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Abstract. Using Beilinson-Bernstein localisation, we give another proof of

Levasseur’s theorem on the Krull dimension of the enveloping algebra of a
complex semisimple Lie algebra. The proof also extends to the case of affinoid

enveloping algebras.

1. Introduction

1.1. Krull dimension of classical enveloping algebras. Let g be a finite di-
mensional complex Lie algebra, and let U(g) be its enveloping algebra. The Krull-
(Gabriel-Rentschler) dimension K(U(g)) of U(g) is a non-negative integer bounded
above by dim g that gives a rough measure of how close U(g) is to being commu-
tative; for example, this upper bound is attained whenever g is solvable, but in
general K(U(g)) is strictly smaller than dim g.

The problem of showing that K(U(g)) is equal to the dimension of a Borel
subalgebra b of g when g is semisimple was considered by Paul Smith in [21], [22]
and has been open until relatively recently. In 1981, Thierry Levasseur made the
observation [15] that if G is the semisimple simply-connected complex algebraic
group with Lie algebra g and U is a maximal unipotent subgroup of G, then the
Krull dimension of U(g) is bounded above by the Krull dimension of the ring
of global differential operators D(X) on the “basic affine space” X = G/U . The
problem with this strategy is that X is only quasi-affine, and that D(X) = D(X) for
some singular affine variety X. The algebra of differential operators on a singular
variety can behave rather badly: for example, it need not even be Noetherian.
Levasseur [16] was eventually able to deduce that K(U(g)) = dim b from deep
work of Bezrukavnikov, Braverman and Positselskii [10], which established that
D(G/U) is Noetherian, and even has finite self-injective dimension. This algebra
was subsequently studied in more depth by Levasseur and Stafford [17].

1.2. Another approach. In this paper, we give another proof of the inequality
K(U(g)) 6 dim b, using Beilinson-Bernstein localisation [5]. Let B be a Borel
subgroup of G containing U , and let ξ : G/U → G/B the natural projection. Then

ξ is a Zariski locally trivial H := B/U -torsor, and D̃ := (ξ∗DG/U )H is a sheaf of
“enhanced” differential operators on the flag variety G/B. Letting V1, . . . , Vm be
the Weyl-group translates of a big cell in G/B, the infinitesimal action of g on G/B
gives an algebra homomorphism

U(g) −→ ⊕mi=1D̃(Vi),
1
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and each D̃(Vi) is a polynomial algebra in dimH variables over a Weyl algebra An,
where n = dimVi = dimG/B = dimU . An application of Bernstein’s Inequality
shows that the Krull dimension of this algebra is dimU + dimH = dim b, so we

would be done if we knew that ⊕mi=1D̃(Vi) was a faithfully flat U(g)-module. This
is in fact not the case (see Example 4.4), but using Beilinson-Bernstein localisation
it is still possible to show that there is a morphism from the lattice of left ideals

in U(g) to the corresponding lattice in ⊕mi=1D̃(Vi) which preserves strict inclusions.
This is sufficient for the intended application — see Corollary 4.3.

1.3. Affinoid enveloping algebras. Recently a new class of non-commutative
Noetherian rings has emerged from the study of non-commutative Iwasawa algebras
[2]. Let R be a complete discrete valuation ring with field of fractions K, let π ∈ R
generate the unique maximal ideal of R, and let g be an R−Lie algebra, free of
finite rank over R. Form the π-adic completion of the R-enveloping algebra U(g)
of g, and then invert π; the result is the affinoid enveloping algebra

Û(g)K :=
(

lim
←−

U(g)/πaU(g)
)
⊗R K.

For example when g = Rn is abelian, its affinoid enveloping algebra Û(g)K can
be identified with the Tate algebra K〈x1, . . . , xn〉 consisting of formal power series∑
α∈Nd λαxα ∈ K[[x1, . . . , xn]] such that λα converges to zero in K as α1 + . . .+αn

approaches infinity.

1.4. Main result. We may form the affinoid enveloping algebra of anyR-Lie lattice
in a finite dimensional K-Lie algebra. As one may expect, “canonical” lattices
arising from semisimple algebraic groups are better behaved than others, so we
restrict our attention to these lattices. Our main result, Theorem 4.3, reads as
follows.

Theorem. Let G be a connected, simply connected, split semisimple, affine alge-
braic group scheme over R, let B be a closed and flat Borel R-subgroup scheme of
G, and let g be the Lie algebra of G. Suppose that the characteristic of K is zero,
the residue characteristic p of R is very good for G and that n > 0. Then

K
(

̂U(πng)K

)
6 dim B.

We refer the reader to [2, §6.8] for a precise definition of what it means for a
prime number p to be a very good prime for G and simply remark here that this
condition is satisfied by any p > 5 if G is not of type A. Both this theorem and
its classical analogue follow from a general result, Theorem 2.6. We have carefully
given all the details in the affinoid case, which requires many more technicalities
than the classical enveloping algebra. For this reason, the reader may find it easier
to begin with the remarks following Corollary 4.3.

The interest in Theorem 1.4 is threefold. Firstly, it breaks down completely
if K had positive characteristic, since in this case enveloping algebras are known
to be finite modules over their centre — it is genuinely a mixed characteristic
phenomenon. Secondly, it is nice to have a proof of Levasseur’s theorem using only
the classical Beilinson-Bernstein theorem. However, what is of most interest is to
contrast affinoid enveloping algebras with Iwasawa algebras. When R = Zp, the

affinoid enveloping algebra ̂U(pn−1g)Qp arises as a microlocalisation of the Iwasawa
algebra QpGn of the n-th congruence kernel Gn = ker(G(Zp) → G(Zp/pnZp)) of
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the p-adic Lie group G(Zp), and we expect [3] the Krull dimension of this algebra
to be equal to dimB + dimH. We hope to compute the Krull dimension of QpGn
as a consequence of work in progress [4], that has been ongoing concurrent with [2].

1.5. Acknowledgements. The first author would like to thank the University of
Washington and the Fields Institute for invitations to visit and excellent working
conditions.

2. Localisation and Krull dimension

2.1. Coherently D-acyclic spaces. We refer the reader to [13, §0.5.3.1] for the
definition of coherent D-modules over a sheaf D of not necessarily commutative
rings over a topological space X. We write coh(D) for the abelian category of
coherent sheaves of D-modules on X, and mod(D) for the abelian category of all
sheaves of D-modules.

Recall [2, §5.1] that X is said to be coherently D-acyclic if D is a coherent sheaf of
rings on X and every coherent D-module is Γ(X,−)-acyclic and has coherent global
sections as a D(X)-module. If this is the case, then Γ(X,−) is exact on coherent
D-modules. We say that X is coherently D-affine if X is coherently D-acyclic and
every coherent D-module is generated by its global sections as a D-module. In this
case, Γ(X,−) induces an equivalence of categories between coh(D) and the category
of coherent D(X)-modules — see [2, Proposition 5.1].

2.2. The left ideal sheaf I◦. Let D → D′ be a map of sheaves of rings on X. We
assume throughout §2 that:

(a) X is coherently D′-acyclic,
(b) D′ := Γ(X,D′) is left Noetherian, and is a flat right D := Γ(X,D)-module.

Since we do not consider any other space apart from X in this section, we will
abbreviate Γ(X,M) to Γ(M) for any sheaf M on X.

If I is a left ideal in D, then we define a left ideal sheaf I◦ of D as follows:

I◦ := ker

(
D −→ D ⊗D

D

I

)
.

Equivalently, I◦ is the image of D⊗D I in D under the natural multiplication map.
This left ideal sheaf fits into the short exact sequence

0→ I◦ → D → D ⊗D
D

I
→ 0.

Taking global sections gives a commutative diagram of D-modules with exact rows:

(1) 0 // I //

ϕI

��

D //

��

D
I

//

��

0

0 // Γ(I◦) // Γ(D) // Γ(D ⊗D D
I ).

Since Γ(D) = D by assumption, the middle vertical map is an isomorphism and ϕI
is an injection. Thus we may view Γ(I◦) as a left ideal of D containing I.

Similarly, whenever J is a left ideal in D′, we can define an ideal sheaf

J◦ := ker

(
D′ −→ D′ ⊗D′

D′

J

)
.
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Since D′ is left Noetherian by §2.2(b), D′/J is a finitely presented D′-module. Since

D′ is coherent by §2.2(a) and D′ ⊗D′ − is right exact, it follows that D′ ⊗D′ D
′

J is
a coherent D′-module. Therefore J◦ is also a coherent D′-module. Thus we obtain
a similar diagram of D′-modules:

(2) 0 // J //

ψJ

��

D′ //

��

D′

J
//

��

0

0 // Γ(J◦) // Γ(D′) // Γ(D′ ⊗D′ D
′

J ) // 0

and its bottom row is exact because Γ is exact on coh(D′) by [2, Proposition 5.1].

2.3. Lemma. For every finitely generated D-module M , the natural map

γM : D′ ⊗D M −→ Γ(D′ ⊗D M)

is an isomorphism in coh(D′).

Proof. TheD′-moduleN := D′⊗DM is finitely generated, andD′⊗DM ∼= D′⊗D′N
naturally in M . Now D′ is left Noetherian by §2.2(b) so N is a coherent D′-module.
Since X is coherently D′-acyclic by §2.2(a), the result follows from the proof of [2,
Proposition 5.1]. �

2.4. Since Γ(D) = D, the functor Γ is right adjoint toD⊗D− : mod(D)→ mod(D).
The counit of this adjunction induces a natural transformation

αM : D′ ⊗D M −→ D′ ⊗D Γ(D ⊗D M)

of D′-modules. Since Γ(D′ ⊗D M) is naturally a left Γ(D′) = D′-module, we also
have a natural transformation of D′-modules

βM : D′ ⊗D Γ(D ⊗D M) −→ Γ(D′ ⊗D M).

When M is a finitely generated D-module, αM and βM fit into a commutative
diagram

D′ ⊗D Γ(D ⊗D M)

Γ(D′ ⊗D M)

D′ ⊗D M

γM

αM

βM

where the curved arrow γM is the isomorphism in coh(D′) given by Lemma 2.3.

2.5. Proposition. Let I be a left ideal in D, and suppose that the hypotheses of
§2.2 are satisfied. Then the natural map

1⊗ ϕI : D′ ⊗D I −→ D′ ⊗D Γ(I◦)

is an isomorphism.

Proof. Consider the following diagram of D′-modules:
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D′ ⊗D Γ(I◦) D′ ⊗D Γ(D) D′ ⊗D Γ(D ⊗D D
I )

Γ((D′ ⊗D I)◦) Γ(D′) Γ(D′ ⊗D D
I )

D′ ⊗D I D′ D′ ⊗D D
I

ψ γD γD/I

θ βD βD/I

ι

1⊗ ϕI αD αD/I

The two squares on the top are obtained by applying the functor D′ ⊗D − to the
diagram §2.2(1), and the two squares at the back with curved sides together form a
special case of the diagram §2.2(2) with J := D′⊗D I and ψ = ψD′⊗DI . Thus these
squares commute, and top two rows are exact since D′ is a flat right D-module by
assumption §2.2(b).

The right front square commutes because β is a natural transformation. This
induces the map θ which makes the left front square commute. Note that θ is an
injection because βD is an isomorphism. The middle curved triangle commutes
by §2.4; since ι is an injection, we see that the curved triangle on the left also
commutes:

ψ = θ ◦ (1⊗ ϕI).
But ψ is an isomorphism because γD and γD/I are isomorphisms by Lemma 2.3,
and 1 ⊗ ϕI is injective because ϕI is injective and D′ ⊗D − is exact. Therefore
1⊗ ϕI is an isomorphism. �

2.6. An application to Krull dimension. Now let {V1, . . . , Vm} be an open
cover of X and let U be a subring of D. Then we have a function

% : I 7→ ⊕mi=1Γ(Vi, (D · I)◦)

from the set of left ideals in U to the set of left ideals in the ring ⊕mi=1D(Vi).

Lemma. %(I) ⊆ %(J) whenever I ⊆ J are left ideals in U .

Proof. Clearly D · I ⊆ D · J . There is a commutative diagram with exact rows

0 // (D · I)◦ //

��

D // D ⊗D D
D·I

//

��

0

0 // (D · J)◦ // D // D ⊗D D
D·J

// 0

inducing an injective map (D · I)◦ ↪→ (D ·J)◦ of left ideal sheaves of D. Now apply
the left exact functor ⊕mi=1Γ(Vi,−). �

Theorem. Let D be a coherent sheaf of rings on X, let {V1, . . . , Vm} be an open
cover of X, and let U be a subring of D = Γ(X,D). Suppose that

(1) D is left Noetherian, and a faithfully flat right U -module,
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(2) each Vi is coherently D-affine,
(3) for any simple left U -module M there exists a map D → D′ such that

(a) X is coherently D′-acyclic,
(b) D′ := Γ(X,D′) is left Noetherian, and a flat right D-module,
(c) D′ ⊗U M 6= 0.

Then I
%7→ ⊕mi=1Γ(Vi, (D · I)◦) preserves strict inclusions, and consequently

K(U) 6 K(⊕mi=1D(Vi)).

Proof. Let I ⊂ J be two left ideals in U . Assumption (1) forces U to be left
Noetherian, so we may assume that M := J/I is a simple U -module. Since D is
a faithfully flat right U -module by (1), N := D · J/D · I ∼= D ⊗U M is non-zero.
Using (3), choose D → D′ such that D′ ⊗U M 6= 0. By Proposition 2.5,

D′ ⊗D
Γ((D · J)◦)

Γ((D · I)◦)
∼= D′ ⊗D

D · J
D · I

= D′ ⊗D N ∼= D′ ⊗U M 6= 0

so (D · I)◦ ⊂ (D · J)◦. Since D is left Noetherian by (1), (D · I)◦ is the image of a
morphism between two coherent D-modules and is therefore a coherent D-module.
Since {V1, . . . , Vm} is an open cover of X, (D · I)◦|Vj ⊂ (D · J)◦|Vj for some j. But

Vj is coherently D-affine by (2), which implies that Γ(Vj ,−) is exact and faithful
on coherent DVj -modules by [2, Proposition 5.1]. Therefore

%(I) = ⊕mi=1Γ(Vi, (D · I)◦) ⊂ ⊕mi=1Γ(Vi, (D · J)◦) = %(J)

as claimed. The last statement follows from [19, Proposition 6.1.17(ii)] applied to
the poset map % with γ = δ = 0. �

3. The sheaf
̂̃Dn,K on the flag variety

Throughout, we will work over a complete discrete valuation ring R with uni-
formizer π, residue field k of characteristic p > 0, and field of fractions K. We
begin by briefly recalling relevant definitions and notation from [2].

3.1. Crystalline differential operators on the flag variety. Let X be a
scheme over Spec(R) which is smooth, separated and locally of finite type. The
sheaf of crystalline differential operators D on X [2, §4.2] is the sheaf of associative
R-algebras generated by O and the tangent sheaf T , subject only to the relations

• f∂ = f · ∂ and ∂f − f∂ = ∂(f) for each f ∈ O and ∂ ∈ T ;
• ∂∂′ − ∂′∂ = [∂, ∂′] for ∂, ∂′ ∈ T .

Let G be a connected, simply connected, split semisimple, affine algebraic group
scheme over R. Let B be a closed and flat Borel R-subgroup scheme of G, let N be
its unipotent radical and let H := B/N be the abstract Cartan group. Let g, b, n
and h be the corresponding R-Lie algebras.

Let B = G/B be the flag variety and B̃ = G/N the base affine space of G. The

natural projection ξ : B̃ → B is a Zariski locally trivial H-torsor, and we define

D̃ := (ξ∗DB̃)H

to be the relative enveloping algebra of ξ. We write S for the basis of B consisting
of open affine subschemes V on which ξ is trivial — see [2, §4.6] for more details.
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3.2. The Harish-Chandra homomorphism. Since our group G is split by as-
sumption, we can find a Cartan subgroup T of G complementary to N in B. Let

i : T
∼=−→ H denote the natural isomorphism, and let i : t

∼=−→ h be the induced
isomorphism between the corresponding Lie algebras. The adjoint action of T on
g induces a root space decomposition

g = n⊕ t⊕ n+

and we will regard n, the Lie algebra of N, as being spanned by negative roots.
This decomposition induces an isomorphism of R-modules

U(g) ∼= U(n)⊗ U(t)⊗ U(n+)

and a direct sum decomposition

U(g) = U(t)⊕
(
nU(g) + U(g)n+

)
.

Now the adjoint action of the group G induces a rational action of G on U(g) by
algebra automorphisms, so we may consider the subring U(g)G of G-invariants. We
call the composite of the natural inclusion of U(g)G ↪→ U(g) with the projection
U(g)� U(t) onto the first factor defined by this decomposition the Harish-Chandra
homomorphism:

φ : U(g)G −→ U(t).

Lemma. Let W be the Weyl group of G, and suppose that p is a very good prime
for G. Then grU(t) is a free graded gr(U(g)G)-module of rank |W| via grφ.

Proof. There is an analogous factorisation S(g) ∼= S(n) ⊗ S(t) ⊗ S(n+), and a
corresponding decomposition S(g) = S(t) ⊕ (nS(g) + S(g)n+). Let ψ : S(g)G →
S(t) be the composition of the inclusion S(g)G ↪→ S(g) with the projection S(g)�
S(t) along this decomposition. Then

grφ = ψ.

It has been shown in [2, Proposition 6.9] that ψ is injective, and that the image of
ψ is precisely the ring of invariants S(t)W. Since p is a very good prime, the result
now follows from [11, Corollaire du Théorème 2 and Théorème 2(c)]. �

3.3. Deformations. Let A be a positively Z-filtered R-algebra with F0A an R-
subalgebra of A. Recall [2, §3.5] that A is said to be a deformable R-algebra if grA
is a flat R-module. A morphism of deformable R-algebras is an R-linear filtered
ring homomorphism. The n-th deformation of A is

An :=
∑
i>0

πinFiA ⊆ A.

This is actually an R-subalgebra of A. It becomes a deformable R-algebra when
we equip An with the subspace filtration arising from the given filtration on A, and
multiplication by πin on graded pieces of degree i extends to a natural isomorphism
of graded R-algebras

σA : grA
∼=−→ grAn

by [2, Lemma 3.5]. The assignment A 7→ An is functorial in A.

Lemma. Let B
α→ A and B

γ→ C be morphisms of deformable R-algebras with
central images. Suppose that grC is a free graded grB-module via gr γ. Equip
A⊗B C with the tensor filtration. Then
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(a) there is a natural isomorphism grA⊗grB grC
∼=−→ gr(A⊗B C),

(b) A⊗B C is a deformable R-algebra,
(c) there is a natural isomorphism of deformable R-algebras

An ⊗Bn Cn
∼=−→ (A⊗B C)n.

Proof. (a) This follows from [18, I.6.14].
(b) Since grC is a free graded grB-module, grA ⊗grB grC is free as a grA-

module. Since A is deformable, grA is flat over R and therefore grA⊗grB grC is
also flat over R. Now apply part (a).

(c) There are natural maps A −→ A ⊗B C and C −→ A ⊗B C of deformable
R-algebras which send a ∈ A to a⊗1 and c ∈ C to 1⊗c, respectively. Applying the
deformation functor to these maps, we obtain a filtered R-algebra homomorphism
An ⊗R Cn → (A⊗B C)n which descends to a filtered R-algebra homomorphism

θ : An ⊗Bn Cn −→ (A⊗B C)n.

The associated graded of this map fits into the following commutative diagram:

gr(An ⊗Bn Cn)
gr θ // gr(A⊗B C)n

grAn ⊗grBn grCn

OO

grA⊗grB grC
σA⊗σC
oo // gr(A⊗B C)

σA⊗BC

OO

where all the other maps are isomorphisms either by part (a) above or by [2, Lemma
3.5]. Hence θ is an isomorphism. �

Combining this result together with Lemma 3.2, we obtain the following

Corollary. Suppose that p is a very good prime for G. Then

(a) U(g)⊗U(g)G U(t) is a deformable R-algebra,
(b) its associated graded is isomorphic to S(g)⊗S(g)G S(t), and

(c)
(
U(g)⊗U(g)G U(t)

)
n
∼= U(g)n ⊗(U(g)G)n U(t)n for all n > 0.

We will assume from now on that p is a very good prime for G.

3.4. π-adic completions. If B is a deformable R-algebra, B̂ := lim
←−

B/πaB will

denote its π-adic completion. Recall almost commutative affinoid K-algebras from
[2, §3.8]. Such an algebra A has a double associated graded ring Gr(A); when

A = B̂n,K = B̂n ⊗R K

for some deformable R-algebra B, [2, Corollary 3.7] tells us that Gr(A) can be
computed as follows:

Gr(A) = Gr(B̂n,K) ∼= grB/π grB.

In this way, we obtain three examples of almost commutative affinoid K-algebras:

U := ̂U(g)n,K , Z := ̂U(g)Gn,K and Z̃ = Û(t)n,K

by applying this process to the algebras U(g)n, (U(g)G)n and U(t)n, respectively.

Note that Z̃ becomes a Z-module via the completed, deformed, Harish-Chandra

homomorphism φ̂ : Z → Z̃ — see [2, §9.3].
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Lemma. U ⊗Z Z̃ is an almost commutative affinoid K-algebra, and there is a
natural isomorphism

Gr(U ⊗Z Z̃) ∼= S(gk)⊗S(gk)Gk S(tk).

Proof. Let B := U(g)⊗U(g)G U(t). Then B is a deformable R-algebra and

Bn ∼= U(g)n ⊗(U(g)G)n U(t)n

by Corollary 3.3. So B̂n,K is an almost commutative affinoid K-algebra, with

Gr(B̂n,K) ∼= grB/π grB

by [2, Corollary 3.7]. Now grB ∼= S(g) ⊗S(g)G S(t) by Corollary 3.3(b) and

S(g)G/πS(g)G ∼= S(gk)Gk by [2, Proposition 6.9], so

Gr(B̂n,K) ∼= grB/π grB ∼= S(gk)⊗S(gk)Gk S(tk).

On the other hand, it follows from Lemma 3.2 and [2, Lemma 3.5] that U(t)n is
a finitely generated (U(g)G)n-module via φn, so we may apply [2, Lemma 6.5] to
deduce that

B̂n ∼=
(
U(g)n ⊗(U(g)G)n U(t)n

)̂ ∼= Û(g)n ⊗ ̂(U(g)G)n
Û(t)n.

Thus U ⊗Z Z̃ ∼= B̂n,K is also an almost commutative affinoid K-algebra, and

Gr(U ⊗Z Z̃) ∼= Gr(B̂n,K) ∼= S(gk)⊗S(gk)Gk S(tk) as claimed. �

3.5. The sheaf D̃n. The actions of G and H = B/N on B̃ = G/N can be
differentiated to obtain a commutative diagram

U(g)G

��

φ // U(t)

j◦i
��

U(g)
U(ϕ)

// D̃

of deformable R-algebras — see [2, Lemma 4.9].

Fix the deformation parameter n, and let D̃n be the sheafification of the presheaf

obtained by postcomposing D̃ with the deformation functor A → An. Applying
the deformation functor produces the commutative diagram

(U(g)G)n

��

φn // U(t)n

(j◦i)n
��

U(g)n
U(ϕ)n

// D̃n

and a homomorphism

ϕ̃n : U(g)n ⊗(U(g)G)n U(t)n −→ D̃n.
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3.6. Global sections of
̂̃Dn,K . Let

̂̃Dn := lim
←−
D̃n/πaD̃n be the π-adic completion

of D̃n and let

D :=
̂̃Dn,K :=

̂̃Dn ⊗R K
be the sheaf of K-algebras on B obtained from

̂̃Dn by inverting π. The abbreviation
D will be useful because we will need to pass to further completions of this sheaf.

The R-algebra homomorphism ϕ̃n : U(g)n ⊗(U(g)G)n U(t)n −→ D̃n defined in §3.5
extends to a K-algebra homomorphism

Φ : U ⊗Z Z̃ −→ D .

Proposition. The map Φ : U ⊗Z Z̃ −→ Γ(B,D) is an isomorphism.

Proof. Let {V1, . . . , Vm} be an S-cover of B, and let V :=
∐
Vi. Since each Vi is

in S, it follows from [2, Proposition 5.10(a)] that D(V ) ∼= ̂D̃(V )n,K is an almost

commutative affinoid K-algebra, and Gr(D(V )) ∼= O(T̃ ∗Vk). There is a complex

0→ U ⊗Z Z̃
Φ−→ D(V ) −→ D(V ×B V )

of almost commutative affinoid K-algebras, and it is enough to show that this
complex is exact. Passing to the double associated graded and applying Lemma
3.4, we obtain the complex

0→ S(gk)⊗S(gk)Gk S(tk)→ O(T̃ ∗Vk)→ O( ˜T ∗(V ×B V )k).

Since p is a very good prime for G, this complex was shown to be exact in the proof
of [9, Proposition 3.4.1]. �

Corollary. Γ(B,D) is a faithfully flat right U -module.

Proof. Since Γ(B,D) ∼= U⊗Z Z̃ by the Proposition, this follows from [2, Proposition

9.3], where it is shown that Z̃ is free of rank |W| as a module over Z. �

3.7. The J-adic associated graded ring. If J is a centrally generated ideal of
a ring A, we denote the associated graded ring of A with respect to the J-adic
filtration by grJ A. Thus

grJ A :=
⊕
m>0

Jm

Jm+1
.

Lemma. Let A be a ring, and let Z be a central subring of A. Suppose that A is
a flat Z-module and let J be an ideal of Z. Then

grJAA
∼= grJ Z ⊗

Z/J

A

JA
.

Proof. Fix m ∈ N. Since A is a flat Z-module by assumption and 0→ Jm → Z →
Z/Jm → 0 is exact, there is a short exact sequence

0→ Jm ⊗Z A→ Z ⊗Z A→ (Z/Jm)⊗Z A→ 0

of A-modules. Therefore Jm ⊗Z A ∼= JmA. Applying flatness again to the short
exact sequence 0 → Jm+1 → Jm → Jm/Jm+1 → 0 produces the short exact
sequence

0→ Jm+1A→ JmA→ (Jm/Jm+1)⊗Z A→ 0.
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Since Jm/Jm+1 is killed by J , we obtain isomorphisms

(JA)m

(JA)m+1
=

JmA

Jm+1A
∼=

Jm

Jm+1
⊗Z A ∼=

Jm

Jm+1
⊗
Z/J

A

JA

for all m ∈ N and the result follows. �

We will apply this Lemma in the following two cases:

Proposition. (a) D(V ) is a flat Z̃-module for any V ∈ S.

(b) D(B) is a flat Z̃-module.

Proof. (a) Since Z̃ → D(V ) is a map of almost commutative affinoid K-algebras,
by applying [20, Proposition 1.2] twice, it is enough to show that Gr(D(V )) is a

flat Gr(Z̃)-module. Now Gr(Z̃) ∼= S(tk) and Gr(D(V )) ∼= O(T̃ ∗Vk) by [2, Propo-

sition 5.10(a)]. Since V trivialises the torsor ξ : B̃ → B, there is an isomorphism

O(T̃ ∗V ) ∼= O(T ∗V )⊗RS(t), so O(T̃ ∗Vk) ∼= O(T ∗Vk)⊗kS(tk) is a flat S(tk)-module.

(b) Since D(B) ∼= U ⊗Z Z̃ by Proposition 3.6, it is enough to show that U is
a flat Z-module. Now Gr(U) ∼= S(gk) and Gr(Z) ∼= S(gk)Gk by the proof of [2,
Proposition 9.3], so again by [20, Proposition 1.2], it is enough to check that S(gk)
is a flat S(gk)Gk -module. But ψk : S(gk)Gk → S(tk) is an embedding with image
S(tk)Wk by [2, Proposition 6.9] and S(tk) is a free graded S(tk)Wk -module of rank
|W| by [11, Théorème 2(c)], so S(gk) is actually a free graded S(gk)Gk -module by
[7, Proposition 3.1]. �

3.8. The completion of D at a maximal ideal of the centre. Let t1, . . . , tl ∈ h
be the simple coroots corresponding to the simple roots in t∗K given by the adjoint
action of t on n+.

Definition. For any λ ∈ HomR(πnt, R), let mλ be the ideal of Z̃ = Û(t)n,K
generated by the elements ti − λ(ti) for all i = 1, . . . , l, and let

D̂ := lim
←−

D/mnλD

be the mλ-adic completion of D .

Proposition. Let V ∈ S.

(a) D̂(V ) ∼= D̂(V ).

(b) D̂(V ) is Noetherian.

(c) D̂(V ′) is a flat right D̂(V )-module for all V ′ ∈ S contained in V .

Proof. (a) Since V is coherently D-affine by [2, Theorem 5.13], Γ(V,−) is exact on

coherent D-modules. Since Z̃ is Noetherian,

(D/maλD)(V ) ∼= D(V )/maλD(V )

for all a > 1 by [2, Lemma 5.2]. Hence D̂(V ) is the mλ-adic completion of D(V ).

(b) D(V ) is Noetherian by [2, Proposition 5.10]. Hence D̂(V ) ∼= D̂(V ) is also
Noetherian by [8, §3.2.3(vi)].

(c) By part (a), the associated graded ring of D̂(V ) with respect to the mλ-adic
filtration is isomorphic to gr D(V ). So by part (b) and [20, Proposition 1.2], it is
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enough to prove that gr D(V ′) is a flat right gr D(V )-module. Since D(V ) is flat

as a Z̃-module by Proposition 3.7(a), gr D̂(V ) is isomorphic to

grmλ Z̃ ⊗
Z̃/mλ

D(V )/mλD(V )

by Lemma 3.7. Since Z̃/mλ is a copy of the ground field K, it is enough to show
that D(V ′)/mλD(V ′) is a flat right D(V )/mλD(V )-module. But the proof of [2,
Proposition 6.5(c)] shows that there is an isomorphism between D(V )/mλD(V )

and the algebra ̂D(V )n,K , which is compatible with the restriction maps to the

corresponding algebras over V ′ ⊆ V . The flatness of ̂D(V ′)n,K as a right ̂D(V )n,K-
module in turn follows from the proof of [2, Proposition 5.7(d)]. �

Corollary. D̂ is coherent.

Proof. This follows from [8, Proposition 3.1.1] and the Proposition above. �

3.9. Global sections of D̂. Recall the central reduction D̂λn,K of the sheaf D =

̂̃Dn,K defined in [2, §6.5].

Proposition. D̂(B) is isomorphic to the mλ-adic completion of D(B).

Proof. Let {V1, . . . , Vm} be an S-cover of B, and let V :=
∐
Vi. The sequence

0→ D(B)→ D(V ) −→ D(V ×B V )

is exact, and because D̂(V ) ∼= D̂(V ) by Lemma 3.8(a) it will be enough to prove
that the associated graded of this sequence with respect to the mλ-adic filtration

is exact. Now D(B) ∼= U ⊗Z Z̃ by Proposition 3.6, so each term in this sequence is

flat as a Z̃-module by Proposition 3.7. So by Lemma 3.7, this associated graded is

isomorphic to the tensor product of grmλ Z̃ over Z̃/mλ with the complex

0→ D(B)

mλD(B)
→ D(V )

mλD(V )
→ D(V ×B V )

mλD(V ×B V )
.

Since Z̃/mλ is a copy of the field K, it is enough to prove that this complex is
exact. Now [2, Theorem 6.10(a) and (b)] tell us that

D(B)

mλD(B)
∼= (U ⊗Z Z̃)⊗Z̃ (Z̃/mλ) ∼= U ⊗Z (Z̃/mλ) ∼= D̂λn,K(B),

and [2, Proposition 6.5(c)] tells us that

D(V ′)⊗Z̃ (Z̃/mλ) ∼= D̂λn,K(V ′) for any V ′ ∈ S.
This complex can thus be identified with

0→ D̂λn,K(B)→ D̂λn,K(V )→ D̂λn,K(V ×B V ),

and is therefore exact. �

Corollary. D̂(B) is Noetherian, and a flat right D(B)-module.

Proof. The algebra D(B) is isomorphic to U ⊗Z Z̃ by Proposition 3.6, which is an
almost commutative affinoid K-algebra by Lemma 3.4. It is therefore Noetherian.
Now apply the Proposition together with [8, §3.2.3 (iv) and (vi)]. �
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3.10. The Beilinson-Bernstein theorem for D̂. We assume from now on that
K has characteristic zero. Let ω1, . . . , ωl ∈ h∗K be the system of fundamental weights
corresponding to the coroots {t1, . . . , tl}, and let ρ = ω1 + . . .+ωl. Following [6] we
say that a weight µ ∈ h∗K is dominant if µ(h) /∈ {−1,−2,−3, · · · } for any positive
coroot h ∈ h, and we say that µ is regular if its stabilizer under the action of W
is trivial. Finally, we will say that λ is ρ-dominant if λ + ρ is dominant, and λ is
ρ-regular if λ+ ρ is regular.

Recall [2, §5.1] that if A is a sheaf of rings on B, then we say that S is coherently
A-acyclic, respectively coherently A-affine, if for all U ∈ S, U is coherently A|U -
acyclic, respectively coherently A|U -affine.

Theorem. (a) S is coherently D-affine.

(b) S is coherently D̂-affine.

(c) If λ is ρ-dominant, then B is coherently D̂-acyclic.

(d) If λ is ρ-dominant and ρ-regular, then B is coherently D̂-affine.

Proof. (a) This is [2, Theorem 5.13].
(b) D(V ) is Noetherian for all V ∈ S by [2, Proposition 5.10(a)], S is coherently

D-affine by part (a), and D̂ is coherent by Corollary 3.8. Therefore S is coherently

D̂-affine by [2, Theorem 5.5].
(c),(d) By [2, Proposition 6.12], B is coherently D-acyclic whenever λ is ρ-

dominant, and it is coherently D-affine if λ is in addition ρ-regular. Since D̂ is

coherent by Corollary 3.8 and D̂(B) is Noetherian by Corollary 3.9, both parts
follow from [2, Theorem 5.5] applied to the topological space B equipped with the
base S ∪ {B}. �

3.11. Base change. Let K ′/K be a finite extension with rings of integers R′/R
and ramification index e, and let B′ := B×R R′, H′ := H×R R′, ξ′ := ξ×R R′ and
h′ := h⊗R R′ be the corresponding base-changed objects.

Let D ′ :=
̂̃Dne,K′ be the sheaf of K ′-algebras on B′ obtained as in §3.6 using

the H′-torsor ξ′ and the deformation parameter ne, and let λ : πnh′ → R′ be

a character. We let D̂ ′ denote the completion of D ′ at the maximal ideal mλ of

Z̃ ′ := ̂U(h′)ne,K defined in §3.8.

Lemma. Let τ : B′ → B denote the natural projection.

(a) Γ(B, τ∗D̂ ′) is isomorphic to the mλ-adic completion of K ′ ⊗K Γ(B,D).

(b) The sheaf of rings τ∗D̂ ′ is coherent.

(c) B is coherently τ∗D̂ ′-acyclic, whenever λ is ρ-dominant.

Proof. (a) Let U ′ := ̂U(g′)ne,K , Z ′ := ̂U(g′)G
′

ne,K and Z̃ ′ := ̂U(t′)ne,K be the

corresponding base-changed objects. Then [2, Lemma 3.9(c) and Lemma 9.5] tell

us that U ′ ∼= K ′ ⊗K U , Z ′ ∼= K ′ ⊗K Z and Z̃ ′ ∼= K ′ ⊗K Z̃, so

D ′(B′) ∼= U ′ ⊗Z′ Z̃ ′ ∼= K ′ ⊗K (U ⊗Z Z̃) ∼= K ′ ⊗K D(B)

by applying Proposition 3.6 twice. Therefore Γ(B, τ∗D̂ ′) = Γ(B′, D̂ ′) is the mλ-adic
completion of D ′(B′) ∼= K ′ ⊗K D(B) by Proposition 3.9.

(b) Let S ′ be the base of open subschemes of B′ that trivialise ξ′, and note that

τ−1(V ) = V ×R R′ is in S ′ whenever V ∈ S. Now Γ(V, τ∗D̂ ′) = Γ(τ−1(V ),D ′) is
left Noetherian by Proposition 3.8(b), and for any open V ′ ∈ S contained in V ,
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Γ(V ′, τ∗D̂ ′) = Γ(τ−1(V ′),D ′) is a flat right Γ(τ−1(V ),D ′)-module by Proposition

3.8(c), so τ∗D̂ ′ is coherent by [8, Proposition 3.1.1].

(c) Let N be a coherent D̂ ′-module. Then Hi(τ−1(V ),N ) = 0 for all i > 0 and
all V ∈ S by Theorem 3.10(b), so Riτ∗N = 0 for all i > 0 by [14, Proposition

III.8.1]. Hence τ∗ is exact on coherent D̂ ′-modules.

Now letM be a coherent A := τ∗D̂ ′-module and let N := D̂ ′⊗τ−1A τ
−1M. We

will show that N is a coherent D̂ ′-module, and that the natural map ηM : M →
τ∗N is an isomorphism. Since these are local properties, we may assume that M
has a finite presentation Ar → As → M → 0. Then D̂ ′

r
→ D̂ ′

s
→ N → 0 is a

presentation for N ; hence N is coherent because D̂ ′ is coherent by Corollary 3.8.

As τ∗ is exact on coherent D̂ ′-modules by the first paragraph, Ar → As → τ∗N → 0
is exact. Hence ηM : M → τ∗N is an isomorphism as claimed, so we may invoke
[14, Exercise III.8.1] to deduce that

Hi(B,M) = Hi(B, τ∗N ) = Hi(B′,N ) for all i > 0.

The result now follows from Theorem 3.10(c) applied to the sheaf D̂ ′ on B′. �

3.12. Lemma. Let M be a simple left U -module, and suppose that n > 0. Then
there exists a finite field extension K ′/K and a ρ-dominant character λ : πnt→ R′

such that if N := K ′ ⊗K Z̃ ⊗Z M , then mλ ·N < N .

Proof. Let M be a simple U -module and let P = AnnZ(M). Since n > 0 by
assumption, the affinoid Quillen Lemma [2, Theorem 9.4] implies that Z/P is finite

dimensional over K. Since Z̃ is a finitely generated Z-module via φ̂, the algebra

Z̃⊗Z Z/P is finite dimensional over K. Using the notation of §3.11, choose a finite
field extension K ′/K large enough so that every maximal ideal of

Z̃ ′/Z̃ ′ · P ∼= K ′ ⊗K Z̃ ⊗Z Z/P

is of the form mλ/Z̃
′ · P for some λ : πnt→ R′, and let Λ ⊂ πnt′∗ be the finite set

of characters obtained in this way. Since φ̂(Z) consists of W-invariant elements of

Z̃ under the dot action, Λ is a union of W-orbits.
Suppose for a contradiction that mλ · N = N for all ρ-dominant λ ∈ Λ. Using

[2, Lemma 9.6], we see that mλ ·N = N for all λ ∈ Λ, and hence mtλ ·N = N for

all λ ∈ Λ and all integers t > 1. Since Z̃ ′/Z̃ ′ · P is finite dimensional, we can find

some t > 1 such that
∏
λ∈Λ mtλ ⊆ Z̃ · P , and therefore P ·N = N . But P ·N = 0

by construction and hence N = 0. On the other hand, Z̃ is a finitely generated free
Z-module by [2, Proposition 9.3], so N is a direct sum of finitely many copies of
M — a contradiction. �

We can now state and prove the main result of this section.

3.13. Theorem. Let {V1, . . . , Vm} be an open S-cover of B, let D :=
̂̃Dn,K and

let U = ̂U(g)n,K . If n > 0 then K(U) 6 K(⊕mi=1D(Vi)).

Proof. We will apply Theorem 2.6 to the sheaf D on B, which is coherent by [2,

Proposition 5.10(c)]. By Proposition 3.6, D := Γ(B,D) is isomorphic to U ⊗Z Z̃
and therefore contains U . We will now verify the hypotheses of Theorem 2.6.
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(1) By Lemma 3.4, D is an almost commutative affinoid K-algebra, so it is
automatically Noetherian — see [2, §3.8]. It is a faithfully flat right U -module by
Corollary 3.6.

(2) S is coherently D-affine by Theorem 3.10(a).
(3) Let M be a simple left U -module. By Lemma 3.12 we can find a finite field

extension K ′/K and a ρ-dominant λ : πnt → R′ such that mλ · N < N where

N = K ′ ⊗K Z̃ ⊗Z M . Let D̂ ′ be the completion of D ′ considered in §3.11, and set

D′ := τ∗D̂ ′.
(a) Since λ is ρ-dominant, B is coherently D′-acyclic by Lemma 3.11(c).
(b) By Lemma 3.11(a), D′ := Γ(B,D′) is the mλ-adic completion of K ′ ⊗K D.

This algebra is left Noetherian and flat over K ′ ⊗K D (and hence also over D) by
[8, §3.2.3(vi), (iv)].

(c) It follows from Proposition 3.6 that N = K ′ ⊗K Z̃ ⊗ZM ∼= K ′ ⊗K D⊗U M .
Now D′ ⊗U M ∼= D′ ⊗K′⊗KD N is the mλ-adic completion of N by [8, §3.2.3(iii)],
and it is non-zero because mλ ·N < N by our choice of λ. �

4. Krull dimension of Extended Tate-Weyl algebras

4.1. The injective dimension of almost commutative affinoid K-algebras.
In this subsection, K can have arbitrary characteristic. Let A be an almost com-
mutative affinoid K-algebra, and let M be a finitely generated A-module. The
characteristic variety of M was defined in [2, §3.3] to be the support

Ch(M) = Supp(Gr(M)) ⊆ Spec(Gr(A))

of the associated double graded module Gr(M) of M with respect to a good double
filtration on M . By definition, the ambient space Spec(Gr(A)) containing these
characteristic varieties is an affine variety of finite type over k.

Lemma. If Spec(Gr(A)) is smooth, then the injective dimension of A is determined
by the characteristic varieties of simple A-modules. More precisely, we have

inj.dim(A) = dim Gr(A)−min
M

dim Ch(M)

where the minimum is taken over all simple A-modules M .

Proof. It is explained in [2, Theorem 3.3] that the grade number

jA(M) := min{j : ExtjA(M,A) 6= 0}

of any finitely generated A-module M can be computed using the characteristic
variety using the formula

jA(M) = dim Gr(A)− dim Ch(M).

It is well-known that inj.dim(A) = maxM jA(M) where the maximum is taken over
all non-zero finitely generated A-modules M , and therefore

inj.dim(A) = dim Gr(A)−min
M

dim Ch(M).

Since dim Ch(N) 6 dim Ch(M) for any quotient N of M , we may as well take the
minimum over all simple A-modules. �
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4.2. Bernstein’s Inequality and Quillen’s Lemma. We return to assuming
that K has characteristic zero. Recall from §3.8 that l = dim T denotes the rank
of G.

Theorem. Let D = D(V ) for some V ∈ S, suppose that n > 0 and that V ∼= AmR
where m = dimB. Then

inj.dim(D) 6 m+ l.

Proof. The double associated graded of D was computed in [2, Proposition 5.10(a)]
as follows:

Gr(D) = Gr(
̂̃Dn,K(V )) ∼= O(T̃ ∗Vk).

Since V trivialises ξ by assumption, it follows from [2, Lemma 4.4] that T̃ ∗V ∼=
T ∗V × h∗, so T̃ ∗V k is smooth. Since we’re assuming that V ∼= AmR , we see that

dim Gr(D) = dim T̃ ∗Vk = 2 dimV + dim h = 2m+ l.

By Lemma 4.1, it is therefore enough to show that dim Ch(M) > m for any simple
D-module M .

Now Z̃ = Û(t)n,K is a central subalgebra of D. Let P = AnnZ̃(M). By the

affinoid Quillen Lemma [2, Corollary 8.6], P has finite codimension in Z̃. Suppose

first that Z̃/P is a copy of K. Then mλ kills M for some character λ ∈ π−nt∗, so M
is a module over D/mλD. It follows from [2, Proposition 6.5(a)] that this algebra

is isomorphic to a Tate-Weyl algebra ̂D(Am)n,K . Since K has characteristic zero
by assumption, we may apply the affinoid Bernstein Inequality, [2, Corollary 7.4].

In the general case, pass to a finite field extension using [2, Proposition 3.9]. �

Corollary. The Krull dimension of D is at most m+ l.

Proof. This follows from the inequality

K(D) 6 inj.dim(D)

which is apparently originally due to Roos — see [1, Corollary 1.3]. �

4.3. Levasseur’s Theorem. We can finally state and prove the main result of
this paper.

Theorem. Let U = ̂U(g)n,K and suppose that n > 0. Then K(U) 6 dim B.

Proof. Let {V1, . . . , Vm} be the W-translates of a big cell in B. Then each Γ(Vi,D)
is a copy of D, so

K(U) 6 ⊕mi=1K(D(Vi)) 6 inj.dim(D(D)) 6 m+ l

by Theorem 3.13 and Corollary 4.2. �

We remark that the reverse inequality K(U) > dimB in Theorem 4.3 can be
established along classical lines, and the restriction n > 0 in the affinoid Quillen
Lemma is not really necessary, and will be removed in a future paper. Levasseur’s
original result immediately follows as a consequence.

Corollary. Let g be a complex semisimple Lie algebra, and let b be a Borel subal-
gebra. Then K(U(g)) 6 dim b.
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Proof. We regard K = C as being complete with respect to the trivial discrete
valuation obtained by setting π = 0. Let the deformation parameter n be equal
to zero. Then U(g)0 is just the enveloping algebra U(g) and the π-adic filtration

on this algebra is trivial, so U(g) is isomorphic to Û(g)0,K . Thus the result would
follow from Theorem 4.3, had the restriction n > 0 not been present. However this
restriction is only needed in the proof to invoke the affinoid Quillen Lemma, which
reduces to the classical Quillen Lemma [12, Proposition 2.6.8] in this case. �

Levasseur’s Theorem can also be deduced directly from Theorem 2.6 as follows.

Take D to be D̃ which is a quasi-coherent sheaf of O-modules on the flag variety;
then (2) is immediate. It is coherent since its associated graded sheaf is Noetherian,

and (1) holds because Γ(D̃) is a finitely generated free U(g)-module of rank |W |.
Finally for (3), every simple U(g)-module has a central character by the classical
Quillen Lemma. Choose a ρ-dominant weight λ that lifts that central character,

and take D′ to be the mλ-adic completion of D̃. Beilinson-Bernstein [6] proved that

the flag variety is coherently D̃/mnλD̃-acyclic for all n > 1, and a straightforward
Mittag-Leffler argument gives the remaining conditions of (3).

4.4. Enhanced localisation is not flat. We conclude by giving an example
which partially justifies the somewhat long argument presented in Theorem 2.6.
Geometrically, this example is plausible because the Grothendieck-Springer resolu-

tion T̃ ∗B → g∗ is not flat.

Example. Let G = SL2 and let V = Spec(R[z]) be a big cell in the corresponding

flag variety P1. Then D̃(V ) is not a flat right U(g)-module.

Proof. Let f, h, e be the standard basis for g and identify D̃(V ) with the polynomial
algebra A1[t] over the first Weyl algebra A1 = R[z; ∂]. The algebra homomorphism
U := U(g)→ A1[t] is given on generators by

f 7→ −∂, h 7→ 2z∂ − t, and e 7→ z2∂ − zt.
Consider the trivial left U -module R. We compute TorU1 (A1[t], R) using the stan-
dard Chevalley complex [23, §7.7]: this Tor group is equal to the middle homology
of the complex

A1[t]⊗ Λ2g
d2−→ A1[t]⊗ g

d1−→ A1[t]

where the maps are given explicitly by

d2(u⊗ f ∧ h) = uf ⊗ h− uh⊗ f − u⊗ 2f
d2(v ⊗ f ∧ e) = vf ⊗ e− ve⊗ f + v ⊗ h
d2(w ⊗ h ∧ e) = wh⊗ e− we⊗ h− w ⊗ 2e

d1(u⊗ x) = ux

for all u, v, w ∈ A1[t] and x ∈ g. So elements in the image of d2 are of the form

(−uh− ve− 2u)⊗ f + (uf + v − we)⊗ h+ (vf + wh− 2w)⊗ e
for some u, v, w ∈ A1[t]. Now

d1(z2 ⊗ f + z ⊗ h− 1⊗ e) = z2(−∂) + z(2z∂ − t)− (z2∂ − zt) = 0;

suppose for a contradiction that z2⊗f+z⊗h−1⊗e is in the image of d2. Equating
the coefficient of e gives elements v, w ∈ A1[t] such that

−1 = vf + w(h− 2) = −v∂ + w(2z∂ − t− 2) = (2wz − v)∂ − w(t+ 2).
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Setting t = −2 now implies that −1 lies in the left ideal A1 · ∂ of the first Weyl
algebra, a contradiction. Therefore TorU1 (A1[t], R) is non-zero. �
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