Krull dimension of Iwasawa algebras

Konstantin Ardakov

1 Introduction

Let G be a compact p-adic Lie group. In the recent years, there has been an increased amount of interest in completed group algebras (Iwasawa algebras)

$$\Lambda_G = \mathbb{Z}_p[[G]] := \lim_{\leftarrow} \mathbb{Z}_p[G/N],$$

for example, because of their connections with number theory and arithmetic geometry; see the paper by Coates, Schneider and Sujatha ([4]) for more details.

When G is a uniform pro-p group, Λ_G is a concrete example of a complete local Noetherian ring (noncommutative, in general) with good homological properties: it is known that Λ_G has finite global dimension and is an Auslander regular ring. Thus, Λ_G falls into the class of rings studied by Brown, Hajarnavis and MacEacharn in [1]. There they consider various properties of Noetherian rings R of finite global dimension, including the Krull(-Gabriel-Rentschler) dimension $\mathcal{K}(R)$ - a module-theoretic dimension which measures how far R is from being Artinian. They also posed the following question:

Question ([1], Section 5). Let R be a local right Noetherian ring, whose Jacobson radical satisfies the Artin-Rees property. Is the Krull dimension of R always equal to the global dimension of R?

In this paper, we address the problem of computing $\mathcal{K}(\Lambda_G)$. We establish lower and upper bounds for $\mathcal{K}(\Lambda_G)$ in terms of the Lie algebra $\mathfrak{g} = \mathcal{L}(G)$ of G:

Theorem A. Let $\lambda(\mathfrak{g})$ be the maximum length m of chains $0 = \mathfrak{g}_0 < \mathfrak{g}_1 < \ldots < \mathfrak{g}_m = \mathfrak{g}$ of sub-Lie-algebras of \mathfrak{g}. Then

$$\lambda(\mathfrak{g}) + 1 \leq \mathcal{K}(\Lambda_G) \leq \dim \mathfrak{g} + 1.$$

For some groups, the two bounds coincide:

Corollary A. Let τ be the solvable radical of \mathfrak{g} and suppose that the semisimple part \mathfrak{g}/τ of \mathfrak{g} is isomorphic to a direct sum of copies of $\mathfrak{sl}_2(\mathbb{Q}_p)$. Then $\mathcal{K}(\Lambda_G) = \dim \mathfrak{g} + 1.$
We also establish a better upper bound for $K(\Lambda_G)$ when $L(G)$ is simple and split over \mathbb{Q}_p:

Theorem B. Let $p \geq 5$ and suppose $g \neq \mathfrak{sl}_2(\mathbb{Q}_p)$ is split simple over \mathbb{Q}_p with a Cartan subalgebra t and a Borel subalgebra b. Then

$$\dim b + \dim t + 1 \leq K(\Lambda_G) \leq \dim g < \text{gld}(\Lambda_G).$$

The author believes that $\dim b + \dim t + 1$ is the true value of $K(\Lambda_G)$, with G as above. Applying Theorem B to a particular case allows us to obtain a negative answer to the question posed above:

Corollary B. Let $p \geq 5$ and let $G = \ker(SL_3(\mathbb{Z}_p) \to SL_3(\mathbb{F}_p))$. Then Λ_G is a local right Noetherian ring whose Jacobson radical satisfies the Artin Rees Property, but

$$K(\Lambda_G) = 8 < \text{gld}(\Lambda_G) = 9.$$

In addition, we reprove a general result of R. Walker connecting $K(R)$ with $K(R/I)$ for a certain ring R and a suitable ideal I:

Theorem C (Walker, [10]). Suppose R is right Noetherian and x is a right regular normal element belonging to the Jacobson radical of R. If $K(R) < \infty$ then

$$K(R) = K(R/xR) + 1.$$

The reader might like to compare this result with the corresponding one on global dimensions; see Theorem 7.3.7 of [7].

We will denote the completed group algebra of G over \mathbb{F}_p by Ω_G:

$$\Omega_G := \varprojlim_{N \triangleleft G} \mathbb{F}_p[G/N].$$

Theorem C applies directly to Iwasawa algebras, since it is easy to see that $\Omega_G \cong \Lambda_G/p\Lambda_G$:

Corollary C. $K(\Lambda_G) = K(\Omega_G) + 1$.

The author would like to thank his supervisor, C.J.B. Brookes for many helpful conversations. Financial assistance from the EPSRC is also gratefully acknowledged.

Notation. All rings are assumed to be associative and to possess a unit, but are not necessarily commutative. $J(R)$ always denotes the Jacobson radical of the ring R. All modules are right modules, unless stated otherwise; Mod-R denotes the category of all right modules over R. The symbol p will always mean a fixed prime.
2 Preliminaries

2.1 Filtrations

We will conform with the definitions and notations used in the book [6] throughout this paper. In this section, we briefly recall the most relevant concepts.

A filtration on a ring R is a set of additive subgroups $FR = \{F_nR : n \in \mathbb{Z}\}$, satisfying $1 \in F_0R$, $F_nR \subseteq F_{n+1}R$, $F_nR.F_mR \subseteq F_{n+m}R$ for all $n, m \in \mathbb{Z}$, and $\bigcup_{n \in \mathbb{Z}} F_nR = R$. If R has a filtration, R is said to be a filtered ring. In what follows, we assume R is a filtered ring.

Let M be an R-module. A filtration on M is a set of additive subgroups of M, $FM = \{F_nM : n \in \mathbb{Z}\}$, satisfying $F_nM \subseteq F_{n+1}M$, $F_nM.F_mM \subseteq F_{n+m}M$ for all $n, m \in \mathbb{Z}$ and $\bigcup_{n \in \mathbb{Z}} F_nM = M$. If M has a filtration, M is said to be a filtered R-module. The filtration on M is said to be separated if $\bigcap_{n \in \mathbb{Z}} F_nM = 0$.

Let I be a two-sided ideal of R. A notable example of a filtration on R is the I-adic filtration given by F_nR if $n \leq 0$ and $F_nR = R$ otherwise.

The associated graded ring of R is defined to be $gr R = \bigoplus_{n \in \mathbb{Z}} F_nR/F_{n-1}R$. If $x \in R$, the symbol of x in $gr R$ is $\sigma(x) := x + F_{n-1}R \in F_nR/F_{n-1}R$, where n is such that $x \in F_nR \setminus F_{n-1}R$. If $x \in \bigcap_{n \in \mathbb{Z}} F_nR$, define $\sigma(x) = 0$.

The Rees ring of R is defined to be $\tilde{R} = \bigoplus_{n \in \mathbb{Z}} F_nR$, which we view to be a subring of the Laurent polynomial ring $R[t, t^{-1}]$.

The associated graded module and Rees module of a filtered R-module M are defined similarly. We say that the filtration FM on M is good if and only if \tilde{M} is a finitely generated \tilde{R}-module. Note that a finitely generated R-module M always possesses a good filtration, for example the deduced filtration given by $F_nM = M.F_nR$ for $n \in \mathbb{Z}$.

2.2 Iwasawa algebras

By a well-known result of Lazard (see, for example, Theorem 8.36 of [5]), any compact p-adic Lie group G has an open normal uniform pro-p subgroup H. Since H has finite index in G, any open normal subgroup of H contains an open normal subgroup of G. Hence

$$\Lambda_H = \lim_{\rightarrow N \in \mathcal{C}} \mathbb{Z}_p[H/N] \quad \text{and} \quad \Lambda_G = \lim_{\rightarrow N \in \mathcal{C}} \mathbb{Z}_p[G/N],$$

where $\mathcal{C} = \{N \triangleleft G : N \subseteq H\}$. It follows that Λ_G is a free right and left Λ_H-module of finite rank (an appropriate transversal for H in G will serve as a basis), so $K(\Lambda_G) = K(\Lambda_H)$ by Corollary 6.5.3 of [7].
Thus restricting ourselves to the class of uniform pro-p groups does not lose any generality and we will assume that G denotes a uniform pro-p group throughout this paper. For more information about these groups, see the excellent book [5].

Following [5], we will write L_G for the \mathbb{Z}_p-Lie algebra of G ([5], 4.29) and $\mathcal{L}(G) = g$ for the \mathbb{Q}_p-Lie algebra of G ([5], 9.5).

The following properties of ΛG and ΩG are more or less well known:

Lemma 2.1. Let $R = \Lambda G$ or ΩG and let $d = \dim G$. Then:

(i) R is a local right Noetherian ring with maximal ideal $J = \ker(R \twoheadrightarrow \mathbb{F}_p)$.

(ii) R is complete with respect to the J-adic filtration.

(iii) $\gr J \Omega_G \cong \mathbb{F}_p[X_1, \ldots, X_d]$.

(iv) $\gl(\Lambda G) = \gl(\Omega G) + 1 = \dim G + 1$.

(v) J satisfies the right (and left) Artin Rees Property.

Proof. Proofs of (i),(ii) and (iii) can be found in Chapter 7 of [5]. Part (iv) is established in [2]. By Theorem 2.2 of Chapter II of [6], the J-adic filtration has the Artin Rees property, which is easily seen to imply that the ideal J has the Artin Rees Property in the sense of 4.2.3 of [7].

Henceforth, J_G will always denote the maximal ideal of Ω_G. We will require the following characterization of Artinian modules of Ω_G:

Proposition 2.2. Let G be a uniform pro-p group with lower p-series $\{G_n, n \geq 1\}$. Let $M = \Omega_G/I$ be a cyclic Ω_G-module. The following are equivalent:

(i) M is Artinian.

(ii) $J_G^n \subseteq I$ for some $n \in \mathbb{N}$.

(iii) $J_G^m \subseteq I$ for some $m \geq 1$.

(iv) M is finite dimensional over \mathbb{F}_p.

Proof. Note that by Theorem 3.6 of [5], G_n is uniform for each $n \geq 1$.

(i) \Rightarrow (ii). As Ω_G is Noetherian, M has finite length. Also Ω_G/J_G is the unique simple Ω_G-module, as Ω_G is local. Hence $MJ_G^n = 0$.

(ii) \Rightarrow (iii). Suppose $J_G^n \subseteq I$. Choose m such that $p^{m-1} \geq n$. Then $g^{p^{m-1}} - 1 = (g - 1)p^{m-1} \in J_G^n \subseteq I$ for all $g \in G$. As $G_m = G^{p^{m-1}}$, we see that $G_m - 1 \subseteq I$ so $J_G^m \subseteq I$ as required.
(iii) \Rightarrow (iv). If $J_{G_m} \subseteq I$, $J_{G_m} \Omega_G \subseteq I$ as I is a right ideal of Ω_G. Hence $\mathbb{F}_p[G/G_m] \cong \Omega_G/J_{G_m} \Omega_G \rightarrow \Omega_G/I = M$. Since $|G : G_m|$ is finite, the result follows.

(iv) \Rightarrow (i). This is clear. \hfill \square

2.3 Krull dimension

The definitions and basic facts about the Krull(-Gabriel-Rentschler) dimension can be found in Chapter 6 of [7]. Recall that an R-module M is said to be n-critical if $K(M) = n$ and $K(M/N) < n$ for all nonzero submodules N of M; thus a 0-critical module is nothing other than a simple module.

The following (well known) Lemma is the basis for many arguments involving the Krull dimension. Since we shall not require the general case of ordinal-valued Krull dimensions, we restrict ourselves to the case when the dimension is finite. We write $\text{Lat}(R)$ for the lattice of all right ideals of a ring R.

Lemma 2.3. Let R and S be rings, with R Noetherian of finite Krull dimension. Let $f : \text{Lat}(R) \rightarrow \text{Lat}(S)$ be an increasing function and let $k, n \in \mathbb{N}$, with $K_R(R) \geq n$. Let X and Y be right ideals of R with $Y \subseteq X$ and suppose $K_R(X/Y) + k \leq K_S(f(X)/f(Y))$ whenever X/Y is n-critical. Then $K_R(X/Y) + k \leq K_S(f(X)/f(Y))$ whenever $K_R(X/Y) \geq n$.

In particular, $K_R(R) + k \leq K_S(S)$.

Proof. This follows from [7], 6.1.17. \hfill \square

3 Main Results

We now proceed to prove the main theorems stated in the introduction. We prove Theorem C in Section 3.1; the argument is a straightforward induction based on Nakayama’s Lemma and is different to the one used by Walker in [10].

Theorem A is proved in Section 3.2, where we also consider the length function $\lambda(g)$ of a finite dimensional Lie algebra g. It is also shown that Corollary A follows from Theorem A.

The remainder of the paper is devoted to proving Theorem B.

3.1 Reduction to Ω_G

Let R be a ring. Suppose x is a normal element of R and M is an R-module. It’s clear that Mx is an R-submodule of M; recall that M is said to be x-torsion free if $mx = 0 \Rightarrow m = 0$ for all $m \in M$. 5
The following result summarizes various elementary properties of modules.

Lemma 3.1. Let x be a normal element of a ring R and let $B \subseteq A$ be right R-modules with Krull dimension. Then:

(a) If A/B and B are x-torsion free then A is also x-torsion free.

(b) If A/B is x-torsion free then $Ax \cap B = Bx$ and $K(B/Bx) \leq K(A/Ax)$.

(c) If A is x-torsion free then $K(A/Ax) = K(Ax^n/Ax^n - 1) = K(A/Ax^n)$ for all $n \geq 1$.

The main step comes next.

Lemma 3.2. Let R be a right Noetherian ring, x a normal element of $J(R)$. Suppose M is a finitely generated x-torsion free R-module with finite Krull dimension. Then $K(M/Mx) \geq K(M) - 1$.

Proof. Proceed by induction on $K(M) = \beta$. Note that $\beta \geq 1$ since M is x-torsion free. Since $x \in J(R)$, the base case $\beta = 1$ follows from Nakayama’s Lemma. We can find a chain $M = M_1 > M_2 > \ldots > M_k > \ldots$ such that M_i/M_{i+1} is $(\beta - 1)$-critical for all $i \geq 1$.

Case 1: $\exists i \geq 1$ such that M_i/M_{i+1} is not x-torsion free.

Pick a least such i. Let N/M_{i+1} be the x-torsion part of M_i/M_{i+1}; thus M_i/N is also x-torsion free by Lemma 3.1(a). Hence, by Lemma 3.1(b), $K(M/Mx) \geq K(N/Nx)$.

Since M is x-torsion free and $0 < N \subseteq M$, N is also x-torsion free. Hence, by Lemma 3.1(c), $K(N/Nx) = K(N/Nx^n)$ for all $n \geq 1$.

As M is Noetherian and N/M_{i+1} is x-torsion, there exists $n \geq 1$ such that $(N/M_{i+1})x^n = 0$. Hence $Nx^n \subseteq M_{i+1}$, so $N/Nx^n \hookrightarrow N/M_{i+1}$ and $K(N/Nx^n) \geq K(N/M_{i+1})$.

Since N/M_{i+1} is a nonzero submodule of the $(\beta - 1)$-critical M_i/M_{i+1}, we deduce that $K(N/M_{i+1}) = \beta - 1 = K(M) - 1$. The result follows.

Case 2: M_i/M_{i+1} is x-torsion free $\forall i \geq 1$.

Consider the chain

$$M = Mx + M_1 \geq Mx + M_2 \geq \ldots \geq Mx.$$ (†)

Now, M_i/M_{i+1} is x-torsion free and has Krull dimension $\beta - 1$, so by induction, $K((M_i/M_{i+1})/(M_i/M_{i+1}).x) \geq \beta - 2$. But

$$\frac{M_i/M_{i+1}}{(M_i/M_{i+1}).x} = \frac{M_i/M_{i+1}}{(M_i/M_{i+1} + M_{i+1})/M_{i+1}} \cong \frac{M_i}{M_i x + M_{i+1}},$$ and

6
\[
\frac{M_i + Mx}{M_i + 1 + Mx} \cong \frac{M_i}{(M_i + 1 + Mx) \cap M_i} = \frac{M_i}{M_i + 1 + (M_i \cap Mx)}.
\]

Since \(M/M_i\) is \(x\)-torsion free by Lemma 3.1 (a), \(M_i \cap Mx = M_i x\) by Lemma 3.1(b), so every factor of (†) has Krull dimension \(\geq \beta - 2\). Hence \(K(M/Mx) \geq \beta - 1 = K(M) - 1\).

\[\square\]

Proof of Theorem C. Since \(x\) is right regular, \(R\) is \(x\)-torsion free. By Lemma 3.1 (c), the chain \(R > xR > \ldots > x^kR > \ldots\) has infinitely many factors with Krull dimension equal to \(K(R/xR)\), so \(K(R) = K(R/xR)\). The result follows from Lemma 3.2.

\[\square\]

We remark that as \(x\) is normal, \(xR\) is an ideal of \(R\) and so the Krull dimensions of \(R/xR\) over \(R\) and over the ring \(R/xR\) coincide.

3.2 A lower bound for the Krull dimension

Proposition 3.3. Let \(G\) be a uniform \(pro-p\) group and let \(H\) be a closed uniform subgroup such that \(|G : H| = \infty\). Then:

(i) The induced module \(M = \mathbb{F}_p \otimes_{\Omega H} \Omega G\) is not Artinian over \(\Omega G\).

(ii) \(K(\Omega_H) < K(\Omega_G)\).

Proof. (i) Since \(\mathbb{F}_p \cong \Omega_H / J_H\) and since \(- \otimes_{\Omega H} \Omega G\) is flat by Lemma 4.5 of [2], we see that \(M \cong \Omega_G / J_H \Omega_G\) as right \(\Omega_G\)-modules.

Suppose \(M\) is Artinian. Then \(J_{G_m} \subseteq J_H \Omega_G\) for some \(m \geq 1\), by Proposition 2.2. It is easy to check that \((1 + J_H \Omega_G) \cap G = H\) for any closed subgroup \(H\) of any profinite group \(G\). Hence

\[G_m = (1 + J_{G_m} \Omega_G) \cap G \subseteq (1 + J_H \Omega_G) \cap G = H\]

which forces \(|G : H|\) to be finite, a contradiction.

(ii) Consider the increasing function \(f : \text{Lat}(\Omega_H) \to \text{Lat}(\Omega_G)\), given by \(I \mapsto I \otimes_{\Omega_H} \Omega_G\). Suppose \(X\) and \(Y\) are right ideals of \(R\) such that \(Y \subseteq X\) and such that \(X/Y\) is simple. Since \(\Omega_H\) is local, \(X/Y \cong \mathbb{F}_p\) so \(f(X)/f(Y) \cong \mathbb{F}_p \otimes_{\Omega_H} \Omega_G \cong M\) as \(\Omega_G\) is a flat \(\Omega_H\)-module. As \(M\) is not Artinian by part (i), \(K(f(X)/f(Y)) \geq 1\), so by Lemma 2.3 \(K(\Omega_H) + 1 \leq K(\Omega_G)\), as required.

\[\square\]

Note that the analogous proposition for universal enveloping algebras is false: for example, the Verma module of highest weight zero for \(\mathfrak{g} = sl_2(\mathbb{C})\) is Artinian, and indeed, \(K(\mathcal{U}(\mathfrak{g})) = K(\mathcal{U}(\mathfrak{b})) = 2\), where \(\mathfrak{b}\) is a Borel subalgebra of \(\mathfrak{g}\).

We can now give a proof of the first result stated in the Introduction:
Proof of Theorem A. By Theorem C, it is sufficient to show $\lambda(g) \leq K(\Omega_G) \leq d$, where $d = \text{dim } g$. First, we show that $\lambda(g) \leq K(\Omega_G)$.

Proceed by induction on $\lambda(g)$. Let $0 = g_0 < g_1 < \ldots < g_k = g$ be a chain of maximal length $k = \lambda(g)$ in g.

We can find a closed uniform subgroup H of G with Lie algebra g_{k-1}. Since $g_{k-1} < g$, $|G:H| = \infty$.

By the inductive hypothesis, $k - 1 = \lambda(g_{k-1}) \leq K(\Omega_H)$. By Proposition 3.3, $K(\Omega_H) < K(\Omega_G)$, so $k = \lambda(g) \leq K(\Omega_G)$.

By Lemma 2.1, we see that Ω_G is a complete filtered ring with $\text{gr } \Omega_G \cong \mathbb{F}_p[X_1, \ldots, X_d]$. It follows from Proposition 7.1.2 of Chapter I of [6] and Corollary 6.4.8 of [7] that $K(\Omega_G) \leq K(\text{gr } \Omega_G) = d$, as required.

Theorem A stimulates interest in the length $\lambda(g)$ of a finite dimensional Lie algebra g. The following facts about this invariant are known:

Proposition 3.4. Let g be a finite dimensional Lie algebra over a field k.

(i) If h is an ideal of g, $\lambda(g) = \lambda(h) + \lambda(g/h)$.

(ii) If g is solvable, $\lambda(g) = \text{dim}_k(g)$.

(iii) If g is split semisimple, $\lambda(g) \geq \text{dim } t + \text{dim } b$, where t and b are some Cartan and Borel subalgebras of g, respectively.

(iv) $\lambda(\mathfrak{sl}_2(k)) = 3$.

Proof. (i) Putting together two chains of maximal length in h and g/h shows that $\lambda(g) \geq \lambda(h) + \lambda(g/h)$. The reverse inequality follows by considering the chains $0 = g_0 \cap h \subseteq \ldots \subseteq g_i \cap h \subseteq \ldots \subseteq h$ and $h \subseteq g_1 + h \subseteq \ldots \subseteq g_i + h \subseteq \ldots \subseteq g$ whenever $0 = g_0 < \ldots < g_i < \ldots < g_n = g$ is a chain of subalgebras of maximal length in g.

(ii) This follows directly from (i).

(iii) Let $l = \text{dim } t$. Given a Borel subalgebra b, there are exactly 2^l parabolic subalgebras containing it, corresponding 1-1 with the subsets of the set of simple roots of g. This correspondence preserves inclusions, so we can find a chain of subalgebras of length l starting with b. Combining this together with a maximal chain of length $\text{dim } b$ in b gives the result.

(iv) This follows from (iii), since for $g = \mathfrak{sl}_2(k)$, $\text{dim } t = 1, \text{dim } b = 2$ and $\text{dim } g = 3$.

Proof of Corollary A. This now follows directly from Theorem A and Proposition 3.4.
3.3 An upper bound

The method of proof of Theorem B is similar in spirit to that used by S. P. Smith in his proof of the following theorem, providing an analogous better upper bound for $K(\mathfrak{U}(g))$ when g is semisimple:

Theorem 3.5 (Smith). Let g be a complex semisimple Lie algebra. Let $2r + 1$ be the dimension of the largest Heisenberg Lie algebra contained in g. Then $K(\mathfrak{U}(g)) \leq \dim g - r - 1$.

Proof. See Corollary 4.3 of [8], bearing in mind the comments contained in section 3.1 of that paper. □

Definition 3.6. Let k be a field. The Heisenberg k-Lie algebra of dimension $2r + 1$ is defined by the presentation

$\mathfrak{h}_{2r+1} = k < w, u_1, \ldots, u_r, v_1, \ldots, v_r : [u_i, v_j] = \delta_{ij}w, [w, u_i] = [w, v_i] = 0, [u_i, u_j] = [v_i, v_j] = 0 > .$

Here δ_{ij} is the Kronecker delta.

First we establish a useful fact about uniform pro-p groups H with \mathbb{Q}_p-Lie algebra isomorphic to a Heisenberg Lie algebra.

Lemma 3.7. Let H be a uniform pro-p group such that $L(H)$ is isomorphic to \mathfrak{h}_{2r+1}. Let the centre $Z(H)$ of H be topologically generated by z. Then there exist $x, y \in H$ and $k \in \mathbb{N}$ such that $[x, y] = z^p k$.

Proof. By Theorem 9.10 of [5], we may assume that the group law on H is given by the Campbell-Hausdorff formula on $L(H)$. Let $(,)$ denote the Lie bracket on $L(H) = \mathfrak{h}_{2r+1}$.

Since $(L_H, (L_H, L_H)) \subseteq (\mathfrak{h}_{2r+1}, (\mathfrak{h}_{2r+1}, \mathfrak{h}_{2r+1})) = 0$, the group law on L_H given by the Campbell-Hausdorff series reduces to

$$\alpha * \beta = \alpha + \beta + \frac{1}{2}(\alpha, \beta)$$

for $\alpha, \beta \in L_H$. It’s then easily checked that the group commutator satisfies

$$[\alpha, \beta] = \alpha^{-1} * \beta^{-1} * \alpha * \beta = (\alpha, \beta).$$

(†)

Now as $\mathbb{Q}_pL_H = \mathfrak{h}_{2r+1}$ there exists $n \in \mathbb{N}$ such that $p^nu_1, p^nv_1 \in L_H$, whence $(p^nu_1, p^nv_1) \in L_H \cap \mathbb{Q}_p \mathbb{Z}_p = \mathbb{Z}_p \mathbb{Z}_p$. Hence $(p^nu_1, p^nv_1) = p^k \lambda z$ for some unit $\lambda \in \mathbb{Z}_p$ and some $k \in \mathbb{N}$, an equation inside L_H. We may now take $x = p^nu_1, y = p^nv_1$ and apply (†). □
Next we develop some dimension theory for finitely generated Ω_G-modules, where G is an arbitrary uniform pro-p group. Recall that the J_G-adic filtration on Ω_G gives rise to a polynomial associated graded ring.

Definition 3.8. Let M be a finitely generated Ω_G-module, equipped with some good filtration $F M$. The characteristic ideal of M is defined to be

$$J(M) := \sqrt{\text{Ann} \, \text{gr} \, M}.$$

The graded dimension of M is defined to be

$$d(M) := \mathcal{K}(\text{gr} \, \Omega_G / J(M)).$$

Lemma 4.1.9 of Chapter III of [6] shows that $J(M)$ and hence $d(M)$ does not depend on the choice of a good filtration for M. It is easy to prove that $d(M) = \mathcal{K}(\text{gr} \, M)$ for any good filtration $F M$ on M.

Let \mathfrak{h} be a \mathbb{Q}_p-Lie subalgebra of \mathfrak{g}, the \mathbb{Q}_p-Lie algebra of G. Let $H = \mathfrak{h} \cap L_G$; since L_G/H injects into $\mathfrak{g}/\mathfrak{h}$ which is torsion-free, we see that H is actually a closed uniform subgroup of G, by Theorem 7.15 of [5].

We will call H the isolated uniform subgroup of G with \mathbb{Q}_p-Lie algebra \mathfrak{h}.

The following proposition is the main step in our proof of the upper bound for $\mathcal{K}(\Omega_G)$. Recall that J_G denotes the maximal ideal of Ω_G.

Proposition 3.9. Let G be a uniform pro-p group with \mathbb{Q}_p-Lie algebra \mathfrak{g} such that $\mathfrak{h}_3 \subseteq \mathfrak{g}$. Let H be the isolated uniform subgroup of G with Lie algebra \mathfrak{h}_3.

Let $Z = Z(H) = \langle z \rangle$, say. Let M be a finitely generated Ω_G-module such that $d(M) \leq 1$. Then $\sigma(z - 1) \in J(M)$.

Proof. Let A be a uniform subgroup of G with torsion-free L_G/L_A. Using Theorem 7.23(ii) of [5] it is easy to check that the subspace filtration on Ω_A induced from the J_G-adic filtration on Ω_G coincides with the J_A-adic filtration.

It follows that the Rees ring Ω_A of Ω_A embeds into $\widehat{\Omega_G}$ and that $\Omega_A \cap t \widehat{\Omega_G} = t \Omega_A$, so this embedding induces a natural embedding of graded rings

$$\text{gr} \, \Omega_A = \Omega_A / t \Omega_A \hookrightarrow \widehat{\Omega_G} / t \widehat{\Omega_G} = \text{gr} \, \Omega_G.$$

It’s easy to see that L_H/L_Z is torsion-free. Since L_G/L_H is torsion-free by assumption on H, L_G/L_Z is also torsion-free so the above discussion applies to both Z and H.

Now, equip M with a good filtration $F M$ and consider the Rees module $\widehat{\Omega_G} M$. This is an Ω_H-module, so we can view it as an Ω_H-module by restriction.
Let $S = \tilde{\Omega}_Z - t\tilde{\Omega}_Z$. This is a central multiplicatively closed subset of the domain $\tilde{\Omega}_H$, so we may form the localisations $\tilde{\Omega}_Z S^{-1} \hookrightarrow \tilde{\Omega}_H S^{-1}$ and the localised $\tilde{\Omega}_H S^{-1}$-module $\tilde{M} S^{-1}$.

Let $R = \lim_{\leftarrow} \tilde{\Omega}_Z S^{-1}/t^n\tilde{\Omega}_Z S^{-1}$ and let $N = \lim_{\rightarrow} \tilde{M} S^{-1}/t^n\tilde{M} S^{-1}$.

It’s clear that N is an R-module. Also, as t is central in $\tilde{\Omega}_H S^{-1}$, N has the structure of a $\tilde{\Omega}_H S^{-1}$-module. In particular, as H embeds into $\tilde{\Omega}_H S^{-1}$, N is an H-module.

Now, consider the t-adic filtration on R. It’s easy to see that $R/tR = \tilde{\Omega}_Z S^{-1}/t\tilde{\Omega}_Z S^{-1} \cong \text{gr} \Omega_Z\tilde{\Omega}_Z^{-1}$, where $\tilde{\Omega}_Z = \text{gr} \Omega_Z - \{0\}$. Thus $R/tR \cong k$, the field of fractions of $\text{gr} \Omega_Z$.

As t acts injectively on $\tilde{\Omega}_Z S^{-1}$, $t^n R/t^{n+1} R \cong k$ for all $n \geq 0$. Hence the graded ring of R with respect to the t-adic filtration is

$$\text{gr}_t R = \bigoplus_{n=0}^{\infty} \frac{t^n R}{t^{n+1} R} \cong k[s],$$

where $s = t + t^2 R \in tR/t^2 R$.

We can also consider the t-adic filtration on N. Again, we see that $N/tN \cong t^n N/t^{n+1} N \cong \text{gr} M\tilde{\Omega}_Z^{-1}$. Hence

$$\text{gr}_t N = \bigoplus_{n=0}^{\infty} \frac{t^n N}{t^{n+1} N} \cong (\text{gr} M\tilde{\Omega}_Z^{-1}) \otimes_k k[s].$$

Now, because $d(M) \leq 1$, $\text{gr} M\tilde{\Omega}_Z^{-1}$ is finite dimensional over k. It follows that $\text{gr}_t N$ is a finitely generated $\text{gr}_t R$-module.

Because N is complete with respect to the t-adic filtration, this filtration on N is separated. Also R is complete, so by Theorem 5.7 of Chapter I of [6], N is finitely generated over R.

Now $\tilde{\Omega}_Z S^{-1}$ is a local ring with maximal ideal $t\tilde{\Omega}_Z S^{-1}$. Hence R is a commutative local ring with maximal ideal tR; since $\bigcap_{n=0}^{\infty} t^n R = 0$, the only ideals of R are $\{t^n R : n \geq 0\}$.

Hence R is a commutative PID and N is a finitely generated t-torsionfree R-module. This forces N to be free over R, say $N \cong R^n$, for some $n \geq 0$.

Now, Z embeds into R and the action of R commutes with the action of H on N. Hence we get a group homomorphism

$$\rho : H \to GL_n(R)$$

such that $\rho(z) = zI$, where I is the $n \times n$ identity matrix.
But H is a uniform pro-p group with \mathbb{Q}_p-Lie algebra h_3, so by Lemma 3.7 we can find elements $x, y \in H$ such that $[x, y] = z^{p^k}$ for some $k \geq 1$.

Hence $\rho(x) \rho(y) = \rho(\rho(z)^{p^k} = z^{p^k} I$. Taking determinants yields $z^{kn} = 1$.

Since $Z = \mathbb{F}_p \cong \mathbb{Z}_p$, this is only possible if $n = 0$.

Therefore $N = 0$ and so $N/tN = \text{gr} M S^{-1} = 0$. Hence $Q \cap S \neq \emptyset$, where $Q = \text{Ann}_{\text{gr} \Omega G} \text{gr} M$. Because Q is graded and because $\text{gr} \Omega Z \cong \mathbb{F}_p[\sigma(z - 1)]$, we see that $\sigma(z - 1)^m \in Q$ for some $m \geq 0$. Hence $\sigma(z - 1) \in J(M) = \sqrt{Q}$.

The above result should be compared to the Bernstein inequality for finitely generated modules M for the Weyl algebra $A_1(\mathbb{C})$, which gives a restriction on the possible values of the dimension of M. When g is itself a Heisenberg Lie algebra, a stronger result has been proved by Wadsley ([9], Theorem B):

Theorem 3.10. Let G be a uniform pro-p group with \mathbb{Q}_p-Lie algebra h_{2r+1} and let M be a finitely generated ΩG-module. If $d(M) \leq r$, then $\text{Ann}_{\Omega G} (M) \cap \Omega Z \neq 0$, where $Z = Z(G)$.

We are tempted to conjecture that the following generalization of Proposition 3.9 holds:

Conjecture. Let G be a uniform pro-p group with \mathbb{Q}_p-Lie algebra g such that $h_{2r+1} \subseteq g$. Let H be the isolated uniform subgroup of G with Lie algebra h_{2r+1} and let $Z = Z(H) = \langle z \rangle$, say. Let M be a finitely generated ΩG-module such that $d(M) \leq r$. Then $\sigma(z - 1) \in J(M)$.

This is a more general analogue of Lemma 3.2 of [8] corresponding to the Bernstein inequality for $A_r(\mathbb{C})$. If this conjecture is correct, we would be able to sharpen the upper bound on $K(\Omega G)$ from $\dim g - 1$ to $\dim g - r$, when G is as in Theorem B.

Let G be a uniform pro-p group, and consider the set G/G_2, where $G_2 = P_2(G) = G^p$. We know that G/G_2 is a vector space over \mathbb{F}_p of dimension $d = \dim(G)$. The automorphism group $\text{Aut}(G)$ of G acts naturally on G/G_2; this action commutes with the \mathbb{F}_p-linear structure on G/G_2. Because $[G, G] \subseteq G_2$, the action of $\text{Inn}(G)$ is trivial, so we see that G/G_2 is naturally an $\mathbb{F}_p[\text{Out}(G)]$-module.

Similarly, we obtain an action of $\text{Aut}(G)$ on J/J^2 where $J = J_G < \Omega G$; it’s easy to see that $\text{Inn}(G)$ again acts trivially, so J/J^2 is also an $\mathbb{F}_p[\text{Out}(G)]$-module.

Lemma 3.11. The map $\phi : G/G_2 \rightarrow J/J^2$ given by $\phi(gG_2) = \sigma(g - 1) = g - 1 + J^2$ is an isomorphism of $\mathbb{F}_p[\text{Out}(G)]$-modules.
Proof. It is easy to check that \(\varphi \) is an \(F_p \)-linear map preserving the \(\text{Out}(G) \)-structure.

Now \(\{g_1 G_2, \ldots, g_d G_2\} \) is a basis for \(G/G_2 \), if \(\{g_1, \ldots, g_d\} \) is a topological generating set for \(G \). By Theorem 7.24 of [5], \(\{X_1, \ldots, X_d\} \) is a basis for \(J/J^2 \), where \(X_i = \sigma(g_i - 1) = \varphi(g_i G_2) \). The result follows.

Theorem 3.12. Let \(G, H, z \) be as in Proposition 3.9. Suppose \(z G_2 \) generates the \(F_p[\text{Out}(G)] \)-module \(G/G_2 \). Then

(i) \(\Omega_G \) has no finitely generated modules \(M \) with \(d(M) = 1 \)

(ii) \(K(\Omega_G) \leq \dim g - 1 \).

Proof. Let \(M \) be a finitely generated \(\Omega_G \)-module with \(d(M) \leq 1 \). By Lemma 3.11, \(G/G_2 \cong J/J^2 \) as \(F_p[\text{Out}(G)] \)-modules. Because \(z G_2 \) generates \(G/G_2 \),

\[\varphi(z G_2) = \sigma(z - 1) \in J/J^2 \text{ generates } J/J^2. \]

In other words, \(F_p \cdot \{\sigma(z - 1)^\alpha : \alpha \in \text{Out}(G)\} \subseteq J/J^2 \).

Let \(\theta \in \text{Aut}(G) \). By Proposition 3.9 applied to \(H^\theta, \sigma(z^\theta - 1) = \sigma(z - 1)^\theta \in J(M) \), where \(^\theta : \text{Aut}(G) \rightarrow \text{Out}(G) \) is the natural surjection.

Hence \(J/J^2 = F_p \cdot \{\sigma(z - 1)^\alpha : \alpha \in \text{Out}(G)\} \subseteq J(M) \). This forces

\[(X_1, \ldots, X_d) \subseteq J(M) \subseteq F_p[X_1, \ldots, X_d] = \text{gr } \Omega_G, \]

whence \(d(M) = 0 \) and part (i) follows.

Consider the increasing map \(\text{gr} : \text{Lat}(\Omega_G) \rightarrow \text{Lat}(\text{gr } \Omega_G) \), where we endow each right ideal of \(\Omega_G \) with the subspace filtration from the \(J_G \)-adic filtration on \(G \). If \(X, Y \leq \Omega_G \) are such that \(M = X/Y \) is 1-critical, then \(K(\text{gr } M) = K(\text{gr } X/\text{gr } Y) \geq 1 \), giving \(M \) the subquotient filtration from \(\Omega_G \).

Now, by Proposition 1.2.3 of Chapter II of [6], this subquotient filtration is good, since \(\Omega_G \) is a complete filtered ring with Noetherian \(\text{gr } \Omega_G \). Hence \(K(\text{gr } M) = d(M) \geq 1 \) by the remarks following Definition 3.8. By part (i), \(K(\text{gr } X/\text{gr } Y) \geq 2 \) so part (ii) follows from Lemma 2.3.

We will use this result to deduce Theorem B.

3.4 Chevalley groups over \(\mathbb{Z}_p \)

We recall some facts from the theory of Chevalley groups:

Let \(X \in \{A_l, B_l, C_l, D_l, E_6, E_7, E_8, F_4, G_2\} \) be an indecomposable root system and let \(R \) be a commutative ring. Let \(\mathcal{B} = \{h_r : r \in \Pi\} \cup \{e_r : r \in X\} \) be the Chevalley basis for the \(R \)-Lie algebra \(X_R \).
Let \(X(R) = \langle x_r(t) : r \in X, t \in R \rangle \subseteq \text{Aut}(X_R) \) be the adjoint Chevalley group over \(R \). Here \(x_r(t) \in \text{Aut}(X_R) \) is given by

\[
x_r(t).e_r = e_r \\
x_r(t).e_{-r} = e_{-r} + t h_r - t^2 e_r \\
x_r(t).h_s = h_s - A_{sr} t e_r \\
x_r(t).e_s = \sum_{i=0}^{b} M_{r,s,i} t^i e_{ir+s}
\]

where \(s \in X \) is a root linearly independent from \(r, a \in \mathbb{N} \) is the largest integer such that \(s - ar \in X \), \(b \in \mathbb{N} \) is the largest integer such that \(s + br \in X \), \(A_{sr} = \frac{2(s,r)}{(r,r)} \) and \(M_{r,s,i} = \pm \binom{a+i}{i} \).

Let \(R^* \) denote the group of units of \(R \). When \(t \in R^* \) and \(r \in X \), define

\[
n_r(t) = x_r(t)x_{-r}(-t^{-1})x_r(t) \quad \text{and} \quad h_r(t) = n_r(t)n_r(-1).
\]

The actions of \(h_r(t) \) and \(n_r = n_r(1) \) on \(X_R \) are as follows:

\[
\begin{align*}
h_r(t).h_s &= h_s, \quad s \in \Pi \\
h_r(t).e_s &= t^{A_{sr}} e_s, \quad s \in X \\
n_r.h_s &= h_{w_r(s)} \\
n_r.e_s &= \eta_r e_{w_r(s)}
\end{align*}
\]

Here \(w_r \) is the Weyl reflection on \(X \) corresponding to the root \(r \) and \(\eta_{r,s} = \pm 1 \).

The Steinberg relations hold in \(X(R) \):

\[
\begin{align*}
h_r(t_1)h_r(t_2) &= h_r(t_1 t_2), & t_1, t_2 & \in R^*, r \in X \\
x_r(t)x_s(u)x_r(t)^{-1} &= x_s(u), & t, u, s & \in R, r, s \in X \\
h_s(u)x_r(t)h_s(u)^{-1} &= x_r(u^{A_{sr} t}), & t & \in R^*, u \in R^*, r, s \in X.
\end{align*}
\]

Here \(C_{ijrs} \) are certain integers such that \(C_{11rs} = M_{r,s,i} \).

For more details on the above, see [3].

Now, consider the \(\mathbb{Z}_p \)-Lie algebra \(X_{\mathbb{Z}_p} \). Since \([pX_{\mathbb{Z}_p}, pX_{\mathbb{Z}_p}] = p^2[X_{\mathbb{Z}_p}, X_{\mathbb{Z}_p}] \subseteq p^p X_{\mathbb{Z}_p} \), we see that \(pX_{\mathbb{Z}_p} \) is a powerful \(\mathbb{Z}_p \)-Lie algebra. Let \(Y = (pX_{\mathbb{Z}_p}, \ast) \) be the uniform pro-\(p \) group constructed from \(pX_{\mathbb{Z}_p} \) using the Campbell-Hausdorff formula.

We have a group homomorphism \(\text{Ad} : Y \to GL(pX_{\mathbb{Z}_p}) \) given by \(\text{Ad}(g)(u) = g u g^{-1} \). It is shown in Exercise 9.10 of [5] that

\[
\text{Ad} = \exp \circ \text{ad}
\]

where \(\exp : \mathfrak{gl}(pX_{\mathbb{Z}_p}) \to GL(pX_{\mathbb{Z}_p}) \) is the exponential map.

It’s clear that \(\ker \text{Ad} = Z(Y) \). Since the Lie algebra \(X_{\mathbb{Q}_p} \) of \(Y \) is simple, it’s easy to see that \(L(Z(Y)) = Z(L(Y)) = 0 \); hence \(\ker \text{Ad} = 1 \) and \(\text{Ad} \) is an injection.
Lemma 3.13. Let $N = \text{Ad}(Y)$ and $G = X(Z_p)$. Then $N \trianglelefteq G$.

Proof. First we show that $N \subseteq G$. It’s clear that the \mathbb{Z}_p-linear action of N on pX_{Z_p} extends naturally to a \mathbb{Z}_p-linear action of N on X_{Z_p}. Now, direct computation shows that

$$\text{Ad}(te_r) = x_r(t), \quad t \in p\mathbb{Z}_p, r \in X$$

and

$$\text{Ad}(th_r) = h_r(\exp(t)), \quad t \in p\mathbb{Z}_p, r \in \Pi.$$

Hence $\text{Ad}(pu\mathbb{Z}_p) \subseteq G$ for all $u \in B$. The set $p\mathcal{B}$ is a \mathbb{Z}_p-basis for pX_{Z_p} and hence a topological generating set for Y by Theorem 9.8 of [5]. By Proposition 3.7 of [5], Y is equal to the product of the procyclic subgroups $pu\mathbb{Z}_p$ as u ranges over B. Hence $N \subseteq G$.

Now, let $r, s \in X, t \in \mathbb{Z}_p$ and $u \in p\mathbb{Z}_p$. By the Steinberg relations, we have

$$x_r(t)x_s(u)x_r(t)^{-1} = x_s(u). \prod_{i,j > 0} x_{ir^+js}(C_{ijrs}t^i u^j) \in N$$

and

$$x_r(t)h_s(\exp(u))x_r(t)^{-1} = h_s(\exp(u))x_r(\exp(-Ar,u)t)x_r(-t) \in N$$

since $C_{ijrs}t^i u^j \in p\mathbb{Z}_p$ and $\exp(-Ar,u) - 1 \in p\mathbb{Z}_p$, whenever $u \in p\mathbb{Z}_p$.

Hence $N \trianglelefteq G$, as required. \hfill \Box

Theorem 3.14. Let G, N be as in Lemma 3.13. There exists a commutative diagram of group homomorphisms:

$$
\begin{array}{cccc}
G & \overset{\alpha}{\longrightarrow} & X(F_p) & \overset{\iota}{\longrightarrow} & \text{Aut}(X_{F_p}) \\
\beta \downarrow & & & \downarrow \phi^* \\
\text{Aut}(N) & \overset{\pi}{\longrightarrow} & \text{Out}(N) & \overset{\gamma}{\longrightarrow} & \text{Aut}(N/N_2)
\end{array}
$$

Proof. We begin by defining all the relevant maps. Any automorphism f of X_{Z_p} must fix pX_{Z_p} and hence induces an automorphism $\alpha(f)$ of $X_{F_p} \cong X_{Z_p}/pX_{Z_p}$. It’s clear from the definition of the Chevalley groups that $\alpha(x_r(t)) = x_r(\bar{t})$ where $\bar{t} : \mathbb{Z}_p \to F_p$ is reduction mod p and that α is a surjection.

Since Ad is an isomorphism of Y onto N, N is a uniform pro-p group, and we have an F_p-linear bijection $\varphi : X_{F_p} \to N/N_2$ given by $\varphi(x) = \text{Ad}(px)N_2$, where $\varphi : X_{Z_p} \to X_{F_p}$ is the natural map. This induces an isomorphism $\varphi^* : \text{Aut}(X_{F_p}) \to \text{Aut}(N/N_2)$ given by $\varphi^*(f) = \varphi f \varphi^{-1}$.

We have observed in the remarks preceding Lemma 3.11 that $\text{Out}(N)$ acts naturally on N/N_2; we denote this action by γ. By Lemma 3.13 N is normal in G, and we denote the conjugation action of G on N by β.

15
Finally, \(\iota \) is the natural injection of \(X(F_p) \) into \(\text{Aut}(X_{E_p}) \) and \(\pi \) is the natural projection of \(\text{Aut}(N) \) onto \(\text{Out}(N) \).

It remains to check that \(\varphi^* \iota \alpha = \gamma \pi \beta \). It is sufficient to show \(\varphi^* \iota \alpha(x_r(t)) = \gamma \pi \beta(x_r(t)) \) for any \(r \in X \) and \(t \in \mathbb{Z}_p \). We check these maps agree on the basis \(\{ \text{Ad}(pu).N_2 : u \in B \} \) of \(N/N_2 \). On the one hand, we have

\[
\varphi^* \iota \alpha(x_r(t))(\text{Ad}(pe_s)N_2) = \varphi^*(x_r(\overline{t}))(\text{Ad}(pe_s)N_2) = \varphi(x_r(\overline{t})(e_s)) = \varphi(\sum_{i=0}^{b} M_{r,s,i} t^i e_{ir+s}) = \prod_{i=0}^{b} \text{Ad}(pM_{r,s,i} t^i)N_2 = \prod_{i=0}^{b} x_{ir+s}(pM_{r,s,i} t^i)N_2, (\dagger)
\]

using the definition of the action of \(x_r(\overline{t}) \) on \(X_{E_p} \). On the other hand,

\[
\gamma \pi \beta(x_r(t))(\text{Ad}(pe_s)N_2) = x_r(t)x_s(p)x_r(-t)N_2 = x_s(p) \prod_{i,j>0} x_{ir+js}(C_{ijr}t^ip^j)N_2,
\]

using the Steinberg relations.

Since \(x_\alpha(p^2) \in N_2 \) for any \(\alpha \in X \), we see that all the terms in the above product with \(j > 1 \) vanish, and the remaining expression is equal to the result of (\dagger), since \(C_{i1r}s = M_{r,s,i} \).

A similar computation shows that \(\varphi^* \iota \alpha(x_r(t)) \) also agrees with \(\gamma \pi \beta(x_r(t)) \) on \(\text{Ad}(ph_s)N_2 \) for any \(s \in \Pi \), and the result follows. \(\square \)

The above theorem shows that the action of \(\text{Out}(N) \) on \(N/N_2 \) which was of interest in the preceding section is linked to the natural action of \(X(F_p) \) on \(X_{E_p} \).

Since \(\alpha \) is surjective, we see that if \(c_r \) generates \(X_{E_p} \) as an \(F_p[X(F_p)] \)-module, then \(\text{Ad}(pe_r)N_2 \) generates \(N/N_2 \) as an \(F_p[\text{Out}(N)] \)-module. We drop the bars in the following proposition.

Proposition 3.15. Suppose \(p \geq 5 \) and let \(R = F_p[X(F_p)] \). Then \(X_{E_p} = R.e_r \) for any \(r \in X \).

Proof. This is probably well known and is purely a matter of computation. Let \(W \) denote the Weyl group of \(X \).
Note that \((x_{-r}(1) + \eta_{r,r}n_r - 1).e_r = h_{-r} \in R.e_r\), whence \(h_r = -h_{-r} \in R.e_r\) also.

By Proposition 2.1.8 of [3], we can choose \(w \in W\) such that \(w(r) \in \Pi\). Hence \(n_w.h_r = h_{w(r)} \in R.e_r\).

Let \(\alpha, \beta\) be adjacent fundamental roots. Then \(n_{\alpha}.h_{\beta} = h_{\alpha}(\beta) = h_{\beta} - A_{\beta\alpha}h_{\alpha}\) where \(A_{\beta\alpha} = -1, -2\) or \(-3\). The condition on \(p\) implies that if \(h_{\beta} \in R.e_r\) then \(h_{\alpha} \in R.e_r\) also.

Since \(X\) is indecomposable, \(h_{\alpha} \subseteq R.e_r\) for any \(\alpha \in \Pi\). Since the fundamental coroots span the Cartan subalgebra, \(h_{s} \in R.e_r\) for any \(s \in X\). Finally. \(x_{s}(1).h_{s} = h_{s} - 2e_{s}\), whence \(e_{s} \in R.e_r\) for any \(s \in X\), since \(p \neq 2\). Since \(\{e_{s}, h_{r} : s \in X, r \in \Pi\}\) is a basis for \(X_{F_{p}}\), the result follows. \(\Box\)

The condition on \(p\) in the above proposition can be relaxed somewhat - it might even be the case that it can be dropped altogether. Since this is a small detail of no interest to us, we restrict ourselves to the case \(p \geq 5\).

We can finally provide a proof of our main result.

Proof of Theorem B. In view of Theorem C and Lemma 2.1, it is sufficient to prove that

\[
\dim \mathfrak{b} + \dim \mathfrak{t} \leq K(\Omega G) \leq \dim \mathfrak{g} - 1.
\]

Note that the lower bound on \(K(\Omega G)\) follows from Proposition 3.4 and Theorem A.

Let \(X\) be the root system of \(\mathfrak{g}\); thus \(\mathfrak{g} = X_{Q_{p}}\). Since \(X\) is not of type \(A_{1}\) by assumption on \(\mathfrak{g}\), we can find two roots \(r, s \in X\) such that \(r + s \in X\) but \(r + 2s, 2r + s \notin X\); it’s then easy to see that the root spaces of \(r\) and \(s\) generate a subalgebra of \(\mathfrak{g}\) isomorphic to \(h_{3}\) with centre \(Q_{p}e_{r+s}\).

Let \(N\) be the uniform pro-\(p\) group appearing in the statement of Theorem 3.14. By construction, \(\mathfrak{g}\) is the Lie algebra of \(N\). By Proposition 3.15 and the remarks preceding it, we see that \(Ad(p_{r+s})N_{2} \in N/N_{2}\) generates the \(F_{p}[Out(N)]\)-module \(N/N_{2}\). Hence \(K(\Omega N) \leq \dim \mathfrak{g} - 1\) by Theorem 3.12.

Since the Lie algebra of \(G\) is \(\mathfrak{g} = Q_{p}L_{G} = Q_{p}L_{N}\), we see that \(N \cap G\) is an open subgroup of both \(N\) and \(G\), whence \(K(\Omega G) = K(\Omega N) \leq \dim \mathfrak{g} - 1\), as required. \(\Box\)

Proof of Corollary B. It is readily seen that \(G\) is a uniform pro-\(p\) group with \(Q_{p}\)-Lie algebra \(\mathfrak{sl}(Q_{p})\) which is split simple over \(Q_{p}\). We have observed in Lemma 2.1 that \(\Lambda_{G}\) is a local right Noetherian ring whose Jacobson radical satisfies the right Artin Rees Property, and that \(\operatorname{gld}(\Lambda_{G}) = \dim \mathfrak{g} + 1 = 9\).
If \(b \) and \(t \) denote the Borel and Cartan subalgebras of \(g \), then \(\dim b = 5 \) and \(\dim t = 2 \). The result follows from Theorems B and C.

References

