MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Report No. 25/2015

DOI: 10.4171/OWR/2015/25

Enveloping Algebras and Geometric Representation Theory

Organised by Iain Gordon, Edinburgh Bernard Leclerc, Caen Wolfgang Soergel, Freiburg

 $10~\mathrm{May}-16~\mathrm{May}~2015$

Workshop: Enveloping Algebras and Geometric Representation Theory

Table of Contents

Konstantin Ardakov (joint with Simon Wadsley)Towards a Riemann-Hilbert correspondence for $\widehat{\mathcal{D}}$ -modules3

Abstracts

Towards a Riemann-Hilbert correspondence for $\hat{\mathcal{D}}$ -modules KONSTANTIN ARDAKOV (joint work with Simon Wadsley)

.

1. Background

Let R be a complete discrete valuation ring with uniformiser π , residue field $k := R/\pi R$ and field of fractions $K := R[\frac{1}{\pi}]$.

Definition. Let \mathfrak{g} be a finite dimensional Lie algebra over K.

- (a) A Lie lattice in \mathfrak{g} is a finitely generated R-submodule L of \mathfrak{g} which satisfies $[L, L] \subset L$ and which spans \mathfrak{g} as a K-vector space.
- (b) Let L be a Lie lattice in \mathfrak{g} . The affinoid enveloping algebra of L is

$$\overline{U(L)_K} := \left(\varprojlim U(L)/(\pi^a) \right) \otimes_R K.$$

(c) The Arens-Michael envelope of $U(\mathfrak{g})$ is

$$\widehat{U(\mathfrak{g})} := \varprojlim \widehat{U(L)_K}$$

where the inverse limit is taken over all possible Lie lattices L in \mathfrak{g} .

For any Lie lattice L in \mathfrak{g} , its set of π -power multiples is cofinal in the set of all Lie lattices, so that

$$\widehat{U(\mathfrak{g})} \cong \varprojlim \widehat{U(\pi^n L)_K}.$$

Example. Suppose that $\mathfrak{g} = Kx$ is a one-dimensional Lie algebra, spanned by an element x. If L = Rx then U(L) = R[x] is just a polynomial ring in one variable over R, the π -adic completion $\widehat{U(L)} = \widehat{R[x]}$ can be identified with the following subset of R[[x]]:

$$\widehat{R[x]} = \left\{ \sum_{i=0}^{\infty} \lambda_i x^i \in R[[x]] : \lim_{i \to \infty} \lambda_i = 0 \right\}.$$

The affinoid enveloping algebra $U(L)_{K}$ consists of power series in K[[x]] satisfying the same convergence condition:

$$\widehat{U(L)_K} = K\langle x \rangle := \left\{ \sum_{i=0}^{\infty} \lambda_i x^i \in K[[x]] : \lim_{i \to \infty} \lambda_i = 0 \right\}.$$

Similarly, $U(\pi^n L)_K = K\langle \pi^n x \rangle$ can be identified with the set of formal power series $\sum_{i=0}^{\infty} \lambda_i x^i \in K[[x]]$ satisfying the stronger convergence condition

$$\lim_{i \to \infty} \lambda_i / \pi^{ni} = 0 \quad \text{for all} \quad n \ge 0.$$

It follows that the Arens-Michael envelope K[x] of K[x] consists of formal power series $\sum_{i=0}^{\infty} \lambda_i x^i \in K[[x]]$ whose sequence of coefficients (λ_i) is rapidly decreasing:

$$\widehat{K[x]} = K\{x\} := \left\{ \sum_{i=0}^{\infty} \lambda_i x^i \in K[[x]] : \lim_{i \to \infty} \lambda_i / \pi^{ni} = 0 \quad \text{for all} \quad n \ge 0 \right\}$$

Motivation. Let G be a p-adic Lie group, and suppose that the ground field K is a finite extension of the field \mathbb{Q}_p of p-adic numbers. In number theory [13], we study admissible locally analytic K-representations of G. This is an abelian category which is anti-equivalent to the category of co-admissible D(G, K)-modules. We do not recall the definition of the locally analytic distribution algebra D(G, K) here, but simply note that it is a particular K-Fréchet-space completion of the abstract group ring K[G]. This completion is large enough to contain the enveloping algebra $U(\mathfrak{g})$ of the Lie algebra $\mathfrak{g} = \text{Lie}(G)$, and the closure of $U(\mathfrak{g})$ in D(G, K) turns out to be isomorphic to its Arens-Michael envelope $\widehat{U(\mathfrak{g})}$.

Unfortunately, Arens-Michael envelopes are non-Noetherian rings whenever ${\mathfrak g}$ is non-zero. To get around this, Schneider and Teitelbaum introduced the following

Definition.

- (a) Suppose that $A_0 \leftarrow A_1 \leftarrow A_2 \leftarrow \cdots$ is a tower of Noetherian K-Banach algebras such that
 - A_{n+1} has dense image in A_n for all $n \ge 0$, and
 - A_n is a flat right A_{n+1} -module for all $n \ge 0$.
 - Then $A := \lim_{n \to \infty} A_n$ is said to be a Fréchet-Stein algebra.
- (b) A left A-module M is said to be co-admissible if $A_n \otimes_A M$ is a finitely generated A_n -module for all $n \ge 0$, and the natural map $M \to \lim_{n \to \infty} A_n \otimes_A M$ is a bijection.
- (c) We let C_A denote the full subcategory of left A-modules consisting of the coadmissible A-modules.

Schneider and Teitelbaum proved that C_A is always an abelian category whenever A is a Fréchet-Stein algebra. They also proved that the locally analytic distribution algebras D(G, K) and the Arens-Michael envelopes $U(\mathfrak{g})$ are Fréchet-Stein.

Example. The algebras $A_n = K \langle \pi^n x \rangle := \overline{R[\pi^n x]} \otimes_R K$ satisfy the conditions above, so their inverse limit $\widehat{K[x]} = \varprojlim A_n$ provides an example of a (commutative) Fréchet-Stein algebra.

2. $\widehat{\mathcal{D}}$ -modules on rigid analytic spaces

Suppose now that \mathfrak{g} is a split semisimple Lie algebra over K. Prompted by a desire to establish an analogue of the Beilinson-Bernstein localisation theorem for co-admissible modules over $\widehat{U(\mathfrak{g})}$, we introduced the sheaf $\widehat{\mathcal{D}}$ of infinite-order differential operators on rigid analytic spaces in [1]. For the necessary background on rigid analytic geometry, we refer the reader to the survey paper [14].

Definition. Let X be an affinoid variety over K, and let $\mathcal{T}(X) := \operatorname{Der}_K \mathcal{O}(X)$.

- (a) A Lie lattice on X is any finitely generated $\mathcal{O}(X)^{\circ}$ -submodule L of $\mathcal{T}(X)$ such that $[L, L] \subset L$ and L spans $\mathcal{T}(X)$ as a K-vector space.
- (b) For any Lie lattice L on X we have the Noetherian Banach algebra

$$U(L)_K := \left(\varprojlim U(L)/(\pi^a)\right) \otimes_R K.$$

(c) $\widehat{\mathcal{D}}(X) := \lim_{K \to \infty} \widehat{U(L)_K}$, the inverse limit being taken over all possible Lie lattices L in $\mathcal{T}(X)$.

Any Lie lattice L on X can be viewed as a *Lie-Rinehart algebra* over $(R, \mathcal{O}(X)^{\circ})$, and as such has an enveloping algebra U(L). These concepts were introduced by George Rinehart in [11].

Example. If $X = \operatorname{Sp} K\langle x \rangle$ is the closed unit disc, then

$$\widehat{\mathcal{D}}(X) = K \langle x \rangle \{\partial\} := \left\{ \sum_{i=0}^{\infty} a_i \partial^i \in K \langle x \rangle [[\partial]] : \lim_{i \to \infty} a_i / \pi^{ni} = 0 \quad \text{for all} \quad n \ge 0 \right\}$$

is a particular K-Fréchet-space completion of the Weyl algebra $K[x; \partial]$.

Theorem 1 ([2]). Let X be a smooth rigid analytic space.

- (1) $\widehat{\mathcal{D}}$ extends to a sheaf of K-Fréchet algebras on X.
- (2) If X is affinoid and $\mathcal{T}(X)$ is a free $\mathcal{O}(X)$ -module, then $\widehat{\mathcal{D}}(X)$ is a Fréchet-Stein algebra.

This basic result makes the following definition meaningful.

Definition. Let X be a smooth rigid analytic space. A sheaf of $\widehat{\mathcal{D}}$ -modules \mathcal{M} on X is co-admissible if there is an admissible covering $\{X_i\}$ of X such that $\mathcal{T}(X_i)$ is a free $\mathcal{O}(X_i)$ -module, and $\mathcal{M}(X_i) \in \mathcal{C}_{\widehat{\mathcal{D}}(X_i)}$ for all i. We denote the category of all co-admissible $\widehat{\mathcal{D}}$ -modules on X by \mathcal{C}_X .

Co-admissible $\widehat{\mathcal{D}}$ -modules form a stack on smooth rigid analytic spaces. More precisely, we have the following analogue of Kiehl's Theorem in rigid analytic geometry.

Theorem 2 ([2]). If X is a smooth affinoid variety such that $\mathcal{T}(X)$ is a free $\mathcal{O}(X)$ -module, then the global sections functor induces an equivalence of categories

$$\Gamma: \mathcal{C}_X \xrightarrow{\cong} \mathcal{C}_{\widehat{\mathcal{D}}(X)}.$$

We can now formulate our version of the Beilinson-Bernstein equivalence.

Theorem 3 ([4]). Let **G** be a connected, simply connected, split semisimple algebraic group over K, let \mathfrak{g} be its Lie algebra and let $\mathcal{B} := (\mathbf{G}/\mathbf{B})^{\mathrm{an}}$ be the rigidanalytic flag variety. Then $\mathcal{C}_{\mathcal{B}} \cong \mathcal{C}_{\widehat{\mathcal{D}(\mathcal{B})}}$ and $\widehat{\mathcal{D}(\mathcal{B})} \cong \widehat{\mathcal{U}(\mathfrak{g})} \otimes_{\mathbb{Z}(\mathfrak{g})} K$.

3. Holonomicity and $\widehat{\mathcal{D}}$ -module operations

Let us recall the classical Riemann-Hilbert correspondence.

Theorem 4 (Kashiwara-Mebkhout). Let X be a smooth complex algebraic variety. Then the de Rham functor is an equivalence of categories

$$\mathrm{DR}: D^b_{\mathrm{rh}}(\mathcal{D}_X) \longrightarrow D^b_c(\mathbb{C}_{X^{\mathrm{an}}}).$$

It sends regular holonomic \mathcal{D}_X -modules to perverse sheaves on X.

We are still rather far away from a perfect analogue of this theorem in the world of $\widehat{\mathcal{D}}$ -modules on rigid analytic spaces! Nevertheless, there are some mildly encouraging signs that *some* such analogue exists. Let us recall some necessary ingredients of the proof of Theorem 4.

(1) DR gives an equivalence between integrable connections and local systems,

- (2) a classification theorem for holonomic \mathcal{D} -modules,
- (3) preservation of holonomicity under f_+ , f^+ and \mathbb{D} .

We will not say anything in the direction of (1), except point out that there is a very well-developed theory of *p*-adic differential equations, which in part seeks to find an appropriate generalisation of (1) in the rigid-analytic setting. See for example [6], [10] and [12, Theorem 7.2]. It follows from [3, Theorem B] that integrable connections on smooth rigid analytic spaces can be naturally identified with co-admissible $\widehat{\mathcal{D}}$ -modules that are \mathcal{O} -coherent.

In the direction of (2), a currently unresolved problem is to develop a good theory of characteristic varieties for co-admissible $\widehat{\mathcal{D}}$ -modules. Nevertheless, we can make the following

Definition. Let X be a smooth affinoid variety such that $\mathcal{T}(X)$ is a free $\mathcal{O}(X)$ -module, and let M be a co-admissible $D := \widehat{\mathcal{D}(X)}$ -module.

- (1) The grade of M is $j(M) = \min\{j \in \mathbb{N} : \operatorname{Ext}_D^j(M, D) \neq 0\}.$
- (2) The dimension of M is $d(M) := 2 \dim X \tilde{j}(M)$.
- (3) M is weakly holonomic if $d(M) = \dim X$.

These are reasonable definitions because (a slight modification of) the theory in $[13, \S8]$ can be applied to co-admissible *D*-modules. This is permissible because of the following theorem, whose proof uses Hartl's result [7] on the existence of regular formal models for smooth rigid analytic spaces.

Theorem 5 ([5]). Let X be a smooth affinoid variety such that $\mathcal{T}(X)$ is a free $\mathcal{O}(X)$ -module. Then

- (1) There is a Fréchet-Stein structure $\widehat{\mathcal{D}(X)} \cong \varprojlim A_n$ where each A_n is Auslander-Gorenstein with injective dimension bounded above by $2 \dim X$.
- (2) $d(M) \ge \dim X$ for every non-zero co-admissible $\mathcal{D}(X)$ -module M.

Weakly holonomic $\widehat{\mathcal{D}}$ -modules need not have finite length, as the following example shows.

Example. Let $\theta_n(t) = \prod_{m=0}^n (1 - \pi^m t)$ and define

$$\theta(t) := \lim_{n \to \infty} \theta_n(t) = \prod_{m=0}^{\infty} (1 - \pi^m t) \in \widehat{K[t]}$$

Let $X = \operatorname{Sp} K\langle x \rangle$ be the closed unit disc, let $D := \widehat{\mathcal{D}(X)}$ and define

$$M := D/D\theta(\partial).$$

Then d(M) = 1 so M is weakly holonomic. However for every $n \ge 0$, M surjects onto $D/D\theta_n(\partial)$ which is a direct sum of n+1 integrable connections of rank 1 on X. Hence M has infinite length.

In the direction of (3), there is an analogue of Kashiwara's Equivalence:

Theorem 6 ([3, Theorem A]). Let $\iota : Y \hookrightarrow X$ be a closed embedding of smooth rigid analytic spaces. Then the $\widehat{\mathcal{D}}$ -module push-forward functor

 $\iota_+:\mathcal{C}_Y\to\mathcal{C}_X$

is fully faithful, and its essential image consists of the co-admissible $\widehat{\mathcal{D}}_X$ -modules \mathcal{M} supported on $\iota(Y)$.

It is straightforward to check that ι_+ preserves weakly holonomic $\widehat{\mathcal{D}}$ -modules. However, the following examples show that weakly holonomic $\widehat{\mathcal{D}}$ -modules are too large to be preserved $\widehat{\mathcal{D}}$ -module pushforwards and pullbacks, in general. **Example.**

(1) Consider the weakly holonomic *D*-module *M* on $X = \operatorname{Sp} K\langle x \rangle$ from the previous Example, and let $\iota : Y := \{0\} \hookrightarrow X = \operatorname{Sp} K\langle x \rangle$ be the inclusion of a point. It is natural to define the pull-back $\iota^+ M$ of *M* along ι to be

$$\iota^+ M := M/xM.$$

However this is *not* a finite dimensional K-vector space, because M admits surjections onto integrable connections of arbitrarily large rank. Thus $\iota^+ M$ is not weakly holonomic.

(2) Let $U = X \setminus \{0\}$ and let $N := \widehat{\mathcal{D}}(U) / \widehat{\mathcal{D}}(U) \theta(1/x)$. Then N is the global sections of a weakly holonomic $\widehat{\mathcal{D}}$ -module on the smooth quasi-Stein variety U, but it can be shown that N is not even co-admissible as a $D = \widehat{\mathcal{D}}(X)$ -module.

In this last example, the problem is caused by the fact that $\operatorname{Supp}(N)$ is not a proper subset of X, and already in the classical setting of \mathcal{D} -modules on complex analytic manifolds, holonomicity is not preserved under \mathcal{D} -module pushforwards along open embeddings. However, we do have the following positive result, whose proof relies on Temkin's rigid-analytic version [15] of Hironaka's theorem on the embedded resolution of singularities of complex analytic spaces. **Theorem 7** ([5]). Let $j : U \hookrightarrow X$ be a Zariski open embedding of smooth rigid analytic spaces. Then $\mathbf{R}^i j_*(\mathcal{O}_U)$ is a co-admissible weakly holonomic $\widehat{\mathcal{D}}_X$ -module for all $i \geq 0$.

Corollary ([5]). Let Z be a closed analytic subset of the smooth rigid analytic space X. Then the local cohomology sheaves with support in Z

$$H^i_Z(\mathcal{O}_X)$$

are co-admissible $\widehat{\mathcal{D}}_X$ -modules for all $i \geq 0$.

These results give new examples of interesting weakly holonomic $\widehat{\mathcal{D}}$ -modules. Local cohomology sheaves in rigid analytic geometry were originally considered by Kisin in [9]; note that $H_Z^i(\mathcal{O}_X)$ is not in general a coherent \mathcal{D} -module.

We end with expressing the hope that there is some full subcategory \mathcal{H} of weakly holonomic $\widehat{\mathcal{D}}$ -modules containing all integrable connections, whose objects have finite length and have well-defined characteristic varieties, whose simple objects admit a classification similar to [8, Theorem 3.4.2], and which are stable under all appropriate $\widehat{\mathcal{D}}$ -module pushforwards and pullbacks.

References

- Ardakov, K. D-modules on rigid analytic spaces. Proceedings of the International Congress of Mathematicians, Seoul (2014), to appear.
- [2] Ardakov, K, Wadsley, S. J. D-modules on rigid analytic spaces I, preprint. http://arxiv.org/abs/1501.02215.
- [3] Ardakov, K, Wadsley, S. J. D-modules on rigid analytic spaces II: Kashiwara's equivalence, preprint. http://arxiv.org/abs/1502.01273.
- [4] Ardakov, K, Wadsley, S. J. $\widehat{\mathcal{D}}$ -modules on rigid analytic spaces III, work in progress.
- [5] Ardakov, K, Wadsley, S. J. $\widehat{\mathcal{D}}$ -modules on rigid analytic spaces IV, work in progress.
- [6] Berkovich, V. Integration of one-forms on p-adic analytic spaces. Annals of Mathematics Studies 162, Princeton University Press, (2006)
- [7] Hartl, U. Semi-stable models for rigid-analytic spaces. Manuscripta Math. 110(3) (2003), 365–380.
- [8] Hotta, R., Takeuchi, K., Tanisaki T., D-modules, perverse sheaves and representation theory, Birkhäuser (2008)
- Kisin, M. Analytic functions on Zariski open sets, and local cohomology. J. Reine Angew. Math. 506 (1999), 117–144.
- [10] Kedlaya, K. p-adic Differential equations, Cambridge Studies in Advanced Mathematics, 125, CUP (2010)
- [11] Rinehart, G. S. Differential forms on general commutative algebras. Trans. Amer. Math. Soc. 108 (1963), 195–222.
- Scholze, P. p-adic Hodge theory for rigid-analytic varieties, Forum of Mathematics, Pi, 1, e1, (2013)
- Schneider, P., Teitelbaum, J. Algebras of p-adic distributions and admissible representations. Inventiones Math. 153 (2003) 145–196.
- [14] Schneider, P. Basics notions of rigid analytic geometry. Galois Representations in Arithmetic Algebraic Geometry, Proc. Durham Conf. 1996, London Math. Soc. Lect. Notes 254, 369-378 (1998)
- [15] Temkin, M. Functorial desingularization over Q: boundaries and the embedded case, preprint. http://http://arxiv.org/abs/0912.2570.

Reporter: Michael Rottmaier