1]) · vλ =
= xm−1(x∂ + 1 + (m− 1))vλ = (λ+m)xm−1vλ.

It follows that for any a ∈ K◦〈∂〉 and any m > 1, we have

∂ · axm ≡ a(λ+m)xm−1 modDt.

Suppose now that anx
n+an−1x

n−1 + · · ·+a1x+a0 ≡ 0 mod I, for some ai ∈ K◦〈∂〉
with an 6= 0 and n > 0 least possible. Suppose for a contradiction that n > 1. Then

0 = ∂ · 0 ≡ ∂ ·
n∑

m=0

amx
m ≡

n∑
m=1

am(λ+m)xm−1 + ∂a0 mod I.

Since λ /∈ Z and since K◦〈∂〉 is a domain, we see that am(λ + m) 6= 0, so this
congruence contradicts the minimality of n. Therefore n = 0 and I∩K◦〈∂〉 6= {0} as
claimed. Otherwise, by Corollary 4.4.10, we have the congruence an∂

n+an−1∂
n−1+

· · · + a1∂ + a0 ≡ 0 mod I for some ai ∈ O(X ) with an 6= 0. A similar calculation
shows that

(36) x · a∂m ≡ a(λ−m+ 1)∂m−1 modDt for all m > 1, a ∈ O(X )



GLOBAL SECTIONS OF EQUIVARIANT LINE BUNDLES 69

and using this congruence we conclude using a similar argument that in fact we can
choose n = 0 and therefore I ∩ O(X ) 6= {0}. �

Corollary 4.4.12. If λ ∈ K◦\Z, then the only πK-closed left ideal I of D properly
containing D(x∂ − λ) is D itself.

Proof. Every non-zero ideal in the Tate algebra K〈∂〉 is generated by a non-zero
element of K[∂]. So, if I ∩K◦〈∂〉 is non-zero, then IK ∩K[∂] is non-zero. Clear-
ing denominators, we may even assume that I ∩ K◦[∂] is non-zero. By applying
an appropriate linear combination of the Euler operators En as in the proof of
Proposition 4.4.9 to a non-zero element of I ∩K◦[∂], and using the fact that I is
πK-closed, we see that ∂n ∈ I for some n > 0. Choosing n minimal possible and
using the relation (36) together with the fact that λ /∈ Z, we see that n = 0 and
hence 1 ∈ I.

Otherwise, by Proposition 4.4.11, we know that I ∩ O(X ) is non-zero. Again,
every ideal in the affinoid algebra O(X) = O(X )K is generated by a non-zero
element of K[x], and we similarly conclude that 1 ∈ I. �

Proof of Theorem 4.4.3. Corollary 4.4.6(a) tells us that M (m)(λ)(X ) is zero if λ /∈
pm−1⋃
i=0

i+pmK◦, so we may assume that λ does lie in this union. Then we can apply

Corollary 4.4.6(b) to see that F \(M (m)(λ)) is isomorphic to
“D(0)

X ′,Q“D(0)

X ′,Q(x′∂′−λ−ipm )
for

some uniquely determined i ∈ {0, 1, . . . , pm − 1}.
Since F \ is an equivalence of categories by [15, Théorème 2.3.6], it is enough to

prove that F \(M (m)(λ))(X ′) is a simple “D (0)
X ′,Q(X ′)-module. Note that λ−i

pm /∈ Z
because λ /∈ Z by assumption, so we have reduced the problem to the case where
m = 0. But now M (0)(λ)(X ) = DK/DK(x∂ − λ), which is a simple DK-module
by Corollary 4.4.12. �

5. Group actions and equivariance

5.1. The crossed product and the secret action. We recall some constructions
from [9, §2.1]. Let L be a commutative ring, let S be an L-algebra and let G be a
group acting on S by L-algebra automorphisms from the left. We denote the result
of the group action of g ∈ G on s ∈ S by g · s. The skew-group ring S oG is a free
left S-module with basis G, and its multiplication is determined by

(37) (sg) · (s′g′) = (s(g · s′))(gg′) for all s, s′ ∈ S, g, g′ ∈ G.

The skew-group ring satisfies the following universal property.

Lemma 5.1.1. Suppose that U is an L-algebra, σ : S → U is an L-algebra homo-
morphisms and ρ : G→ U× is a group homomorphism such that

ρ(g)σ(s)ρ(g)−1 = σ(g · s) for all g ∈ G and s ∈ S.

There is a unique L-algebra homomorphism σ o ρ : S oG→ U such that

(σ o ρ)(se) = σ(s) for all s ∈ S and (σ o ρ)(1g) = ρ(g) for all g ∈ G.

Proof. It is straightforward to verify that σ o ρ must be the L-linear extension
of the map sending sg to σ(s)ρ(g) and that by (37) this is indeed an L-algebra
homomorphism. �
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Definition 5.1.2. Let S o G be a skew-group ring. A trivialisation is a group
homomorphism β : G → S× such that for all g ∈ G, the conjugation action of
β(g) ∈ S× on S coincides with the action of g ∈ G on S.

Definition 5.1.3. Let N be a normal subgroup of G, and suppose that β : N → S×

is a trivialisation of the sub-skew-group ring S oN .

(a) We define

S oβN G :=
S oG

(S oG) · {β(n)−1n− 1 : n ∈ N}
.

(b) We say that β is G-equivariant if

β(gn) = g · β(n) for all g ∈ G and n ∈ N.
Here gn := gng−1 denotes the conjugation action of G on N .

Note that S oβN G is a priori only a left S oG-module.

Lemma 5.1.4. Suppose that N is a normal subgroup of G, and that β : N → S×

is a G-equivariant trivialisation. Then

(a) S oβN G is an associative ring.

(b) S oβN G is isomorphic to a crossed product S ∗ (G/N).

Proof. This is [9, Lemma 2.2.4]. �

We will now place ourselves in the following situation.

Hypothesis 5.1.5.

(a) G is a group, S and S′ are L-algebras,
(b) G acts on S and S′ by L-algebra automorphisms,
(c) f : S′ → S is a G-equivariant L-algebra homomorphism,
(d) H ′ 6 H are two normal subgroups of G,
(e) β : H → S× is a G-equivariant trivialisation of the G-action on S,
(f) β′ : H ′ → S′× is a G-equivariant trivialisation of the G-action on S′,
(g) f(β′(h′)) = β(h′) for all h′ ∈ H ′.

It follows from [9, Lemma 2.2.7] that the ring homomorphism f : S′ → S extends

to a ring homomorphism f o 1 : S′oβ
′

H′ G→ SoβH G. To aid legibility, we will now
drop the trivialisations β and β′ from the notation.

Lemma 5.1.6. Let M ′ be an S′ oH′ G-module. Then there is an action of H on
M := S ⊗S′ M ′ by left S-linear automorphisms, given by

h ? (s⊗m′) = s β(h)−1 ⊗ h ·m′ for all h ∈ H, s ∈ S,m′ ∈M ′.
The restriction of this action to H ′ is trivial.

Proof. We will first check that the formula makes sense, that is h ? (ss′ ⊗m′) =
h ? (s⊗ s′m′) holds for all s′ ∈ S′, s ∈ S, h ∈ H and m′ ∈M ′. We have

(ss′)β(h)−1 ⊗ h ·m′ = s β(h)−1 β(h)s′β(h)−1 ⊗ h ·m′ =
= s β(h)−1(h · s′)⊗ h ·m′ =
= s β(h)−1 ⊗ (h · s′)(h ·m′) =
= s β(h)−1 ⊗ h · (s′m′)

as required. It is straightforward to verify that the given formula defines a left
H-action on M by left S-linear automorphisms. Because M ′ is a S′oH′ G-module,
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by Definition 5.1.3(a) we may view it as an S′oG-module where h′ ·m′ = β′(h′) ·m′
for all h′ ∈ H ′ and m′ ∈M ′. So if h′ lies in H ′ then by Hypothesis 5.1.5(g),

sβ(h′)−1 ⊗ h′ ·m′ = sf(β′(h′)−1)⊗ h′ ·m′ = s⊗ β′(h′)−1 · (h′ ·m′) = s⊗m′

and hence h′ ? (s⊗m′) = s⊗m′ for all h′ ∈ H ′, s ∈ S and m′ ∈M ′ as claimed. �

Definition 5.1.7. Let M ′ be an S′ oH′ G-module. We call the H-action on the
S-module S ⊗S′ M defined in Lemma 5.1.6 the secret H-action.

It follows from Lemma 5.1.6 that via the secret H-action, S ⊗S′ M ′ is naturally
a left S[H/H ′]-module. We will use the notation

(S ⊗S′ M ′)H :=
S ⊗S′ M ′

{h ? v − v : v ∈ S ⊗S′ M ′, h ∈ H}
.

to denote the module of left H-coinvariants of S⊗S′M ′ under the secret H-action.

Theorem 5.1.8. For every S′ ⊗H′ G-module M ′, there is a natural isomorphism

(S oH G) ⊗
(S′oH′G)

M ′ ∼= (S ⊗S′ M ′)H

of left S-modules.

Proof. Let [v] denote the image of v ∈ S⊗S′M ′ in (S⊗S′M ′)H . Consider the map
α : (S oG)×M ′ −→ (S ⊗S′ M ′)H given by (sg,m′) 7→ [s⊗ g ·m′] for s ∈ S, g ∈ G
and m′ ∈M ′. Let s ∈ S, g ∈ G, h ∈ H and m′ ∈M ′. Since

α(sgβ(h),m′) = α(sβ(gh)g,m′) = [sβ(gh)⊗ g ·m′] =
= [s⊗ gh · (g ·m′)] = [s⊗ (gh) ·m′] = α(sgh,m′)

we see that α is zero on (SoG){β(h)−h : h ∈ H} × M ′ and therefore descends to
a map α : (S oH G)×M ′ −→ (S ⊗S′ M ′)H . Recalling from [9, §2.2(3)] that sγ(g)
denotes the image of sg ∈ S oG in the crossed product S oH G, we see that α is
given by α(sγ(g),m′) = [s⊗ g ·m′] for all s ∈ S, g ∈ G and m′ ∈M ′.

Let sγ(g) ∈ S oH G, s′γ(g′) ∈ S′ oH′ G and m′ ∈M ′. Then we compute

α(sγ(g) · s′γ(g′),m′) = α(sf(g · s′)γ(gg′),m′) = [sf(g · s′)⊗ (gg′ ·m′)],
α(sγ(g), s′γ(g′) ·m′) = [s⊗ g · (s′ · (g′ ·m′))] = [s⊗ ((g · s′)g) · (g′ ·m′)] =

= [s⊗ (g · s′) · (gg′ ·m′)] = [sf(g · s′)⊗ (gg′ ·m′)].

Hence α is S′ oH′ G-balanced, and therefore descends to a well-defined map

(38) θ : (S oH G) ⊗
(S′oH′G)

M ′ −→ (S ⊗S′ M ′)H

given by θ(sγ(g) ⊗m′) = [s ⊗ g ·m′] for all s ∈ S, g ∈ G and m′ ∈ M ′. It is clear
that θ is S-linear. On the other hand, there is evidently a well-defined S-linear map

ϕ : S ⊗S′ M ′ −→ (S oH G) ⊗
(S′oH′G)

M ′

given by ϕ(s⊗m′) = s⊗m′ for all s ∈ S and m′ ∈M ′. Since

ϕ(h ? (s⊗m′)) = ϕ(sβ(h)−1 ⊗ h ·m′) = sβ(h)−1 ⊗ h ·m′ =
= sγ(h)−1 ⊗ h ·m′ = s⊗ h−1 · (h ·m′) = s⊗m′,

we see that ϕ factors through (S ⊗S′ M ′)H and induces an S-linear map

ψ : (S ⊗S′ M ′)H −→ (S oH G) ⊗
(S′oH′G)

M ′



72 KONSTANTIN ARDAKOV AND SIMON WADSLEY

given by ψ([s⊗m′]) = s⊗m′ for all s ∈ S and m′ ∈M ′. It is now straightforward
to check that θ and ψ are mutually inverse bijections. �

Now let M ′ be an S′ oH′ G-module, let M be an S oH G-module and suppose
we’re given an S′ oH′ G-linear map

τ : M ′ →M,

where we regard M as an S′oH′ G-module via restriction along the ring homomor-

phism f o 1 : S′ oβ
′

H′ G→ S oβH G coming from [9, Lemma 2.2.7]. Our next goal is
to establish a sufficient criterion for the induced S oH G-linear map

(39) τ̃ : (S oH G) ⊗
(S′oH′G)

M ′ −→M

given by τ̃(v ⊗m′) = v · τ(m′), where v ∈ S oH G and m′ ∈M ′, to be injective.

Lemma 5.1.9. Let M ′ be an S′ oH′ G-module.

(a) There is an S-semi linear action of G on S ⊗S′ M ′ given by

g · (s⊗m′) = (g · s)⊗ (g ·m′) for all g ∈ G, s ∈ S,m′ ∈M ′.
(b) For every g ∈ G, h ∈ H and v ∈ S ⊗S′ M ′ we have

g · (h ? (g−1 · v)) = (gh) ? v.

Proof. (a) We check that the formula is well-defined. Let g ∈ G, s ∈ S, s′ ∈ S′ and
m′ ∈M ′. Because f : S′ → S is G-equivariant, we have

g · (sf(s′)⊗m′) = (g · sf(s′))⊗ (g ·m′) = (g · s)(g · f(s′))⊗ (g ·m′) =
= (g · s)f(g · s′)⊗ (g ·m′) = (g · s)⊗ (g · s′)(g ·m′)
= (g · s)⊗ g · (s′ ·m′) = g · (s⊗ s′ ·m′)

as required. It is straightforward to see that this defines a G-action on S ⊗S′ M ′
which is S-semilinear in the sense that

g · (s · v) = (g · s) · (g · v) for all g ∈ G, s ∈ S, v ∈ S ⊗S′ M ′.
(b) We may assume that v = s ⊗ m′ with s ∈ S and m′ ∈ M ′. Let g ∈ G and
h ∈ H; using Definition 5.1.3(b), we compute

g · (h ? (g−1 · (s⊗m′))) = g · (h ? (g−1 · s⊗ g−1 ·m′)) =
= g · ((g−1 · s)β(h)−1 ⊗ h · (g−1 ·m′)) =
= g · ((g−1 · s)β(h−1))⊗ g · (h · (g−1 ·m′)) =
= s g · β(h−1)⊗ ghg−1 ·m′ =
= sβ((gh)−1)⊗ (gh) ·m′ = (gh) ? (s⊗m′). �

We will now restrict our scope slightly, and assume until the end of §5.1 that

• H ′ has finite index in H,
• L is a field of characteristic zero.

Let M ′ be an S′ ⊗H′ G-module. By Lemma 5.1.6 and the above assumptions, we
see that S ⊗S′ M ′ is a module over the group ring L[H/H ′] which is semisimple
because we’re assuming that our ground field L has characteristic zero. Because
the action of L[H/H ′] on S ⊗S′ M ′ commutes with the action of S, we obtain a
canonical S-module decomposition

(40) S ⊗S′ M ′ ∼=
⊕

[V ]∈IrrL(H/H′)

eV ? (S ⊗S′ M ′)
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where IrrL(H/H ′) is the set of isomorphism classes of simple L[H/H ′]-modules,
and for each [V ] ∈ IrrL(H/H ′), eV is the primitive central idempotent of L[H/H ′]
such that 1− eV generates the annihilator of V in L[H/H ′] as a two-sided ideal.

Let V be an L[H/H ′]-module and let g ∈ G. Let gV := {[g]v : v ∈ V } where
[g] is a formal symbol, and define an H-action on gV by the rule h · [g]v = [g]hgv
for all h ∈ H and v ∈ V . This is well defined because H is normal in G, and
since H ′ acts trivially on V and is also normal in G, we see that [g]V is again an
L[H/H ′]-module. In this way we obtain a permutation action of G on IrrL(H/H ′)
given by g · [V ] = [gV ].

Corollary 5.1.10. Let M ′ be an S′oH′ G-module. The S-semilinear G-action on
S ⊗S′ M ′ permutes the direct summands appearing on the right hand side of (40):

g · (eV ? (S ⊗S′ M ′)) = egV ? (S⊗S′M ′) for all g ∈ G and [V ] ∈ IrrL(H/H ′).

Proof. The conjugation action of g ∈ G on L[H/H ′] sends eV to egV . Now

g · (eV ? v) = geV ? (g · v) for all g ∈ G, v ∈ S ⊗S′ M ′

by Lemma 5.1.9(b) and the result follows. �

Given an S-module M , let `(M) denote its length. We can now state and prove
our criterion.

Theorem 5.1.11. Assume that Hypothesis 5.1.5 holds, that H ′ has finite index in
H and that L is a field of characteristic zero. Let M ′ be an S′ oH′ G-module, let
M be a S oH G-module, let τ : M ′ →M be an S′ oH′ G-linear map and consider
the S-linear map

Φ = 1⊗ τ : S ⊗S′ M ′ −→M

induced by τ . Suppose further that the following conditions hold.

(a) the secret H-action on S ⊗S′ M ′ is non-trivial,
(b) the G-action on IrrL(H/H ′) has exactly two orbits, and
(c) `(ker Φ) 6 | IrrL(H/H ′)| − 1.

Then Φ factors through the coinvariants (S⊗S′M ′)H under the secret H-action on
S ⊗S′ M ′, and the induced map Φ : (S ⊗S′ M ′)H −→M is injective.

Proof. Consider the S-module decomposition of N := S ⊗S′ M ′ given by (40):

N = e1 ? N ⊕ (H − 1) ? N, where (H − 1) ? N =
⊕

[V ] 6=[1]

eV ? N

and where 1 denotes the trivial L[H/H ′]-module. Note that

Φ(h ? (s⊗m′)) = Φ(sβ(h)−1 ⊗ h ·m′) = sβ(h)−1 · τ(h ·m′) =
= sβ(h)−1 · (h · τ(m′)) = s · τ(m′) = Φ(s⊗m′)

for all h ∈ H, s ∈ S and m′ ∈ M ′, because the G-action on M satisfies h · m =
β(h) ·m as M is an S oH G-module. In other words: (H − 1) ? N ⊆ ker Φ. Hence

`((H − 1) ? N) 6 `(ker Φ).

We know that eV ? N 6= 0 for at least one non-trivial [V ] ∈ IrrL(H/H ′) by (a).
Since g[1] = [1] for all g ∈ G, Corollary 5.1.10 together with (b) then implies that
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eV ? N 6= 0 for all non-trivial [V ] ∈ IrrL(H/H ′). This gives us the inequality

|IrrL(H/H ′)| − 1 6 `

Ñ ⊕
[V ]6=[1]

eV ? N

é
= `((H − 1) ∗N).

On the other hand, (c) gives that

`(ker Φ) 6 |IrrK(H/H ′)| − 1.

It follows that the inclusion (H − 1) ? N ⊆ ker Φ is in fact an equality.
Hence Φ factors through the module of coinvariants NH of N under the secret

H-action, and induces an S-linear injection Φ : NH
∼=−→M . �

5.2. The Iwahori action on differential operators on the closed unit disc.
In this section, we explore in detail the action of the p-adic Lie group GL2(K) on
the rigid K-analytic projective line P1 := P1,an. Fix a coordinate x ∈ OP1 . Because
of the local nature of our constructions, we will focus specifically on the affinoid
subdomains of the closed unit disc D = SpK〈x〉 = {z ∈ P1 : |z| 6 1}.

Definition 5.2.1. The generalised Iwahori subgroup of GL2(K) is

G :=

ßÅ
a b
c d

ã
∈ GL2(K◦) : |c| < 1

™
.

We note that if

Å
a b
c d

ã
∈ G then |a|, |d| = 1 since |ad − bc| = 1, |a|, |b|, |d| 6 1

and |c| < 1. We also see that G stabilises D under the standard Möbius action of
GL2(K) on P1. In fact, the stabiliser of D in GL2(K) is GZ, where Z is the centre
of GL2(K). By Lemma 2.5.2 the G-action on D induces G-actions on O(D) and

D(D). The G-action on the divided powers ∂
[n]
x ∈ D(D) of ∂x is given as follows.

Lemma 5.2.2. Let g =

Å
a b
c d

ã
∈ G. Then

(a) g · x = dx−b
−cx+a , and

(b) g · ∂[n]
x =

n∑
i=1

(n−1
i−1)(−cx+a)n+i(−c)n−i

(ad−bc)n ∂
[i]
x for all n > 0.

Proof. (a) This is straightforward. (b) The case n = 1 follows from Lemma 2.5.2(c).
In general, let y := −cx + a so that ∂x(y) = −c and ∂x = −c∂y. Then the

case n = 1 can be rewritten as g · ∂x = − cy2

det(g)∂y, and it follows that g · ∂[n]
x =Ä

−c
det(g)

än
(y2∂y)[n]. Now, by Vandermonde’s identity, for k ∈ N,

(y2∂y)[n](yk) =

Ç
n+ k − 1

n

å
yk+n

=
n∑
i=0

Ç
n− 1

n− i

åÇ
k

i

å
yk+n

=
n∑
i=1

Ç
n− 1

i− 1

å
yn+i∂[i]

y (yk).



GLOBAL SECTIONS OF EQUIVARIANT LINE BUNDLES 75

Thus as K[y] is dense in O(D) we see that

(y2∂y)[n] =
n∑
i=1

Ç
n− 1

i− 1

å
yn+i∂[i]

y

from which the result quickly follows. �

Recall the natural inclusion j : D(X) ↪→ Dr(X) from Lemma 2.3.7.

Corollary 5.2.3. Let g =

Å
a b
c d

ã
∈ G. Let r > 0 and let X be an ∂x/r-admissible

and g-stable affinoid subdomain of D. Then |a− cx|X = 1, and for all n > 1,

|j(g · ∂nx )| = max
16i6n

∣∣∣∣∣
Ç
n− 1

i− 1

å
n!

i!

∣∣∣∣∣ |c|n−i ri.
Proof. Note that |x|X 6 1 since X ⊂ D by assumption. Since |a| = 1 and |c| < 1
by Definition 5.2.1, we see that |a− cx|X = 1, as well as |ad− bc| = 1. We can now
use Lemma 5.2.2(b) together with Definition 2.2.8 to obtain the result. �

Recall that if X ⊆ D is an affinoid subdomain, GX denotes its stabiliser in G.

Proposition 5.2.4. Let X be a ∂x/r-admissible affinoid subdomain of D and let

g =

Å
a b
c d

ã
∈ GX . Then the g-action on D(X) extends to a bounded K-algebra

automorphism ρr(g) of Dr(X).

Proof. Fix n > 0. Using Corollary 5.2.3 we have

|j(g · ∂nx )|
|rn|

= max
16i6n

∣∣∣∣∣
Ç
n− 1

i− 1

å
n!

i!

∣∣∣∣∣ |c|n−iri−n.
Now

∣∣∣(n−1
i−1

)
n!
i!

∣∣∣ =
∣∣∣(n− i)!(n−1

i−1

)(
n
i

)∣∣∣ 6 |(n− i)!|, so by Lemma 2.3.16,

|j(g · ∂nx )|
|rn|

6 max
06i6n−1

|i!|
Å |c|
r

ãi
6 p max

06i6n−1
i

Å |c|$
r

ãi
.

By [8, Theorem 4.1.8], there is a finite extension K ′ of K such that X splits over
K ′. Lemma 2.3.13 and Corollary 2.3.17 now imply that

r(X) = r(XK′) = $/ρ(XK′) > $,

because ρ(XK′) 6 1 as XK′ ⊆ DK′ . Since X is ∂x/r-admissible, we conclude that
r > r(X) > $, so that |c|$/r < |c| < 1. Lemma 2.4.8 now tells us that

sup
n>0

|j(g · ∂nx )|
|rn|

<∞.

Recall the group homomorphism ρ : GX → B(O(X))× given by Lemma 2.5.2(c).
Using the above inequality, we can now apply Lemma 2.2.10 with A = O(X),
δ = ∂x, B = Dr(X), f = j ◦ ρ(g) and b = j(g · ∂x) to deduce that ρ(g) extends
to a bounded K-algebra endomorphism ρr(g) of Dr(X). It is easy to see that
ρr(gh) = ρr(g)ρr(h) for g, h ∈ GX , so in fact each ρr(g) is an automorphism. �



76 KONSTANTIN ARDAKOV AND SIMON WADSLEY

Note that the automorphism ρr(g) in Proposition 5.2.4 is only O(X)-semilinear.
We now have at our disposal the skew-group ring

Dr(X) o GX
whenever r > r(X).

Corollary 5.2.5. Let X be an affinoid subdomain of D.

(a) For every r > r(X), the O(X)-semilinear action of GX on D(X) extends to
an O(X)-semilinear action on Dr(X) by bounded K-linear automorphisms.

(b) The O(X)-semilinear action of GX on D(X) extends to an O(X)-semilinear

action on D†r(X)(X) by K-algebra automorphisms.

Proof. (a) This follows immediately from Proposition 5.2.4.
(b) This follows from part (a) in view of Definition 2.3.9(d). �

We now explain how ρ(GX) and σr(Dr(X)) interact inside B(O(X)).

Lemma 5.2.6. Let X be a ∂x/r-admissible affinoid subdomain of D. The maps
ρ : GX −→ B(O(X))× from Lemma 2.5.2(c) and σr : Dr(X) → B(O(X)) from
Lemma 2.3.12 satisfy

ρ(g) ◦ σr(Q) ◦ ρ(g)−1 = σr(g ·Q)

for all Q ∈ Dr(X) and all g ∈ GX , where g ·Q = ρr(g)(Q).

Proof. Suppose that g ∈ GX and f, h ∈ O(X). Then

(ρ(g) ◦ σr(f) ◦ ρ(g)−1)(h) = g · (f g−1 · h) = (g · f) h = σr(g · f)(h),

and using (12) we see that

(ρ(g) ◦ ∂x ◦ ρ(g)−1)(h) = g · (∂x(g−1 · h)) = (g · ∂x)(h).

Since σr is a K-algebra homomorphism and ρr(g) acts on Dr(X) by K-algebra
homomorphisms it follows that ρ(g) ◦ σr(Q) ◦ ρ(g)−1 = σr(g ·Q) for all Q ∈ D(X)
and then for all Q ∈ Dr(X) by continuity. �

The universal property of skew group rings, Lemma 5.1.1, gives the following

Corollary 5.2.7. LetX be a ∂x/r-admissible affinoid subdomain of D. The natural
Dr(X)oGX -action on O(X) induces a K-algebra homomorphism σroρ : Dr(X)o
GX −→ B(O(X)).

We will now explain how to construct a trivialisation of a certain sufficiently
large sub-skew-group ring of this skew-group ring.

Definition 5.2.8. For each real number r > $, we define

(a) a subgroup Gr := {g ∈ G : |g · x− x|D < $/r} of G, and
(b) a function β : Gr −→ Dr(D) defined by

β(g) :=
∞∑
n=0

(g · x− x)n∂[n].

Lemma 2.3.16 shows that for any g ∈ Gr we have

lim
n→∞

∣∣∣∣ (g · x− x)n

n!

∣∣∣∣
D
· rn 6 lim

n→∞

Å |g · x− x|D
$/r

ãn
= 0.

Hence β(g) does define an element of Dr(D) whenever g ∈ Gr by Definition 2.2.8.
The following explicit description of the group Gr will be useful later.
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Lemma 5.2.9. Gr =

ßÅ
a b
c d

ã
∈ G : |b| < $

r , |c| <
$
r , |a− d| <

$
r

™
.

Proof. Let g =

Å
a b
c d

ã
∈ G. Since |c| < 1, the invertibility of g in M2(K◦) forces

|a| = |d| = 1. By Corollary 5.2.3, we have |a − cx|D = 1. Next, using Lemma
5.2.2(a) we have

g · x− x =
cx2 + (d− a)x− b

−cx+ a
.

Since | · |D is multiplicative, we conclude that |g · x− x|D = |cx2 + (d− a)x− b|D =
max{|c|, |d − a|, |b|}. Hence g ∈ Gr if and only if |b|, |c|, |d − a| are all strictly less
than $/r as claimed. �

The main reason for Definition 5.2.8 comes from the following

Proposition 5.2.10. Let X be a ∂x/r-admissible affinoid subdomain of D. Then

σr(β(g)) = ρ(g) for all g ∈ Gr ∩ GX .

Proof. Fix g ∈ Gr ∩ GX and write w := g · x− x. Then for every a, b ∈ O(X),( ∞∑
n=0

wn∂[n]
x

)
(ab) =

∞∑
n=0

wn
n∑
i=0

∂[i]
x (a)∂[n−i]

x (b) =

( ∞∑
i=0

wi∂[i]
x (a)

)( ∞∑
j=0

wj∂[j]
x (b)

)
.

It follows that σr(β(g)) : O(X) → O(X) is a K-algebra homomorphism, so for
every integer m > 0 we have

σr(β(g))(xm) =
∞∑
n=0

wn
Ç
m

n

å
xm−n = (w + x)m = (g · x)m = ρ(g)(xm).

Because σr(β(g)) and ρ(g) are both continuous K-linear operators on O(X), we
conclude that σr(β(g))ρ(g)−1 : O(X) → O(X) is a K-algebra homomorphism
which fixes K〈x〉 = O(D) ⊆ O(X) pointwise. Since O(X) contains a dense O(D)-
subalgebra generated by elements of the form a/b with a, b ∈ O(D), the continuity
of σr(β(g)) and ρ(g) implies that σr(β(g))ρ(g)−1 in fact fixes all of O(X). �

Theorem 5.2.11. Let X be a ∂x/r-admissible affinoid subdomain of D. Then

β : Gr ∩ GX −→ Dr(X)×

is a GX -equivariant trivialisation.

Proof. According to Definition 5.1.2 and 5.1.3(b), we have to verify that

(a) β is a group homomorphism into Dr(X)×,
(b) β(h) a β(h)−1 = h · a for all h ∈ H := Gr ∩ GX and a ∈ Dr(X),
(c) H is normal in GX , and
(d) β(ghg−1) = g · β(h) for all g ∈ GX and h ∈ H.

(a) Using Proposition 5.2.10, we note that

σr(β(g)β(h)) = σr(β(g))σr(β(h)) = ρ(g)ρ(h) = ρ(gh) = σr(β(gh))

for all g, h ∈ H. Since σr is injective by Lemma 2.3.12(b), we conclude that the
map β : Gr → Dr(X) is multiplicative. Since β(1) = 1 it follows that the image of
β is contained in Dr(X)×.

(b) Using Proposition 5.2.10 and Lemma 5.2.6 we see that

σr(β(g) a β(g)−1) = ρ(g) σr(a) ρ(g)−1 = σr(g · a) for all a ∈ Dr(X).
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The result follows from the injectivity of σr again.

(c) It suffices to prove that Gr is normal in G. For each 0 6= s ∈ K
◦
, let

G(s) := {g ∈ G : |g · x− x| 6 |s|}; since |K×| is dense in R, we see that

Gr =
⋃

|s|<$/r

G(s).

Hence it suffices to see that each G(s) is normal in G. However, the action of G
on K

◦〈x〉 is K
◦
-linear and therefore induces an action of G on the polynomial ring

(K
◦
/sK

◦
)[x]. Then G(s) is the kernel of this action and is therefore normal in G.

(d) σr(β(ghg−1)) = ρ(ghg−1) = ρ(g) ◦ ρ(h) ◦ ρ(g)−1 = ρ(g) ◦ σr(β(h)) ◦ ρ(g)−1

by Proposition 5.2.10. This last equals σr(g · β(h)) by Lemma 5.2.6. Once again
the result follows because σr is injective. �

It follows from Theorem 5.2.11 and Lemma 5.1.4 that whenever X is a ∂x/r-
admissible affinoid subdomain of D, we may form the crossed product

Dr(X)
β
o

Gr∩GX
GX .

Corollary 5.2.12. Let X be a ∂x/r-admissible affinoid subdomain of D. Then the

action of Dr(X) o GX on O(X) descends to an action of Dr(X) oβGr∩GX GX .

Proof. This follows immediately from Proposition 5.2.10. �

To finish §5.2, we record a formula which computes the effect of applying a twist-
ing automorphism θu,d from Theorem 2.4.9 to the special infinite-order differential

operators of the form β(g). Recall the functions h
[m]
u,d from Definition 2.4.5.

Proposition 5.2.13. Let X be a ∂x/r-admissible affinoid subdomain of D, let
g ∈ Gr ∩ GX , let u ∈ O(X)× and suppose that p - d.

(a) The element cu,d(g) :=
∞∑
m=0

(g · x− x)mh
[m]
u,d lies in 1 +O(X)◦◦.

(b) Inside Dr(X) we have

θu,d(β(g)) = cu,d(g) β(g).

(c) We have cuv,d(g) = cu,d(g) cv,d(g) for any other v ∈ O(X)×.
(d) We have cu,d(g)d = u

g·u in O(X)×.

Proof. (a) Write w := g · x− x. Since g ∈ Gr and X ⊆ D, we know that

|w|X 6 |w|D < $/r

by Definition 5.2.8(a). Also, |h[m]
u,d |X 6 (r(X)/$)m by Theorem 2.4.7, hence∣∣∣wmh[m]

u,d

∣∣∣
X
<
($
r

)m
·
Å
r(X)

$

ãm
=

Å
r(X)

r

ãm
which tends to zero as m → ∞ because r(X) < r. We conclude that cu,d(g)
converges in O(X) to an element of 1 +O(X)◦◦ ⊂ O(X)×.
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(b) By Definition 5.2.8(b), we have β(g) =
∞∑
n=0

wn∂[n]. Therefore

θu,d(β(g)) =
∞∑
n=0

wn
n∑
α=0

h
[n−α]
u,d ∂[α] =

=
∞∑
α=0

wα
Å ∞∑
n=α

wn−αh
[n−α]
u,d

ã
∂[α] =

=
∞∑
α=0

wα
Å ∞∑
m=0

wmh
[m]
u,d

ã
∂[α] =

= cu,d(g) β(g)

by Theorem 2.4.4, as claimed.
(c) Lemma 2.4.3 implies that θuv,d = θu,d ◦ θv,d as automorphisms of Dr(X).

Applying part (b) to the units uv, v and u in turn shows that

cuv,d(g)β(g) = θuv,d(β(g)) = θu,d(θv,d(β(g)) = θu,d(cv,d(g)β(g)) = cv,d(g)cu,d(g)β(g)

since θu,d is O(X)-linear. The claimed identity now follows because β(g) is a unit
in Dr(X) by Theorem 5.2.11.

(d) By Lemma 2.4.12 together with Proposition 5.2.10, inside B(O(X)) we have

σr(θud,d(β(g)) = σr(uβ(g)u−1) = uσr(β(g))u−1 = u ρ(g)u−1.

But θud,d(β(g)) = cud,d(g)β(g) = cu,d(g)dβ(g) by (b,c) above, so

u ρ(g)u−1 = σr(cu,d(g)dβ(g)) = cu,d(g)dσr(β(g)) = cu,d(g)dρ(g)

again by Proposition 5.2.10. Apply these operators to 1 ∈ O(X) to find

cu,d(g)d = cu,d(g)dρ(g)(1) = (u ρ(g)u−1)(1) = u ρ(g)(u−1) = u/g · u. �

5.3. Equivariant line bundles with connection on local Drinfeld space.
Recall the generalised Iwahori subgroup G of GL2(K) from Definition 5.2.1; it
consists of matrices with coefficients in K. We will now focus on certain groups of
matrices with entries in F .

Notation 5.3.1.

(a) Let I = G ∩GL2(OF ) be the Iwahori subgroup.
(b) Let J be a closed subgroup of I.
(c) For each n > 0, write In := ker(I → GL2(OF /πnFOF )) and Jn := J ∩ In.
(d) Let Dn/J denote the G-topology on D whose open sets are the J-stable

members of Dn and whose coverings are the finite coverings.

The G-topology Dn on D was introduced at Definition 4.3.9.

Definition 5.3.2.

(a) [L ] ∈ PicConI(Υ)tors is such that ω[L ] ∈ PicCon(Υ)I [p′],
(b) d > 1 is the order of ω[L ] in PicCon(Υ)I ,

(c) e ∈ dZ is the order of [L ] in PicConI(Υ).

Thus L is an I-equivariant line bundle with flat connection on Υ = D ∩Ω, and
we can find an I-equivariant D-linear isomorphism

ψ′ : L ⊗e
∼=−→ O.

Clearly, whenever J is as in Definition 5.3.1, Jn is a normal subgroup of J ; note
also that Jn is a pro-p group whenever n > 1 because the groups I1/Im+1 are all
finite p-groups. Recall now the normal subgroups Gr of G from Definition 5.2.8.
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Lemma 5.3.3. In+1 6 Gr whenever r < $/|πF |n+1.

Proof. If g =

Å
g11 g12

g21 g22

ã
∈ In+1 then g11 − 1, g12, g21, g22 − 1 all lie in πn+1

F OF ,

which implies that

max{|g12|, |g21|, |g11 − g22|} 6 |πF |n+1 < $/r,

by our assumption on r. Hence g ∈ Gr by Lemma 5.2.9. �

Recall β : Gr ∩ GX → Dr(X)× from Theorem 5.2.11 for X ∈ Dw and r > r(X).

Proposition 5.3.4. Let n > 0 and let H be a closed normal subgroup of J . Then
there is a sheaf Dn oHn+1 J on Dn/J whose sections over X ∈ Dn/J are given by

Dn(X) oβHn+1
J . This sheaf has vanishing higher Čech cohomology.

Proof. Let X ∈ Dn/J . Note that Dn(X) = D†$/|πF |n(X) =
⋃

r>$/|πF |n
Dr(X) by

Definition 2.3.9(d). Let r > 0 satisfy

$/|πF |n < r < $/|πF |n+1.

Then because r > $/|πF |n > r(X), the GX -equivariant trivialisation

β : Gr ∩ GX → Dr(X)×

is well-defined by Theorem 5.2.11. On the other hand Hn+1 6 Gr by Lemma 5.3.3
because r < $/|πF |n+1. Since X is J-stable, the restriction of β to Hn+1 is a
J-equivariant trivialisation, which means that we can form the crossed product

Dr(X) oβHn+1
J which is an associative ring by Lemma 5.1.4. Letting r approach

$/|πF |n from above and taking the colimit, we obtain the ring Dn(X) oβHn+1
J

which is still a crossed product of Dn(X) with J/Hn+1.
This construction is functorial in X ∈ Dn/J , and in this way we obtain the

presheaf DnoHn+1 J on this G-topology. Because this presheaf is a free Dn-module

on J/Hn+1, we conclude that it is a sheaf with vanishing higher Čech cohomology
using Theorem 2.3.10. �

Recall from Definition 4.3.2 the truncation Ln = j∗(LΥn
) of L to Υn, which is

naturally a Dn-module on Dn by Corollary 4.3.11.

Lemma 5.3.5. Suppose that M is another DΥ-module satisfying the same hy-
potheses as L , and let Mn = j∗(MΥn

).

(a) Ln ⊗(OD)Υn
Mn is naturally a Dn-module.

(b) Let X ∈ Dn, and r > $/|πF |n. Then

β(g) · (l⊗ v) = (β(g) · l)⊗ (β(g) · v) for all g ∈ Gr ∩ GX , l ∈ Ln(X), v ∈Mn(X).

Proof. By Theorem 4.3.7 and Proposition 4.3.8 there is ẇ ∈ Mn(Vn) such that
Mn = (ODẇ)Υn

. Thus by Lemma 4.1.4, Ln ⊗(OD)Υn
Mn
∼= (L ⊗OΩ∩D M )Υn

so

Dn acts naturally on this by Corollary 4.3.11. Now for each m > 0,

∂[m]
x (l ⊗ v) =

m∑
i=0

∂[i]
x (l)⊗ ∂[m−i]

x (v) for all l ∈ Ln(X) and v ∈Mn(X),

so writing w = g · x− x as in Proposition 5.2.10 we see that

β(g)(l ⊗ v) =
∞∑
m=0

wm
m∑
i=0

∂[i]
x (l)⊗ ∂[m−i]

x (v) = β(g)(l)⊗ β(g)(v). �
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We may view Ln as a J-equivariant Dn-module on Dn, so its restriction to Dn/J
may be viewed as a Dn o J-module.

Theorem 5.3.6. Let H be a closed normal subgroup of J and recall that e is the
order of [L ] in PicConI(Υ)tors. For each n > vπF (e), the Dn o J-action on Ln

factors through Dn oHn+1 J .

Proof. SinceHn+1 6 Jn+1 it suffices to consider the caseH = J . We fix n > vπF (e).
Write e = pkf with f coprime to p. Then there are tensor powers Lp and Lp′ of
L such that [Lp] has order pk, [Lp′ ] has order f and

[L ] = [Lp][Lp′ ] ∈ PicConI(Υ).

Because ω[L ] has order d coprime to p by Definition 5.3.2, the order of ω[Lp] =
ω[L ] · ω[Lp′ ]

−1 is also coprime to p. Hence ω[Lp] = [OΥ]. Because Υ is geo-
metrically connected and quasi-Stein, using [8, Proposition 3.2.14] we can find a

character χ ∈ Hom(I, µpk(K)) such that [Lp] = [Oχ] in PicConI(Υ). The assump-

tion n > vπF (e) implies that In 6 Ip
k

, and therefore χ(In) = 1. It follows that the

image of [L ] in PicConIn(Υ) under the restriction map has order f , and so we can
choose an In-equivariant isomorphism of line bundles with connection

ψ : L ⊗f
∼=−→ O.

Let X ∈ Dn/J . Since Υn lies in Dn/J as well by Corollary 2.3.17, we see that
X ∩Υn ∈ Dn/J also. Let g ∈ Jn+1, so that g ∈ Gr for any r satisfying $/|πF |n <
r < $/|πF |n+1 by Lemma 5.3.3. Corollary 5.2.12 implies that β(g)− g ∈ Dn(X ∩
Υn)o J acts trivially on O(X ∩Υn); hence β̃(g) := β(g)−1g ∈ (Dn(X ∩Υn)o J)×

fixes O(X ∩Υn) pointwise.
Let A := OX∩Υn

(X) and use Theorem 4.3.7 to find an algebraic generator

ż ∈ Ln(X) with associated rational function u = ψ(ż⊗f ); then Ln(X) = A · ż
by Proposition 4.3.8. On the other hand, Ln(X) is a Dn(X)-module by Corollary

4.3.11 and it is even a Dn(X) o J-module by the above remarks. Write β̃(g) · ż =

c(g)ż for some c(g) ∈ A. Since ψ is Jn-equivariant and since β̃(g) fixes A pointwise,
we see via Lemma 5.3.5 that for all g ∈ Jn+1,

c(g)fu = ψ((c(g)ż)⊗f ) = ψ((β̃(g) · ż)⊗f ) = β̃(g) · u = u

which implies that c(g)f = 1 for all g ∈ Jn+1. Because β : Jn+1 → Dn(X)×

is a trivialisation, it follows from [9, Lemma 2.2.2] that β̃(gh) = β̃(g)β̃(h) for

all g, h ∈ Jn+1. Now, β̃(g) fixes c(h) ∈ A and therefore commutes with it in
Dn(X ∩Υn) o J . Therefore

c(gh)ż = β̃(gh)ż = β̃(g)β̃(h)ż = β̃(g)c(h)ż

= c(h)β̃(g)ż = c(h)c(g)ż = c(g)c(h)ż.

Hence c : Jn+1 → A× is a group homomorphism such that c(g)f = 1 for all
g ∈ Jn+1. Since Jn+1 is a pro-p group and since p - f , for each g ∈ Jn+1 there
exists h ∈ Jn+1 such that g = hf . Hence c(g) = c(hf ) = c(h)f = 1 for all g ∈ Jn+1

and we conclude that β̃(g) · ż = ż. Hence β̃(Jn+1) fixes Ln(X) = A · ż pointwise
and the result follows. �

Since Υn+1 contains Υn, there is a canonical Dn+1(D)-linear restriction map

Ln+1(D) −→ Ln(D).
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Let X ∈ Dn. Post-composing Ln+1(D) −→ Ln(D) with the restriction map
Ln(D)→ Ln(X), in view of Corollary 4.3.11 we obtain a morphism

(41) Dn ⊗
Dn+1(D)

Ln+1(D) −→ Ln

of sheaves of Dn-modules on Dn. For the moment, suppose further that X is J-
stable. Then we find ourselves in the setting of Hypothesis 5.1.5 with G := J ,
f : S′ → S the restriction map S′ := Dn+1(D) −→ S := Dn(X), H ′ := Jn+2,
H := Jn+1, and the trivialisations β′ and β used in Proposition 5.3.4.

Then M ′ := Ln+1(D) is an S′ oH′ G-module by Theorem 5.3.6, so by Lemma
5.1.6 there is a secret H = Jn+1-action on

S ⊗
S′
M ′ = Dn(X) ⊗

Dn+1(D)
Ln+1(D)

by Dn(X)-linear endomorphisms, given by

h ? (s⊗m′) = s β(h)−1 ⊗ h ·m′ for all h ∈ H, s ∈ S,m′ ∈M ′.
Inspecting this formula, we see that in fact it makes sense for any X ∈ Dn, not
necessarily J-stable, because we can view β(h) as an element of Dn(D)× and then
consider its image under the Dn(X)×. We will now study the module of coinvariants
(S ⊗S′ M)H with respect to this secret H-action.

Proposition 5.3.7. Whenever n > vπF (e), X 7→
Ç

Dn(X) ⊗
Dn+1(D)

Ln+1(D)

å
Jn+1

is a sheaf on Dn-modules on Dn, with vanishing higher Čech cohomology.

Proof. Whenever Y ⊆ X are members of Dn, the restriction maps

Dn(X) ⊗
Dn+1(D)

Ln+1(D) −→ Dn(Y ) ⊗
Dn+1(D)

Ln+1(D)

are equivariant with respect to the secret action, so we do have a presheaf of left Dn-
modules. By Theorem 4.3.7 we may choose an algebraic generator ż for Ln+1(D)
with associated rational function u. We write r := RS(u)(u, d) for brevity. By
Corollary 4.3.12, we have an exact sequence of Dn+1(D)-modules

0→ Dn+1(D)
·r−→ Dn+1(D)→ Ln+1(D)→ 0.

Applying the functor Dn ⊗Dn+1(D) − to this sequence, we obtain the following
sequence of presheaves of Dn-modules on Dn:

0→ Dn
·r−→ Dn −→ Dn ⊗

Dn+1(D)
Ln+1(D)→ 0

which is exact because Dn(X) is a flat right Dn+1(D)-module by Lemma 4.3.10(a,b)
for any X ∈ Dn. Let X be a Dn-covering. Then

0→ Caug(X ,Dn)
·r−→ Caug(X ,Dn)→ Caug(X ,Dn ⊗

Dn+1(D)
Ln+1(D))→ 0

is an exact sequence of augmented Čech complexes. Since the first two of these
complexes is exact by Theorem 2.3.10, so is the third. Now, Dn ⊗

Dn+1(D)
Ln+1(D) car-

ries a secret Dn-linear Jn+1-action, and the operation of taking Jn+1-coinvariants
is exact since K is a field of characteristic zero, and the action of Jn+1 factors
through the finite group Jn+1/Jn+2 by Lemma 5.1.6. Therefore the complex
Caug(X , (Dn ⊗

Dn+1(D)
Ln+1(D))Jn+1

) is exact, and the result follows. �
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We denote this sheaf by

Ç
Dn ⊗

Dn+1(D)
Ln+1(D)

å
Jn+1

.

Lemma 5.3.8. The comparison map (41) induces a morphism

Ξ :

Ç
Dn ⊗

Dn+1(D)
Ln+1(D)

å
Jn+1

−→ Ln

of sheaves of Dn-modules on Dn, whenever n > vπF (e).

Proof. Let X ∈ Dn. The comparison map from (41) factors through the Jn+1-
coinvariants of Dn(X) ⊗Dn+1(D) Ln+1(D), because β(h)−1h fixes Ln(X) for any
h ∈ Jn+1 by Theorem 5.3.6, applied with Jn+1 instead of J . �

Our goal is now to show that under a certain mild additional condition on the
group J , the connecting map Ξ is in fact an isomorphism. We will verify that this
is the case locally on the G-topology Dn. We will use a particular covering of D,
similar to the covering of A appearing in Lemma 4.2.20 above.

Definition 5.3.9. For each a ∈ OF define

Ba,n := CK(a;πn) and Wa,n := CK(a, b1, . . . , bq−1;πnF , . . . , π
n
F )

where b1, . . . , bq−1 ∈ a+ πnFOF are chosen so that

πnOF /πn+1OF = {πn+1
F OF , (b1 − a) + πn+1

F OF , (bq−1 − a) + πn+1
F OF }.

We also define Un = {Υn,Wa,n | a ∈ OF }.

Recall here that Υn = D\
⋃

a∈OF
{|z − a| < |πF |n} — see Definition 4.3.2(a,b).

We note that Wa,n does not depend on the choices of b1, . . . , bq−1 and both Wa,n

and Ba,n only depend on the image of a in OF /πn+1OF . Thus |Un| = hn + 1. We
also note that Wa,n ∩ OF = a+ πn+1OF by construction.

Lemma 5.3.10. Un is an Dn/In+1-admissible covering of D.

Proof. Let {a1, . . . , ahn} be a set of coset representatives for OF /πn+1OF so that
Un = {Wa1

, . . . ,Wahn
,Υn}. Because min

i 6=j
|ai − aj | = |πF |n, it follows from Lemma

4.2.20 that Un is indeed a Dn-admissible covering of D, so it remains to verify that
each of its members is In+1-stable.

Now Υn itself is In+1-stable: it is even stable under the Iwahori subgroup
GL2(OF ) ∩ G because it permutes connected components of D− Vn.

Fix g ∈ In+1, and a, b1, . . . , bq−1 in OF so that

Wa,n = CK(a, b1, . . . , bq−1;πnF , . . . , π
n
F ).

Moreover let z ∈ Wa,n(K). Then |z − a| 6 |πF |n and |z − bj | > |πF |n for each

j = 1, . . . , q − 1. Because each entry of g − 1 lies in πn+1
F OF , we see that

|g · z − z| 6 |πn+1
F |.

Hence |g · z − a| 6 |πF |n and |g · z − bj | = |z − bj | > |πF |n for each j = 1, . . . q − 1.

We conclude that g · z ∈Wa,n(K) as well. So Wa,n is In+1-stable. �

Definition 5.3.11. We introduce the following standard subgroup of GL2(OF ):

N :=

Å
1 OF
0 1

ã
6 GL2(OF ).
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We can now state the main technical result of this part of the paper.
We assume until the end of §5 that the field K is discretely valued.

Theorem 5.3.12. Fix n > vπF (e), a ∈ OF and write W := Wa,n. Assume that
d | (q+1) andNn+1 6 Jn+1. Then the following comparison map is an isomorphism:

Ξ(W ) :

Ç
Dn(W ) ⊗

Dn+1(W )
Ln+1(W )

å
Jn+1

∼=−→ Ln(W ).

The proof of Theorem 5.3.12 will occupy the entirety of §6 and can be found at
the end of §6.5.

In the remainder of §5.3 we will use Theorem 5.3.12 to derive some important
consequences. To do this, we need two more technical Lemmas.

Lemma 5.3.13. Let Y ⊆ X both lie in Dn. Then the action map

Dn(Y ) ⊗
Dn(X)

M (X) −→M (Y )

is an isomorphism when M is one of the following Dn-modules:

(a) M = Ln, or

(b) M =

Ç
Dn ⊗

Dn+1(D)
Ln+1(D)

å
Jn+1

and n > vπF (e).

Proof. (a) Using Theorem 4.3.7, choose an algebraic generator ż for Ln(D) with
associated rational function u, write r := RS(u)(u, d) and consider the following
commutative diagram:

Dn(Y ) ⊗
Dn(X)

Dn(X)
·r //

��

Dn(Y ) ⊗
Dn(X)

Dn(X) //

��

Dn(Y ) ⊗
Dn(X)

Ln(X) //

��

0

Dn(Y ) ·r
// Dn(Y ) // Ln(Y ) // 0.

The rows are exact by Corollary 4.3.12. The first two vertical maps are isomor-
phisms, so the third vertical map is also an isomorphism by the Five Lemma. This
deals with the case M = Ln.

(b) Now, using Theorem 4.3.7 again, choose an algebraic generator ż for Ln+1(D)
with associated rational function u. Write D := Dn(X), D′ := Dn(Y ), r :=
RS(u)(u, d) and H := Jn+1 for brevity, and let ε ∈ K[Jn+1/Jn+2] be the principal
idempotent — the average of all the group elements of the finite group Jn+1/Jn+2.

Then the sequence D/Dr
1−ε−→ D/Dr −→ (D/Dr)H → 0 is exact, so the first row

in the commutative diagram

D′ ⊗
D

D
Dr

1 ⊗ (1−ε)? //

��

D′ ⊗
D

D
Dr

//

��

D′ ⊗
D

( DDr )H //

��

0

D′

D′r (1−ε)?
// D′
D′r

// ( D
′

D′r )H // 0

is exact. The second row is exact for the same reason, and the first two vertical maps
are isomorphisms. Hence the third map is an isomorphism by the Five Lemma.
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By Corollary 4.3.12, we have isomorphisms M (X) ∼= (D/Dr)H and M (Y ) ∼=
(D′/D′r)H . Hence Dn(Y ) ⊗

Dn(X)
M (X) −→M (Y ) is also an isomorphism. �

Lemma 5.3.14. For each X ∈ Dn, the restriction map Ln+1(D) → Ln+1(X)
induces a natural Dn(X)-linear isomorphism

Dn(X) ⊗
Dn+1(D)

Ln+1(D)
∼=−→ Dn(X) ⊗

Dn+1(X)
Ln+1(X).

Proof. By Lemma 5.3.13(a) applied with n replaced by n+ 1, the action map

Dn+1(X) ⊗
Dn+1(D)

Ln+1(D) −→ Ln+1(X)

is an isomorphism. Now apply the functor Dn(X) ⊗
Dn+1(X)

− to this isomorphism,

and use the associativity of tensor product. �

Next, we deal with the ‘easy’ member of the covering Un, namely Υn.

Proposition 5.3.15. The comparison map

Ξ(Υn) :

Ç
Dn(Υn) ⊗

Dn+1(Υn)
Ln+1(Υn)

å
Jn+1

−→ Ln(Υn)

is an isomorphism for each n > 0.

Proof. The map Ξ(Υn) appears in the following commutative diagram:

Dn(Υn) ⊗
Dn+1(Υn)

Ln+1(Υn)
ϕ //

����

Ln(Υn)

Ç
Dn(Υn) ⊗

Dn+1(Υn)
Ln+1(Υn)

å
Jn+1

Ξ(Υn)

55

Now, ϕ is non-zero and Ln(Υn) is simple as a Dn(Υn)-module by Corollary 4.2.13,
so ϕ must be surjective. On the other hand, Ln(Υn) is a free O(Υn)-module of
rank 1 by Corollary 4.2.13, and examining the proof of Corollary 4.2.13 we see that
Dn(Υn) ⊗

Dn+1(Υn)
Ln+1(Υn) is a free O(Υn)-module of rank one as well. Because

a surjective O(Υn)-linear map between two such modules must be injective, we
conclude that ϕ is an isomorphism.

It follows that the vertical map is injective. Since it is clearly surjective, it is an
isomorphism. Therefore Ξ(Υn) is also an isomorphism. �

The next two statements are the main results of §5.3.

Theorem 5.3.16. Assume that n > vπF (e), Nn+1 6 Jn+1 and d | (q + 1). Then
the comparison map from Lemma 5.3.8

Ξ :

Ç
Dn ⊗

Dn+1(D)
Ln+1(D)

å
Jn+1

−→ Ln

is an isomorphism of sheaves of Dn-modules on Dn.
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Proof. Since Un is a covering of D by Lemma 5.3.10 and since Ξ is a map of sheaves,
it is enough to show Ξ|Y is an isomorphism for each Y ∈ Un. After Lemma 5.3.13, it
is enough to check that Ξ(Y ) is an isomorphism for each Y ∈ Un. However in view
of Lemma 5.3.14, this follows from Proposition 5.3.15 and Theorem 5.3.12. �

Corollary 5.3.17. Assume that n > vπF (e), Nn+1 6 Jn+1 and d | (q + 1). Then
for each X ∈ Dn/J , the action map

Dn(X) o
Jn+1

J ⊗
Dn+1(D) o

Jn+2

J
Ln+1(D) −→ Ln(X)

is an Dn(X) o
Jn+1

J-linear isomorphism.

Proof. The action map in question is an instance of the map τ̃ from (39); hence it is
Dn(X)oJn+1 J-linear. It appears as the diagonal map in the following commutative
triangle, where the vertical arrow is the isomorphism from Theorem 5.1.8:

Dn(X) o
Jn+1

J ⊗
Dn+1(D) o

Jn+2

J
Ln+1(D)

τ̃

''

∼=

��Ç
Dn(X) ⊗

Dn+1(D)
Ln+1(D)

å
Jn+1

Ξ(X)
// Ln(X).

Since Ξ(X) is an isomorphism by Theorem 5.3.16, this diagonal map must also be
an isomorphism. �

6. Microlocal analysis

6.1. Some microlocal rings. We fix an affinoid subdomain X of A in this sec-
tion. Recall from Definition 2.3.1 that r(X) denotes the spectral seminorm of
∂x ∈ B(O(X)) and recall the notation A〈∂/r, s/∂〉 from Definition 2.2.1.

Definition 6.1.1. Define E[s,r](X) := O(X)〈∂/r, s/∂〉 for every r > s > r(X).

By Theorem 2.2.6, E[s,r](X) is an associative K-Banach algebra with the norm

(42)

∣∣∣∣∣∑
n∈Z

an∂
n

∣∣∣∣∣ = sup
s6t6r

sup
n∈Z
|an|tn

which contains an inverse ∂−1 for ∂. By Lemma 2.2.9, there is a natural isometric
embedding of K-Banach algebras Dr(X) ↪→ E[s,r](X) given by regarding a power
series in ∂ as a Laurent series with zero negative terms.

Now let u ∈ O(X)× be a unit as in §2.4, let d be a non-zero integer coprime to
p and let z satisfy the equation zd = u. We will show that each E[s,r](X) contains
an inverse that we will denote by ξu,d to the twisted derivation θu,d(∂x) from §2.4.

Recall the coefficients h
[n]
u,d = θu,d(∂

[n]
x )(1) = z∂

[n]
x (z−1) from Definition 2.4.5.

Lemma 6.1.2. For every ` > 0 we have

(a) (`+ 1)h
[`+1]
u,d =

∑̀
n=0

h
[n]
u,d∂

[`−n]
x (h

[1]
u,d), and
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(b) (`+ 1)h
[`+1]
u,d = ∂x(h

[`]
u,d) + h

[1]
u,dh

[`]
u,d.

Proof. (a) By the Leibniz rule, ∂
[`]
x (ab) =

∑̀
n=0

∂
[n]
x (a)∂

[`−n]
x (b). Applying this with

a = z−1 and b = z∂x(z−1) = h
[1]
u,d, we have

(`+ 1)h
[`+1]
u,d = z∂

[`]
x (∂x(z−1))

= z
∑̀
n=0

∂
[n]
x (z−1) ∂

[`−n]
x (h

[1]
u,d)

=
∑̀
n=0

h
[n]
u,d∂

[`−n]
x (h

[1]
u,d).

(b) We expand the right hand side:

∂x(h
[`]
u,d) + h

[1]
u,dh

[`]
u,d = ∂x(z∂

[`]
x (z−1)) + z∂x(z−1) · z∂[`]

x (z−1)

= ∂x(z)∂
[`]
x (z−1) + z∂x(∂

[`]
x (z−1))− z−1∂x(z) · z∂[`]

x (z−1)

= (`+ 1)h
[`+1]
u,d .

We have used here that z∂x(z−1) + z−1∂x(z) = ∂x(z−1 · z) = ∂x(1) = 0. �

Definition 6.1.3. Define ξu,d :=
∞∑

n=−∞
(ξu,d)n∂

n ∈
−1∏

n=−∞
O(X)∂n, where

(ξu,d)−n =

®
(−1)n−1(n− 1)!h

[n−1]
u,d if n > 1,

0 otherwise.

Lemma 6.1.4. The element ξu,d lies in E[s,r](X) whenever r > s > r(X).

Proof. Since (ξu,d)n = 0 for any n > 0, by Definition 2.2.1 it is enough to prove
that for if s 6 t 6 r, then |(ξu,d)−n|t−n → 0 as n→ +∞. Now for n > 1 we have

|(ξu,d)−n|
tn

=
|(n− 1)!h

[n−1]
u,d |

tn
6
|(n− 1)!|

tn

Å
r(X)

$

ãn−1

6
p(n− 1)

t

Å
r(X)

t

ãn−1

by Lemma 2.3.16 and Proposition 2.4.7. This converges to zero as t > s > r(X). �

Proposition 6.1.5. Suppose that r > s > r(X). Then ξu,d is a two-sided inverse
to θu,d(∂x) in E[s,r](X).

Proof. First note that ξu,d does lie in E[s,r](X) by Lemma 6.1.4. Let a = ξu,d and
b = θu,d(∂x) so that

a−n =

®
(−1)n−1(n− 1)!h

[n−1]
u,d if n > 1

0 otherwise,
bj =

 h
[1]
u,d if j = 0,

1 if j = 1,
0 otherwise.

Note that
(−n
m

)
= (−1)m

(
n+m−1

m

)
for any n,m > 0. Let ` ∈ Z; then using (5) we

have

a ∗−1−` b =
∞∑
n=1

a−n
∞∑
m=0

(−n
m

)
∂mx (bm+n−1−`)

=
∞∑
n=1

(−1)n−1(n− 1)!h
[n−1]
u,d

∞∑
m=0

(−1)m
(
n+m−1

m

)
∂mx (bm+n−1−`)

=
∞∑
n=0

h
[n]
u,d

∞∑
m=0

(−1)n+m(n+m)!∂
[m]
x (bm+n−`).
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Now since bj vanishes unless j ∈ {0, 1} and since m+n > 0 in this sum, we see that
this expression vanishes whenever ` 6 −2, i.e. −1− ` > 1. When ` = −1 (so that
−` − 1 = 0), m + n − ` ∈ {0, 1} forces m = n = 0 and the expression collapses to
give 1. So we will assume that ` > 0. Now we still have to have m+ n− ` ∈ {0, 1}
otherwise bn+m−` vanishes. If m + n − ` = 1 then ∂

[m]
x (bm+n−`) = ∂

[m]
x (1) = 0

unless m = 0; so this happens only when m = 0 and n = `+ 1; in this case we get
a contribution of

h
[`+1]
u,d (−1)`+1(`+ 1)!

to the big sum. On the other hand, if m + n − ` = 0 then m = ` − n > 0 forces
n 6 `, and we obtain a contribution of∑̀

n=0

h
[n]
u,d(−1)``!∂[`−n]

x (h
[1]
u,d)

to the big sum. This is (−1)``!(`+1)h
[`+1]
u,d = (−1)`(`+1)!h

[`+1]
u,d by Lemma 6.1.2(a)

and it therefore cancels with the first term. This proves that

a ∗k b = δk,0 for all k ∈ Z

and therefore ξu,d · θu,d(∂x) = 1. Showing that θu,d(∂x) · ξu,d = 1 using (5) is
similar but much easier, and reduces to Lemma 6.1.2(b). We leave the details to
the reader. �

Definition 6.1.6. For each affinoid subdomain X of A, we define the Robba ring
◦
E(X) :=

⋃
r>r(X)

⋂
r(X)<s6r

E[s,r](X).

Corollary 6.1.7. θu,d(∂x) is a unit in
◦
E(X) with inverse ξu,d.

Proof. We know that u = zd is a unit in O(X). Now apply Proposition 6.1.5 to see
that whenever r(X) < s 6 r, ξu,d ∈ E[s,r](X) is a two-sided inverse to θu,d(∂x) in
E[s,r]. It follows that

ξu,d ∈
⋂

r(X)<s6r

E[s,r](X) ⊂
◦
E(X). �

6.2. The characteristic cycle. We now specialise to the case where X ⊆ D is a
cheese with ρ(X) = 1, and the ground field K is discretely valued, with uniformiser
πK and residue field k. In this case, X := Spf O(X)◦ is a smooth affine formal
scheme, whose special fibre X0 is the complement of finitely many points in the
affine line over k. In [2], Tomoyuki Abe defined several sheaves of microlocal rings

π−1“D (m)
X ,Q ⊂ Ê

(m,†)
X ,Q ⊂ · · · ⊂ Ê

(m,m+2)
X ,Q ⊂ Ê

(m,m+1)
X ,Q ⊂ Ê

(m,m)
X ,Q = Ê

(m)
X ,Q

of level m on the cotangent bundle T ∗X0 of X0; here “D (m)
X ,Q denotes Berthelot’s

sheaf of level-m arithmetic differential operators on X0 and π : T ∗X0 → X0

denotes the structure morphism of this cotangent bundle. The definition of these

sheaves uses the microlocalization of π−1 gr D
(m)
X on the level-m cotangent bundle

T (m)∗X0 of X , [2, §2.2, 2.4], together an identification of T (m)∗X0 with T ∗X0

which is carried out in [2, §3.3].

Recall the numbers $m = (pm)!
1
pm ∈ K from Notation 3.1.8.
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Definition 6.2.1.

(a) For each m > 0, write rm := |$m| = |(pm)!|
1
pm .

(b) Let
◦
T ∗X0 = T ∗X0\s(X0) denote the complement of the zero-section s(X0)

in the cotangent bundle T ∗X0 of X0.

Our next result explains the relationship between the microlocal rings E[s,r](X)
that appeared in §6.1 and Abe’s rings.

Proposition 6.2.2. Let m′ > m > 0 and let X ∈ D(∂x/$)†. Then the embedding

O(X) ↪→ Γ(
◦
T ∗X0, Ê

(m,m′)
X ,Q ) extends to an injective bounded K-algebra map

E[rm′ ,rm](X) ↪→ Γ(
◦
T ∗X0, Ê

(m,m′)
X ,Q ).

This extension is functorial in X ∈ D(∂x/$)†.

To prove this, we will need to recall the explicit description of Abe’s ring ap-
pearing on the right hand side as a set of Laurent series in ∂ satisfying a particular
convergence condition. This, unfortunately, requires some detailed notation involv-
ing Berthelot’s modified divided powers ∂〈n〉(m) , as well as their inverses.

Notation 6.2.3. Let m,n ∈ N.

(a) Write qn := bn/pmc and ∂〈n〉(m) := qn!
n! ∂

n.
(b) Let in := dn/pme and `n = inp

m − n and define

∂〈−n〉(m) := ∂〈`n〉(m)

Ä
∂〈inp

m〉(m)

ä−1
=

in!

`n!(inpm)!
∂−n

with the product understood to be carried out in Γ(
◦
T ∗X0, Ê

(m)
X ,Q).

This notation comes from [3, p. 282].

Lemma 6.2.4. Let 0 6 m 6 m′. We have the following explicit descriptions:

Γ(X , “D (m)
X ,Q) =

ß∑
n∈N

an∂
〈n〉(m) : an ∈ O(X), lim

n→+∞
an = 0

™
,

Γ(
◦
T ∗X0, Ê

(m)
X ,Q) =

ß∑
n∈Z

an∂
〈n〉(m) : an ∈ O(X), sup

n<0
|an| <∞, lim

n→+∞
an = 0

™
,

Γ(
◦
T ∗X0, Ê

(m,m′)
X ,Q ) =

®∑
n∈Z

an∂
n :

∑
n<0

an∂
n ∈ Ê

(m′)
X ,Q ,

∑
n>0

an∂
n ∈ Ê

(m)
X ,Q

´
.

Proof. This follows from [13, (2.4.1.2)] and [3, §1.1.1, §1.1.2]. �

Lemma 6.2.5. For each m ∈ N and n ∈ Z, there exists ε
(m)
n ∈ K such that

(43)

Å
∂

$m

ãn
= ε(m)

n ∂〈n〉(m) and 1 6 |ε(m)
n | 6 |p|−m.

Proof. Fix m > 0. For every n > 0 we define

ε
(m)
−n :=

$n
m `n! in!

(in pm)!
and ε(m)

n =
n!

$n
mqn!

.
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Note that ∂〈`n〉(m) is simply ∂`n

`n! because 0 6 `n < pm. Now we can compute

ε
(m)
−n ∂

〈−n〉(m) = ε
(m)
−n · ∂〈`n〉(m) ·

(
∂〈inp

m〉(m)
)−1

=

=
$nm `n! in!

(in pm)! ·
∂`n

`n! ·
(
in!∂inp

m

(inpm)!

)−1

=

= $n
m∂

`n−inpm =
Ä

∂
$m

ä−n
, and

ε
(m)
n ∂〈n〉(m) = n!

$nmqn! ·
qn!∂n

n! =
Ä

∂
$m

än
.

Therefore regardless of the sign of n, the first equality in (43) holds.
Next, using the fact that (p − 1)vp(a!) = a − sp(a) for any a ∈ N where sp(a)

denotes the sum the p-adic digits of a, we compute

(p− 1)vp(ε
(m)
−n ) = n

pm (pm − 1) + (`n − sp(`n)) + (in − sp(in))− (inp
m − sp(inpm)) =

= − n
pm + n+ (`n − inpm) + in + sp(inp

m)− sp(in)− sp(`n) =

= `n
pm − sp(`n) > 0− (p− 1)m

because `n − inpm = −n, 0 6 `n < pm and because sp(inp
m) = sp(in).

Similarly, writing n = αn + pmqn we compute

(p− 1)vp(ε
(m)
n ) = (n− sp(n))− n

pm (pm − 1)− (qn − sp(qn)) =

= n
pm − (sp(αn) + sp(qn))− qn + sp(qn) =

= αn
pm − sp(αn) > 0− (p− 1)m

because 0 6 αn < pm and sp(n) = sp(αn) + sp(qn). The result follows. �

Proof of Proposition 6.2.2. We will apply Proposition 2.2.7. Set A = O(X) =

O(X )K , δ = ∂x ∈ B(O(X)), s := rm′ 6 rm =: r, B := Γ(
◦
T ∗X0, Ê

(m,m′)
X ,Q ) and

b := ∂ ∈ B. Note that B is a K-Banach algebra with a norm | · |B extending the

standard norm on K and unit ball given by Γ(
◦
T ∗X0, Ê

(m,m′)
X ): more precisely this

norm on B is determined by the following relations:

(44) |∂〈n〉(m) |B = |∂〈−n〉(m′) |B = 1 for all n > 0.

We must verify the conditions of Proposition 2.2.7, of which (i) and (ii) are clear.
Thus it remains to show that

sup
n>0
|∂n|B/rnm <∞ and sup

n60
|∂n|B/rnm′ <∞.

Since |$m| = rm, both of these facts follow from Lemma 6.2.5 together with
equation (44). Thus Proposition 2.2.7 gives the required bounded K-algebra ho-
momorphism E[rm′ ,rm](X) = O(X)〈∂/rm, rm′/∂〉 → B extending the inclusion
O(X) ↪→ B. It is easy to see that this homomorphism is injective, as well as
functorial for those affinoid subdomains X of D with ρ(X) = 1. �

Now recall the notation §4.2:

u = λ
h∏
i=1

(x− ai)ki and zd = u

for some k1, . . . , kh ∈ Z\{0}, some λ ∈ K× and some pairwise distinct a1, . . . , ah ∈
X(K). Our next goal is to study the following coherent “D (0)

X ,Q-module on X

M (0) := “D (0)
X ,Q/

“D (0)
X ,QRS(u)(u, d).
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We will now calculate its characteristic variety Char(0)(M (0)), in the sense of [14,
§5.2.5], [6, §5.14] and [2, §2.14].

Lemma 6.2.6. If p - d, then Char(0)(M (0)) = X0 ∪ T ∗a0
X0 ∪ · · · ∪ T ∗ahX0.

Proof. By Definition 4.2.10(b), we know that

RS(u)(u, d) =
h∏
i=1

(x− ai)∂x −
1

d

h∑
i=1

ki
∏
j 6=i

(x− aj).

Because p - d, this is an element of D := “D (0)(X ), and we see that the principal
symbol of the image of RS(u)(u, d) in D/πKD is

(45) GrRS(u)(u, d) =
h∏
i=1

(x− ai) · y

where we identify GrD with the polynomial ring O(X0)[y]. Hence

Char(0)(M (0)) = Supp

Ü
GrD

GrD ·
h∏
i=1

(x− ai) · y

ê
= X0∪T ∗a1

X0∪· · ·∪T ∗ahX0. �

Write Yi := T ∗aiX0 for each i = 1, . . . , h. We assume without loss of generality
that Y1, . . . ,Yg are pairwise distinct and that every other Yi equals Yj for some
j 6 g. Thus |ai − aj | = 1 whenever 1 6 i 6= j 6 g.

Proposition 6.2.7. Let 0 6 m 6 m′ and write E := Ê
(m,m′)
X ,Q . Then

(a) RS(u)(u, d) is a unit in E(T ∗X0 − (X0 ∪ Y1 ∪ · · · ∪ Yh)),

(b) RS(u)(u, d) is not a unit in E
Ä
T ∗X0 − (X0 ∪ Y1 ∪ · · · ∪ Ŷi ∪ · · · ∪ Yg)

ä
for

any 1 6 i 6 g, and
(c) RS(u)(u, d) is not a unit in E(T ∗X0 − (Y1 ∪ · · · ∪ Yg)).

Proof. (a) Let U = X − {a1, · · · , ah} so that

T ∗X0 − (X0 ∪ Y1 ∪ · · · ∪ Yh)) =
◦
T ∗U0.

Now ∆S(u) =
∏h
i=1(x − ai) is a polynomial in x which does not vanish on Urig.

Hence

∆S(u) ∈ O(Urig)× ⊂
Ä
Γ(U , “D (m)

X ,Q)
ä×
⊂
Å

Γ(
◦
T ∗U0, E)

ã×
.

On the other hand, θu,d(∂x) is a unit in E[rm′ ,rm](Urig) by Proposition 6.1.5. Us-

ing Proposition 6.2.2, we deduce that θu,d(∂x) is also a unit in E(
◦
T ∗U0). Hence

RS(u)(u, d) ∈ E(
◦
T ∗U0)× as claimed.

(b) Fix i = 1, . . . , g and let V := U ∪ {ai}, so that

T ∗X0 −
Ä
X0 ∪ Y1 ∪ · · · ∪ Ŷi ∪ · · · ∪ Yg

ä
=
◦
T ∗V0

because the Y1, . . . ,Yg are pairwise distinct. Now, by part (a), RS(u)(u, d) ∈

E(
◦
T ∗U0)×; we must show that RS(u)(u, d)−1 does not lie in the subring E(

◦
T ∗V0)
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of E(
◦
T ∗U0). Using Lemma 4.2.17(b) and Proposition 6.1.5 we see that

RS(u)(u, d)−1 = ∆−1
S(u)θu∆d

S(u),d
(∂x)−1 = ∆−1

S(u)ξu∆d
S(u),d

.

By Definition 6.1.3, the coefficient of ∂−1 in this Laurent series is ∆−1
S(u), which must

lie in O(Vrig) if RS(u)(u, d)−1 ∈ E(
◦
T ∗V0). But ∆S(u) has a zero at x = ai ∈ Vrig

and therefore is not a unit in O(Vrig) — a contradiction.
(c) This time we have T ∗X0 − (Y1 ∪ · · · ∪ Yg) = T ∗V0, and

E(T ∗V0) = “D (m)
X ,Q(U ).

If RS(u)(u, d) is a unit in “D (m)
X ,Q(U ) then since ∆S(u) ∈ O(Urig)×, we see that

θu,d(∂x) has to be a unit in “D (m)
X ,Q(U ) as well. Choose r ∈ R such that $ < r < rm.

Then “D (m)
X ,Q(U ) embeds naturally into Dr(Urig), so θu,d(∂x) ∈ Dr(Urig). But the

automorphism θu,d of D(Urig) extends to a bounded K-algebra automorphism of
Dr(Urig) by Theorem 2.4.9, and it follows that ∂x is a unit in Dr(Urig) which is not
the case. �

Corollary 6.2.8. For any integers m′ > m > 0, we have

Supp
Ä
Ê

(m,m′)
X ,Q /Ê

(m,m′)
X ,Q RS(u)(u, d)

ä
= X0 ∪ Y1 ∪ · · · ∪ Yh = Char(0)(M (0)).

Proof. This follows immediately from Lemma 6.2.6 and Proposition 6.2.7. �

We can now calculate the characteristic cycle of the module that we are really
interested in, namely

D†X ,Q/D
†
X ,QRS(u)(u, d).

In the papers by Abe [1] and Abe-Marmora [3], one finds at least two variants of
the characteristic cycle, applicable for various kinds of modules. We are mainly in-

terested in the cycle defined at [3, §1.5.2] for holonomic D†X ,Q-modules M , denoted

Cycl(M ). To calculate it, we will need the following notation.

Definition 6.2.9. Let u = λ
∏h
i=1(x − ai)ki be given, with λ ∈ K×, a1, . . . , ah ∈

X(K) pairwise distinct and k1, . . . , kh all non-zero. Arrange the ai’s so that
a1, . . . , ag satisfy the following conditions:

(a) |ai − aj | = 1 for all 1 6 i 6= j 6 g, and
(b) for every 1 6 ` 6 h, there is a unique i` ∈ {1, . . . , g} such that |a`−ai` | < 1.

Then define for each i = 1, . . . , g the i-th multiplicity as follows:

mai(u) := |{1 6 ` 6 h : i` = i}|.
Recall also that Yi denotes T ∗aiX0 for each i = 1, . . . , g.

Theorem 6.2.10. Suppose that p - d and that u = λ
∏h
i=1(x−ai)ki is given. Then

Cycl
Ä
D†X ,Q/D

†
X ,QRS(u)(u, d)

ä
= [X0] +

g∑
i=1

mai(u)[Yi].

Proof. Let M (0) := “D (0)
X ,Q/

“D (0)
X ,QRS(u)(u, d) as above. It follows from Corollary

6.2.8 that

Supp

(
Ê

(m,m′)
X ,Q ⊗

π−1 “D(0)
X ,Q

π−1M (0)

)
= Char(0)(M (0))
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for any integers m′ > m > 0. This means that the holonomic “D (0)
X ,Q-module M (0)

is stable in the sense of [3, §1.3.8]. Let M := D†X ,Q ⊗“D(0)
X ,Q

M (0). Because we are

assuming that each ai is a K-rational point of X , we can now apply [3, Definition
1.5.2 and Proposition 1.4.3] to see that

Cycl(M ) = Cycl(0)(M (0))

where Cycl(0)(M (0)) is the characteristic cycle of the holonomic “D (0)
X ,Q-module M (0)

defined at [1, Definition 2.1.17]. Using [1, §2.1.12], we see that Cycl(0)(M (0)) is the
usual class of the coherent O(T ∗X0)-module O(T ∗X0)/GrRS(u)(u, d) · O(T ∗X0)
in the Grothendieck group of coherent O(T ∗X0)-modules of dimension at most 1.
The result now follows in view of equation (45) and Definition 6.2.9. �

Remark 6.2.11. Recall from §1.3 that q denotes the size of the residue field of k.
Since K contains the finite field extension F of Qp whose residue field has size q —
see §1.3 — it follows that K contains a primitive (q − 1)-th root of unity ζ.

Example 6.2.12. Suppose that 0 ∈ X(K), and let

w :=
1

(xq − πq−1
F x)k

for some non-zero integer k, so that

S(w) = {a1, . . . , aq} = {0, πF , πF ζ, πF ζ2, · · · , πF ζq−2} ⊂ K.

Because |πF | < 1, all of these points map to the same point 0 in X0 under the
reduction map X(K) → X0. Therefore g = 1 and m0(w) = q. So, in this case
Theorem 6.2.10 tells us that

Cycl

(
D†X ,Q

D†X ,QRS(w)(w, d)

)
= [X0] + q[T ∗0 X0].

6.3. The differential equation ∇(ζ) = 1 − c. Recall the admissible open sub-
spaces Vn of A from Definition 4.3.2. We are interested here in the following three
affinoid subdomains of D = SpK〈x〉, one containing the next:

• X = SpK〈x, 1
xq−1−1 〉,

• X ∩ V1 := X −
⋃

a∈πFOF
{|z − a| < |πF |}, and

• X ∩ V0 = SpK〈x, 1
xq−x 〉 = X − {|z| < 1}.

Viewed as subsets of P1,an, X has q big holes (each of radius 1), X ∩ V0 has q + 1
big holes and X ∩ V1 has 2q holes, of which q are big and q are small (radius |πF |).
Note that we have the following relations:

X ∩ V0 ⊂ X ∩ V1 ⊂ X and O(X ∩ V0) ⊃ O(X ∩ V1) ⊃ O(X).

Here is a drawing of these three affinoid domains when q = 5:
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X ∩ V0 X ∩ V1 X

For future use, we record the basic invariants ρ(Y ) and r(Y ) from Definition
2.3.14 and Definition 2.3.1 for these cheeses in the following table, using the basic
relationship r(Y ) = $/ρ(Y ) given by Corollary 2.3.17:

Y X ∩ V0 X ∩ V1 X
ρ(Y ) 1 |πF | 1
r(Y ) $ $/|πF | $

Fix an integer d > 1 which divides q+1 and an integer k such that 1 6 k 6 d. We
choose the following unit on X ∩V1 whose mod-d-divisor is appropriately invariant:

w :=
1

(xq − πq−1
F x)k

.

Definition 6.3.1. Define h =

Å
1 −πF
0 1

ã
∈ G.

Since h · x = x + πF by Lemma 5.2.2(a), it follows from Definition 5.2.8 that
h ∈ Gr whenever $ < r < $/|πF | and that

β(h) =
∞∑
n=0

πnF∂
[n]
x ∈ D†$(X).

We begin with the first step of the proof of our main result of interest, namely
Theorem 6.3.21, as a way of motivating the calculations that follow.

Let Z be an admissible open subspace of a rigid analytic space Y and let F be
a sheaf on Y . We say that the local section f ∈ F(Z) extends to Y if it lies in the
image of the restriction map F(Y )→ F(Z).

Proposition 6.3.2. Suppose that β(h) ∈ D†$/|πF |(X) +D†$(X)RS(w)(w, d). Then

(ξw,dβ(h))0 ∈ O(X ∩ V0) extends to X ∩ V1.

Proof. Suppose that Q ∈ D†$/|πF |(X) is such that β(h)−Q ∈ D†$(X)RS(w)(w, d).

Note that θw,d(∂x) is a unit in the Robba ring
◦
E(X ∩ V0) with inverse ξw,d by

Corollary 6.1.7, because w ∈ O(X ∩V0)×. Now, in
◦
E(X ∩V0) we have the equation

β(h)ξw,d = (β(h)−Q)ξw,d +Qξw,d

Comparing the constant term coefficients in this equation, we have

(46) (β(h)ξw,d)0 = ((β(h)−Q)ξw,d)0 + (Qξw,d)0.
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By Lemma 2.4.1 applied to w ∈ O(X ∩ V0)×, we have

RS(w)(w, d) = ∆S(w)θw,d(∂x)

which implies that RS(w)(w, d) ξw,d = ∆S(w) inside
◦
E(X ∩ V0). Since β(h) − Q ∈

D†$(X)RS(w)(w, d) by assumption, we conclude that

(47) ((β(h)−Q)ξw,d)0 ∈ O(X).

Since ξw,d also lies in
◦
E(X ∩ V1) — again by Corollary 6.1.7 — and since

Q ∈ D†$/|πF |(X) ⊆ D†$/|πF |(X ∩ V1),

by comparing the multiplication in
◦
E(X ∩ V0) and

◦
E(X ∩ V1) we see that

(48) (Qξw,d)0 ∈ O(X ∩ V1).

Since X ⊃ X ∩ V1, (46), (47) and (48) imply that (β(h)ξw,d)0 extends to X ∩ V1.

Next, β(h) ∈ D†$(X ∩ V0)× ⊂
◦
E(X ∩ V0)×, so conjugation by β(h) defines an

automorphism S of
◦
E(X∩V0) given by S(u) := β(h)−1 u β(h) for any u ∈

◦
E(X∩V0).

Note that S(β(h)ξw,d) = ξw,dβ(h). Since β(h) =
∞∑
n=0

πnF∂
[n]
x commutes with ∂x, it

follows from statement (b) in the proof of Theorem 5.2.11 that

S(u) = β(h)−1 u β(h) =
∑
i∈Z

(h−1 · ui)∂ix for any u =
∑
i∈Z

ui∂
i
x ∈

◦
E(X ∩ V0).

Because both X ∩ V1 and X ∩ V0 are h-stable, we see that

(ξw,dβ(h))0 = S(β(h)ξw,d)0 = h−1 · (β(h)ξw,d)0

also extends to X ∩ V1, as desired. �

The key to our argument is that the rigid analytic function (ξw,dβ(h))0 on X∩V0

can be explicitly computed, and shown that in fact it cannot extend to X ∩ V1. To
do this, we study the solutions of a certain differential equation satisfied by this
function. Recall the units cu,d(g) from Proposition 5.2.13.

Lemma 6.3.3. Let ∇ := θw,d(∂x) ∈ D(X ∩ V0). Then

∇ (ξw,dβ(h))0) = 1− cw,d(h−1).

Proof. The constant term of the product ξw,dβ(h) is given by formula (5):

(ξw,dβ(h))0 = ξw,d ∗0 β(h) =
∑
i∈Z

(ξw,d)i

∞∑
m=0

Ç
i

m

å
∂mx (β(h)m−i).

Since all coefficients of β(h) are scalars, we see that ∂mx (β(h)m−i) is non-zero only
when m = 0. Changing the summation to n = −i and using Definition 6.1.3, this
sum is equal to∑

n∈Z
(ξw,d)−nβ(h)n =

∞∑
n=1

(−1)n−1(n− 1)!h
[n−1]
w,d · π

n
F

n!
= −

∞∑
n=1

1

n
(−πF )nh

[n−1]
w,d .

Note that by Lemma 2.4.7, |h[n−1]
w,d |X∩V0

6 (r(X ∩ V0)/$)n = 1 for all n > 1, so

this sum converges in O(X ∩ V0).
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On the other hand, since h
[n−1]
w,d = 1

(n−1)!∇
n−1(1) by Definition 2.4.5, we have

∇(h
[n−1]
w,d ) = ∇

Å
1

(n− 1)!
∇n−1(1)

ã
= nh

[n]
w,d for all n > 1.

The twisted derivation ∇ : O(X ∩ V0)→ O(X ∩ V0) is continuous, so

∇((ξw,dβ(h))0) = −∇

( ∞∑
n=1

1

n
(−πF )nh

[n−1]
w,d

)
= −

∞∑
n=1

(−πF )nh
[n]
w,d.

Using Proposition 5.2.13(a), we see that this is equal to 1 − cw,d(h
−1) because

h−1 · x = x− πF by Lemma 5.2.2(a). �

Definition 6.3.4. Let Y be the subset P1,an obtained by removing all the open
balls of radius |πF | around all points in πFOF :

Y := P1,an \
⋃

a∈πFOF

{|z − a| < |πF |}.

Note that this Y contains X ∩ V1 and therefore also X ∩ V0. It turns out that
the differential equation from Lemma 6.3.3 satisfied by (ξw,dβ(h))0 makes sense on
this larger subset of P1,an, namely Y ⊃ X ∩ V0.

To understand Y better, we consider the involution s : P1,an −→ P1,an given by

the Möbius action of

Å
0 πF
1 0

ã
∈ GL2(F ) on P1,an:

s(a) = πF /a for all a ∈ P1,an.

Lemma 6.3.5. s swaps X and Y .

Proof. To show that s sends X onto Y , it is enough to do this on C-points, and for
this, it suffices to show that s exchanges the complements of X(C) and Y (C) in
P1,an(C). These complements are disjoint unions of q open balls. Now, s exchanges
the polar hole {z ∈ P1(C) : |z| > 1} of X with the open ball of radius |πF | around
zero. Next, if c ∈ O×F and z ∈ C, then using the ultrametric inequality, we see that

|s(z)− πF c| < |πF | ⇔ |1− cz| < |z| ⇔ |z − c−1| < |z| ⇔ |z − c−1| < |c−1| = 1.

This shows that s exchanges the remaining q − 1 open balls contained in the com-
plements of X and Y . �

Corollary 6.3.6. Y is an affinoid subvariety of P1,an and there is an isomorphism
of K-affinoid algebras

K

≠
x,

1

xq−1 − 1

∑
= O(X)

∼=−→ O(Y )

which sends x ∈ O(X) to y := πF /x ∈ O(Y ).

Lemma 6.3.7.

(a) The function
Ä

yq

πqF (1−yq−1)

äk
is an extension of w ∈ O(X ∩V0)× to Y \{∞}.

(b) The differential operator − 1
πF
θ(1−yq−1)−k,d

Ä
y2∂y − qk

d y
ä
∈ D(Y ) is an ex-

tension of ∇ ∈ D(X ∩ V0) from Lemma 6.3.3 to Y .
(c) There is an extension of cw,d(h

−1) ∈ O(X ∩ V0)× to Y of the form

cw,d(h
−1) =

Å
1 + py

f(y)

1− yq−1

ã 1
d

∈ O(Y )×× for some f(y) ∈ Z[y].



GLOBAL SECTIONS OF EQUIVARIANT LINE BUNDLES 97

Proof. (a) Recall that w = 1/(xq − πq−1
F x)k is a meromorphic function on P1 with

no zeroes or poles on Y \{∞}. Now substitute x = πF /y into w.
(b) First we note that − 1

πF
y2∂y is an extension of the derivation ∂x ∈ T (X ∩V0)

to Y since − 1
πF
y2∂y(x) = 1. Since w is a unit on Y \{∞} by (a), θw,d(∂x) ∈

D(X ∩ V0) extends to Y \{∞}. Next, using Lemma 2.4.1 on Y \{∞}, we compute

θyqk,d(y
2∂y) = y2

Å
∂y −

qk

d

1

y

ã
= y2∂y −

qk

d
y.

So, this differential operator in fact extends to Y . Since w = π−qkF (1− yq−1)−kyqk

and (1− yq−1)−k ∈ O(Y )×, we can now apply Lemma 2.4.3 on Y \{∞} to find

θw,d(y
2∂y) = θ(1−yq−1)−k,d

(
θyqk,d(y

2∂y)
)
∈ D(Y ).

Putting everything together, we see that

− 1

πF
θ(1−yq−1)−k,d

Å
y2∂y −

qk

d
y

ã
∈ D(Y )

extends ∇ ∈ D(X ∩ V0) to Y as claimed.
(c) We will show that there exists a unit c ∈ O(Y )×× such that

w/h−1 · w = cd.

We can then use Proposition 5.2.13(d) to see that c|X∩V0
and cw,d(h

−1) are both dth
roots of w/h−1 ·w ∈ O(X∩V0). Now Proposition 5.2.13(a) tells us that cw,d(h

−1) ∈
O(X ∩ V0)××, whereas c|X∩V0

∈ O(X ∩ V0)×× because c ∈ O(Y )××. Since this
group is d-divisible by [8, Lemma 3.3.5(a)], we conclude that c|X∩V0

= cw,d(h
−1).

Hence c ∈ O(Y )×× extends cw,d(h
−1) to Y .

It remains to produce the unit c ∈ O(Y )×× such that cd = w/h−1 · w. It is
enough to consider the case k = 1. First, we compute

(49) h−1 · y =
πF

h−1 · x
=

πF
x− πF

=
y

1− y
which implies that h stabilises Y . Using this together with part (a), we then have

w = π−qF
yq+1

y − yq
and h−1 · w = π−qF

Ä
y

1−y

äq+1

y
1−y −

Ä
y

1−y

äq
Dividing through, yq+1π−qF cancels and we obtain

w

h−1 · w
=
y(1− y)q − yq(1− y)

y − yq
.

Since y(1− y)q − yq(1− y) ≡ y − yq mod py2Z[y], we see that

w

h−1 · w
= 1 + py

f(y)

1− yq−1
for some f(y) ∈ Z[y].

Thus w/h−1 · w ∈ O(Y )×× and we can use [8, Lemma 3.3.5(a)] to define

(50) c :=

Å
1 + py

f(y)

1− yq−1

ã 1
d

∈ O(Y )××.

Then cd = w/h−1 · w as desired. �
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Because of Lemma 6.3.7, we can consider the differential equation on Y :

∇(ζ) = c− 1, ζ ∈ OY ,

and its sheaf of solutions. More precisely, with ∇ ∈ D(Y ) the extension defined by
Lemma 6.3.7(b) and c ∈ O(Y )× as defined by Lemma 6.3.7(c), for each admissible
open subspace U of Y , we can consider the following subset F(U) of O(U):

F(U) := {ζ ∈ O(U) : ∇|U (ζ) = c|U .}

It is clear that F is a subsheaf of sets of OY . We begin the study of F by looking
at formal meromorphic solutions near the point x = ∞ or y = 0. We identify the

completed local ring ’OY,∞ of OY at y = 0 with the ring of formal power series
K[[y]] and look for formal solutions in its field of fractions K((y)). Actually, it will
be more convenient to work in a larger field, namely

K((t)) := K((y))[t]/〈td − y〉.

For every admissible open subset U of Y containing ∞, we have natural K-algebra
and D(U)-module homomorphisms

O(U) −→ OY,∞ ↪→’OY,∞ = K[[y]] ↪→ K((y)) ↪→ K((t)).

Lemma 6.3.8. Let U be a connected affinoid subdomain of Y containing ∞, and

let ρU∞ : O(U) → ’OY,∞ = K[[y]] be the natural map. Then ρU∞ is injective and
D(U)-linear.

Proof. Only the injectivity requires proof. For this, note that the closed disc
SpK〈y/πnF 〉 is contained in U for sufficiently large n since ∞ ∈ U . Because U
is connected, the restriction map O(U)→ K〈y/πnF 〉 is injective by [10, Proposition
4.2]. The result follows, because K〈y/πnF 〉 embeds into K[[y]]. �

For every connected affinoid subdomain U of Y containing ∞, we will also write

ρU∞ : O(U)[1/y] −→ K((y))

for the localisation at powers of y of the map ρU∞ from Lemma 6.3.8. This map is
also injective and D(U)-linear.

Lemma 6.3.9.

(a) The derivation y2∂y : O(Y ) → O(Y ) extends to a continuous K-linear
derivation of K((t)).

(b) The action of h−1 on O(Y ) extends to a continuous K-algebra automor-

phism η of K((t)) via η(t) = t(1− td)− 1
d .

(c) The resulting K-linear operators on K((t)) commute.

Proof. (a) Consider the K-linear derivation 1
d t
d+1∂t : K[[t]] → K[[t]]. It respects

the t-adic filtration on K[[t]] and restricts to y2∂y on K[[y]] ⊂ K[[t]] because

1

d
td+1∂t(y) = td+1td−1 = y2 = y2∂y(y).

Now extend this derivation to the field of fractions K((t)) of K[[t]].
(b) Define η : K[[t]]→ K[[t]] by setting

(51) η(f(t)) = f(t(1− td)− 1
d ) for all f(t) ∈ K[[t]].
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This is a K-algebra automorphism which respects the t-adic filtration on K[[t]].
Its unique extension η to the field of fractions K((t)) of K[[t]] is then given by the
same formula. Because y = td, its restriction to K[[y]] ⊂ K[[t]] satisfies

η(y) = (t(1− td)− 1
d )d = y/(1− y).

On the other hand, the automorphism h−1 : O(Y ) → O(Y ) sends y to y
1−y by

(49), so it preserves the ideal yO(Y ) and therefore extends uniquely to a y-adically

continuous K-algebra automorphism of ’OY,∞ = K[[y]] which sends y to y
1−y . This

extension is then the restriction of η to K[[y]].
(c) It remains to see that the derivation D = 1

d t
d+1∂t commutes with η. It

is enough to show that the restriction of D to K((y)) agrees with the restriction
of ηDη−1 to K((y)), because then the derivation D − ηDη−1 of K((t)) is K((y))-
linear and therefore must vanish on the finite étale extension K((t)) of K((y)). Now
D(x) = y2∂y(x) = −πF and η(x) = h−1 · x = x − πF , so D(η(x)) = D(x − πF ) =
D(x) = η(D(x)). Therefore ηDη−1 and D agree on K[y], but both are y-adically
continuous and K[y] is y-adically dense in K[[y]], so they must be equal. �

Now we define ε := (1−yq−1)
k
d ∈ K[[y]] and z := ε−1tqk ∈ K((t)). Using Lemma

6.3.7(a), we have

zd = (1− yq−1)−kyqk = πkF ρ
Y
∞(w).

We assume from now on until the end of §6.3 that k 6= d. Under this
assumption, we see that qk ≡ −k 6= 0 mod d, so that a− qk

d /∈ Z for any integer a.
This allows us to make the following

Definition 6.3.10. For each m > 0, define αm :=
(−1)m(

k
d
m)

(q−1)m− qkd −1
, and set

J := t−qky−1
∞∑
m=0

αmy
(q−1)m ∈ t−qkK((y)).

Lemma 6.3.11. We have (y2∂y)(J) = t−qkε = z−1.

Proof. Let f(t) ∈ K((t)). Since y = td, using the Leibniz rule we have

(y2∂y)(t−qky−1f(t)) = f(t)
(

1
d t
d+1∂t

)
(t−qk−d) + t−qky−1 (y2∂y)(f(t))

= t−qk
Ä
y∂y − qk

d − 1
ä

(f(t)).

Since y2∂y is t-adically continuous on K((t)), it remains to show that

(y∂y −
qk

d
− 1)

( ∞∑
m=0

αmy
(q−1)m

)
= ε.

Using the binomial expansion inside K[[y]], we have

ε = (1− yq−1)
k
d =

∞∑
m=0

(−1)m
Ç
k
d

m

å
y(q−1)m.

The result follows, because

(y∂y −
qk

d
− 1)(y(q−1)m) =

Å
(q − 1)m− qk

d
− 1

ã
y(q−1)m

and ((q − 1)m− qk
d − 1)αm = (−1)m

( k
d
m

)
for all m > 0. �
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In other words, we think of J informally as the integral

J =

∫ y Å1− yq−1

yq

ã k
d dy

y2

Definition 6.3.12. Define ζw,d := −πF z (η(J)− J) ∈ K((t)).

The operator ∇ also extends to K((t)), by Lemma 6.3.9 and Lemma 6.3.7(b).
Because zd = πkF ρ

W
∞(w) holds in K((t)), Lemma 6.3.7(b) implies that

∇ = − 1

πF
z(y2∂y)z−1.

Proposition 6.3.13. We have ∇(ζw,d) = ρY∞(c)− 1.

Proof. Since η and y2∂y commute by Lemma 6.3.9(c), Lemma 6.3.11 tells us that

z−1∇(ζw,d) = z−1∇(−πF z(η(J)− J))
= (y2∂y)(η(J)− J)
= η((y2∂y)(J))− (y2∂y)(J)
= η(z−1)− z−1.

Next, recall from the proof of Lemma 6.3.7(c) that cd = w
h−1·w in O(Y ). Hence

ρY∞(c)d =
ρW∞(w)

η(ρW∞(w))
=

Å
z

η(z)

ãd
.

The definition of η given at (51) shows that η respects the t-adic filtration on
K((t)) and induces the trivial automorphism on the associated graded. Hence
z

η(z) ≡ 1 mod tK[[t]]. Looking at (50), we see that ρY∞(c) ∈ K((t)) also satisfies

ρY∞(c) ≡ 1 mod tK[[t]]. Since 1 + tK[[t]] is d-divisible, we conclude that

ρY∞(c) =
z

η(z)
.

Therefore ∇(ζw,d) = z(η(z−1)− z−1) = ρY∞(c)− 1 as desired. �

Proposition 6.3.14. The element tqk(η(J)− J) lies in K[[y]].

Proof. Let r be an integer; then since t/η(t) = (1 − y)
1
d ∈ K[[y]] and y/η(y) =

1− y ∈ K[[y]], using the binomial expansion for (1− y)α we see that

tqk(η(t−qkyr−1)− t−qkyr−1) = yr−1

Ç
tqky1−r

η(tqky1−r)
− 1

å
= yr

Ç
(1− y)1+ qk

d −r − 1

y

å
lies in K[[y]], provided that r > 0. Using Definition 6.3.10, and the above with
r = m(q − 1) where m > 0, we conclude that

(52) tqk(η(J)− J) =
∞∑
m=0

αmy
m(q−1)

Ç
(1− y)1+ qk

d −m(q−1) − 1

y

å
lies in K[[y]] as desired. �

Corollary 6.3.15. The element ζw,d lies in K[[y]]. In fact, we have

ζw,d = πF (1− yq−1)−
k
d

∞∑
m=0

(−1)m
Ç
k
d

m

å
y(q−1)m

 (1− y)1+ qk
d −(q−1)m − 1Ä

1 + qk
d − (q − 1)m

ä
y

 .
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Proof. Recall that z = ε−1tqk where ε = (1− yq−1)
k
d ∈ K[[y]]×. Then

ζw,d = −πF z(η(J)− J) = −πF (1− yq−1)−
k
d tqk(η(J)− J).

Substituting αm =
(−1)m(

k
d
m)

(q−1)m− qkd −1
into (52), gives the formula for ζw,d. �

For future use, we record the following

Proposition 6.3.16. ζw,d is the unique solution to the differential equation
∇(ζ) = ρY∞(c)− 1 with ζ ∈ K((y)).

Proof. Proposition 6.3.13 and Corollary 6.3.15 tell us that ζw,d is a solution of
∇(ζ) = ρY∞(c) − 1, so we need to show it is unique. It is enough to show that the

map ∇ : K((y))→ K((y)) is injective. Now, ∇ = − 1
πF
ε−1(y2∂y− qk

d y)ε by Lemma

6.3.7(b), so it is enough to show that y∂y − qk
d : K((y)→ K((y)) is injective. Since

(y∂y −
qk

d
)

Ç∑
n

any
n

å
=
∑
n

Å
n− qk

d

ã
any

n

this is an immediate consequence of the fact that qk
d /∈ Z. �

Next, we introduce the following affinoid subdomain of P1,an:

W := SpK〈y/πF 〉.

We identify Y with SpK〈y, 1
yq−1−1 〉 using Corollary 6.3.6, and note that W is

contained in Y because 1− yq−1 = 1 + πq−1
F (y/πF )q−1 ∈ O(W )××.

Lemma 6.3.17. F(W ) 6= ∅.

Proof. Recall [30, Definition 13.1.1] that the type of a number λ ∈ K is the radius

of convergence of the formal power series
∞∑
n=0

tn

λ−n . If λ happens to lie in Zp ∩ Q,

then λ has a recurrent p-adic expansion, and now [30, Proposition 13.1.4] implies
that λ has type 1. In other words, for any real number 0 < r < 1, we have

(53) lim
n→∞

rn

|λ− n|
= 0 for any λ ∈ Zp ∩Q.

Now, the spectral norm | · |W on O(W ) = K〈y/πF 〉 satisfies |y|W = |πF | < 1. Then
for any m > 0, we have∣∣∣∣∣∣(−1)m

Ç
k
d

m

å
y(q−1)m

 (1− y)1+ qk
d −(q−1)m − 1Ä

1 + qk
d − (q − 1)m

ä
y

∣∣∣∣∣∣
W

6
|πF |(q−1)m−1

| qkd − ((q − 1)m− 1)|

because |(−1)m
( k
d
m

)
| 6 1 and |(1− y)1− kd−(q−1)m − 1|W 6 1. Because qk

d ∈ Zp ∩Q,
(53) implies that the partial sums

ζn := πF (1− yq−1)−
k
d

n∑
m=0

(−1)m
Ç
k
d

m

å
y(q−1)m

 (1− y)1+ qk
d −(q−1)m − 1Ä

1 + qk
d − (q − 1)m

ä
y


of the power series ζw,d converge with respect to the spectral norm | · |W to an
element ζ ′ ∈ O(W ). Because ζn − ζn−1 converges to zero y-adically in O(W ), it
follows that ζn also converges y-adically to ζ ′ in O(W ).
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Recall the D(W )-linear and injective map ρW∞ : O(W ) → ’OY,∞ = K[[y]] from
Lemma 6.3.8. Since ρW∞ is continuous with respect to the y-adic topologies on
O(W ) and K[[y]], we deduce that

ρW∞(ζ ′) = ρW∞( lim
n→∞

ζn) = lim
n→∞

ρW (ζn) = ζw,d.

Since ρW∞ is D(W )-linear, ρW∞(∇(ζ ′)) = ∇(ζw,d) = ρW∞(c|W − 1) by Proposition

6.3.16, so ∇(ζ ′) = c|W −1 because ρW∞ is injective. Thus ζ ′ ∈ F(W ) as desired. �

Our next result relies on a long computation of the p-adic valuations of certain
binomial coefficients, which we perform in §6.4.

Theorem 6.3.18. The series ζw,d ∈ K[[y]] does not have bounded coefficients.

Proof. Using the binomial theorem, we compute that for any 0 6= µ ∈ Zp,

(1− y)µ − 1

µy
=

1

µy

∞∑
n=1

Ç
µ

n

å
(−y)n = − 1

µ

∞∑
n=0

Ç
µ

n+ 1

å
(−y)n.

Let s := yq−1, and let Φ : K[[y]]� K[[s]] be the K[[s]]-linear projection operator,
which sends yi to 0 if q − 1 - i, and which is the identity on K[[s]] ⊂ K[[y]]. Using

the elementary identity 1
µ

(
µ
n+1

)
= (µ−1)···(µ−n)

(n+1)! = 1
n+1

(
µ−1
n

)
we compute that

(54) Φ

Å
(1− y)µ − 1

µy

ã
= −

∞∑
`=0

Ç
µ− 1

`(q − 1)

å
(−s)`

`(q − 1) + 1
.

Set µr := 1 + qk
d − (q − 1)r and note that µr 6= 0 for any r ∈ N because k

d /∈ Z
by our choice of k and d. Take the series appearing in Corollary 6.3.15, change the
dummy variable from m to r, apply Φ and substitute in (54) to obtain

1
πF

(1− s) kdΦ(ζw,d) =
∞∑
r=0

( k
d
r

)
(−s)r ·

Å
−
∞∑̀
=0

(
µr−1
`(q−1)

) (−s)`
`(q−1)+1

ã
= −

∞∑
n=0

(
n∑
r=0

(
k
d
r )(

qk
d
−(q−1)r

(n−r)(q−1))
(n−r)(q−1)+1

)
sn.

We observe that the formula on the right hand side only involves k
d . Since d | (q+1)

and 1 6 k < d, after multiplying both k and d by q+1
d if necessary, we may assume

that d = q + 1 and 1 6 k 6 q.
By Corollary 6.4.17 below, the p-adic valuation of the coefficient of sn appearing

in the above expansion is not bounded below as n varies: in other words, this
series does not have bounded coefficients. Since the operator Φ sends K◦[[y]]K to
K◦[[s]]K we conclude that ζw,d also does not have bounded coefficients. �

Corollary 6.3.19. We have F(Y ) = ∅.

Proof. Suppose for a contradiction that ζ ∈ O(Y ) satisfies ∇(ζ) = c − 1. Now
O(Y ) = K〈y, 1

yq−1−1 〉 by Corollary 6.3.6, so

ρY∞ (O(Y )) ⊆ K◦[[y]]K .

Since ρY∞ : O(Y ) → K[[y]] is D(Y )-linear by Lemma 6.3.8, we have ∇(ρY∞(ζ)) =
ρY∞(c)− 1, so ρY∞(ζ) = ζw,d by Proposition 6.3.16. But then ζw,d ∈ K◦[[y]]K which
contradicts Theorem 6.3.18. �

Lemma 6.3.20. We have |F(X ∩ V0)| 6 1.
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Proof. It is enough to show that ∇ = θw,d(∂x) is injective on O(X ∩ V0). Now,

w =
1

(xq − πq−1
F x)k

=
x−qk

(1− (πF /x)q−1)k
≡ x−qk modO(X ∩ V0)××.

Since O(X ∩ V0)×× is d-divisible by [8, Lemma 4.3.2(a)], we can now use Lemma
2.4.3 and Lemma 2.4.2 to see that

∇ = u θx−qk,d(∂x) u−1 for some u ∈ O(X ∩ V0)×.

Thus it remains to show that θx−qk,d(∂x) = ∂x + qk
d

1
x is injective on O(X ∩ V0).

Suppose that ∂x(v) = − qkd
v
x for some non-zero v ∈ O(X ∩V0). Then ∂x(vdxqk) = 0

so vd = λx−qk for some λ ∈ K. Then λ 6= 0 since v 6= 0, so v ∈ O(X ∩ V0)×. Let
D := {|x| < 1} and apply the map µX∩V0

from [8, Proposition 4.3.1] to see that

d · µX∩V0(v)(D) = −qk · µX∩V0(x)(D) = −qk. This contradicts − qkd /∈ Z. �

We can finally prove the main result of §6.3.

Theorem 6.3.21. Let w = 1

(xq−πq−1
F x)k

, where d | (q + 1) and 1 6 k 6 d. Then

β(h) /∈ D†$/|πF |(X) +D†$(X)RS(w)(w, d).

Proof. First, we treat the case when k 6= d. Suppose for a contradiction that

β(h) ∈ D†$/|πF |(X) + D†$(X)RS(w)(w, d). Then we can find ζ ∈ O(X ∩ V1) such

that ζ|X∩V0
= −(ξw,dβ(h))0 by Proposition 6.3.2. Now, −(ξw,dβ(h))0 ∈ F(X ∩ V0)

by Lemma 6.3.3. Because the restriction map O(X ∩V1)→ O(X ∩V0) is injective,
we deduce that ζ ∈ F(X ∩ V1).

Now, since W (C) = {a ∈ C : |a| > 1} ∪ {∞} in the x-coordinate, we see that
X ∩W = X ∩ V0. Since also V0 ⊆ V1, we have

(X ∩ V1) ∩W = X ∩ V0.

On the other hand, if a ∈ C and |a− ζi| < 1 for some i = 0, · · · , q− 2, then |a| = 1
and a ∈W (C). Therefore W contains all of the q ‘large’ holes of X ∩ V1. Hence

(X ∩ V1) ∪W = Y

and {W,X ∩ V1} is an affinoid covering of Y .
By Lemma 6.3.17, we can find some ζ ′ ∈ F(W ). Then both ζ|X∩V0 and ζ ′|X∩V0

lie in F(X ∩ V0), so they are equal by Lemma 6.3.20. Finally, Tate’s Acyclicity
Theorem implies that the local solutions ζ ∈ F(X ∩ V1) and ζ ′ ∈ F(W ) glue to
give an element in F(Y ), which contradicts Corollary 6.3.19.

The case k = d requires a special, but much easier, argument. First note that
when k = d, w = (xq − πq−1

F x)−d is a d-th power, and in fact we that we have

w = ∆−dS(w).

Hence we can apply Lemma 4.2.17(b) to see that

RS(w)(w, d) = θw∆d
S(w),d

(∂x)∆S(w) = ∂x∆S(w),

because θ1,d is the identity map in view of equation (9). Therefore RS(w)(w, d) lies

in the left ideal D†$(X)x, and it will be enough to show that

β(h) /∈ D†$/|πF |(X) +D†$(X)x.
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Suppose for a contradiction that β(h) = P + Qx for some P ∈ D†$/|πF |(X) and

Q ∈ D†$(X). Hence P ∈ Dr(X) for some r > $/|πF | and Q ∈ Ds(X) for some
s > $, by Definition 2.3.9(d). Since r > $/|πF | > $, we may shrink s if necessary
to ensure that r > s > $. Now, applying the involutive transpose automorphism
(−)T : Ds(X)→ Ds(X) from Lemma 2.2.11 shows that

(55) β(h)T = PT + xQT .

By Definition 2.2.8 we can find a sequence of elements (an)∞n=0 in O(X), such that

lim
n→∞

|an|Xrn = 0 and PT =
∞∑
n=0

an∂
n ∈ Dr(X).

Next, we use the fact that (−)T is continuous and ∂T = −∂ to compute

β(h)T =

( ∞∑
n=0

πnF
n!
∂n

)T
=
∞∑
n=0

πnF
n!

(−∂)n = β(−h).

Setting x = 0 in equation (55) and equating coefficients shows that

(−πF )n

n!
= an(0) for all n > 0.

Finally, Lemma 2.3.16 tells us that 1
|n!| >

pn
$n . Hence

pn ·
Å |πF |r

$

ãn
6
|πF |nrn

|n!|
|an(0)| 6 |an|Xrn → 0 as n→∞

which is impossible because r > $/|πF | implies that |πF |r$ > 1. �

6.4. Estimates of p-adic valuations of binomial coefficients. The goal of this
section is to estimate the p-adic growth rate of the coefficient

(56)
n∑
r=0

( k
d
r

)( qk
d −(q−1)r

(n−r)(q−1)

)
(n− r)(q − 1) + 1

that arises in the proof of Theorem 6.3.18 for 1 6 k 6 q. In particular we will
see that for certain special values of n, the term corresponding to the value of r
that maximises the p-adic valuation of the denominator (n − r)(q − 1) + 1 will
dominate this sum and moreover the p-adic norm of this term will be unbounded
as n increases through these special values. To achieve this we will appeal to a
Theorem of Kummer to estimate the p-adic valuation of the binomial coefficients
that appear in the sum.

For the remainder of the section we fix 1 6 k 6 q and define f = vp(q).
Let λ ∈ Zp and n ∈ N be given, and consider their p-adic expansions

λ = λ0 + pλ1 + p2λ2 + · · · , n = n0 + pn1 + pn2 + · · ·

where the p-adic digits λi and ni all lie in {0, 1, ..., p− 1}. Since n is assumed to be
a natural number, we know that ni = 0 for all sufficiently large i.

Definition 6.4.1. Let λ ∈ Zp and n ∈ N be as above.
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(a) Let i > 0. The i-th carry function γi(λ, n) is defined as follows:

γ0(λ, n) =

ß
1 if λ0 + n0 > p− 1
0 if λ0 + n0 6 p− 1

and for i > 1, it is defined recursively by

γi(λ, n) =

ß
1 if λi + ni + γi−1(λ, n) > p− 1
0 if λi + ni + γi−1(λ, n) 6 p− 1.

(b) We define

L(λ, n) := inf{i > 0 : γj(λ, n) = 0 for all j > i}.

(c) For each m > 0, the m-th non-carry function is defined to be

Nm(λ, n) := |{0 6 i < m : γi(λ, n) = 0}|.

(d) We define 〈λ|n〉 to be the binomial coefficient
(
λ+n
n

)
.

Thus L(λ, n) records the position after which there are no further carries when
performing the addition of λ and n in Zp; it is possible that L(λ, n) =∞ but this
happens only when λi = p − 1 for all sufficiently large i. More precisely we have
the following Lemma.

Lemma 6.4.2. L(λ, n) =∞ only when λ is a negative integer and n > −λ.

Proof. Since n ∈ N there is m > 1 such that nj = 0 for all j > m.
Suppose that L(λ, n) = ∞. Then by definition γj(λ, n) = 1 for infinitely many

values of j. But, by 6.4.1(a), if γj(λ, n) = 1 for j > m then γj−1(λ, n) = 1 and
λj = p − 1. It follows that γj(λ, n) = 1 for all j > m − 1 and λj = p − 1 for all
j > m and λ is a negative integer. Moreover (λ + n)j = 0 for all j > m; that is
λ+ n ∈ bN and so n > −λ as claimed. �

In our applications, L(λ, n) will always be finite. The function Nm(λ, n) records
the number of non-carries that occurred in the first m digits when performing the
addition of λ and n in Zp.

We have now developed enough language to precisely state Kummer’s theorem
on the p-adic valuation of binomial coefficients.

Theorem 6.4.3 (Kummer, 1852). Let λ ∈ Zp and n ∈ N be given, and suppose
that L(λ, n) <∞. Then

vp〈λ|n〉 = m−Nm(λ, n) for all m > L(λ, n).

Under the assumption that L(λ, n) <∞, the carrying will stop in finite time in
the sense that eventually all γi(λ, n) are zero. Then for sufficiently large m, the
quantity on the right hand side is independent of m and returns the total number of
carries that occurred during the addition of λ and n in Zp — this is perhaps a more
usual way of formulating Kummer’s theorem. We also note that if L(λ, n) = ∞
then 〈λ|n〉 = 0 so vp(〈λ|n〉) =∞ in that case.

Proof of Theorem 6.4.3. A proof in the case that λ ∈ N appeared in [31]. A modern
account of the proof in that case can be found in [26, Theorem 3.7].

Now let µ ∈ N be such that 0 6 µ < pL(λ,n) and vp(λ− µ) > L(λ, n); that is the
p-adic expansion of µ is the truncation of the p-adic expansion of λ at the L(λ, n)th
digit. Then it is easy to verify that L(λ, n) = L(µ, n) and Nm(λ, n) = Nm(µ, n)
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for all m. Moreover vp〈λ|n〉 = vp〈µ|n〉 since vp(λ+ i) = vp(µ+ i) 6 L(λ, n) for all
1 6 i 6 n. �

In most cases of interest to us, the possibility of carrying process not stopping
in finite time is ruled out by the following

Notation 6.4.4. Given α0, α1, · · · , αj−1 ∈ {0, 1, · · · , q − 1}, write

[α0, α1, · · · , αj−1]j := α0q
0 + α1q

1 + · · ·+ αj−1q
j−1.

We call αi the ith q-adic digit of this q-expansion.

Lemma 6.4.5. Suppose that λ ∈ Zp, n, j ∈ N with

λ ≡ [α0, . . . , αj−1]j mod qj and n = [β0, . . . , βj−1]j .

(a) If βi + αi < q − 1 for some 0 < i < j then γ(i+1)f−1(λ, n) = 0.
(b) If βj−1 + αj−1 < q − 1 then L(λ, n) < (j + 1)f .

Proof. (a) Under the hypothesis βi + αi < q − 1

γ(i+1)f−1(λ, n) =

®
γf−1(αi, βi) if γif−1(λ, n) = 0

γf−1(αi + 1, βi) if γif−1(λ, n) = 1

and since αi + 1 + βi < q this is zero in either case.
(b) Since n < qj , we have ni = 0 whenever i > jf . The result now follows from

part (a) and Definition 6.4.1(a). �

Definition 6.4.6. For n > 1, let M = Mn ∈ N be largest possible such that
1 + q + · · ·+ qM 6 n. We also define

s := sn := n− (1 + q + · · ·+ qM ) > 0.

It is easy to see that sn < qMn+1 since otherwise we could make M larger.

Lemma 6.4.7. Let 0 6 r 6 n be an integer. Then

vp(r − sn) < (Mn + 1)f

whenever r 6= sn.

Proof. Since s < qM+1 and n− s = 1 + q + · · ·+ qM < qM+1,

s− qM+1 < 0 6 s 6 n < s+ qM+1,

which implies that
{0, 1, · · · , n} ∩ (s+ qM+1Z) = {s}.

Suppose that vp(r − s) > (M + 1)f . Then qM+1 divides r − s, so r ∈ s + qM+1Z.
Since 0 6 r 6 n by assumption, we conclude that r = s. �

Corollary 6.4.8. Let 0 6 r 6 n be an integer. Then

vp((n− r)(q − 1) + 1) =

ß
(Mn + 1)f if r = sn,
vp(r − s) if r 6= sn.

Proof. By definition of s, vp((n− s)(q − 1) + 1) = vp(q
M+1) = (M + 1)f . Now

(n− r)(q − 1) + 1 = (q − 1)(s− r) + (n− s)(q − 1) + 1

and m := vp(r − s) is strictly less than vp(q
M+1) = (M + 1)f whenever r 6= s by

Lemma 6.4.7. Since vp(q−1) = 0, the result now follows from the non-Archimedean
triangle inequality. �
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Thus, combining the last two results, we see that sn has been chosen to maximise
p-adic value of the denominator of (56) for given n.

We are also interested in the following complicated-looking binomial coefficient.

Definition 6.4.9. For each n, r ∈ N with 0 6 r 6 n, define

Sn,r := 〈 qk

q + 1
− n(q − 1) | (n− r)(q − 1)〉 =

Ç
qk
q+1 − r(q − 1)

(n− r)(q − 1)

å
.

In order to control this, until Corollary 6.4.17 below, we fix a possibly very large
positive integer N > 0, and define nN to be the smallest positive integer such that

nN ≡
qk

q2 − 1
mod qN

This expression obviously depends on N , but because of its frequent appearance
we will abbreviate it to n := nN until Corollary 6.4.17. The reason for this choice
of the form of n is the following result which will enable us to ignore the Sn,r in
the numerator of (56) when estimating its p-adic value.

Proposition 6.4.10. vp(Sn,r) > 0 for all 0 6 r 6 n and vp(Sn,sn) = 0.

Proof. The first part is well-known since qk/(q + 1) is a p-adic integer.

We define α := qk
q+1 − n(q − 1) ∈ Zp so that α ≡ 0 mod qN . That is, the p-adic

digits αj of α are zero whenever j < Nf . Similarly, since M < N ,

β := (n− s)(q − 1) 6 qM+1 − 1 < qN

so βj = 0 for all j > Nf . It follows that γj(α, β) = 0 for all j > 0, and therefore
vp(Sn,s) = vp〈α|β〉 = 0 by Theorem 6.4.3. �

For reasons that will become apparent later we now assume®
N is even if 1 6 k 6 q − 1 or k = 2 = q

N is odd if k = q > 2.

It is also convenient to suppose that N > 6.
We can now compute the precise value of Mn in terms of N depending on the

values of k and q.

Lemma 6.4.11.

Mn =


N − 1 if 1 6 k 6 q − 2 or k = q > 2,

N − 2 if (k = q − 1 and q > 2) or k = q = 2,

N − 3 if k = 1, q = 2.

Proof. Since n 6 qN it is immediate that M 6 N − 1 in all cases.
We see that

n ≡ 1 +
(q − k − 1)q + (q − 1)

1− q2
= 2 +

(2q − k − 1)q + (q − 2)

1− q2
mod qN

so, for 1 6 k 6 q − 1, since N is even, the q-adic expansion of n is

n = 0 + (q − k)q + (q − 1)q2 + (q − 1− k)q3 + · · ·+ (q − 1)qN−2 + (q − 1− k)qN−1,

For k = q > 2, since N is odd, the q-adic expansion of n is

n = 0 + 0 · q + (q − 1)q2 + (q − 1)q3 + (q − 2)q4 + · · ·+ (q − 1)qN−2 + (q − 2)qN−1,
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and for k = q = 2, since N is even,

n = 0 + 0 · q + (q − 1)q2 + (q − 1)q3 + (q − 2)q4 + · · ·+ (q − 2)qN−2 + (q − 1)qN−1,

where in all cases, the q-digits after the 3rd digit repeat with period 2 until the last
q-digit.

If 1 6 k 6 q − 2 then q > 3, and it is now easy to see that

1 + q + q2 + · · ·+ qN−1 < 2qN−2 + qN−1 < n

so M = N − 1.
Similarly if k = q − 1 and if q > 3, then

1 + q + q2 + · · ·+ qN−2 < 2qN−2 < n < qN−1

and so M = N − 2, and if k = q and q > 3, then

1 + q + q2 + · · ·+ qN−1 < n < qN

so M = N − 2.
The two cases where q = 2 can be treated in a similar manner noting that when

q = 2, 1 + q + q2 + · · ·+ qM = qM+1 − 1. �

Our next job will be to compute the q-adic expansions of k
q+1 − sn and sn up to

the f(M + 1)st p-adic digit in all cases.

Lemma 6.4.12. Write λ := k
q+1 ∈ Zp\N.

(a) Suppose that 1 6 k 6 q − 2. Then M is odd and

s = [q − 1, q − k − 2, q − 2, q − k − 2, · · · , q − 2, q − k − 2]M+1

λ− s ≡ [k + 1, 1, k + 1, 1, · · · , k + 1, 1]M+1

(b) Suppose that k = q − 1 and q > 2. Then M is even and

s = [q − 1, q − 1, q − 3, · · · , q − 1, q − 3]M+1

λ− s ≡ [0, 2, 0, · · · , 2, 0]M+1

(c) Suppose that k = 1 and q = 2. Then M is odd and

s = [1, 1, 1, 0, · · · , 1, 0]M+1

λ− s ≡ [0, 0, 1, 0, · · · , 1, 0]M+1

(d) Suppose that k = 2 and q = 2. Then M is even and

s = [1, 0, 1, 1, 0, · · · , 1, 0]M+1

λ− s ≡ [1, 0, 0, 1, 0 · · · , 1, 0]M+1

(e) Suppose that k = q and q > 2. Then M is even and

s = [q − 1, q − 2, q − 3, · · · , q − 2, q − 3]M+1

λ− s ≡ [1, 2, 1, · · · , 2, 1]M+1

where ≡ denotes congruence modulo qM+1.
Note that all of the displayed expansions are recurrent with period 2f but not

purely periodic: the two q-digits just preceeding the · · · sign are the repeating ones.
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Proof. The parity of M can be deduced in each case from Lemma 6.4.11 and the
parity of N .

Since qM+1 divides qN in all cases,

n ≡ −qk
1− q2

mod qM+1 so

s ≡ −qk
1− q2

− 1

1− q
mod qM+1

≡ −qk − q − 1

1− q2
mod qM+1

≡ 1 +
(q − 2) + (q − k − 2)q

1− q2

≡ 2 +
(q − 3) + (2q − k − 2)q

1− q2
, and

λ− s ≡ k

q + 1
+
qk + q + 1

1− q2
=
k + q + 1

1− q2
mod qM+1.

All the calculations can now be done in a straightforward manner. For the case
where k = q, it is helpful to note that s 6 n < q2N+1 by definition of n, so that the
last two q-digits in the q-expansion of s are q − 3 and q − 2. For the cases where
q = 2 it is helpful to remember that s+ 2M+1 = n+ 1 and to use the q-expansions
of n found in the proof of Lemma 6.4.11. �

Corollary 6.4.13. In all five cases appearing in Lemma 6.4.12, the carrying in the
sum s+ (λ− s) stops before the (M + 1)f position. More precisely, we have

L(λ− s, s) < (M + 1)f.

We note that the parity of N in each case was chosen to make this true.

Proof. In each case we can use the expressions for s and λ−s in Lemma 6.4.12 and
Lemma 6.4.5(b). �

The remaining substantive result will be the following Proposition, whose proof
highlights the importance of counting the non-carry positions in the sum (λ− r) +
r = λ.

Proposition 6.4.14. Let λ ∈ Zp\N, s ∈ N and ` > 1 be given, such that

L(λ− s, s) < `.

Then for any r ∈ N with vp(r − s) < `, we have

vp〈λ− r|r〉 − vp(r − s) > vp〈λ− s|s〉 − `.

Proof. Theorem 6.4.3 implies that

(57) vp〈λ− s|s〉 = `−N`(λ− s, s).

Define the m-th truncation function tm : Zp → N for m > 0 by

tm

( ∞∑
i=0

µip
i

)
=
m−1∑
i=0

µip
i
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where µi ∈ {0, . . . , p − 1}. Note that the sum on the left is computed in Zp but
the sum on the right is computed in N. Because L(λ − s, s) < ` by assumption,
Definition 6.4.1(b) implies that γ`−1(λ− s, s) = 0. Therefore

(58) N`(λ− s, s) > N`−1(λ− s, s) > Nm(λ− s, s) = Nm(tm(λ− s), tm(s))

whenever 0 6 m < `. This inequality applies in particular when m := vp(r − s)
which is strictly less than ` by hypothesis. Note also that because r ≡ s mod pm,
we know that tm(r) = tm(s) and tm(λ− r) = tm(λ− s).

Next, we have the crude estimate

(59) Nj(λ− r, r) 6 Nm(tm(λ− r), tm(r)) + (j −m) for all j > m.

Finally, let j = max{m,L(λ − r, r)} which is finite by Lemma 6.4.2 because
λ /∈ N. Then Theorem 6.4.3 implies that

(60) vp〈λ− r|r〉 = j −Nj(λ− r, r).
Applying (60), (59), (58) and (57), we obtain

vp〈λ− r|r〉 −m = j −Nj(λ− r, r)−m
> −Nm(tm(λ− r), tm(r))
= −Nm(tm(λ− s), tm(s))
> −N`(λ− s, s)
= vp〈λ− s|s〉 − `

as required. �

We now put everything together to obtain our main estimate.

Theorem 6.4.15. Let 0 6 r 6 n be given with r 6= s. Then

vp

Å 〈λ− r|r〉
(n− r)(q − 1) + 1

ã
> vp

Å 〈λ− s|s〉
(n− s)(q − 1) + 1

ã
.

Proof. By Corollary 6.4.8, it is enough to show that

vp(〈λ− r|r〉)− vp(r − s) > vp(〈λ− s|s〉)− (M + 1)f.

We set ` := (M + 1)f . Then Corollary 6.4.13 tells us L(λ− s, s) < `, and Lemma
6.4.7 tells us that vp(r−s) < `. Now the required inequality follows from Proposition
6.4.14. �

It remains to estimate the carries in the sum s+ (λ− s).
Proposition 6.4.16. For each N > 6 of suitable parity depending on k and q

vp

Å 〈λ− s|s〉
s(q − 1) + 1

ã
6

3−N
2

.

Proof. We note that by Theorem 6.4.3 and Corollary 6.4.13,

vp(〈λ− s|s〉) = (M + 1)f − 1−N(M+1)f−1(λ− s, s).
Considering Lemma 6.4.5(a) and Lemma 6.4.12 we see that

N(M+1)f−1(λ− s, s) >
õ
M − 2

2

û
.

Moreover by Corollary 6.4.8 vp((n− s)(q − 1) + 1) = (M + 1)f .
However, M > N − 3 by Lemma 6.4.11. Hence

vp

Å 〈λ− s|s〉
s(q − 1) + 1

ã
6 −

õ
M

2

û
6 −N − 3

2
. �
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Here is the main result of §6.4.

Corollary 6.4.17. The p-adic valuation of the rational number

n∑
r=0

( k
q+1
r

)( qk
q+1−(q−1)r

(n−r)(q−1)

)
(n− r)(q − 1) + 1

is not bounded below as n varies.

Proof. Apply Proposition 6.4.10, Theorem 6.4.15 and Corollary 6.4.16. �

6.5. Proof of Theorem 5.3.12. We assume in this section that the hypotheses
of Theorem 5.3.12 hold, namely:

• [L ] ∈ PicConI(Υ)tors and ω[L ] ∈ PicCon(Υ)[p′],
• the order d of ω[L ] in PicCon(Υ) divides q + 1,

• e ∈ dZ is the order of [L ] in PicConI(Υ),
• n > vπF (e) and a ∈ OF ,
• Nn+1 6 Jn+1.

The map Mn,d from §4.3 sends PicCon(Υ)[d]I into M0(h(Υn),Z/dZ)I . Since
ω[L ] ∈ PicCon(Υ)[d]I , we can now use Lemma 4.3.5(a) to make the following

Definition 6.5.1. We let k ∈ {1, 2, · · · , d} be the unique integer such that

Mn,d(ω[L ]) = kνn.

Recall from Definition 5.3.9 and [8, Definition 4.1.1] the affinoid W := Wa,n:

W = SpK

≠
τ,

1

τ q−1 − 1

∑
where τ :=

x− a
πnF

.

We fix a primitive (q − 1)th root ζ of 1 in K× using Remark 6.2.11 and note the
following basic properties of our affinoid domain W .

Lemma 6.5.2.

(a) W ∩ Vn is obtained from W by removing the open disc {|τ | < 1}.
(b) W ∩ Vn+1 is obtained from W by removing the q open discs

{|τ−πF | < |πF |}, {|τ−πF ζ| < |πF |}, · · · {|τ−πF ζq−2| < |πF |}, {|τ | < |πF |}.

Proof. (a) Vn is obtained from D by removing all open discs of radius |πF |n around
all points in OF with respect to the x-coordinate. Now W is contained in a closed
disc SpK〈τ〉 of radius |πF |n which contains exactly q such open discs. We have
removed q − 1 of these when forming W . Hence W ∩ Vn is obtained from W by
removing the last of these open discs, namely {|τ | < 1}.

(b) This time SpK〈τ〉 contains q2 open discs of radius |πF |n+1 with respect to
the x-coordinate. Of these, q(q − 1) are contained in the q − 1 open discs of radius
|πF |n which are removed when we form W . This shows that W contains exactly q
more such open discs that have to be removed when forming W ∩ Vn+1. �

When n = 0, q = 5, a picture of W ⊃W ∩ Vn+1 ⊃W ∩ Vn can be found in §6.3.

Theorem 6.5.3. There exists c ∈ K(τ)∩O(W )× with S(c) ⊆ F , and an algebraic
generator ż ∈ Ln+1(W ) with associated rational function

ψ(ż⊗d) = u c where u :=
1

(τ q − πq−1
F τ)k

.
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Proof. We define S1 := {0} ∪ {1, ζ, ζ2, · · · , ζq−2} and note that S1 forms a set of
coset representatives for πFOF in OF containing 0. Let S be any set of coset
representatives for πn+2

F OF in OF containing a+ πnFS1 = W (K) ∩ OF .
Using Definition 6.5.1 together with Lemma 4.3.5(b) we see that

rn+1(Mn+1,d(ω[L ])) = Mn,d(ω[L ]) = kνn = rn+1(−kνn+1).

Lemma 4.3.5(c) then implies that Mn+1,d(ω[L ]) = −kνn+1, and hence

Mn+1,d(ω[L ])(Db,n+1) = −k + dZ for all b ∈ OF .

Note that −kd /∈ N because k > 1. We can now apply Theorem 4.3.7(a) with
n + 1 in place of n with kb := −k for all b ∈ S, to choose an algebraic generator
ẏ ∈ Ln+1(W ) with associated rational function v such that

vb(v) = k for all b ∈ S.
Now, since u = 1

(τq−πq−1
F τ)k

, τ = x−a
πnF

and k 6= 0, we see that S(u) = a + πnFS1,

and that vb(u) = vb(v) for all b ∈ S(u). Therefore the rational function c := v/u
satisfies S(c) = S(v)\S(u) = S\(a + πnFS1) ⊆ F . This finite set does not meet

W (K) because S ∩W (K) = a+ πnFS1. Hence c ∈ O(W )× as claimed. �

Proposition 6.5.4. Let [ż] denote the image of ż ∈ Ln+1(W ) in Ln(W ) under
the natural restriction map Ln+1(W )→ Ln(W ). Then the element

ẏ := (1− (πF /τ)q−1)k/d[ż] ∈ Ln(W )

is an algebraic generator for Ln(W ) with associated rational function c/τ qk.

Proof. Since ż generates Ln+1(W ) as an (OW )W∩Vn+1
(W )-module, we see that [ż]

generates Ln(W ) as an (OW )W∩Vn(W )-module. Note that 1 − (πF /τ)q−1 ∈ 1 +

O(W )〈πF /τ2〉◦◦, so by [8, Lemma 4.3.2(a)] it is a dth power in 1+O(W )〈πF /τ2〉◦◦.
Since O(W )〈πF /τ2〉 ⊆ O(W )W∩Vn in view of Lemma 6.5.2(a), we conclude that ẏ
also generates Ln(W ) as an O(W )W∩Vn -module as required by Definition 4.3.6(a).
Using Theorem 6.5.3, we see that the associated rational function to ẏ is

ψ(ẏ⊗d) =
(
1− (πF /τ)q−1

)k c

(τ q − πq−1
F τ)k

=
c

τ qk
.

Next, S(c/τ qk) ⊆ {a} ∪ S(c) ⊆ K by Theorem 6.5.3, so Definition 4.3.6(c) is
satisfied. Since c ∈ O(W )× and k 6= 0, we see that S(c/τ qk)∩W = {a}. Definition
4.3.6(d) is now satisfied vacuously by ẏ, whereas Definition 4.3.6(e) holds because
va(c/τ qk)/d = −qk/d /∈ N as k > 1. �

After Theorem 6.5.3 and Proposition 6.5.4 and Corollary 4.3.12, we have explicit
presentations for the Dn(W )-module Ln(W ) and Dn+1(W )-module Ln+1(W ).
Next, we will make the connection with the theory developed earlier on in §6 by
making a change of coordinates: recall from §6.3 the affinoid domain

X := SpK

≠
x,

1

xq−1 − 1

∑
.

Lemma 6.5.5. Let ga,n :=

Å
1 −a
0 πnF

ã
∈ B(K). Then ga,n(W ) = X.

Proof. We have ga,n · z = z−a
πnF

for all z ∈ K. Using the definitions of W and X, we

see that z ∈W (K) if and only if ga,n · z ∈ X(K). Hence ga,n(W ) = X. �
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Corollary 6.5.6. There is a K-algebra isomorphism

χ : Dn(W )
∼=−→ D0(X)

such that χ(τ) = x and χ(πnF∂x) = ∂x, and χ(Dn+m(W )) = Dm(X) for all m > 0.

Proof. Note that %(ga,n) = π−nF by Definition 2.5.1 and that ga,n(W ) = X by
Lemma 6.5.5. The affinoid W lies in A(|πF |n∂x/$)† by Lemma 5.3.10, so we can
apply Corollary 2.5.6 with r = $/|πF |n to get the required K-algebra isomorphism

χ := (ga,n)†$/|πF |n(W ) : Dn(W ) = D†$/|πF |n(W )
∼=−→ D†$(X) = D0(X).

Then χ(τ) = ga,n · τ = (ga,n · x − a)/πnF = ((a + πnFx) − a)/πnF = x and χ(∂x) =
ga,n · ∂x = %(ga,n)∂x = π−nF ∂x by Lemma 2.5.2(e).

Finally, we can apply Corollary 2.5.6 again with r = $/|πF |n+m to see that χ
maps Dn+m(W ) onto Dm(X) for all m > 0. �

Next, we record the presentations for Ln(W ) and Ln+1(W ) after applying this
change of coordinates as well as untwisting via the untwisting automorphism θ−1

χ(c),d

of D0(X) = D†$(X) from Corollary 2.4.11. More precisely:

Definition 6.5.7.

(a) Define b := χ(c) ∈ O(X)× and w := (xq − πq−1
F x)−k = χ(u).

(b) Let M := D0(X) ⊗
Dn(W )

Ln(W ) where D0(X) is viewed as a Dn(W )-module

via the isomorphism θ−1
b,d ◦ χ : Dn(W )

∼=−→ D0(X).

(c) Let M ′ := D1(X) ⊗
Dn+1(W )

Ln+1(W ) where D1(X) is viewed as a Dn+1(W )-

module via the isomorphism θ−1
b,d ◦ χ : Dn+1(W )

∼=−→ D1(X).

Theorem 6.5.8. We have

M ′ ∼=
D1(X)

D1(X)RS(w)(w, d)
and M ∼=

D0(X)

D0(X)RS(x−qk)(x−qk, d)
.

Proof. By Theorem 6.5.3 and Corollary 4.3.12, we have

Ln+1(W ) = Dn+1(W ) · z ∼= Dn+1(W )/Dn+1(W )RS(uc)(uc, d).

Now, applying Lemma 4.2.22(b) with r = $/|πF |n shows that

χ(RS(uc)(uc, d)) ≡ RS(χ(uc))(χ(uc), d) modK×.

Next, χ(uc) = wb, so Lemma 4.2.17(c) gives

RS(χ(uc))(χ(uc), d) = RS(wb)(wb, d) = θb,d(RS(wb)(w, d)).

Since S(w) ∩ S(b) = ∅, S(wb) is the disjoint union of S(w) and S(b), so ∆S(wb) =
∆S(w)∆S(b) and RS(wb)(w, d) = ∆S(b)RS(w)(w, d). Therefore

χ(RS(uc)(uc, d)) ≡ θb,d
(
∆S(b)RS(w)(w, d)

)
modK×.

However, b and hence ∆S(b) are units in O(X), so we have

(61) θ−1
b,dχ

(
Dn+1(W )RS(uc)(uc, d)

)
= D1(X)RS(w)(w, d).

This implies that M ′ ∼= D1(X)
D1(X)RS(w)(w,d) as D1(X)-modules. The second isomor-

phism is deduced similarly using Proposition 6.5.4 instead of Theorem 6.5.3. �

We assume until the end of §6.5 that the field K is discretely valued.
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Corollary 6.5.9. The Dn(W )-module Ln(W ) is simple if k 6= d.

Proof. After Theorem 6.5.8, it is enough to check that D0(X)
D0(X)RS(x−qk)

(x−qk,d)
is a

simple D0(X)-module. Now RS(x−qk)(x
−qk, d) = x∂x + qk

d by Definition 4.2.10(b),

and − qkd ∈ Zp\Z because q ≡ −1 mod d and k 6= 0 mod d by our assumption on k.
We can now apply Theorem 4.4.1 to conclude. �

Proposition 6.5.10. The natural action map

ϕ : Dn(W ) ⊗
Dn+1(W )

Ln+1(W ) −→ Ln(W )

given by ϕ(Q⊗ v) := Q · τ(v) for all Q ∈ Dn(W ) and v ∈ Ln+1(W ), is surjective.

Proof. The restriction map τ : Ln+1(W )→ Ln(W ) is non-zero, so ϕ is a non-zero
Dn(W )-linear map. If k 6= d then Ln(W ) is a simple Dn(W )-module by Corollary
6.5.9, so ϕ is surjective.

Suppose now that k = d. Inspecting the definition of the algebraic generator
ẏ ∈ Ln(W ) from Proposition 6.5.4, we see that

τ q−1ẏ = (τ q−1 − πq−1
F )[ż] ∈ imϕ.

Since Ln(W ) = Dn(W ) · ẏ, it remains to show that ẏ ∈ Dn(W ) · τ q−1ẏ. Now,

M = D0(X) ⊗
Dn(W )

Ln(W ) ∼=
D0(X)

D0(X)RS(x−qd)(x−qd, d)

as D0(X)-modules by Theorem 6.5.8. However, S(x−qd) = {0}, and

R{0}(x
−qd, d) = x∂x + q = R{0}(x

−q, 1),

so applying Theorem 4.2.16 with u = x−q, t = 1 and d = 1, we see that

(62) M ∼= (j∗OA−{0})U0
(X)

as D0(X)-modules. Inside (j∗OA−{0})U0
(X), we compute

x−q = (−1)q−1∂[q−1]
x · x−1 ∈ D0(X) · xq−1x−q,

and hence ẏ ∈ Dn(W ) · τ q−1ẏ because the isomorphism (62) sends 1⊗ ẏ to x−q. �

Next, we need to obtain the following upper bound.

Lemma 6.5.11. We have `(kerϕ) 6 q − 1.

Proof. After applying the change of coordinates made precise by Theorem 6.5.8,
the map ϕ induces a non-zero D0(X)-linear map

ψ :
D0(X)

D0(X)RS(w)(w, d)
∼= D0(X) ⊗

D1(X)
M ′ −→M ∼=

D0(X)

D0(X)RS(x−qk)(x−qk, d)
.

Now, by applying Theorem 6.2.10 — see also Example 6.2.12 — we know that

Cycl

Å
D†Q(X )

D†Q(X )RS(w)(w,d)

ã
= [X0] + q[T ∗0 X0], whereas

Cycl

Å
D†Q(X )

D†Q(X )R(x−qk,d)

ã
= [X0] + [T ∗0 X0]

.

Since ϕ is surjective by Proposition 6.5.10, so is ψ. Therefore

Cycl(kerψ) = (q − 1)[T ∗0 X0].
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Since |Cycl | is additive on short exact sequences and |Cycl(V )| > 1 for non-zero

holonomic D†Q(X )-modules V , we see that `(V ) 6 |Cycl(V )| for every holonomic

D†Q(X )-module V . Hence `(kerϕ) = `(kerψ) 6 |Cycl(kerψ)| = q − 1. �

Definition 6.5.12. Define g =

Å
1 −πn+1

F

0 1

ã
∈ Nn+1 and h :=

Å
1 −πF
0 1

ã
∈ N1.

It follows from Lemma 5.3.3 that β(g) ∈ Dr(D)× whenever r < $/|πF |n+1.
Since $/|πF |n < $/|πF |n+1, β(g) lies in Dn(D)× and hence can also be viewed as
an element of Dn(W )×.

Proposition 6.5.13. β(g) /∈ Dn+1(W ) + Dn(W )RS(uc)(uc, d).

Proof. Suppose for a contradiction that β(g) ∈ Dn+1(W ) + Dn(W )RS(uc)(uc, d).
Then we can use equation (61) to deduce that

θ−1
b,dχ(β(g)) ∈ D1(X) + D0(X) ·D1(X)RS(w)(w, d).

Since χ(πnF∂x) = ∂x and g · x− x = πn+1
F by Lemma 5.2.2(a), we see that

χ(β(g)) = χ

( ∞∑
m=0

π
(n+1)m
F ∂[m]

x

)
=
∞∑
m=0

πmF ∂
[m]
x = β(h).

By Proposition 5.2.13, we can find an element cb−1,d(h) ∈ O(X)× such that

θ−1
b,dχ(β(g)) = θb−1,d(β(h)) = cb−1,d(h)β(h).

Since D1(X) ⊆ D0(X), we conclude that cb−1,d(h)β(h) ∈ D1(X)+D0(X)RS(w)(w, d).
Since cb−1,d(h) is a unit inO(X), this implies that β(h) ∈ D1(X)+D0(X)RS(w)(w, d).
This contradicts Theorem 6.3.21. �

Note that since g ∈ Nn+1 6 Jn+1 by our assumption on J , and W is Nn+1-stable
by Lemma 5.3.10, the Dn+1(W )-module carries a compatible action of g.

Corollary 6.5.14. The secret g-action from Lemma 5.1.6 on

Dn(W ) ⊗
Dn+1(W )

Ln+1(W )

is non-trivial.

Proof. Write S := Dn(W ) and S′ := Dn+1(W ). Choose an algebraic generator
ż ∈ Ln+1(W ) as in Theorem 6.5.3 and write r := RS(uc)(uc, d). By Corollary
4.3.12, we can choose Q ∈ S′ such that Q · ż = g · ż. If the secret action was trivial,
then

1⊗ ż = g ? (1⊗ ż) = β(g)−1 ⊗ g · ż = β(g)−1 ⊗Q · ż = β(g)−1Q⊗ ż.
Now annS′(ż) = S′r by Corollary 4.3.12, so annS(1 ⊗ ż) = Sr because S is a flat
S′-module by Lemma 4.3.10(a), Therefore β(g)−1Q−1 ∈ Sr. Hence Q−β(g) ∈ Sr
so β(g) ∈ S′ + Sr, which contradicts Proposition 6.5.13. �

Next, we need some elementary group theory. Let kF denote the residue field of
our p-adic field F and let k×F = kF −{0}. We view kF as a finite elementary abelian

p-group of order q, and k×F as a cyclic group of order q− 1. As in §5.1, let IrrK(kF )

be the set of isomorphism classes of simple K[kF ]-modules, which is naturally in

bijection with the set k̂F of K
×

-valued characters of kF . The group k×F acts on kF
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by multiplication; since this action is by abelian group homomorphisms, we obtain

an induced action of k×F on k̂F given by

(t · χ)(a) = χ(t−1a) for all χ ∈ k̂F , a ∈ kF , t ∈ k×F .

Lemma 6.5.15. k×F acts transitively and freely on k̂F \{0}.

Proof. Suppose t ∈ k×F fixes 0 6= χ ∈ k̂F under the above action. Then (t−1−1)a ∈
kerχ for all a ∈ kF . Since kF is a field, (t−1 − 1)kF = kF unless t = 1. But χ 6= 0

forces kerχ < kF , so indeed t = 1. The result follows since |k×F | = |k̂F \{0}|. �

Corollary 6.5.16. The action of k×F on IrrK(kF ) has exactly two orbits.

Proof. When K = K, this follows directly from Lemma 6.5.15 because the bijection

IrrK(kF ) ∼= k̂F respects the k×F -action on both sides. In general, because our ground
field K has characteristic zero, we may identify IrrK(kF ) with the set of primitive
idempotents of the group ring K[kF ], and every such idempotent is the sum of
a GK-orbit of primitive idempotents of K[kF ], where GK = Gal(K/K). Since the
GK-action on K[kF ] commutes with the k×F -action, we deduce from the case K = K

that any two non-principal idempotents in K[kF ] lie in the same k×F -orbit. �

We now spell out the application of these ideas that we will need.

Corollary 6.5.17. Let B :=

Å
1 a
0 1

ãÅ
O×F 0
0 1

ãÅ
1 −a
0 1

ã
. Then

(a) B stabilises W = SpK〈τ, 1
τq−1−1 〉 where τ = x−a

πnF
.

(b) B normalises Nn+1 =

Å
1 πn+1

F OF
0 1

ã
and Nn+2 =

Å
1 πn+2

F OF
0 1

ã
.

(c) the B-action on IrrK(Nn+1/Nn+2) has exactly two orbits.

Proof. (a) This is an easy calculation using Lemma 5.2.2(a).

(b,c) We compute that

Å
α 0
0 1

ã
conjugates

Å
1 πn+1

F a
0 1

ã
to

Å
1 πn+1

F aα−1

0 1

ã
,

so that the conjugation B-action on Nn+1/Nn+2 is completely determined by the
multiplication action of k×F on kF . Now apply Corollary 6.5.16. �

We can finally put everything together and prove Theorem 5.3.12.

Proof of Theorem 5.3.12. Consider the commutative triangleÇ
Dn(W ) ⊗

Dn+1(W )
Ln+1(W )

å
Nn+1

//

����

Ln(W )

Ç
Dn(W ) ⊗

Dn+1(W )
Ln+1(W )

å
Jn+1

55

where we must show that the diagonal map is an isomorphism. Because Jn+1 con-
tains Nn+1 by assumption, the vertical map is surjective. Proposition 6.5.10 implies
that the diagonal map is surjective. Hence, to show that it is an isomorphism it is
enough to check that the horizontal map is injective. By enlarging K if necessary,
we will assume that K contains a primitive pth-root of unity ζp.
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We will apply Theorem 5.1.11 with the following parameters: S = Dn(W ), S′ =
Dn+1(W ), M = Ln(W ), M ′ = Ln+1(W ), G is the subgroup B from Lemma 6.5.17,
H = Nn+1 and H ′ = Nn+2. Note that M is an SoB-module and M ′ is an S′oB-
module, and these actions descend to SoHB and S′oH′B respectively by Theorem
5.3.6. Note also that the restriction map M ′ → M is B-equivariant because our
line bundle L is assumed to be I-equivariant in Definition 5.3.2. All points of
Hypotheses 5.1.5 clearly hold, except possibly for points (e,f) of Hypothesis 5.1.5
which, after decoding the notation, follow from Theorem 5.2.11 since G = B 6 GW .

Next, we verify the conditions (a-c) of Theorem 5.1.11.
(a) This is Corollary 6.5.14.
(b) This is Corollary 6.5.17(c).
(c) Since K is assumed to contain ζp and since H/H ′ = Nn+1/Nn+2

∼= kF is
an elementary abelian p-group of order q, we see that |IrrK(H/H ′)| = q. Now the
required inequality follows from Lemma 6.5.11.

Theorem 5.1.11 now tells us that the comparison map (S ⊗S′ M ′)H → M is
injective as desired. �

7. Coadmissibility and applications

7.1. Quasi-coherent modules over a tower of rings. We begin with some
algebraic preliminaries. Recall that a tower of rings is a diagram

S• = S0 ← S1 ← S2 ← · · ·
of associative, unital rings, and unital ring homomorphisms. A morphism of towers
of rings f• : T• → S• is a commutative diagram of the form

T0

f0

��

T1

f1

��

oo T2

f2

��

oo · · ·oo

S0 S1
oo S2

oo · · ·oo

An S•-module is a diagram M• := M0 ← M1 ← M2 ← · · · where each Mn is an
Sn-module, and every connecting map µMn+1,n : Mn+1 →Mn is an Sn+1-linear map
for n > 1, where Mn is regarded as an Sn+1-module via restriction of scalars along
the ring homomorphism µSn+1,n : Sn+1 → Sn. A morphism of S•-modules is defined
in the obvious way. The space of global sections of M• is

Γ(M•) := lim←−Mn,

this is naturally a module over Γ(S•) = lim←−Sn. We say that the S•-module M• is

quasi-coherent if the following map is an isomorphism for all n > 0:

1⊗ µMn+1,n : Sn ⊗
Sn+1

Mn+1 −→Mn.

Given a morphism f• : T• → S• and an S•-module M•, we can form the pullback
T•-module T• ⊗S• M• defined by

(T• ⊗S• M•)n = Tn ⊗Sn Mn for all n > 0,

whose connecting maps for n > m are given by

µT⊗SMn,m = µTn,m ⊗µSn,m µMn,m : Tn ⊗Sn Mn −→ Tm ⊗Sm Mm.

Lemma 7.1.1. If M• quasi-coherent, then so is T• ⊗S• M•.
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Proof. Consider the following commutative square:

Tn ⊗
Tn+1

Å
Tn+1 ⊗

Sn+1

Mn+1

ã
1⊗µT⊗SMn+1,n // Tn ⊗

Sn
Mn

Tn ⊗
Sn+1

Mn+1 ∼=
//

∼=

OO

Tn ⊗
Sn

(Sn ⊗
Sn+1

Mn+1).

1⊗µMn+1,n

OO

The vertical arrow on the left and the bottom horizontal arrow are isomorphisms
by the associativity of tensor product, whereas the vertical arrow on the right is an
isomorphism because M• is quasi-coherent. So the top horizontal arrow is also an
isomorphism. �

For each integer c > 0, we can form the shifted tower S•[c]:

S•[c] = Sc ← Sc+1 ← Sc+2 ← · · ·

so that S•[c]n = Sn+c for all n > 0. There is a shift functor M• 7→M•[c] from S•-
modules to S•[c]-modules, given by M•[c]n = Mn+c for all n > 0. The connecting
maps µSn+c,c : Sn+c → Sn in S• induce a morphism of towers of rings

ιcS : S•[c] −→ S•

and there is a similar morphism of towers of abelian groups ιcM : M•[c]→M•.

Lemma 7.1.2. Let c > 0 and let M• be an S•-module.

(a) The map Γ(ιcS) : Γ(S•[c])→ Γ(S•) is a ring isomorphism.
(b) The map Γ(ιcM ) : Γ(M•[c])→ Γ(M•) is an isomorphism of abelian groups.

Proof. (a) Because c > 0, we have the projection map lim←−Sn → lim←−Sn+c, and it

is a two-sided inverse to Γ(ιcS) = lim←−µ
S
n+c,n : lim←−Sn+c → lim←−Sn.

(b) This is entirely similar. �

In fact, Γ(ιcM ) is a Γ(S•[c])-linear isomorphism, when its codomain is regarded
as a Γ(S•[c])-module via the map Γ(ιcS).

Proposition 7.1.3. Let c > 0 and let f• : T• → S• and g• : S•[c] → T• be
morphisms of towers of rings such that the diagram

T•[c]

f•[c]

��

ιcT // T•

f•

��
S•[c]

ιcS

//

g•

77

S•

is commutative. Then:

(a) Γ(f•) : Γ(T•)→ Γ(S•) is a ring isomorphism.
(b) Let M• be a quasi-coherent S•-module and let L• := T•⊗S•[c]M•[c]. Then

there is a Γ(T•)-linear isomorphism Γ(L•) → Γ(M•), where the Γ(S•)-
module Γ(M•) is regarded as a Γ(T•)-module via Γ(f•).
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Proof. (a) Applying Γ gives the commutative diagram

Γ(T•[c])

Γ(f•[c])

��

Γ(ιcT ) // Γ(T•)

Γ(f•)

��
Γ(S•[c])

Γ(ιcS)
//

Γ(g•)

66

Γ(S•).

Since the horizontal arrows are isomorphisms by Lemma 7.1.2(a), we conclude that
the diagonal arrow has both a right inverse and a left inverse. Hence it is an
isomorphism, and consequently so is Γ(f•).

(b) Noting that Lm = Tm⊗Sm+c
Mm+c for each m > 0, we define additive maps

Mm+c
αm−→ Lm

βm−→ Mm

as follows: for x, y ∈Mm+c and t ∈ Tm we set

(63) αm(x) = 1⊗ x and βm(t⊗ y) = fm(t) · µMm+c,m(y).

Now let n > m > 0 and consider the following diagrams:

Mn+c
αn //

µMn+c,m+c

��

Ln
βn //

µLn,m
��

Mn

µMn,m
��

Mm+c αm
// Lm

βm

// Mm

Lm+c

βm+c

��

µLm+c,c // Lm

βm

��
Mm+c

µMm+c,m

//
αm

77

Mm.

The verification that these diagrams commute is straightforward; for example, to
show that αm ◦ βm+c = µLm+c,c, let t ∈ Tm+c and y ∈Mm+2c and use the fact that

gm ◦ fm+c = µTm+c,m to calculate as follows:

αm(βm+c(t⊗ y)) = αm(fm+c(t) · µMm+2c,m+c(y))
= 1⊗ fm+c(t) · µMm+2c,m+c(y)
= gm(fm+c(t))⊗ µMm+2c,m+c(y)
= µTm+c,m(t)⊗ µMm+2c,m+c(y)
= µLm+c,m(t⊗ y).

Thus we have defined morphisms of towers of abelian groups α• : M•[c]→ L• and
β• : L• →M•, and they fit into the following commutative diagram:

L•[c]

β•[c]

��

ιcL // L•

β•

��
M•[c]

ιcM

//

α•

77

M•.

Considering the T•-module L• as an S•[c]-module via the morphism g• : S•[c]→ T•,
and the S•-module M• as a T•-module via the morphism f• : T• → S•, we can verify
that α• becomes a morphism of S•[c]-modules, whereas β• becomes a morphism of
T•-modules. Apply the global sections functor Γ to this diagram. Using Lemma
7.1.2(b) we deduce as in part (a) that Γ(β•) : Γ(L•) → Γ(M•) is an isomorphism
of Γ(T•)-modules. �
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7.2. An alternative presentation for the algebra ÙD(X, J). We now return to
the setting of §5 so that D ⊂ P1 is the closed unit disc, with local coordinate x.
Recall the G-topology Dm on D from Definition 4.3.9.

Definition 7.2.1. For each affinoid subdomain X of D, let mX be the least integer
m such that X ∈ Dm.

Lemma 7.2.2. Let X be an affinoid subdomain of D and let m > 0. The derivation
πmF ∂x of O(X) preserves O(X)◦ if and only if m > mX .

Proof. By Definitions 4.3.9(a) and 2.3.9(a), m > mX if and only if r(X) 6 $/|πF |m.
By Corollary 2.3.19, this is equivalent to ||∂x||O(X) 6 1/|πF |m. This, in turn, is
equivalent to πmF ∂x preserving O(X)◦ inside O(X). �

Notation 7.2.3. We will write A := O(X)◦ and L := A∂x until the end of §7.2.

We refer the reader to [7, Definition 6.1] for the definition of Lie lattices.

Corollary 7.2.4. Let X be an affinoid subdomain of D. For every m > mX ,

(a) πmF L is an A-Lie lattice in T (X), and
(b) there is a natural isometric isomorphism of K-Banach algebras

j : ⁄�U(πmF L)K
∼=−→ D|πF |−m(X).

Proof. (a) Because m > mX , Lemma 7.2.2 implies that πmF L is a sub (K◦,A)-Lie
algebra of T (X). Now apply [7, Definition 6.1].

(b) There is a unique A-linear map jπmF L : πmF L → D|πF |−m(X) =: D that
sends πmF ∂x to πmF ∂. Let jA denote the inclusion of A into D. It is easy to verify
that jπmF L respects Lie brackets and satisfies [jπmF L(v), jA(a)] = jπmF L(v(a)) for all
v ∈ πmF L and a ∈ A. The universal property [7, §2.1] of the enveloping algebra
U(πmF L) implies that jπmF L extends to an K◦-algebra homomorphism j : U(πmF L)→
D. Because the image of this map by construction lands in the unit ball of the
K-Banach algebra D, it extends further to a K-Banach algebra homomorphism

j : ⁄�U(πmF L)K → D. Finally, Rinehart’s Theorem [39, Theorem 3.1] implies that

{πmnF ∂nx : n > 0} is an orthonormal basis for the O(X)-Banach module ⁄�U(πmF L)K
in the sense of [22, §1.2, p.7], whereas it follows from the construction of D that
{πmnF ∂n : n > 0} is an orthonormal basis for D. Since j sends ∂nx to ∂n for each
n > 0, we conclude that it is an isometric isomorphism. �

Recall from Notation 5.3.1 the Iwahori subgroup I of GL2(OF ), given by

(64) I :=

ßÅ
a b
c d

ã
∈ GL2(OF ) : c ≡ 0 modπFOF

™
.

We fix a closed subgroup J of I and let X be a J-stable affinoid subdomain of D.

We now recall the construction of the algebra ÙD(X, J) from [9, Definition 3.3.1].
Recall from [9, Definition 3.2.13] that (J , H) is an A-trivialising pair if J is

a J-stable A-Lie lattice in DerK(O(X)) and H is an open normal subgroup of J
such that ρX(H) 6 exp(pεJ ) inside AutK(O(X)), where ρX : J → AutK(O(X))
is the action of J on O(X). For each A-trivialising pair (J , H), there is a crossed

product ◊�U(J )K oH J , and ÙD(X, J) is the inverse limit of these crossed products
taken over all possible A-trivialising pairs (J , H).



GLOBAL SECTIONS OF EQUIVARIANT LINE BUNDLES 121

Lemma 7.2.5. LetX be a J-stable affinoid subdomain of D. Then (πmF L, Jm+εvπF (p))
is an A-trivialising pair whenever m > mX .

Proof. The affine formal model A = O(X)◦ in O(X) is J-stable since X is J-
stable, and it is πmF L-stable by Lemma 7.2.2. Hence by [9, Corollary 4.3.7], it will
be enough to verify that (πmF O(D)◦∂x, Jm+εvπF (p)) is an O(D)◦-trivialising pair.
Therefore we may assume that X = D.

Recall congruence subgroup Jn of J from Definition 5.3.1 and note that ρD(Jn)
acts trivially on O(D)◦ modulo πnF . If E denotes the ring of K◦-linear endomor-
phisms of O(D)◦, then ρD(Jm+εvπF (p)) 6 1 + pεπmF E . Since every element of ρD(J)

is an K◦-algebra automorphism of O(D)◦, it follows from the proof of [9, Lemma
3.2.5(a)] that log ρD(Jm+εvπF (p)) 6 pεπmF DerK◦ O(D)◦ = pεπmF O(D)◦∂x. �

After Lemma 7.2.5, [9, Theorem 3.2.12] and Corollary 7.2.4(b), we have at our
disposal the crossed product

D|πF |−m(X) o
Jm+εvπF

(p)

J

for every J-stable affinoid subdomain X of D and every m > mX . Note that the
trivialisation of the Jm+εvπF (p)-action on D|πF |−m(X) is j ◦ βπmF L, where βπmF L is

the trivialisation of the Jm+εvπF (p)-action on ⁄�U(πmF L)K obtained from [9, Theorem

3.2.12] and Lemma 7.2.5, and j comes from Corollary 7.2.4(b). On the other hand,
when m > mX , by Proposition 5.3.4 we also have the crossed product

Dm(X) o
Jm+1

J = D†$/|πF |m(X) o
Jm+1

J.

Definition 7.2.6. Let X be a J-stable affinoid subdomain of D and let m > mX .
Define

(a) Tm(X) := D|πF |−m(X) o
Jm+εvπF

(p)

J , and

(b) Sm(X) := Dm(X) o
Jm+1

J = D†$/|πF |m(X) o
Jm+1

J .

Note that the algebra Tm(X) is functorial in X and therefore defines a presheaf
Tm on the G-topology Dm/J — see Definition 5.3.1(d).

Proposition 7.2.7. For every J-stable affinoid subdomain X of D, the tower

TmX (X)← TmX+1(X)← TmX+2(X)← · · ·

gives a Fréchet-Stein presentation for the algebra ÙD(X,J).

Proof. Use Lemma 7.2.5, [9, Lemma 3.3.4] and the proof of [9, Theorem 3.4.8]. �

We will now make a precise comparison of the two constructions.

Theorem 7.2.8. For every m > 0, there is a commutative diagram

Tm+εvπF (p)

fm+εvπF
(p)

��

// Tm

fm

��

D o J

66

))
Sm+εvπF (p)

//

gm

==

Sm.
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of presheaves of K-algebras on Dm/J .

Proof. Fix X ∈ Dm/J . We will first construct the K-algebra map

fm(X) : Tm(X)→ Sm(X).

Let r be a real number satisfying $/|πF |m < r < |πF |−m min{$/|πF |, 1}. Then in
particular r < |πF |−m, so by Lemma 2.2.10 there is a K-Banach algebra homomor-
phism fm,r : D|πF |−m(X) → Dr(X) which fixes O(X) and sends ∂ ∈ D|πF |−m(X)
to ∂ ∈ Dr(X). This map is J-equivariant for the J-actions on D|πF |−m(X) and
Dr(X) that were constructed in Proposition 5.2.4. Because also $/|πF |m < r <
$/|πF |m+1, we can apply Lemma 5.3.3 together with Theorem 5.2.11 to construct
the crossed product Dr(X) o

Jm+1

J as in the proof of Proposition 5.3.4. Then by [9,

Lemma 2.2.7], fm,r extends to a K-algebra homomorphism

fm,r o 1J : D|πF |−m(X) o
Jm+εvπF

(p)

J −→ Dr(X) o
Jm+1

J

provided we can show that it respects the two trivialisations

j ◦ βπmF L : Jm+εvπF (p) −→ D|πF |−m(X)× and β : Jm+1 → Dr(X)×.

Recall from [9, Lemma 3.2.10(a)] the action map ψπmF L : ⁄�U(πmF L)K → B(O(X)) so
that ψπmF L ◦ βπmF L is the restriction of ρX to Jm+εvπF (p) by [9, Definition 3.2.11].

Recall the action map σr : Dr(X) → B(O(X)) from Lemma 2.3.12, and note that

ψπmF L is just the restriction of σr to ⁄�U(πmF L)K ; more precisely, we have

(65) σr ◦ fm,r ◦ j = ψπmF L

where j is the isomorphism from Corollary 7.2.4(b). Then

σr ◦ f ◦ j ◦ βπmF L = ψπmF L ◦ βπmF L = ρX|Jm+εvπF
(p)

= σr ◦ β|Jm+εvπF
(p)

by Proposition 5.2.10, and therefore β|Jm+εvπF
(p)

= f◦j◦βπmF L because σr is injective

by Lemma 2.3.12(b). This is precisely what is required to apply [9, Lemma 2.2.7],
and completes the construction of fm,r o 1J . It is clear that if $/|πF |m < r′ 6 r
then fm,r′ o 1 is compatible with fm,r o 1 in the sense that fm,r′ o 1J is the
composition of fm,r o 1J with Dr(X) oJm+1

J → Dr′(X) oJm+1
J . We can now

define

fm(X) : Tm(X)→ Sm(X)

to be the colimit of the maps fm,r o 1J as r approaches $/|πF |m from above.
We will next similarly construct the K-algebra homomorphism

gm(X) : Sm+εvπF (p)(X)→ Tm(X).

Let r be a real number such that $ < r|πF |m+εvπF (p) < $/πF , so that the crossed
product Dr(X)oJm+εvπF

(p)+1
J is defined as in the proof of Proposition 5.3.4. Note

that then r|πF |m > $/|πF |εvπF (p) = |p|
1
p−1−ε > 1, so r > |πF |−m. Hence by

Lemma 2.2.10, there is a naturalK-Banach algebra homomorphism gm,r : Dr(X)→
D|πF |−m(X) which fixes O(X) and sends ∂ ∈ Dr(X) to ∂ ∈ D|πF |−m(X). Now, the
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diagram

Dr(X)
gm,r //

σr

��

D|πF |−m(X)

j−1∼=
��

B(O(X)) ⁄�U(πmF L)K
ψπmF L

oo

is commutative, so that σr = ψπmF L ◦ j
−1 ◦ gm,r. Therefore

ψπmF L ◦ j
−1 ◦ gm,r ◦ β = σr ◦ β = ρX = ψπmF L ◦ βπmF L|Jm+εvπF

(p)+1

again by Proposition 5.2.10 and [9, Definition 3.2.11]. The factorisation (65) to-
gether with Lemma 2.3.12(b) shows that ψπmF L is injective, and we deduce that

gm,r ◦ β = j ◦ βπmF L|Jm+εvπF
(p)+1

.

Because the map gm,r is J-equivariant, this equation allows us to apply [9, Lemma
2.2.7] and deduce that gm,r extends to a K-algebra homomorphism

gm,r o 1J : Dr(X) o
Jm+εvπF

(p)+1

J −→ D|πF |−m(X) o
Jm+εvπF

(p)

J.

Passing to the limit as r approaches $/|πF |m+εvπF (p) from above, we obtain the
required K-algebra homomorphism

gm(X) : Sm+εvπF (p)(X)→ Tm(X).

Finally, we leave to the reader the straightforward verification that the diagram in
the statement of the Theorem is commutative, and that the morphisms fm(X) and
gm(X) are functorial in X. �

Corollary 7.2.9. For each n > 0 there is an isomorphismÙD(−, J)
∼=−→ lim

←−
m>n

Dm o
Jm+1

J

of presheaves of K-algebras on Dn/J .

Proof. Use Proposition 7.2.7, Theorem 7.2.8 and Proposition 7.1.3(a). �

For future use, we establish here the following flatness result.

Theorem 7.2.10. Sn(X) is a flat right Tn(X)-module whenever X ∈ Dn/J .

Proof. Write c := εvπF (p). Form the crossed product C := D†$/|πF |n(X) o
Jn+c

J ,

and consider the following commutative diagram:

Tn(X) = D|πF |−n(X) o
Jn+c

J

��

// Sn(X) = D†$/|πF |n(X) o
Jn+1

J

C = D†$/|πF |n(X) o
Jn+c

J

33

D := D†$/|πF |n(X).oo

OO

Note that C is a flat right D-module being a crossed product of D with the group
J/Jn+c, which allows us to deduce from the right-module version of [40, Lemma 2.2]
that Sn(X) is a flat right C-module. On the other hand, we deduce from Theorem
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3.4.1 and Lemma 3.2.2 that C is a flat right Tn(X)-module. Hence Sn(X) is a flat
right Tn(X)-module as claimed. �

7.3. Coadmissibility of j∗L on the local Drinfeld space. We begin with the
following elementary result.

Lemma 7.3.1. Let D ↪→ S be an extension of rings such that S is finitely gener-
ated and projective as a left D-module. Then every S-module M which is finitely
presented as a D-module is also finitely presented as an S-module.

Proof. We can find a finite generating set {v1, . . . , vn} for M as a D-module such
that if θ : Dn � M denotes the corresponding surjection then ker θ is also finitely
generated. Clearly {v1, . . . , vn} also generates M as an S-module; let ψ : Sn �M
be the corresponding surjection. Since S is a projective D-module, Schanuel’s
Lemma implies that Sn⊕ker θ ∼= Dn⊕kerψ as D-modules. Since S is finitely gener-
ated as a D-module, kerψ is finitely generated as a D-module being a homomorphic
image of Sn ⊕ ker θ. Hence kerψ is also finitely generated as an S-module. �

We now return to the setting of §5.3. We assume [L ] ∈ PicConI(Υ)tors

satisfies Definition 5.3.2, and fix a closed subgroup J of the Iwahori group I.

Corollary 7.3.2. Let n > vπF (e) and let X ∈ Dn/J . Then Ln(X) is a finitely
presented Sn(X)-module.

Proof. We know that Ln(X) is a finitely presented Dn(X)-module, by Theorem
4.3.7 and Corollary 4.3.12. The Dn(X)-action on Ln(X) extends to an Sn(X)-
action by Theorem 5.3.6. By construction, Sn(X) is a crossed product of Dn(X)
with the finite group J/Jn+1 and is therefore finitely generated and free as a left
Dn(X)-module. Now apply Lemma 7.3.1. �

The following consequence will be useful later on.

Proposition 7.3.3. Let n > vπF (e) and let X ∈ Dn/J . Then the map

Sn(X) ⊗
Sn(D)

Ln(D) −→ Ln(X)

induced by the Sn(X)-action on Ln(X) is an isomorphism.

Proof. We abbreviate D := Dn(D), D′ := Dn(X), S := Sn(D) and S′ := Sn(X);
these rings form a commutative square

D

��

// D′

��
S // S′.

There is a natural transformation η : D′ ⊗D − → S′ ⊗S − between two functors
from S-modules to D′-modules; since S (respectively, S′) is a crossed product of
D (respectively, D′) with the same finite group J/Jn+1, we see that the map ηS is
an isomorphism. Since both functors are right exact, we conclude using the Five
Lemma that ηM is an isomorphism for every finitely presented S-module M .
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Now let M := Ln(D) and M ′ := Ln(X) and consider the commutative triangle

D′ ⊗
D
M

ηM //

##

S′ ⊗
S
M

{{
M ′.

Since M is a finitely presented S-module by Corollary 7.3.2, the horizontal arrow
ηM is an isomorphism by the above. Because the diagonal arrow on the left is an
isomorphism by Lemma 5.3.13(a), we conclude that the diagonal arrow on the right
is also an isomorphism. �

Recall from Definition 5.3.11 that N =

Å
1 OF
0 1

ã
.

Proposition 7.3.4. Let X be a J-stable affinoid subdomain of D. Suppose that
d | (q + 1) and Nm0+1 6 J for some m0 > max{mX , vπF (e)}. Then the canonical
action map

Sn(X) ⊗
Sn+1(X)

Ln+1(X) −→ Ln(X)

is an isomorphism for all n > m0.

Proof. This map appears as the top horizontal arrow in the commutative diagram

Sn(X) ⊗
Sn+1(X)

Ln+1(X) // Ln(X)

Sn(X) ⊗
Sn+1(X)

Ç
Sn+1(X) ⊗

Sn+1(D)
Ln+1(D)

åOO

∼=
// Sn(X) ⊗

Sn+1(D)
Ln+1(D).

OO

Now X ∈ Dn+1/J because n + 1 > n > m0 > mX , so the vertical arrow on the
left is an isomorphism by Proposition 7.3.3. Also, because n > m0 and because
Nm0+1 6 J by assumption, we have

Nn+1 = Nm0+1 ∩ In+1 6 J ∩ In+1 = Jn+1.

Therefore the vertical arrow on the right is an isomorphism by Corollary 5.3.17. The
bottom horizontal arrow is an isomorphism by the associativity of tensor products
and the result follows. �

We can now invoke the formalism of §7.1 and prove our first main result.

Theorem 7.3.5. Let X be a J-stable affinoid subdomain of D. Suppose that
d | (q + 1) and Nm0+1 6 J for some m0 > max{mX , vπF (e)}. Then

(a) (j∗L )(X) is a coadmissible ÙD(X,J)-module, and
(b) for each m > m0, the canonical map

Sm(X) ⊗ÙD(X,J)

(j∗L )(X) −→ Lm(X)

is an isomorphism.
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Proof. (a) For each m > 0, let Sm := Sm0+m(X), Tm := Tm0+m(X) and Mm :=
Lm0+m(X). Then S• is a tower of rings, and M• is a quasi-coherent S•-module by
Proposition 7.3.4. Theorem 7.2.8 gives us a diagram of towers of rings

T•[c]

f•[c]

��

ιcT // T•

f•

��
S•[c]

ιcS

//

g•

77

S•

where c := εvπF (p). Note that lim←−Tm
∼= ÙD(X, J) by Proposition 7.2.7. Now

L• := T• ⊗S•[c] M•[c] is a quasi-coherent T•-module by Lemma 7.1.1, and each

Lm = Tm ⊗Sm+c
Mm+c

is a finitely presented Tm-module becauseMm+c is a finitely presented Sm+c-module

by Corollary 7.3.2. In other words, lim←−Lm is a coadmissible lim←−Tm
∼= ÙD(X,J)-

module. Now, Proposition 7.1.3(b) implies that there is a natural isomorphism

(66) lim←−Mm

∼=−→ lim←−Lm.

Since the restriction map (j∗L )(X) → lim←−Mm is an isomorphism by Proposition

4.3.3, we conclude that (j∗L )(X) is a coadmissible ÙD(X, J)-module as claimed.

(b) Write T∞ := ÙD(X, J) and M∞ := lim←−Mm. By [44, Corollary 3.1], the

canonical map αm : Tm ⊗T∞ M∞ → Lm is an isomorphism for each m > 0. This
map, together with the map ψm : Sm ⊗T∞ M∞ →Mm in question, appears in the
following commutative diagram:

Sm ⊗
T∞

M∞
ψm //

∼=

��

Mm

Sm ⊗
Tm

(Tm ⊗
T∞

M∞)
1⊗αm

∼= // Sm ⊗
Tm

(Tm ⊗
Sm+c

Mm+c) ∼=
// Sm ⊗

Sm+c

Mm+c

OO

where the arrow on the right is induced by the action of Sm on Mm. We see that
this arrow is an isomorphism by a repeated application of Proposition 7.3.4, and
conclude that ψm is also an isomorphism as required. �

Lemma 7.3.6. j∗L is a locally Fréchet I-equivariant D-module on D.

Proof. The local Drinfeld space Υ = D∩Ω is an admissible I-stable open subspace
of D. Since L is an I-equivariant D-module on Υ, its pushforward j∗L is an I-
equivariant D-module on D. According [9, Definition 3.6.1(a)] we must show that
(j∗L )(U) carries a Fréchet topology for each affinoid subdomain U of D, and that
the action maps gj∗L (U) : (j∗L )(U)→ (j∗L )(gU) are continuous for each g ∈ I.
We observed in §4.3 that Υ admits a quasi-Stein covering (Υn)∞n=0. Therefore U∩Ω
admits a quasi-Stein covering (U ∩ Vn)∞n=0 and there is a natural isomorphism

L (U ∩ Ω) = lim←−L (U ∩ Vn).
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Since L is a coherent O-module on Υ and since U ∩Vn is affinoid, each L (U ∩Vn)
is naturally a K-Banach space. In this way, we see that (j∗L )(U) = L (U ∩ Ω)
carries a natural K-Fréchet space topology.

The continuity of the maps gj∗L (U) : (j∗L )(U)→ (j∗L )(gU) now follows from
the continuity of the maps gL (U ∩ Vn) : L (U ∩ Vn)→ L (g(U ∩ Vn)), which holds
by viewing L (g(U ∩ Vn)) as an O(U ∩ Vn)-modulle via gO(U ∩ Vn), automatically
by [22, Corollary 1.2.4]. �

We can finally prove our first main local result.

Theorem 7.3.7. Let [L ] ∈ PicConI(Υ)tors. Suppose that the image ω[L ] of [L ]
in PicCon(Υ) is killed by q + 1. Let j : Υ ↪→ D be the open embedding, Then

j∗L ∈ CD/J

for any closed subgroup J of I which contains an open subgroup of N =

Å
1 OF
0 1

ã
.

Proof. It is easy to see that the isomorphism in Lemma 4.3.3 is J-equivariant, and
so by that result and Theorem 7.3.5(a) we know that

(j∗L )(D) = L (Υ) ∼= lim
←−

Ln(D)

is a coadmissible ÙD(D, J)-module. Because j∗L is a locally Fréchet I-equivariant
D-module on D by Lemma 7.3.6, and because J 6 I, by [9, Definition 3.6.7] it
remains to exhibit a continuous D-linear J-equivariant isomorphism

Loc
ÙD(D,J)
D ((j∗L )(D))

∼=−→ j∗L .

Recall that by [9, Definition 3.5.12], Loc
ÙD(D,J)
D ((j∗L )(D)) is the unique extension

of a sheaf P
ÙD(D,J)
D ((j∗L )(D)) on the basis Dw of D, defined at [9, Definition 3.5.3].

Because Loc
ÙD(D,J)
D ((j∗L )(D)) and j∗L are sheaves, by [7, Theorem 9.1] it will

suffice to exhibit an isomorphism of J-equivariant D-modules on Dw

ϕ : P
ÙD(D,J)
D ((j∗L )(D))

∼=−→ (j∗L )|Dw .

Let X be an affinoid subdomain of D and let H be an X-small open subgroup2 of
JX = StabJ(X), in the sense of [9, Definition 3.4.4]. Because J contains an open
subgroup of N by assumption, so does its open subgroup H. Hence we can find
an integer m0 > max{mX , vπF (e)} such that Nm0+1 6 H. For each n > m0, let
Sn(X) := Dn(X) oHn+1

H and note that the natural action map

Sn(X) ⊗
Sn(D)

Ln(D) −→ Ln(X)

is an isomorphism by Proposition 7.3.3 applied with J replaced by H. Note thatÙD(X,H) ∼= lim
←−

n>m0

Tn(X) and (j∗L )(D) ∼= lim←−Nn(D)

by Corollary 7.2.9 and equation (66), where we replace J with H so that

Tn(X) := Dn(X) o
Hn+1

H and Nn(D) := Tn(D) ⊗
Sn+c(D)

Ln+c(D)

2Since I preserves the free O(D)◦-Lie lattice O(D)◦∂x in T (D), we see that in fact, in this
situation every open subgroup H of JX is X-small.
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and c := εvπF (p). Now, for each n > m0 there is a commutative diagram

Tn(X) ⊗
Tn(D)

Nn(D) // Tn(X) ⊗
Sn+c(X)

Ln+c(X)

Tn(X) ⊗
Sn+c(D)

Ln+c(D) ∼=
//

∼=

OO

Tn(X) ⊗
Sn+c(X)

Ç
Sn+c(X) ⊗

Sn+c(D)
Ln+c(D)

åOO

where the maps on the left and on the bottom are isomorphisms arising from the
associativity of tensor products. The vertical map on the right is an isomorphism
by Proposition 7.3.3, so the top horizontal map is an isomorphism. Taking the
inverse limit of these maps and using equation (66) together with the definition ofÙ⊗ from [7, §7.3] and [9, Lemma 3.4.13], we obtain a ÙD(X,H)-linear isomorphism

ϕH(X) : ÙD(X,H) Ù⊗ÙD(D,H)

(j∗L )(D) = lim
←−

n>m0

Tn(X) ⊗
Tn(D)

Nn(D)
∼=−→ (j∗L )(X).

Write M(X,H) := ÙD(X,H) Ù⊗ÙD(D,H)

(j∗L )(D), let X ′ be an H-stable affinoid subdo-

main of X, let H ′ be another open subgroup of J containing H and let g ∈ J . We
leave to the reader the verification that the following diagram commutes:

M(X ′, H)
ϕH(X′) // (j∗L )(X ′)

M(X,H ′)

ϕH′ (X)

))
M(X,H)

ϕH(X) //

55

OO

gMX,H
��

(j∗L )(X)

OO

M(gX, gH)
ϕgH(gX)

// (j∗L )(gX)

gj∗L (X)

OO

It follows that the isomorphisms ϕH(X) are compatible as H shrinks to 1, and
commute with the restriction maps on both sides. Passing to the limit over all
X-small H we obtain the required J-equivariant D-linear isomorphism

ϕ : P
ÙD(D,J)
D ((j∗L )(D)) = lim

←−
H

M(−, H)
∼=−→ j∗L . �

7.4. Coadmissibility and irreducibility. Let j : Ω ↪→ P1 and j0 : Υ ↪→ D be
the open inclusions and let G0 := GL2(OF ).

Theorem 7.4.1. Let [L ] ∈ PicConG0(Ω)tors. Then

j∗L ∈ CP1/H

for every closed subgroup H of G0 which contains an open subgroup of SL2(OF ).

Proof. Using the argument given in the proof of Lemma 7.3.6, we see that j∗L is

a G0-equivariant locally Fréchet D-module on P1. Let w :=

Å
0 1
1 0

ã
∈ G0 so that
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{D, wD} forms an admissible affinoid covering of P1 by two copies of the closed unit
disc D. Note that the Iwahori subgroup I from (64) stabilises D, so the opposite
Iwahori subgroup wI := wIw−1 stabilises wD; we will show that j∗L is {D, wD}-
coadmissible in the sense of [9, Definition 3.6.7(a)].

Next, consider the restriction L|Υ so that [L|Υ] ∈ PicConI(Υ)tors. Because

ω[L ] ∈ PicCon(Ω)G0 is killed by q + 1 by [8, Corollary 4.3.9], we see that ω[L0] ∈
PicCon(Υ)I is also killed by q+1. Since H contains an open subgroup of SL2(OF ),
J := H∩I contains an open subgroup of N . Therefore (j∗L )|D = j0,∗(L|Υ) ∈ CD/J
by Theorem 7.3.7. Entirely similarly we deduce that (j∗L )|wD ∈ CwD/(H∩wI).
Hence j∗L ∈ CP1/H by [9, Definition 3.6.7]. �

We will now work towards the irreducibility of j∗L viewed as an object in the
abelian category CP1/G0

. We start in the following abstract setting. Let X be a set
equipped with a G-topology, let S be a sheaf of rings on X, let U be a covering of
X and let M be a sheaf of S-modules on X. We say M is U-quasi-coherent if the
canonical map

S(V ) ⊗
S(U)

M(U) −→M(V )

is an isomorphism whenever U ∈ U and V is an admissible open subset of U . For
U, V ∈ U , write U ∼M V ifM(U ∩ V ) 6= 0 and let ∼=M be the equivalence relation
on U generated by ∼M. We say that U is M-connected if there is only one ∼=M
equivalence class in U .

Proposition 7.4.2. Let M be an S-module on X and let U be an admissible
covering of X. Suppose that

(a) M is U-quasi-coherent,
(b) U is M-connected, and
(c) M(U) is a simple S(U)-module for all U ∈ U .

Then M contains no non-zero proper U-quasi-coherent submodules.

Proof. Let N be a U-quasi-coherent S-submodule of M. We first show that for
any U, V ∈ U with U ∼M V , N (U) = M(U) if and only N (V ) = M(V ). If not,
then because M(U) and M(V ) are simple, we may assume that without loss of
generality that N (U) = 0 and N (V ) =M(V ). But then because both N and M
are U-quasi-coherent,

M(U ∩ V ) = S(U ∩ V ) ⊗
S(V )

M(V ) = S(U ∩ V ) ⊗
S(V )

N (V )

= N (U ∩ V ) = S(U ∩ V ) ⊗
S(U)

N (U) = 0

which contradicts the hypothesis that U ∼M V .
Suppose now that the S-submodule N is non-zero. Then we can find at least one

U ∈ U such that N (U) 6= 0, and hence N (U) = M(U) because M(U) is simple.
Since U is M-connected, we conclude that in fact N (U) = M(U) for all U ∈ U .
Since N and M are both U-quasi-coherent, we see that

N (W ) = S(W ) ⊗
S(U)

N (U) = S(W ) ⊗
S(U)

M(U) =M(W )

for any U ∈ U and any admissible open W ⊆ U ; thus N|U = M|U for all U ∈ U .
Since U is an admissible covering of X and since N andM are sheaves, we conclude
that N =M. �
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Here is how we apply this general result. Recall the sheaf of rings Dn = D†$/|πF |n
from Definition 4.3.9 on the G-topology Dn on D, and recall that the truncated line
bundle Ln := j0,∗(LΥn

) is a Dn-module by Corollary 4.3.11.

Theorem 7.4.3. Let [L ] ∈ PicConI(Υ)tors. Suppose that the image ω[L ] of
[L ] in PicCon(Υ)tors is non-zero and of order d dividing q + 1. Let j0 : Υ ↪→ D
be the inclusion, let n > 0 and let Ln := j0,∗(LΥn

). Then Ln(D) is a simple
Dn(D)-module.

Proof. Let Un be the covering {W1,n, . . . ,Whn,n,Υn} from Definition 5.3.9. We can
use Lemma 5.3.13(a) to see that Ln is a Un-quasi-coherent Dn-module on Dn. Then
by construction, Ln(Wi,n ∩ Υn) is non-zero for any i = 1, . . . , hn, so the covering
Un is Ln-connected.

Using Lemma 4.3.5(d), we see that ω[L |Υn ] ∈ Con(Υn)I [d] is non-zero. Hence
kνn = Mn,d(ω[L ]) = µΥn,d(θd(ω[L |Υn ])) is non-zero as well by [8, Corollary 4.3.4].
Since k ∈ {1, · · · , d} by Definition 6.5.1, Lemma 4.3.5(a) now implies that k 6= d.
Hence Ln(Wi,n) is a simple Dn(Wi,n)-module for each i by Corollary 6.5.9.

On the other hand, Ln(Υn) is a simple Dn(Υn)-module by Corollary 4.2.13,
because Υn is a connected affinoid subdomain of D. Hence Ln contains no non-
zero proper Un-quasi-coherent Dn-submodules by Proposition 7.4.2.

Let L be a Dn(D)-submodule of Ln(D), and consider the presheaf of Dn-modules
L := Dn ⊗

Dn(D)
L. For any Dn-admissible covering V of D, the augmented Čech

complex C•aug(V,Dn) is exact by Theorem 2.3.10. Each of its terms is flat as a right
Dn(D)-module by Lemma 4.3.10(b). Because the covering V is finite by Definition
2.3.9(b), the complex is bounded above, and therefore, by induction on its length,
each of its syzygies is flat as a right Dn(D)-module. Tensoring this complex on
the right by L over Dn(D) and splicing, we conclude that the augmented Čech
complex C•aug(V,L) is also exact. In particular, this means that L is a sheaf on Dn
and L(D) = L. Applying Lemma 4.3.10(b) again, we see that L is a subsheaf of
Dn ⊗

Dn(D)
Ln(D) ∼= Ln. Since L is Un-quasi-coherent by construction, we conclude

from the first paragraph that either L = 0 or L = Ln. Because L = L(D), we
conclude that either L = 0 or L = Ln(D) as required. �

Recall the sheaves Tn and Sn on Dn/J from Definition 7.2.6.

Corollary 7.4.4. With the notation and assumptions of Theorem 7.4.3, Ln(D) is
a simple Sn(D)-module, whenever n > vπF (e).

Proof. We know that the Dn(D)-action on Ln(D) extends to the crossed product
Sn(D) = Dn(D) oJn+1 J by Theorem 5.3.6, and that Ln(D) is a simple Dn(D)-
module by Theorem 7.4.3. So it is per force simple as an Sn(D)-module. �

Theorem 7.4.5. Let [L ] ∈ PicConI(Υ)tors. Suppose that the image ω[L ] of [L ]
in PicCon(Υ) is non-zero and its order divides q+ 1. Then L (Υ) is a topologically

irreducible ÙD(D, J)-module for any closed subgroup J of I which contains an open
subgroup of N .

Proof. We know that M∞ := L (Υ) is a coadmissible module over the Fréchet-

Stein algebra ÙD(D, J) by Lemma 4.3.3 and Theorem 7.3.5. Let Sn := Sn(D) and
Tn := Tn(D) for each n > 0; it follows from Lemma 7.2.2 that the integer mD from
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Definition 7.2.1 is zero, so the tower of rings T• gives a Fréchet-Stein presentation

of T∞ := ÙD(D, J) by Proposition 7.2.7. Hence each Tn is a flat right T∞-module
by [44, Remark 3.2]. On the other hand, Sn is a flat right Tn-module by Theorem
7.2.10 and hence it is also a flat right T∞-module.

Now suppose that L is a non-zero, closed, proper T∞-submodule of M∞. Then
by [44, Corollary 3.3], Tn ⊗T∞ L and Tn ⊗T∞ (M∞/L) are both non-zero for all
sufficiently large integers n. Let c := εvπF (p); because the map T∞ → Tn factors
through Sn+c by Theorem 7.2.8, it follows that Sn+c⊗T∞ L and Sn+c⊗T∞ (M∞/L)
are also both non-zero. Since Sn+c is a flat T∞-module by the first paragraph, we
conclude that Sn+c⊗T∞M∞ is not a simple Sn+c-module. However this module is
isomorphic to Mn+c by Theorem 7.3.5(b), which contradicts Corollary 7.4.4. �

Corollary 7.4.6. Let [L ] ∈ PicConI(Υ)tors. Suppose that the image ω[L ] of [L ]
in PicCon(Υ) is non-zero and its order divides q+ 1. Let J be a closed subgroup of
I which contains an open subgroup of N . Then j0,∗L is a simple object in CD/J .

Proof. This follows from Theorem 7.4.5 and [9, Theorem 3.6.11]. �

Theorem 7.4.7. Let [L ] ∈ PicConG0(Ω)tors whose image ω[L ] in PicCon(Ω)tors

is non-zero. Then j∗L is a simple object in CP1/H for every closed subgroup H of
G0 which contains an open subgroup of SL2(OF ).

Proof. Note first that j∗L ∈ CP1/H by Theorem 7.4.1. Let w :=

Å
0 1
1 0

ã
∈ G0 and

recall the covering {D, wD} of P1 from the proof of Theorem 7.4.1.

We will apply Corollary 7.4.6 to [L |Υ] ∈ PicConI(Υ)tors, but first we have to
check the required conditions on ω[L |Υ] hold. Since (q + 1) · ω[L ] = 0 by [8,
Corollary 4.3.9], the order of ω[L |Υ] in PicCon(Υ) divides q + 1. Consider the
following commutative diagram:

PicCon(Ω)G0 [q + 1] //

��

PicCon(Υ)I [q + 1]

��
Con(Υ0)G0 [q + 1] // Con(Υ0)I [q + 1].

Note that Υ0 = Ω0 in view of Definition 4.3.2(b) and [8, Definition 4.2.12(b)].
Then it follows from [8, Proposition 3.1.9(b) and Proposition 4.3.8(a)] that the
vertical restriction map on the left is an isomorphism. Since the bottom horizontal
map is an inclusion, it follows from Lemma 4.3.5(d) that the top horizontal map
is injective. Since ω[L ] 6= 0 in PicCon(Ω)G0 [q + 1] by assumption, it follows that
ω[L |Υ] 6= 0 in PicCon(Υ)I [q + 1] as required.

The group J := H ∩ I contains an open subgroup of N because H contains an
open subgroup of SL2(OF ) by assumption. We can now apply Corollary 7.4.6 to
see that (j∗L )|D = j0,∗(L|Υ) is a simple object in CD/H∩I .

Similarly, wH ∩ I contains an open subgroup of N because H contains an open
subgroup of SL2(OF ). A similar argument to the above shows that we can apply

Corollary 7.4.6 to w∗(L|wΥ) ∈ PicConI(Υ)[e] and J := wH ∩ I to deduce that
j0,∗w

∗L|wΥ is a simple object in CD/wH∩I . Hence (j∗L )|wD = w∗(j0,∗w
∗L|wΥ) is

a simple object in CwD/H∩wI .
Now, consider a short exact sequence 0 →M → j∗L → N → 0 in CP1/H with

M 6= 0. By [9, Proposition 3.6.10(b)] it induces exact sequences 0 → M|D →
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(j∗L )|D → N|D → 0 in CD/H∩I and 0 → M|wD → (j∗L )|wD → N|wD → 0 in
CwD/H∩wI . Since M 6= 0, we may assume without loss of generality that M|D 6= 0.
Then the map M|D → (j∗L )|D is an isomorphism, and N|D = 0. Next, M|wD
cannot be zero, as otherwise (j∗L )|D∩wD ∼= (M|D)|D∩wD = (M|wD)|D∩wD = 0 which
is not the case. So in fact M|wD 6= 0, which forces N|wD = 0. Hence N = 0 and
M→ j∗L is an isomorphism. �

Let D(H,K) denote the locally F -analytic distribution algebra of a locally F -
analytic group H with coefficients in K. Let g = Lie(H) ⊗F K denote the K-Lie
algebra of H and let m0 = D(H,K) · (gU(g) ∩ Z(U(g))) be the closed ideal of
D(H,K) generated by the kernel of the trivial infinitesimal character Z(U(g))→ F
that sends g to zero. We have the following general ‘rigid-analytic equivariant
Beilinson-Bernstein localisation’ result.

Theorem 7.4.8. Let G be a connected, split semisimple algebraic group over F ,
let X be its flag variety and let X be the K-rigid analytification of X ×F K. For
every open subroup H of G(F ), the functor of global sections

Γ(X,−) : CX/H −→ {M ∈ CD(H,K) : m0 ·M = 0}.
is a well-defined equivalence of categories.

Proof. First, note that by [9, Theorem 6.5.1], D(H,K) is isomorphic as a Fréchet-

Stein algebra to a certain completed skew-group algebra denoted ÙU(g, H) that was
introduced at [9, Definition 6.2.7]. We wish to apply [9, Theorem 6.4.9] to the
K-algebraic group G×F K and the continuous inclusion H ↪→ G(K). In [9] it was
assumed that the algebraic group G is simply connected; however this assumption is
only used in the proof of [9, Theorem 5.3.5], where it can be easily avoided altogether
(by choosing an K◦-module basis for h) or instead by working (as we are currently
doing) with a discretely valued ground field K. With this in mind, Theorem 7.4.8
then follows from [9, Theorem 6.4.9], once we observe that the functor of global

sections Γ(X,−) is quasi-inverse to the localisation functor Loc
ÙU(g,G)
X , in view of

[9, Theorem 6.4.8]. �

Recall that G0 = {g ∈ GL2(F ) : vπF (det g) = 0}.

Corollary 7.4.9. Suppose [L ] ∈ PicConG
0

(Ω)tors whose image ω[L ] in PicCon(Ω)
is non-zero. Then L (Ω) is a coadmissible and topologically irreducible D(H,K)-
module for any closed subgroup H of G0 containing an open subgroup of SL2(F ).

Proof. Let Z denote the centre of GL2(F ); note that Z is contained in G0 and that
it acts trivially on the K-analytic projective line P1 via Möbius transformations.

Since [L ] is a torsion element of PicConG
0

(Ω), L ⊗e is G0-equivariantly isomorphic
to OΩ for some e > 1. Since Z acts trivially on OΩ, some finite-index open subgroup
Z ′ of Z acts trivially on L . We can then choose a finite-index open subgroup H ′ of
H such that H ′∩Z 6 Z ′. Then the H ′-action on j∗L factors through H ′ := H ′Z/Z
and Theorem 7.4.7 tells us that j∗L ∈ CP1/H′ is a simple object.

Our condition on H guarantees that its image H := HZ/Z is open in PGL2(F ) =
GL2(F )/Z. Hence H ′ is open in PGL2(F ) as well. We now apply Theorem 7.4.8
to G := PGL2,F and H ′ ↪→ PGL2(F ) to see that L (Ω) is a coadmissible and

topologically irreducible D(H ′,K)-module, killed by m0. Since H∩Z ′ acts trivially
on L (Ω), it follows by inflation that the same statements hold for L (Ω) viewed
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as a D(H ′,K)-module. Hence they also hold a fortiori for L (Ω) viewed as a
D(H,K)-module. �

7.5. j∗OΩ and proof of Corollary B. We begin by recording a very general and
very important example of a coadmissible G-equivariant D-module.

Proposition 7.5.1. Let G be a p-adic Lie group acting continuously on a smooth
rigid K-analytic space X. Then

(1) OX is a coadmissible G-equivariant D-module on X: OX ∈ CX/G.
(2) OX is a simple object in CX/G whenever X is connected.

Proof. (1) Certainly OX is a G-equivariant locally Fréchet D-module on X. Then
in view of [9, Definition 3.6.7], it is enough to consider the case where (X,G) is
small in the sense of [9, Definition 3.4.4]. We will show that in this case

(a) O(X) is a coadmissible ÙD(X,G)-module, and
(b) there is a natural continuous G−D-linear isomorphism

Loc
ÙD(X,G)
X (O(X))

∼=−→ OX .

(a) Because (X,G) is small, we can choose a G-stable affine formal modelA ⊂ O(X)
and a G-stable free A-Lie lattice L ⊆ T (X). By replacing L by πL if necessary,
we may assume that [L,L] ⊆ πL and L · A ⊆ πA. Since πnL ⊆ T (X) is an
A-Lie lattice, A is naturally a U(πnL)-module. Since A is π-adically complete,

the U(πnL)-action extends to Un := ◊�U(πnL) and clearly 1 ∈ A generates A as
a Un-module. Since T (X) is a free A-Lie lattice, we can choose an A-module
basis {∂1, · · · , ∂d} for L. Then the left ideal I in Un generated by this finite set
annihilates 1 ∈ A: I ⊆ annUn(1).

For the reverse inclusion, let Q ∈ annUn(1) and write Q =
∑
α∈Nd

fα(πn∂)α for

some family (fα)α∈Nd ⊂ A converging to zero as |α| → ∞. Then Q · 1 = 0 implies
that f0 = 0, and since fα → 0 as |α| → ∞ we see that for every m > 0, Q lies
in I + πmUn. Since [L,L] ⊆ πL, [9, Proposition 4.1.6(b)] tells us that the cyclic
Un-module Un/I is π-adically separated. Hence Q ∈ I and annUn(1) = I. This
implies that A is a finitely presented Un-module, and hence that O(X) = A⊗K◦K
is a finitely presented Un ⊗K◦ K-module for every n > 0.

Using [9, Corollary 3.3.7], choose a good chain G• for L. In view of [9, Definitions
3.3.3 and 3.2.13] this means that G0 > G1 > · · · is a chain of open normal subgroups
of G with trivial intersection, such that Gn 6 GπnL for all n > 0. Define

Tn(X) := Ÿ�U(πnL)K = Un ⊗K◦ K and Sn(X) := Tn(X) oGn G

for each n > 0; then by [9, Lemma 3.3.4] we have the Fréchet-Stein presentationÙD(X,G) ∼= lim←−Sn(X).

Since Gn 6 GπnL, it follows from [9, Definition 3.2.11] that for every g ∈ Gn, the
action of βπnL(g) ∈ Un onA agrees with the action of g ∈ Gn. Therefore the natural
Un oG-action on A factors through the crossed product Un oGn G, and hence the
natural Tn(X)-action on O(X) extends to Sn(X) = Tn(X) oGn G. Since O(X)
is a finitely presented Tn(X)-module, Lemma 7.3.1 implies that it is also a finitely



134 KONSTANTIN ARDAKOV AND SIMON WADSLEY

presented Sn(X)-module. To see that O(X) is a coadmissible ÙD(X,G)-module, it
remains to see that for every n > 0, the following natural maps are isomorphisms:

(67) Sn(X) ⊗
Sn+1(X)

O(X) −→ O(X).

Fix n > 0. We saw above that annTn(X)(1) =
n∑
i=1

Tn(X)∂i. Therefore

(68) Tn(X)d −→ Tn(X)→ O(X)→ 0

is a presentation of O(X) as a Tn(X)-module, where the first map sends (Qi)
d
i=1 ∈

Tn(X)d to
d∑
i=1

Qi∂i and the second map sends Q ∈ Tn(X) to Q·1. This presentation

implies that the canonical Tn(X)-linear action map

Tn(X) ⊗
Tn+1(X)

O(X) −→ O(X)

is an isomorphism. Since this map factors through Sn(X) ⊗
Sn+1(X)

O(X) by Theorem

5.1.8, we conclude that the map (67) is an isomorphism as well.
(b) After possibly replacing G by an open subgroup and inspecting [9, 3.5.12,

3.5.1 and 3.5.6], it suffices to prove that the natural action mapÙD(Y,G) Ù⊗ÙD(X,G)

O(X) −→ O(Y )

is an isomorphism, whenever Y is a G-stable affinoid subdomain of X. For this, in
view of [9, Lemma 3.3.4] and [7, Lemma 7.3], it is enough to prove that

Sn(Y ) ⊗
Sn(X)

O(X) −→ O(Y )

is an isomorphism for all sufficiently large n. We can use Theorem 5.1.8 again to
reduce to showing that Tn(Y ) ⊗

Tn(X)
O(X)→ O(Y ) is an isomorphism for all suffi-

ciently large n. Since {∂1, · · · , ∂d} is still a basis for T (Y ) as an O(Y )-module, this

follows immediately from the explicit presentations O(X) ∼= Tn(X)/
d∑
i=1

Tn(X)∂i

and O(Y ) ∼= Tn(Y )/
d∑
i=1

Tn(Y )∂i coming from (68).

(2) Suppose first that X is a small affinoid, in the sense that T (X) is a free
O(X)-module. Then because X is connected, O(X) is a simple D(X)-module and

therefore a simple coadmissible ÙD(X,H)-module for any open subgroup H of G
such that (X,H) is small. Hence OX ∈ CX/H is a simple object by [9, Theorem
3.6.11] in this case, and it is therefore a fortiori simple in CX/G.

Returning to the general case, we can choose an admissible open covering U of
X consisting of small, connected, affinoids. Suppose that M is a subobject of OX
and consider V1 := {U ∈ U : M|U = OU} and V2 = {U ∈ U : M|U = 0}. Then
U is the disjoint union of V1 and V2 by the first paragraph. Now if U ∈ V1 and
V ∈ V2 with U ∩ V 6= ∅, then

(M|V )|U∩V =M|U∩V = (M|U )|U∩V = OU∩V
since U ∈ V1. Thus M|V 6= 0 a contradiction. Since X is connected if follows that
U = V1 or U = V2 i.e. M = OX or M = 0 as required. �
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Recall that j : Ω ↪→ P1 is the open embedding. We write G := GL2(F ) and
observe that there is a natural injective morphism of G-equivariant locally Fréchet
D-modules on P1

α : OP1 → j∗OΩ.

Proposition 7.5.2. cokerα lies in CP1/G.

Proof. By Proposition 7.5.1(1), OP1 lies in CP1/G. The trivial line bundle with flat

connection OΩ is lies in ConG(Ω) by [8, Lemma 3.2.4]. Applying Theorem 7.4.1 to
[OP1 ] with H = G0, we see that j∗OΩ lies in CP1/G0

as well. Since it is naturally

a G-equivariant locally Fréchet D-module on P1, [9, Definition 3.6.7] implies that
j∗OΩ lies in CP1/G. Finally, the morphism α lies in CP1/G, and we can conclude by
applying [9, Lemma 3.7.5]. �

Lemma 7.5.3. cokerα is supported on P1(F ) in the sense of [5, Definition 1.2.1(a)].

Proof. The restriction of j∗OΩ back to Ω is equal to OΩ. Therefore (cokerα)|Ω = 0.

Since P1 = Ω ∪ P1(F ), this means that cokerα is supported on P1(F ). �

Recall from §2.5 that B = {g ∈ GL2 : g21 = 0} denotes the subgroup scheme
of upper-triangular matrices in GL2, and let B := B(F ). Let ι : {0} ↪→ P1 be the
closed embedding. Recall the algebra of smooth distributions D∞(B,K) from [42].

In what follows, we will silently identify the category CD∞(B,K) with C{0}/B ,

using [9, Theorem B(c)]. Recall also the functors H0
{0}, indGB , ι+ and ι\ from [5].

Corollary 7.5.4. Let N := H0
{0}(cokerα). Then there is an isomorphism in CP1/G

cokerα ∼= indGB N .

Proof. The G-orbit of the point 0 is equal to P1(F ), and the stabiliser of 0 under
the Möbius action of G on P1(F ) is equal to B. By Proposition 7.5.2 and Lemma
7.5.3, we see that cokerα is an object of CG·0P1/G. Now use [5, Theorem A]. �

For the following calculations with local cohomology, recall that by [48, §5] for
any rigid analytic space X, there is a natural equivalence of categories between the
abelian sheaves on X and the abelian sheaves on the Huber space X̃ associated
with X. See also §4.1 and [5, §2.1] for further details.

We now begin to study the object N = H0
{0}(cokerα) in C{0}P1/B . This sheaf is

supported at {0} only, and therefore is completely determined by its restriction N|D
to D. On the other hand, N|D lies in C{0}D/B0

where B0 := B(OF ), and it is therefore

completely determined by its global sections N (D) as a ÙD(D, B0)-module, in view
of [9, Theorem B(c)]. We first compute the D(D)-action on N (D) as follows.

Lemma 7.5.5. N (D) is isomorphic to H1
{0}(D,OD) as a D(D)-module.

Proof. Recall the notation Υ = D ∩ Ω. Let j0 : Υ ↪→ D be the open inclusion and
let α0 be the restriction of α to D. Then we have the short exact sequence

0→ OD
α0−→ j0,∗OΥ → coker(α0)→ 0

of locally Fréchet D-modules on D. By the definition of local cohomology that can
be found at [27, p.2], we have

N (D) = H0
{0}(D, (cokerα)|D) = H0

{0}(D, cokerα0).
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Now, using [27, Proposition 1.1(b)], we get the long exact sequence
(69)

0 // H0
{0}(D,OD) // H0

{0}(D, j0,∗OΥ) // H0
{0}(D, cokerα0) //

// H1
{0}(D,OD) // H1

{0}(D, j0,∗OΥ) // H1
{0}(D, cokerα0).

Note that this is a long exact sequence of D(D)-modules. We claim that the middle
terms in this long exact sequence vanish:

(70) H0
{0}(D, j0,∗OΥ) = H1

{0}(D, j0,∗OΥ) = 0.

By [27, Corollary 1.9], these terms appear in the long exact sequence

0 // H0
{0}(D, j0,∗OΥ) // H0(D, j0,∗OΥ) // H0(D\{0}, j0,∗OΥ) //

// H1
{0}(D, j0,∗OΥ) // H1(D, j0,∗OΥ) // H1(D\{0}, j0,∗OΥ).

The third arrow in the first row is O(Υ) → O(Υ\{0}), which is an isomorphism
since 0 /∈ Υ. This already implies that H0

{0}(D, j0,∗OΥ) = 0, and that the second

arrow in the second row is injective. The five-term exact sequence of low degree
terms associated the Leray spectral sequence applied to the map j0 : Υ → D and
the sheaf OΥ begins with 0→ H1(D, j0,∗OΥ)→ H1(Υ,OΥ). But Υ is a quasi-Stein
rigid analytic space, so H1(Υ,OΥ) = 0 by Kiehl’s Theorem. This completes the
proof of (70). The connecting map in (69) now gives a D(D)-linear isomorphism

N (D) = H0
{0}(D, cokerα0) ∼= H1

{0}(D,OD). �

Lemma 7.5.6. We have dimK ι
\N = 1.

Proof. The definition of ι\ can be found in the statement of [5, Theorem 3.4.17]:

ι\(M) = HomO{0}

Ç
Ω{0}, ι

\ (ΩP1 ⊗
O1

P

M)

å
for any object M of C{0}P1/B0

: first one side-switches M to make a B0-equivariant

right D-module on P1, then one applies the pullback functor ι\ for equivariant right
D-modules, and then one side-switches back again. The pullback functor for right
D-modules ι\ is defined at [5, Definition 3.4.13]. We see that only the OP1-module
structure on ΩP1 ⊗

O1
P

M is used in the definition of this functor. SinceM is supported

at {0}, and since ΩP1(D) = O(D)dx is a free O(D)-module of rank 1, we see that

for any M∈ C{0}P1/B0
we have a K-vector space isomorphism

Γ

Ç
D, ι\(ΩP1 ⊗

O1
P

M)

å
∼=M(D)[x] := ker (x :M(D)→M(D)) .

Now, applying [27, Corollary 1.9] again to OD, we have the long exact sequence

0 // H0
{0}(D,OD) // H0(D,OD) // H0(D\{0},OD) //

// H1
{0}(D,OD) // H1(D,OD) // H1(D\{0},OD).

Since H1(D,OD) = 0, Lemma 7.5.5 now implies that as a D(D)-module, we have

N (D) ∼= H1
{0}(D,OD) ∼=

O(D\{0})
O(D)

.
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Now O(D) = K〈x〉, whereas O(D\{0}) is a subring of K〈x, x−1〉. Then we calculate

K · x−1 ⊆
ÅO(D\{0})
O(D)

ã
[x] ⊆

Å
K〈x, x−1〉
K〈x〉

ã
[x] = K · x−1.

So, ι\N = N (D)[x] =
Ä
O(D\{0})
O(D)

ä
[x] = K · 1

x has K-dimension equal to 1. �

Let H be an open subgroup of G; our goal will be now to better understand the
restriction of cokerα to an object in CP1/H . Using [5, Lemma 2.2.1], choose a finite
set of representatives {s1,= 1, · · · , sm} for the H,B-double cosets in G. For each
i = 1, · · · ,m, recall from [5, p.18] the object

Ni := Res
siB
H∩siB ([si]si,∗N ) ∈ CP1/(H∩siB).

Lemma 7.5.7. ResGH
Ä
indGB N

ä
∼=

m⊕
i=1

indHH∩siB Ni in CP1/H .

Proof. This follows from [5, Lemma 2.3.7]. �

Note that N is supported at 0. For each i = 1, · · · ,m, we then see that Ni is
supported at xi := si · 0 ∈ P1(F ). Therefore

Ni ∈ CxiP1/(H∩siB) and indHH∩siB Ni ∈ C
Hxi
P1/H .

Corollary 7.5.8. Let H be an open subgroup of G.

(a) ResGH(cokerα) has length equal to m = |H\G/B| in CP1/H .

(b) ResGH(j∗OΩ) has length m+ 1 in CP1/H .

Proof. (a) Fix i = 1, · · · ,m. Using Corollary 7.5.4 and Lemma 7.5.7, we see that it

is enough to show that indHH∩siB Ni is a simple object in CHxiP1/H . Let ιi : {xi} ↪→ P1

be the closed embedding; using [5, Corollary 1.3.2], it is enough to show that

ι\iNi is simple in C{xi}/H∩siB . However, the action of si induces an isomorphism

si,∗(ι
\N ) ∼= ι\iNi, so Lemma 7.5.6 implies that ι\iNi is a 1-dimensional K-vector

space and is therefore simple.
(b) This follows from (a) together with Proposition 7.5.1(b). �

Corollary 7.5.9. Let H be an open subgroup of G = GL2(F ). Then O(Ω) is a
coadmissible D(H,K)-module of length |H\P1(F )|+ 1.

Proof. The centre Z of G acts trivially on j∗OΩ. Hence we may view ResGH j∗OΩ as
a object in CP1/H where H is the open subgroup HZ/Z of GZ/Z = PGL2(F ), and

its length is still |H\P1(F )|+1 by Corollary 7.5.8(b). Now apply Theorem 7.4.8 with
G = PGL2 and the open subgroup H of G(F ) to deduce that Γ(P1, j∗OΩ) = O(Ω)
is a coadmissible D(H,K)-module of length |H\P1(F )|+ 1. The result now follows
by inflating back to D(H,K). �

Recall that G0 = {g ∈ GL2(F ) : vπF (det g) = 0}.

Corollary 7.5.10. Let H be an open subgroup of G0 and let L be a torsion G0-
equivariant line bundle with connection on Ω such that ω[L ] = 0 in PicCon(Ω).
Then L (Ω) is a coadmissible D(H,K)-module of length |H\P1(F )|+ 1.

Proof. By [8, Proposition 3.2.14], L is isomorphic as a G0-equivariant line bundle
with connection to the twist (OΩ)χ of OΩ, for some χ ∈ Hom(G0,K×). Since
L is torsion, χ necessarily has finite order. Since twisting by a character is an



138 KONSTANTIN ARDAKOV AND SIMON WADSLEY

equivalence of categories, we deduce from Corollary 7.5.9 that in this case L (Ω) is
a coadmissible D(H,K)-module of length |H\P1(F )|+ 1. �

We can finally give a proof of our two main results from the Introduction.

Proof of Theorem A. When ω[L ] 6= 0 in PicCon(Ω), use Corollary 7.4.9 together
with Theorem 7.4.8. When ω[L ] = 0, use Corollary 7.5.10. �

Proof of Corollary B. Applying [46, Proposition 2.3] we have a decomposition

f∗OX =
⊕
ψ∈Γ̂

Lψ

of the G0-equivariant vector bundle with flat connection f∗OX into a direct sum of

torsion G0-equivariant line bundles with connection. Here Γ̂ = Hom(Γ,K×) is the

character group of Γ. Note that [Lψ] ∈ PicConG
0

(Ω)tors for each ψ ∈ Γ̂. Hence

O(X) =
⊕
ψ∈Γ̂

Lψ(Ω).

By Corollary 7.4.9, the summand Lψ(Ω) is a simple coadmissible D(H,K)-module
whenever ω[Lψ] 6= 0, and by Corollary 7.5.10, it is a coadmissible D(H,K)-module

of length |H\P1(F )| + 1 when ω[Lψ] = 0. Writing cX :=
∣∣∣{ψ ∈ Γ̂ : ω[Lψ] = 0}

∣∣∣,
we deduce that

`D(H,K) (O(X)) = (|Γ̂| − cX) + cX · (|H\P1(F )|+ 1).

It follows from [8, Corollary 3.1.7] and the proof of [47, Lemma 3.7] that

cX = dimCO(XC)T (XC)=0.

But because every connected component of XC is geometrically connected and
quasi-Stein, this dimension is just the number of connected components |π0(XC)|
of XC, by [8, Proposition 3.1.6]. The result follows because |Γ̂| = |Γ|. �
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