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Preface. Necessary and sufficient conditions are given for the completed

group algebras of a compact p−adic analytic group with coefficient ring the

p-adic integers or the field of p elements to be prime, semiprime and a domain.

Necessary and sufficient conditions for the localisation at semiprime ideals re-

lated to the augmentation ideals of closed normal subgroups are found. Some

information is obtained about the Krull and global dimensions of the local-

isations. The results extend and complete work of A. Neumann [12] and J.

Coates et al [5].

1. Introduction

1.1. In recent years there has been increasing interest in noncommutative Iwasawa
algebras. These are the completed group algebras

ΛG := lim
←−

Zp[G/U ],

where Zp denotes the ring of p−adic integers, G is a compact p−adic analytic group,
and the inverse limit is taken over the open normal subgroups of G. Closely related
is the epimorphic image ΩG of ΛG,

ΩG := lim
←−

Fp[G/U ],

where Fp is the field of p elements. This increased interest has been driven by
anticipated applications of these rings in number theory and arithmetic algebraic
geometry - see for example [5] and the references there for more details.

1.2. These algebras were first defined and studied by Lazard in his celebrated
paper [9]. There, he characterised compact p−adic analytic groups as precisely
those topological groups containing an open normal uniform pro−p subgroup of
finite index [6, Corollary 8.34]. Uniform pro−p groups are defined at [6, Definition
4.1]. Lazard showed that when G is uniform ΛG and ΩG have the structure of
noncommutative formal power series algebras. In particular, both ΛG and ΩG are
in this case local, meaning that the factor of each by its Jacobson radical is simple
Artinian, [6, Exercise 6.2]. (In fact, ΛG/J(ΛG) ∼= ΩG/J(ΩG) ∼= Fp.) Moreover,
(still assuming that G is uniform), ΛG and ΩG are filtered by descending chains of
ideals, and the associated graded algebras are (commutative) polynomial algebras in
finitely many variables over Fp. It follows that ΛG and ΩG are Noetherian domains
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with good homological properties. A very clear treatment of all this material can
be found in [6].

If G is now any compact p−adic analytic group, with normal uniform open
subgroup U , say, then clearly

(1) ΛG
∼= ΛU ∗ (G/U),

a crossed product of the local Noetherian domain ΛU by the finite group G/U . Thus
J(ΛU ) ⊆ J(ΛG) by [13, Theorem 4.2], and hence ΛG is Noetherian and semilocal -
that is, ΛG/J(ΛG) is semisimple Artinian. Similar remarks apply to ΩG.

1.3. Primeness and semiprimeness. Notwithstanding the results summarised
in (1.2), very little is known about the (2-sided) ideal structure of noncommutative
Iwasawa algebras. The purpose of this paper is to take the initial steps towards
remedying this. Recall that, if G is any group,

∆+(G) = {x ∈ G : |G : CG(x)| < ∞ and o(x) < ∞}.

This is a characteristic locally finite subgroup, generated by all the finite normal
subgroups of G [13, Lemma 5.1]. If G is compact p−adic analytic, then G has
a torsion-free subgroup of finite index, since uniform groups are torsion free, [6,
Theorem 4.5], so that ∆+(G) is finite, the unique maximal finite normal subgroup
of G.

We begin with ΩG. The first two results are the analogues for Iwasawa algebras
of well-known theorems for ordinary group algebras, proved by I. G. Connell and
D. S. Passman in 1963 and 1962 [14, Theorems 4.2.10 and 4.2.13]. The proofs for
Iwasawa algebras are however completely different from those for ordinary group
algebras, relying crucially on the crossed product decomposition (1).

Theorem A. Let G be a compact p-adic analytic group. Then ΩG is prime if and
only if ∆+(G) = 1.

The definition and basic properties of the p-Sylow subgroups of a profinite group
can be found at [20, §2.2].

Theorem B. Let G be a compact p-adic analytic group and let P be a p-Sylow
subgroup of G. The following are equivalent:

(i) ΩG is semiprime;
(ii) ΩP is semiprime;
(iii) ΩP is prime;
(iv) ∆+(P ) = 1;
(v) p - |∆+(G)|.

As we show in Theorem F, it is straightforward to deduce the analogue for ΛG

of Theorem A. The analogue for ΛG of Theorem B, stating that ΛG is always
semiprime for G compact p−adic analytic, was noted in [12] - one simply appeals



PRIMENESS, SEMIPRIMENESS AND LOCALISATION IN IWASAWA ALGEBRAS 3

to the definition of ΛG as a projective limit of ordinary group rings of finite groups,
over a characteristic zero coefficient ring, together with the fact that such group
rings are semiprime.

1.4. Zero divisors. We also characterise those G for which ΩG is a domain. The
corresponding result for ΛG is due to Neumann [12].

Theorem C. Let G be a compact p-adic analytic group. Then ΩG is a domain if
and only if G is torsion free.

1.5. Localisation at augmentation ideals. A semiprime ideal I of the Noe-
therian ring R is said to be right localisable if the subset CR(I) := {c ∈ R :
c + I not a zero divisor in R/I} satisfies the right Ore condition. Left localisable
ideals are defined analogously, and we say that I is localisable if it is right and left
localisable. When the localisation exists, it will be denoted RI ; this is a Noetherian
semilocal ring whose Jacobson radical is IRI . We say that the ideal I satisfies the
right Artin-Rees property if, for every right ideal E of R, there exists n > 1 such
that E ∩ In ⊆ EI. The issue of whether a given ideal is localisable is intimately
connected with the Artin-Rees property - so much so that, following [8], we shall say
that the semiprime ideal I is classically right localisable if it is right localisable and
IRI satisfies the right Artin-Rees property in RI ; of course “right” will be omitted
where appropriate. It may well be that the adjective “classical” is redundant here
- in fact it’s a long-standing question of Jacobson whether the Jacobson radical of
a Noetherian ring always has the Artin-Rees property.

Let G be a compact p-adic analytic group and H a closed normal subgroup of
G. Since any finite normal subgroup of H is contained in ∆+(H) and the product
of two finite normal p′−subgroups of H is again a finite normal p′−subgroup of H,
we see that H has a largest finite normal p′−subgroup, which we will denote by
∆+

p′(H). This subgroup is clearly characteristic in H and hence is normal in G.
Let wH,G denote the kernel of the natural map ΩG → ΩG/H . From our main

result on localisation (Theorem D in (3.1)), we can deduce

Theorem E. Let G be a compact p−adic analytic group and let H be a closed
normal subgroup of G. Suppose that ΩG/H is semiprime. Then the following are
equivalent:

(i) wH,G is localisable;
(ii) wH,G is classically localisable;
(iii) H/∆+

p′(H) is pro−p.

As before, there are versions of Theorems D and E for ΛG also; these are stated
and proved in (4.3). Theorem E is the analogue for compact p−adic groups of
results of J.E. Roseblade and P.F. Smith for ordinary group algebras of polycyclic-
by-finite groups; see [14, Theorem 11.2.15].
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In the case where H is pro−p and G/H ∼= Zp, the localisability of the augmen-
tation ideal vH,G = ker(ΛG → ΩG/H) of ΛG is proved in [5, 2.4,2.6], a result which
prompted the work described in this paragraph. Whereas the methods used in that
paper are module-theoretic, our methods are more ring-theoretic in nature and are
in fact natural extensions of the arguments used by Venjakob in [17, 5.4.1].

There, he proves Theorem E((iii)⇒(i)) and Theorem H((iii)⇒(i)) in the special
cases when H is uniform and G = H ×Zp and when H = Zp and G = H o Zp [17,
Theorem 5.15], and conjectures that these results generalize to the case when H is
p−valued and G/H is torsionfree in [17, Conjecture 5.14].

1.6. Properties of the localisations. In the last section of this paper, we con-
sider the Krull dimension and homological properties of the localisations of ΩG and
ΛG. Let ΩG,H and ΛG,H denote the localisations of ΩG and ΛG at PH and IH ,
respectively. See (3.1) and (4.3) for the relevant definitions; we simply note here
that if H is a pro-p group with ∆+(G/H) = 1 then PH = wH,G and IH = vH,G.

Theorem I. Let G be a compact p-adic analytic group and let H be a closed normal
subgroup of G. Then

(i) K(ΩH) 6 K(ΩG,H) 6 dim H,
(ii) K(ΛG,H) = K(ΩG,H) + 1.

It is proved in [1] that λ(h) 6 K(ΩH), where h is the Qp−Lie algebra of H and
λ(h) is the maximum length m of chains 0 = h0 < h1 < . . . < hm = h of sub-Lie-
algebras of h. When h is solvable, K(ΩH) = dim H and so (i) consists of equalities,
but in general K(ΩH) < dim H.

The parallel result on global dimensions is part of the following theorem. The
unexplained terminology is defined in 5.4. When H = G and G has no elements of
order p, we obtain an earlier result of Venjakob [18, Theorem 3.26].

Theorem J. Let G be a compact p-adic analytic group and let H be a closed normal
subgroup of G. Then

(i) ΩG,H is Auslander-Gorenstein of injective dimension dim H.

(ii) ΛG,H is Auslander-Gorenstein of injective dimension dim H + 1.

(iii) If G contains no element of order p then ΩG,H and ΛG,H have finite global
dimension. In this case both algebras are Auslander-regular, and

gld(ΩG,H) = gld(ΩH) = dim H,

while

gld(ΛG,H) = gld(ΛH) = gld(ΩG,H) + 1.

(iv) If ΩG,H or ΛG,H has finite global dimension then the inverse image in G of
∆+(G/H) contains no elements of order p.
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2. Primeness and semiprimeness of ΩG

2.1. Uniform pro−p groups. We begin with some technical results concerning
ΩN for uniform N . The following notation will be fixed for the rest of this paper:

ε =

{
2 if p = 2
1 otherwise.

Lemma. Let N be a uniform pro−p group and let m denote the maximal ideal of
ΩN . Then

(i) [ΩN ,mk] 6 mk+pε−1 for all k > 1,
(ii) (1 + mpε−1) ∩N 6 Npε

.

Proof. To avoid confusion, we will denote the Lie commutator in ΩN by [a, b] :=
ab− ba, and the group commutator in N by (x, y) := x−1y−1xy.

Since N is uniform and so in particular powerful, (N,N) 6 Npε

, [6, Definition
3.1 and Lemma 3.4]. From this, it’s easy to deduce that [ΩN ,m] = [m,m] 6 mpε

.
Part (i) now follows by an straightforward induction.

Next, gNp 7→ g − 1 + m2 gives an isomorphism of the groups N/Np and m/m2,
so (1 + m2) ∩N = Np. If p is odd, part (ii) follows, so assume that p = 2. Choose
a topological generating set {a1, . . . ad} for N and let g ∈ (1 + m3) ∩ N . Since
(1 + m3) ∩N 6 N2 by the above, we can write g = a2µ1

1 · · · a2µd

d for some µi ∈ Z2

by [6, Theorems 3.6(iii) and 3.7 and Proposition 1.28]. Set bi = ai− 1 ∈ ΩN . Then

g − 1 = (1 + b2
1)

µ1 · · · (1 + b2
d)

µd − 1 ≡ µ̄1b
2
1 + . . . + µ̄db

2
d mod m3,

where µ̄i denotes the reduction of µi modulo 2. By [6, Theorem 7.24], the elements
b2
i are linearly independent modulo m3, so µi ∈ 2Z2 for all i. Hence g ∈ N4 as

required. �

Recall that if N is uniform, then ΩN is a Noetherian domain [6, Corollary 7.25],
and as such has a division ring of quotients DN [11, Theorem 2.1.14]. Define the
degree deg r of a nonzero element r ∈ ΩN to be the greatest non-negative integer
k such that r is in the kth power of the maximal ideal of ΩN . The following result
will be crucial to our proof of Theorem A.

Proposition. Let N be a uniform pro−p group and let ϕ ∈ Aut(N). Suppose that
the natural extension of ϕ to DN is inner. Then [N,ϕ] ⊆ Npε

.

Proof. As in Lemma 2.1, let m be the maximal ideal of ΩN . By assumption, we
can find a nonzero element x ∈ DN such that

x−1gx = gϕ for all g ∈ N.

We can also find nonzero elements a, b, c, d ∈ ΩN such that x = bd−1 = a−1c; note
that this forces

(2) ab = cd.
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Fix g ∈ N . From the above, it follows that

agb = cgϕd.

Now, by the first part of the lemma, and using (2) twice,

c(gϕ − g)d = cgϕd− (ab− cd)g − cgd

= a[g, b]− c[g, d]
∈ mdeg amdeg b+pε−1 + mdeg cmdeg d+pε−1

= mdeg c+deg d+pε−1.

Because grm ΩN is a domain [6, Theorem 7.24], we see that

gϕ − g ∈ mpε−1.

Hence by the second part of the lemma, we have

g−1gϕ ∈ (1 + mpε−1) ∩N 6 Npε

for all g ∈ N , so [N,ϕ] ⊆ Npε

as required. �

2.2. Primeness - special cases. Let G be a compact p−adic analytic group, and
let N be a closed normal uniform subgroup of G. Define

EG(N) = {x ∈ G : [N,x] ⊆ Npε

}.

This is the kernel of the conjugation action of G on the finite set N/Npε

and as
such is an open normal subgroup of G. Since N is uniform, N is always contained
in EG(N).

We begin the proof of Theorem A by taking care of two special cases.

Proposition. Let G be a compact p-adic analytic group. Suppose N is an open
normal uniform subgroup of G such that EG(N) = N . Then ΩG is prime.

Proof. We have observed in the introduction that ΩG is a crossed product of the
Noetherian domain ΩN with the finite group G := G/N . The set S = ΩN\{0} is
a G-invariant Ore set in ΩN and DN = ΩNS−1 is the division ring of fractions of
ΩN . By [14, Lemma 37.7], S is an Ore set in ΩN ∗G consisting of regular elements,
and

(ΩN ∗G)S−1 ∼= DN ∗G.

Now, if 1 6= ḡ ∈ G, conjugation by ḡ gives an outer automorphism of DN by
Proposition 2.1, because EG(N) = N . By [11, Theorem 7.8.12], DN ∗G is a simple
ring. Since this is a partial quotient ring of ΩG = ΩN ∗ G, it follows that ΩG is
prime, as required. �

We shall use below the elementary fact that, for any group G,

(3) if H is a subgroup of G of finite index, then ∆+(H) 6 ∆+(G).
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Lemma. Let G be a compact p−adic analytic group such that ∆+(G) is a p−group.
Let N be a normal open uniform subgroup of G. Then EG(N) is a pro−p group.

Proof. Let C = CG(N) denote the centralizer of N in G, so C is closed by [20,
Exercises 0.4(2)]. Let q 6= p be a prime and let Q be a q-Sylow subgroup of C;
since G is virtually pro−p, Q is finite. Since Q centralizes N , Q is a finite normal
subgroup of NQ so Q 6 ∆+(NQ) 6 ∆+(G) by (3). Hence Q = 1 and C is a pro−p

group.
Now, consider the conjugation action of E = EG(N) on N . This has kernel

C ∩ E which is a pro−p group since C is, and the image is contained in

Γ := {ϕ ∈ Aut(N) : [N,ϕ] ⊆ Npε

}.

By [6, Corollary 4.18], Aut(N) may be identified with a subgroup of GLd(Zp)
where d = dim(N). It’s clear that under this identification Γ is contained in
{g ∈ GLd(Zp) : g ≡ 1 (mod pε)} which is a pro−p group by [6, Theorem 5.2].
Hence Γ is a pro−p group and thus so is E by [6, Proposition 1.11(ii)]. �

Corollary. Let G be a compact p-adic analytic group such that ∆+(G) = 1. Sup-
pose that a p−Sylow subgroup N of G is normal and uniform. Then EG(N) = N

and ΩG is prime.

Proof. Since EG(N) contains N , the lemma shows that EG(N) = N . Therefore
ΩG is prime by the proposition. �

2.3. Proof of Theorem A. The proof needs a technical lemma which will be used
to translate the group-theoretic condition ∆+(G) = 1 into a condition involving
crossed products. Compare the argument with the proof of [6, Lemma 2.2(iii)].

Lemma. Let G be a pro−p group of finite rank such that ∆+(G) = 1. Suppose N is
an open normal uniform subgroup of G and let x ∈ E = EG(N). Then H = 〈N,x〉
is uniform.

Proof. Since [H,H] = [N,H] 6 [N,E] 6 Npε

6 Hpε

, H is a finitely generated
powerful pro−p group. By [6, Theorem 4.20], the elements of finite order in H

form a characteristic subgroup T = ∆+(H) and H/T is uniform. By (3), T = 1
and the result follows. �

Recall the definition of wH,G (or wH) from (1.5).

Proof of Theorem A. Suppose that ΩG is prime. Let e =
∑

g∈∆+(G) g, a nonzero
central element of ΩG. Since w∆+(G).eΩG = 0, w∆+(G) = 0, and hence ∆+(G) = 1.

Now suppose that ∆+(G) = 1. Choose an open normal uniform subgroup N

of G, so that, by (1), ΩG is a crossed product of the Noetherian domain ΩN by
the finite group G/N . Let q be a prime (possibly equal to p) and let H/N be
a q-Sylow subgroup of G/N . By [13, Theorem 17.5], it’s sufficient to show that
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ΩH = ΩN ∗ (H/N) is prime for all such H. If q 6= p, we see that N is the p-Sylow
subgroup of H; since ∆+(H) = 1 by (3), ΩH is prime by Corollary 2.2.

Suppose therefore that q = p, so H/N is a finite p-group. By [13, Proposition
16.4] it’s sufficient to prove that ΩH = ΩN ∗ (H/N) is semiprime. By [13, Theorem
18.10], this will follow from the semiprimeness of ΩP , where P is an arbitrary
subgroup of H such that N ⊆ P and P/N is elementary abelian.

Let P be any such group, and choose K, a maximal uniform subgroup of P

containing N . Since P/N is abelian, K is an open normal uniform subgroup of
P . If x ∈ EP (K), then 〈K, x〉 is a uniform subgroup of P containing K by the
lemma. The maximality of K forces x ∈ K, so EP (K) = K. Hence ΩP is prime by
Proposition 2.2, as required. �

2.4. Proof of Theorem B. Choose an open normal uniform subgroup N of G

contained in P . Then, as in (1), ΩG = ΩN ∗ (G/N) is a crossed product of the
Noetherian domain ΩN by the finite group G/N . It’s clear that P/N is a Sylow
p-subgroup of G/N and that ΩP = ΩN ∗ (P/N). The equivalence of (i) and (ii)
now follows from [13, Corollary 18.11], whereas (ii) and (iii) are equivalent by [13,
Proposition 16.4].

Now, (iii) and (iv) are equivalent by Theorem A. Since P ∩ ∆+(G) is a finite
normal subgroup of P , P ∩ ∆+(G) 6 ∆+(P ). Since ∆+(P ) 6 ∆+(G) by (3),
P ∩ ∆+(G) = ∆+(P ). But P ∩ ∆+(G) is a p-Sylow subgroup of ∆+(G) by [20,
Proposition 2.2.3(a)], and the equivalence of (iv) and (v) follows.

2.5. Proof of Theorem C. Suppose G has torsion. Then we can find 1 6= x ∈ G

such that xn = 1. Now (x−1)(xn−1 + . . .+1) = 0 shows that ΩG has zero divisors.
Now assume G is torsion free. The proof follows the line of Neumann’s for ΛG

[12] in appealing to a result of Walker [19] which guarantees that a semiprime
Noetherian ring R of finite global (homological) dimension, with R/J(R) a field, is
a domain. For certainly ΩG is Noetherian, and it’s semiprime by Theorem B. Any
q-Sylow subgroup of G with q 6= p must be finite since G is virtually pro−p. Hence
G is a pro−p group and therefore J(ΩG) = wG. Finally, the fact that ΩG has finite
global dimension follows from [3, Theorem 4.1] and [16, Corollaire 1].

3. Localisable ideals in ΩG

3.1. Let G be a compact p-adic analytic group and H a closed normal subgroup of
G. Recall the definition of wH,G from (1.5). When there is no danger of confusion,
we will shorten wH,G to wH . By [3, Lemma 4.5], ΩG is a flat ΩH -module, so that

wH,G = wH,HΩG = (H − 1)ΩG = ΩGwH,H .

Note that if H is pro−p, then wH,H is the unique maximal ideal of ΩH .

Lemma. Let H be a finite normal p-subgroup of G. Then wH is nilpotent.
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Proof. Since H is a finite p-group, ΩH = Fp[H] is local Artinian with maximal
ideal m = wH,H , with mn = 0 for some n, by [14, Lemma 3.1.6]. Since H is normal,
wn

H = (mΩG)n = mnΩG = 0. �

3.2. Now let H be an arbitrary closed normal subgroup of G. By [6, Corollary
8.34], H contains an open pro−p subgroup J , which can be chosen normal in G.

Let PH / ΩG be the prime radical
√

wJ of wJ , the smallest semiprime ideal of
ΩG containing wJ , [11, 0.2.8]. By [11, Theorem 2.3.7], since ΩG is Noetherian, PH

is the biggest ideal of ΩG which is nilpotent modulo wJ . The following lemma is
essentially due to Peter Schneider, [5, Lemma 2.5].

Lemma. PH is independent of the choice of J .

Proof. Let J and K be open pro−p subgroups of H which are normal in G. Then
J ∩K also has these properties, so it’s sufficient to consider the case when J ⊆ K.
Now K/J is a finite normal p-subgroup of G/J , so wn

K ⊆ wJ for some n by Lemma
3.1. Since J ⊆ K, wJ ⊆ wK , so

√
wJ =

√
wK . �

It follows that if H is itself pro−p, then wH ⊆ PH . If in addition ΩG/H is
semiprime, then wH = PH .

Our main result on localisable semiprime ideals is

Theorem D. PH is classically localisable in ΩG.

In particular, if G is itself a pro−p group and H is a closed normal subgroup of
G with ∆+(G/H) = 1, then wH is a prime localisable ideal of the local Fp−algebra
ΩG by Theorems A and D. One might imagine that in fact this is a special case
of a general phenomenon, namely that every prime ideal P of a local Noetherian
k-algebra R with R/J(R) ∼= k is classically localisable. But this is not so - for a
counterexample see [4, Example 7.2], an example first studied by Ramras. However,
in every such example known to us, there is a classically localisable semiprime ideal
Q contained in P , with P a minimal prime ideal over Q - that is, in the jargon of
[8], P belongs to a finite clique. Indeed, the same is true in all known examples
when R is assumed to be merely semilocal rather than local.

3.3. Finite subgroups. We start the proof of Theorem D by taking care of a
special case.

Proposition. Let H be a finite normal subgroup of the compact p-adic analytic
group G. Then PH is classically localisable in ΩG.

Proof. By Lemma 3.2, PH = √
w{1} =

√
0 is the prime radical of T = ΩG. Pick

an open normal uniform subgroup N of G. As in the proof of Proposition 2.2, let
R = ΩN and S = R\{0}; then S is an Ore set in T and

TS−1 ∼= (RS−1) ∗ (G/N)
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is a crossed product of a division ring with a finite group. Thus TS−1 is Artinian,
so any regular element in TS−1 is a unit by [11, Proposition 3.1.1].

The natural map T → TS−1 is an injection, TS−1 is a partial ring of quotients
of T , and every regular element of T is a unit in TS−1. Hence TS−1 is an Artinian
(right and left) quotient ring of T , in the sense of 2.1.3 and 2.1.14 of [11]. Thus, the
set CT (0) of regular elements of T must be an Ore set in T . By Small’s Theorem
[11, Corollary 4.1.4], CT (0) = CT (

√
0), so

√
0 is localisable in T as required. Since√

0TS−1 is the nilpotent radical of TS−1 it clearly has the Artin-Rees property, so
PH is classically localisable. �

3.4. The Artin-Rees property. The following result is inspired by Theorem 4.6
of [17].

Lemma. Let N be a closed normal uniform subgroup of the compact p-adic analytic
group G and let E = EG(N). Then the graded ring of ΩG with respect to the wN -
adic filtration is isomorphic to

ΩE/N [X1, . . . , Xd] ∗ (G/E)

where d = dim(N), and is a Noetherian ring.

Proof. Let m = wN,N be the maximal ideal of ΩN , so that wN = mΩG. Since
wn

N = mnΩG = wn
N,EΩG, we see that

grwN
ΩG

∼= (grwN,E
ΩE)⊗ΩE

ΩG

as right ΩG-modules. Since grwN,E
ΩE is a subring and since E has finite index in

G, the ring grwN
ΩG is isomorphic to a crossed product of grwN,E

ΩE with G/E.
We may hence assume that E = G, so G acts trivially on N/Np.

Next, gNp 7→ g − 1 + m2 gives an isomorphism of the G-modules N/Np and
m/m2, so G acts trivially on grm ΩN . Now,

grwN
ΩG

∼= (grm ΩN )⊗ΩN
ΩG

∼= (grm ΩN )⊗Fp
ΩG/N

∼= ΩG/N [X1, . . . , Xd]

as ΩG-modules, because grm ΩN
∼= Fp[X1, . . . , Xd] by Theorem 7.24 of [6]. Since G

acts trivially on grm ΩN , this is a ring isomorphism. �

Proposition. If J is a closed normal uniform subgroup of G, then wJ / ΩG has
the right and left Artin-Rees properties.

Proof. Let N be an open normal subgroup of G. Since N ∩ J is open in J it has p-
power index in J . Thus NJ/N is a normal p-subgroup of G/N , so wk

J ⊆ wk
NJ ⊆ wN

for some k > 0, by Lemma 3.1. It follows that the wJ -adic topology is finer
than the defining topology on ΩG (where the base of open neighbourhoods of 0 is
{wN : N /o G}), so ΩG is complete with respect to the wJ -adic filtration. Also,
the graded ring of ΩG with respect to the wJ -adic filtration is Noetherian by the
lemma. By [7, Chapter II, Proposition 2.2.1], this filtration is Zariskian. Hence, by
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[7, Chapter II, Theorem 2.2], it has the Artin-Rees property, which is easily seen
to imply that the ideal wJ has the Artin-Rees property. �

Since it is trivial to check that if an ideal I of a Noetherian ring R has the
right Artin-Rees property then so does

√
I, the following corollary is an immediate

consequence of the proposition and the fact [6, Corollary 4.3] that we can find an
open uniform subgroup of H which is normal in G.

Corollary. PH has the Artin-Rees property whenever H is a closed normal sub-
group of G.

3.5. Proof of Theorem D. Let H be a closed normal subgroup of the compact
p−adic analytic group G. Given Corollary 3.4, the theorem will follow if we show
that PH is localisable. As before, let J be an open uniform subgroup of H which
is normal in G. By Lemma 3.2, PJ = PH , so we may assume that H is actually
uniform; in particular, wH ⊆ PH =: P . Since P has the Artin-Rees property,
[11, Theorem 4.2.10] shows that it’s sufficient to prove that P/Pn is localisable in
ΩG/Pn for all n > 0.

Now, the sets of ideals {wk
H,H : k > 0} and {wK,H : K /o H} are cofinal in ΩH

by [6, Lemma 7.1], so for all n > 0 there exists K /o H such that wK,H ⊆ wn
H,H .

By passing to an open subgroup, we may assume K is normal in G. Therefore,
wK ⊆ wn

H ⊆ Pn, so it’s sufficient to show that PH/K = P/wK is localisable in
ΩG/wK

∼= ΩG/K . This follows directly from Proposition 3.3.

3.6. Centrally generated ideals. Both in the proof of Theorem E and when we
come to consider the passage from localisability in ΩG to localisability in ΛG in §4
we need to lift Ore sets over a centrally generated ideal. In fact, for essentially no
extra effort, we can lift over a polycentral ideal I of the Noetherian ring R; that is,
I = Σn

i=1xiR, where x1 is central in R, and, for 2 6 j 6 n, xj is central modulo
Σj−1

i=1xiR.

Proposition. Let I be a polycentral ideal of the Noetherian ring R, with I ⊆ P , P

a semiprime ideal of R. Use − to denote images in R := R/I. Then P is classically
(right) localisable in R if and only if P is classically (right) localisable in R.

Proof. One direction is trivial. So suppose for the non-trivial direction that P is
classically right localisable in R. By Noetherian induction we may assume that I is
generated by a single central element x of R. We first show that P/xnR is localisable
in R/xnR for all n > 1. By induction, assume that n > 1 and that P/xn−1R is
localisable in R/xn−1R.

Let r ∈ R and c ∈ CR(P ). We can find r′ ∈ R and c′ ∈ CR(P ) such that
rc′ − cr′ = xn−1u for some u ∈ R. We can also find u′ ∈ R and c′′ ∈ CR(P ) such
that uc′′−cu′ = xv for some v ∈ R. Hence, rc′c′′−cr′c′′ = xn−1uc′′ = xn−1(cu′+xv)
so r(c′c′′)− c(r′c′′ + xn−1u′) = xnv as required.
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Again, let r ∈ R and c ∈ CR(P ). By [11, Proposition 4.2.6], xR has the right
Artin-Rees property, so there exists n such that (rR + cR) ∩ (xR)n ⊆ rxR + cxR.
By the above, we can find r′ ∈ R and c′ ∈ CR(P ) such that rc′ − cr′ ∈ xnR, so
there exist a, b ∈ R such that rc′ − cr′ = rxa + cxb. Hence r(c′ − xa) = c(r′ + xb)
and the result follows since x ∈ P .

Finally, the fact that the ideal PRP of RP has the Artin-Rees property follows
from the facts that

• the image of x in RP is central;
• PRP has the Artin-Rees property in RP ,

combined with the following statement: If an ideal A of a Noetherian ring S contains
a polycentral ideal B, such that A/B has the right Artin-Rees property in S/B,
then A has the right Artin-Rees property in S. This last statement can be proved
by imitating the argument of [11, Theorem 4.2.7(i)]. �

The above proposition is a slight generalisation of a result of McConnell, [10],
who dealt with the case I = P . See also [15, Theorem 2.2].

3.7. Proof of Theorem E. For this we need a group-theoretic result. Recall that
a finite group is p−nilpotent if it has a normal subgroup of order prime to p, the
factor by which is a p−group.

Proposition. Let G be a compact p−adic analytic group such that ∆+(G) is a
p−group. Suppose that every factor of G by an open normal subgroup is p−nilpotent.
Then G is a pro−p group.

Proof. Let N be an open normal uniform subgroup of G. Then Npε

is also a normal
subgroup of G, so G/Npε

is p−nilpotent. Hence we can find a normal p′−subgroup
K/Npε

of G/Npε

such that G/K is a p−group. Since N/Npε

is a p−group, we see
that K ∩N 6 Npε

. It follows that [K, N ] 6 Npε

, so K 6 EG(N) which is a pro−p

group by Lemma 2.2. Hence K = Npε

and therefore G is a pro−p group by [6,
Proposition 1.11(ii)]. �

The following lemma is presumably well known, but we are unable to find a
reference for it in the literature.

Lemma. Let H be a finite normal subgroup of the compact p−adic analytic group
G. Then ΩG is a free ΩH−module.

Proof. Choose an open uniform normal subgroup N of G. Since N is torsion-free,
N ∩ H = 1 so HN ∼= H × N . Now ΩHN = ΩH×N

∼= ΩH ⊗Fp ΩN because H is
finite, so ΩHN is a free ΩH−module. Since ΩG is a free ΩHN−module, our result
follows. �
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Proof of Theorem E: Let F = ∆+
p′(H). Since p - |F |, it’s well known that wF,F

is generated by the central idempotent

f = 1− 1
|F |

∑
g∈F

g,

so wF = fΩG and ΩG/fΩG
∼= ΩG/F . Since F is normal in G, f is central in ΩG.

(iii) ⇒ (ii) : By Proposition 3.6 we may assume that F = 1, so H is pro−p.
Since ΩG/H is semiprime, wH,G = PH and the result follows from Theorem D.

(ii) ⇒ (i) : Trivial.
(i) ⇒ (iii) : Suppose that wH,G is localisable. Without loss of generality we can

assume that F = 1.
Let V be any open normal subgroup of H. We claim that H/V is p−nilpotent.

Since quotients of finite p−nilpotent groups are p−nilpotent, we may assume that
V is normal in G by passing to an open subgroup. Writing − for images in G/V ,
wH,G is localisable in ΩG.

Since ΩG is a free ΩH−module by the lemma, it’s easy to deduce that wH is
a localisable maximal ideal of ΩH . That is, the augmentation ideal of the group
algebra FpH is localisable. Therefore, by [14, Theorem 11.2.15], H is p−nilpotent
as claimed.

In particular, ∆+(H) is p−nilpotent. Since F = 1, ∆+(H) is a p−group. There-
fore the proposition shows that H is pro−p, completing the proof of the Theorem.

4. Lifting information to ΛG

4.1. Let G be a compact p-adic analytic group. As was noted in (1.2), ΛG is
semilocal with p a central regular element in J(ΛG), such that

ΛG/pΛG
∼= ΩG.

These properties establish a strong connection between ΛG and ΩG, and we use
them to deduce corresponding results for ΛG that we established for ΩG in the
previous sections.

4.2. Primeness, semiprimeness and zero divisors. The first and last parts of
the following result are simply stated for completeness and are due to Neumann,
[12]. The proof of (i) was noted in (1.3); (iii) can if desired be deduced from
Theorem C by an easy lifting argument. Similarly, it is easy to deduce (ii) from
Theorem A, noting that ∩i>0p

iΛG = 0.

Theorem F. Let G be a compact p-adic analytic group. Then

(i) ΛG is semiprime;
(ii) ΛG is prime if and only if ∆+(G) = 1;
(iii) ΛG is a domain if and only if G is torsionfree.
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4.3. Localisation in ΛG. As an immediate consequence of Proposition 3.6 and
Theorem D, we can state

Theorem G. Let G be a compact p-adic analytic group and let H be a closed
normal subgroup. Let IH be the inverse image of the ideal PH of ΩG in ΛG. Then
IH is classically localisable in ΛG.

In view of [5, Proposition 2.6], this is a direct generalisation of [5, Theorem 2.4]
from the case when G/H ∼= Zp to the case of an arbitrary closed normal subgroup
H of G.

Theorem H. Let G be a compact p−adic analytic group and let H be a closed
normal subgroup of G such that ΩG/H is semiprime. Let vH,G denote the inverse
image of wH,G in ΛG. Then the following are equivalent:

(i) vH,G is localisable;
(ii) vH,G is classically localisable;
(iii) H/∆+

p′(H) is pro−p.

Proof. Let us write (i)Λ, (ii)Λ, (i)Ω, (ii)Ω for the relevant statements in Theorems
H and E respectively. Using Proposition 3.6 and Theorem E it is easy to obtain
the chain of implications

(ii)Λ ⇒ (i)Λ ⇒ (i)Ω ⇔ (iii) ⇔ (ii)Ω ⇔ (ii)Λ,

proving the result. �

5. Krull and global dimensions

5.1. Let G be a compact p−adic analytic group, H a closed normal subgroup. By
Theorem D, the semiprime ideal PH = PH,G is always localisable in ΩG. We will
denote the localisation of ΩG at PH,G by ΩG,H . ΛG,H is defined analogously.

Now suppose that K is an open uniform subgroup of G. Let T/(H ∩ K) =
∆+(K/(H ∩ K)); since K/(H ∩ K) is powerful, K/T is uniform by [6, Theorem
4.20]. Since H ∩K is open in both T and H, ΩG,H = ΩG,T by Lemma 3.2, so we
may assume that H = T . It follows from [6, Proposition 4.31(ii)] that H is uniform.

That is, we will assume for the remainder of this section that G is a compact
p−adic analytic group containing an open normal uniform subgroup K and a closed
normal subgroup H such that H ⊆ K, and both H and K/H are uniform. Note
that these conditions imply [H,K] ⊆ H ∩ [K, K] ⊆ Hpε

, whence EK(H) = K.

Lemma. ΩG,H is a crossed product of ΩK,H with the finite group G/K:

ΩG,H = ΩK,H ∗ (G/K).

There is an analogous statement for ΛG,H .
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Proof. We have observed earlier that ΩG = ΩK ∗ (G/K). Let S = CΩK
(PH,K), an

Ore set in ΩK by Theorem D. Since K, H and K/H are uniform, PH,K = wH,K

and S = ΩG\wH,K consists of regular elements of ΩK . Since H and K are normal
in G, S is G-invariant and is hence an Ore set in ΩG consisting of regular elements
by [13, Lemma 37.7]. Moreover,

ΩGS−1 = ΩKS−1 ∗ (G/K) = ΩK,H ∗ (G/K).

Now, as in the proof of Proposition 3.3, ΩG/H has an Artinian quotient ring
so CΩG/H

(0) = CΩG/H
(
√

0) by [11, Corollary 4.1.4]. Hence T := CΩG
(PH,G) =

CΩG
(wH,G). It’s easy to check that S ⊆ T so we have a ring homomorphism

ΩK,H ∗ (G/K) = ΩGS−1 −→ ΩGT−1 = ΩG,H .

To show that this map is an isomorphism, it’s sufficient to show that T ⊆ ΩG ⊆
ΩGS−1 consists of units in ΩGS−1. To this end, observe that

ΩGS−1/wH,GS−1 ∼= (ΩK/H ∗ (G/K))S̄−1 ∼= DK/H ∗ (G/K)

is an Artinian ring, where DK/H is the division ring of fractions of ΩK/H and
S̄ = ΩK/H\{0}. Using [11, Proposition 2.1.16(iv)] it’s easy to show that any
element x ∈ ΩG which is regular modulo wH,G is regular modulo wH,GS−1 inside
ΩGS−1. Since any regular element in an Artinian ring is a unit [11, Proposition
3.1.1], we can find y ∈ ΩGS−1 such that xy ≡ 1 mod wH,GS−1. Now, wH,KS−1 is
the Jacobson radical of ΩK,H so wH,KS−1 is contained in the Jacobson radical J

of ΩGS−1 = ΩK,H ∗ (G/K) by [13, Theorem 4.2]. Hence wH,GS−1 ⊆ J , so xy ≡ 1
mod J . It follows that x is a unit in ΩGS−1 as required.

The argument to handle ΛG,H is similar. �

5.2. The following result will be very useful in the computation of Krull and global
dimensions of ΩG,H .

Lemma. ΩG,H is a faithfully flat ΩH−module.

Proof. By [3, Lemma 4.5] ΩG is a flat ΩH−module. Because localisation is flat, it
follows that ΩG,H is a flat ΩH -module. Since ΩH has a unique maximal right (and
left) ideal m = wH,H , to complete the proof it’s sufficient to prove that mΩG,H 6=
ΩG,H by [11, Proposition 7.2.3]. But mΩG,H is contained in the Jacobson radical
of ΩG,H and is hence a proper ideal of ΩG,H , as required. �

5.3. Krull dimension. To obtain the upper bounds in Theorem I we require

Proposition. Let J = wH,KΩK,H denote the unique maximal ideal of ΩK,H . Then
the J−adic filtration on ΩK,H is Zariskian and the graded ring of ΩK,H with respect
to this filtration is isomorphic to

DK/H [X1, . . . , Xd]

where DK/H denotes the division ring of fractions of ΩK/H and d = dim H.
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Proof. Write I for wH,K . We have observed in the proof of Proposition 3.4 that
the I−adic filtration on ΩK is Zariskian. Hence the Rees ring

Ω̃K = · · · ⊕ I2t−2 ⊕ It−1 ⊕ ΩK [t]

is Noetherian. Since S = ΩK\I is an Ore set in ΩK , it’s easily checked that S ⊆ Ω̃K

is an Ore set in Ω̃K . Hence

Ω̃KS−1 = · · · ⊕ J2t−2 ⊕ Jt−1 ⊕ ΩK,H [t] ∼= Ω̃K,H

is Noetherian. Since J is the Jacobson radical of ΩK,H , the J−adic filtration is
Zariskian.

The second assertion follows easily from Lemma 3.4, since EK(H) = K. �

Proof of Theorem I. This is now just a matter of putting all the pieces together.
By Lemma 5.2 and [11, Lemma 6.5.3(i)], K(ΩH) 6 K(ΩG,H). Now K(ΩG,H) =
K(ΩK,H) by Lemma 5.1 and [11, Proposition 10.1.11(ii)].

Since K(DK/H [X1, . . . , Xd]) = d by [11, Proposition 6.5.4(i)], part (i) follows
from the proposition and [7, Chapter II, Corollary 3.1.3].

Now, K(ΛG,H) 6 K(ΛG), and this is finite by [1, Theorem A]; moreover, the ele-
ment p of IH ⊆ J(ΛG,H) is a central regular element of ΛG,H . Since ΛG,H/pΛG,H

∼=
ΩG,H , the second part follows from [19, Theorem 1.8]. (See also [1, Theorem
C].) �

5.4. Homological properties. Before embarking on the proofs, we recall that a
Noetherian ring R is Auslander-Gorenstein if it has finite right and left injective
dimensions, n say, and the Auslander property holds for all finitely generated right
and left R−modules M : that is, for all integers i, 0 6 i 6 n, and for all j < i and
all submodules N of Exti

R(M,R), Extj
R(N,R) = 0. An Auslander-regular ring is

one which is Auslander-Gorenstein and has finite global dimension.
The following lemma is surely well-known, but we have been unable to locate it

in the literature. Note that it is actually concerned with Frobenius extensions, as
defined, for instance, in [2]. The proof of the lemma, coupled with the simple ap-
plication of it outlined in the proof of Theorem J, shows that a Frobenius extension
of an Auslander-Gorenstein ring is Auslander-Gorenstein.

Lemma. Let T = R ∗G be a crossed product of the ring R with the finite group G

and let MT be a right T−module. Then

Exti
T (M,T ) ∼= Exti

R(M,R)

as left R−modules, for all n > 0.

Proof. As functors from the category of right T−modules to the category of left
R−modules, Exti

R(−, R) and Exti
T (−, T ) are derived from HomR(−, RR) and from
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HomT (−, TT ) respectively. It’s therefore sufficient to prove that

HomT (MT , TT ) ∼= HomR(MR, RR)

as left R−modules. Since MR
∼= MT ⊗T TR, it’s enough to show that T ∼=

HomR(TR, RR) as right T−modules.
Define α : HomR(TR, RR) → T by α(f) =

∑
g∈G f(ḡ)ḡ−1. An easy check

shows that α is a right T−module map. Since β : T → HomR(TR, RR) given
by β(

∑
g∈G rg ḡ)(h̄) = rh−1 is an inverse, the result follows. �

Corollary. Let R = T ∗ G be the crossed product of a ring R with a finite group
G. Then the injective dimensions of R and T viewed as right modules over R and
T respectively, are equal.

Proof of Theorem J. We prove first the claims concerning global dimension.
(iii) Choose an open normal uniform subgroup K of G and continue with the

reductions made in 5.1, so in particular H ⊆ K ⊆ G.

Suppose that G contains no elements of order p. By [3, Theorem 4.1] and
[16, Corollaire 1], the global dimension of ΩG and hence of ΩG,H is finite. By
Lemma 5.1, ΩG,H is the crossed product of ΩK,H with the finite group G/K, so
gld(ΩG,H) = gld(ΩK,H) by [21, Lemma 2.2(i)].

By Lemma 5.2, [11, Theorem 7.2.6] and the results of Brumer and Serre [3, 16],

d := dim H = gld(ΩH) 6 gld(ΩK,H).

By Proposition 5.3, we know that ΩK,H has a Zariskian filtration with graded
ring DK/H [X1, . . . , Xd], so we may deduce from [11, Theorem 7.5.3(iii)] and [7,
Chapter II, Theorem 3.1.4] that

gld(ΩK,H) 6 gld(DK/H [X1, . . . , Xd]) = d

and the first set of displayed values in (iii) follows. The second display follows easily
from [11, Theorem 7.3.7], since ΛG,H/pΛG,H

∼= ΩG,H .
(iv) Suppose that 1 6= x ∈ G with xp = 1 and xH ∈ ∆+(G/H), and suppose for

a contradiction that gldΛG,H < ∞. Let C = {g ∈ G : [g, x] ∈ H}, the centralizer in
G of xH; this is an open subgroup of G. Choose a uniform subgroup K of C which
is open and normal in G. By changing H if necessary as in 5.1, we can assume
that H 6 K and that both H and K/H are uniform. Moreover, we still have the
property that [K, x] ⊆ H.

By Lemma 5.1, we have

ΛG,H
∼= ΛK,H ∗ (G/K).

Set E = 〈K, x〉 = K o 〈x〉, so ΛE,H = ΛK,H ∗ 〈x〉 is a skew group ring. By [21,
Lemma 2.1(ii)] and the above isomorphism, gldΛK,H ∗ 〈x〉 < ∞.

Write J for the Jacobson radical of ΛK,H . Since K/H is uniform, ΛK,H/J is
isomorphic to the division ring of fractions F of ΩK/H . Thus [21, Theorem 4.5(ii)]
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implies that F ∗〈x〉 is semisimple Artinian. But [K, x] ⊆ H and F has characteristic
p, so x − 1 is a non-zero central nilpotent element of F ∗ 〈x〉. This contradiction
shows that gld ΛG,H must be infinite.

Finally, if gld ΩG,H < ∞ then gldΛG,H < ∞ by [11, Theorem 7.3.7], so this case
follows as well.

(i) Lemma 5.1 and the lemma proved above show that it’s enough to prove the
result for ΩK,H . For the latter algebra, the Auslander-Gorenstein property is a con-
sequence of Proposition 5.3 and [7, Chapter III, Theorem 2.2.5], since a polynomial
ring over a division ring is Auslander regular by [7, Chapter III, Theorem 2.3.5].
The value of the injective dimension follows from the global dimension calculation
and the corollary above.

(ii) Filter ΛG,H using the powers of the ideal pΛG,H . The associated graded
algebra is isomorphic to ΩG,H [X], and hence is Auslander-Gorenstein by (i) and
[7, Chapter III, Theorem 2.3.5]. Since the filtration is separated and complete,
we deduce that ΛG,H is also Auslander-Gorenstein using [7, Chapter III, Theorem
2.2.5]. The value of the injective dimension follows as in (i). �

Whilst the condition that G has no elements of order p is certainly sufficient in
order for ΩG,H and ΛG,H to have finite global dimension, it is not necessary. To
see this, take any compact p−adic analytic group G with elements of order p but
such that ∆+(G) = 1 (the wreath product of Fp with Zp is an example). Then ΩG

is prime by Theorem A. Letting H = 1, we see that ΩG,H is the simple Artinian
ring of quotients of ΩG and as such has global dimension 0. We believe that in fact
the necessary condition of Theorem J(iv) is also sufficient:

Conjecture. The global dimension of ΩG,H (and of ΛG,H) is infinite if and only
if there exists an element x ∈ G of order p such that the centralizer of xH in G is
open in G.
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