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Abstract. Let G be a torsionfree compact p-adic analytic group. We give

sufficient conditions on p and G which ensure that the Iwasawa algebra ΩG of

G has no non-trivial two-sided reflexive ideals. Consequently, these conditions
imply that every nonzero normal element in ΩG is a unit. We show that these

conditions hold in the case when G is an open subgroup of SL2(Zp) and p is
arbitrary. Using a previous result of the first author, we show that there are
only two prime ideals in ΩG when G is a congruence subgroup of SL2(Zp): the

zero ideal and the unique maximal ideal. These statements partially answer
some questions asked by the first author and Brown.

0. Introduction

0.1. Motivation. The Iwasawa theory for elliptic curves in arithmetic geometry
provides the main motivation for the study of Iwasawa algebras ΛG, for example
when G is a certain subgroup of the p-adic analytic group GL2(Zp) [CSS, Section 8].
Homological and ring-theoretic properties of these Iwasawa algebras are useful for
understanding the structure of the Pontryagin dual of Selmer groups [OV, V3] and
other modules over the Iwasawa algebras. Several recent papers [A, AB1, AB2, V1,
V2] are devoted to ring-theoretic properties of the Iwasawa algebras. One central
question in this research direction is whether there are any non-trivial prime ideals
in ΩG = ΛG/pΛG, when G is an open subgroup of SL2(Zp), see [A, Question,
p.197]. The aim of this paper is to answer this question and a few other related
open questions.

An Iwasawa algebra over any uniform subgroup of SL2(Zp) is local and extremely
noncommutative since the only nonzero prime ideal is the maximal ideal by one of
our main results, Theorem C. These algebras give rise to a class of so-called just
infinite-dimensional algebras. On the other hand, their associated graded rings
are commutative polynomial rings and hence Iwasawa algebras share many good
properties with commutative rings. This class of algebras is very interesting from
the ring-theoretic point of view and deserves further investigation.

0.2. Definitions. Throughout we fix a prime integer p. Let Zp be the ring of p-
adic integers and let Fp be the field Z/(p). We refer to the book [DDMS] for the
definition and basic properties of a p-adic analytic group and related material. Let
G be a compact p-adic analytic group. The Iwasawa algebra of G (or the completed
group algebra of G over Zp) is defined to be

ΛG := lim
←−

Zp[G/N ],
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where the inverse limit is taken over the open normal subgroups N of G [La, p.443],
[DDMS, p.155]. A closely related algebra is ΩG := ΛG/pΛG, whose alternative
definition is

ΩG := lim
←−

Fp[G/N ].

For simplicity, the algebra ΩG is also called the Iwasawa algebra of G (or the
completed group algebra of G over Fp). We refer to [AB1] for some basic properties
of ΛG and ΩG and to the articles [CSS, CFKSV, V1, V2] for general readings about
Iwasawa algebras and their modules.

In this paper, we deal entirely with ΩG. For a treatment of the implications of
our results for the Iwasawa algebra ΛG, see [A2].

0.3. Reflexive ideals. Let A be any algebra and M be a left A-module. We call
M reflexive if the canonical map

M → HomAop(HomA(M,A), A)

is an isomorphism. A reflexive right A-module is defined similarly. We will call a
two-sided ideal I of A reflexive if it is reflexive as a right and as a left A-module.

For the rest of the introduction we assume that G is torsionfree, in which case
ΩG is an Auslander regular domain. Here is our first main result.

Theorem A. Let G be a torsionfree compact p-adic analytic group whose Qp-Lie
algebra L(G) is split semisimple over Qp. Suppose that p > 5 and that p - n in the
case when sln(Qp) occurs as a direct summand of L(G). Then ΩG has no non-trivial
two-sided reflexive ideals.

The proof of Theorem A is based on a result from [AWZ]. For a few small p,
there are some extra difficulties to be dealt with; hence we exclude these primes
from consideration. We believe that these restrictions on p are not really necessary.

0.4. Normal elements. Recall that an element w of a ring A is said to be normal
if wA = Aw. The first author and Brown [AB1, Question K] asked whether under
hypotheses on G similar to the ones in Theorem A any nonzero normal element of
ΩG must be a unit. Because every nonzero normal element w ∈ ΩG gives rise to a
nonzero reflexive two-sided ideal wΩG, Theorem A implies

Theorem B. Under the same hypotheses as in Theorem A, every nonzero normal
element of ΩG is a unit.

Theorem B partially answers the open question [AB1, Question K].

0.5. Iwasawa algebras over subgroups of SL2(Zp). Another open question
[AB1, Question J] is, under hypotheses similar to those in Theorem A, whether
there are any non-trivial prime ideals in ΩG? This question is particularly interest-
ing when G an open subgroup of SL2(Zp). Using [A, Theorem A] we can prove

Theorem C. Let G be an open torsionfree subgroup of SL2(Zp). Then every prime
ideal in ΩG is either zero or maximal.

The proof of Theorem C is independent of [AWZ].
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0.6. A key step in proof. To prove the theorems above we have to overcome
several technical difficulties which seem unrelated to the main theorems. The proof
is divided into several steps and we only mention one key step: a control theorem
for reflexive ideals.

Theorem (Theorem 5.3). Let (A,A1) be a Frobenius pair satisfying the derivation
hypothesis, such that grA and grA1 are UFDs. Let I be a reflexive two-sided ideal
of A. Then I ∩A1 is a reflexive two-sided ideal of A1 and I is controlled by A1:

I = (I ∩A1) ·A.

All undefined terms will be explained later. As an example we may take (A,A1)
to be (ΩG,ΩGp). We will verify that the derivation hypothesis holds for certain
groups G, and the main theorems then follow from the control theorem and induc-
tion. This control theorem is in fact the heart of the paper, on which all our main
results are dependent. The control theorem should be useful for studying Iwasawa
algebras over other classes of groups, such as the nilpotent or solvable groups.

0.7. A field extension. An algebra A over a field is called just infinite-dimensional
if it is infinite-dimensional and every nonzero ideal in A is finite codimensional. This
is analogous to the notion of just infinite groups, also known as the almost simple
groups. Theorem C assures us of a large class of just infinite-dimensional algebras
with good homological properties.

Several researchers are interested in just infinite-dimensional algebras over an al-
gebraically closed field (or an infinite field in general) [BFP, FS]. For ring-theoretic
considerations we introduce another algebra closely related to ΩG. Let K be a field
of characteristic p (in particular, K could be the algebraic closure of Fp). Define

KG := K[[G]] := lim
←−

K[G/N ],

where the inverse limit is taken over the open normal subgroups N of G. This
algebra can be obtained by taking a completion of the algebra ΩG ⊗Fp

K with
respect to the filtration {mn⊗Fp K | n > 0} where m is the Jacobson radical of ΩG.
Under the same hypotheses, Theorems A, B and C hold for KG.

1. Preliminaries

1.1. Fractional ideals. . Let R be a noetherian domain. It is well-known that R
has a skewfield of fractions Q. Recall that a right R-submodule I of Q is said to
be a fractional right R-ideal if I is nonzero and I ⊆ uR for some nonzero u ∈ Q.
When the ring R is understood, we simply say that I is a fractional right ideal.
Fractional left R-ideals are defined similarly. If I is a fractional right ideal, then

I−1 := {q ∈ Q : qI ⊆ R}

is a fractional left ideal and there is a similar definition of I−1 for fractional left
ideals I. Let I∗ := HomR(I,R). This is a left R-module and there is a natural iso-
morphism ηI : I−1 → I∗ that sends q ∈ I−1 to the right R-module homomorphism
induced by left multiplication by q.
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1.2. Reflexive right ideals. Let I be a fractional right ideal and let I := (I−1)−1

be the reflexive closure of I. This is also a fractional right ideal which contains I.
Recall that I is said to be reflexive if I = I, or equivalently if the canonical map
I → I∗∗ is an isomorphism.

Proposition. Let R ↪→ S be a ring extension such that R is noetherian and S is
flat as a left and right R-module. Then there is a natural isomorphism

ψiM : S ⊗R ExtiR(M,R)
∼=−→ ExtiS(M ⊗R S, S)

for all finitely generated right R-modules M and all i > 0. A similar statement
holds for left R-modules. If in addition S is a noetherian domain, then
(a) J · S = J · S for all right ideals J of R,
(b) if I is a reflexive right ideal of S, then I ∩R is a reflexive right ideal of R.

Proof. Let M be a finitely generated right R-module and define

ψM : S ⊗R HomR(M,R)→ HomS(M ⊗R S, S)

by the rule ψM (s⊗ f)(m⊗ t) = sf(m)t for all s ∈ S, f ∈ HomR(M,R),m ∈M and
t ∈ R. This gives a natural transformation

ψ : S ⊗R HomR(−, R)→ HomS(−⊗R S, S)

such that ψRn is an isomorphism for all n > 0. Now let P• →M → 0 be a projective
resolution of M consisting of finitely generated free R-modules. Using the flatness
assumptions on S, we see that

ExtiS(M ⊗R S, S) = Hi(HomS(P• ⊗R S, S)) ∼= Hi(S ⊗R HomR(P•, R)) =
= S ⊗R Hi(HomR(P•, R)) = S ⊗R ExtiR(M,R),

for all i, as required.
(a) The division ring of fractions Q of R embeds naturally into the division

ring of fractions of S. Let I be a fractional right R-ideal, so that I ⊆ uR for some
u ∈ Q\0. Then IS ⊆ uS, so IS is a fractional right S-ideal. Now I−1 is a fractional
left R-ideal and I−1I ⊆ R, so

(SI−1)(IS) ⊆ SRS ⊆ S
and hence SI−1 ⊆ (IS)−1. Consider the following diagram of left S-modules:

S ⊗R I−1 α //

1⊗ηI

��

SI−1 ι // (IS)−1

ηIS

��
S ⊗R I∗

ψI

// (I ⊗R S)∗ (IS)∗.
β

oo

Here ι denotes the inclusion of SI−1 into (IS)−1 and α and β are the obvious maps.
A straightforward check shows that this diagram commutes. By the remarks made
in §1.1 the maps ηI and ηIS are isomorphisms. Since S is a flat left R-module, α is
an isomorphism and similarly β is an isomorphism. Now ψI is an isomorphism by
the first part, so ι must also be an isomorphism. We deduce that SI−1 = (IS)−1

for all fractional right R-ideals I. By symmetry, I−1S = (SI)−1 for all fractional
left R-ideals I.

We may assume that J is nonzero, so that J is a fractional right ideal, and hence

J · S = ((JS)−1)−1 = (SJ−1)−1 = (J−1)−1S = J · S
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as required.
(b) Again, we may assume that I ∩R is a nonzero, so that I ∩R is a fractional

right ideal. Clearly I ∩R ⊆ I ∩R. Using part (a) we have

I ∩R ⊆ (I ∩R) · S ⊆ I = I,

but I ∩R ⊆ R = R and hence I ∩R ⊆ I ∩R. The result follows. �

1.3. Pseudo-null modules. Let R be an arbitrary ring and M be an R-module.
We denote ExtjR(M,R) by Ej(M) . Recall [CSS, Lemma 2.1 and Definition 2.5]
that an R-module M is said to be pseudo-null if E0(N) = E1(N) = 0 for any
submodule N of M . Part (b) of the Proposition below shows that this extends the
notion of pseudo-zero modules in the sense of [BCA, Chapter VII, §4.4, Definition
2].

Lemma. Let 0 → X → Y → Z → 0 be an exact sequence of R-modules. Then Y
is pseudo-null if and only if X and Z are pseudo-null.

Proof. This appears in [CSS, §2] and follows easily from the long exact sequence of
cohomology. �

The following alternative characterisation of pseudo-null modules over noether-
ian domains is well-known, but we include a proof for the convenience of the reader.

Proposition. Let R be a noetherian domain and let M be a finitely generated
R-module.
(a) M is pseudo-null if and only if ann(x)−1 = R for all x ∈M .
(b) If R is commutative then M is pseudo-null if and only if AnnR(M)−1 = R.

Proof. (a) Suppose M is pseudo-null and let x ∈ M . The short exact sequence
0→ ann(x)→ R→ xR→ 0 induces the long exact sequence

0→ E0(xR)→ E0(R)→ E0(ann(x))→ E1(xR)→ 0

and E0(xR) = E1(xR) = 0 since M is pseudo-null. Hence ann(x)−1 = R−1 = R
by the remarks made in §1.1.

Conversely, suppose that ann(x)−1 = R for all x ∈ M . It will be enough to
show that E0(M) = E1(M) = 0. Let N = yR be a quotient of a cyclic submodule
xR of M . Then ann(x) ⊆ ann(y), so R ⊆ ann(y)−1 ⊆ ann(x)−1 = R. Hence
ann(y)−1 = R and the above long exact sequence shows that E0(N) = E1(N) = 0.

Because M is finitely generated, M is an extension of finitely many modules
M1, . . . ,Mk such that each Mi is isomorphic to a quotient of a cyclic submodule of
M . The result now follows from a long exact sequence.

(b) Suppose that AnnR(M)−1 = R. Since AnnR(M) ⊆ ann(x) for all x ∈ M ,
part (a) implies that M must be pseudo-null.

Conversely, suppose that M is pseudo-null and let x1, . . . , xk be a generating
set for M . Since M is pseudo-null, ann(xi)−1 = R for all i. Since R is commuta-
tive, AnnR(M) contains the product ann(x1) · · · ann(xk) and it follows easily that
AnnR(M)−1 = R. �

1.4. Unique factorisation domains.

Lemma. Let R be a commutative noetherian unique factorisation domain (UFD)
and I be a nonzero ideal of R. Then I = xR for some x ∈ R and xR/I is pseudo-
null. Moreover, if R is a graded ring and I is a graded ideal, then x is homogeneous.
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Proof. By [BCA, Chapter VII, §4.2, Example 2 and §3.1, Definition 1], every re-
flexive ideal of R is necessarily principal. Hence I = xR for some x ∈ R.

Now let J = AnnR(xR/I) = x−1I and suppose that q ∈ J−1. Then qJ =
qx−1I ⊆ R and so qx−1 ∈ I−1 = I

−1
= x−1R. Therefore q ∈ R and J−1 = R.

Hence xR/I is pseudo-null by Proposition 1.3 (b).
Suppose finally that R and I are graded. Then we can find a nonzero homo-

geneous element y ∈ I. Since I ⊆ xR we see that x is a factor of y. Because R
is a domain, homogeneous elements can only have homogeneous factors, so x is
necessarily homogeneous. �

1.5. Filtered rings. A filtered ring is a ring R with a filtration FR = {FnR :
n ∈ Z} consisting of additive subgroups of R such that R =

⋃
n∈Z FnR, 1 ∈

F0R, FnR ⊆ Fn+1R and FnRFmR ⊆ Fn+mR for all n,m ∈ Z. Our filtrations will
always be separated, meaning that

⋂
n∈Z FnR = 0. If x is a nonzero element of R,

there exists a unique n ∈ Z, which is called the degree of x and written n = deg x,
such that x ∈ FnR− Fn−1R.

The abelian group grR := ⊕n∈ZFnR/Fn−1R becomes a graded ring with mul-
tiplication induced by that of R and is called the associated graded ring of R with
respect to FR. The principal symbol of a nonzero element x of R of degree n is

grx := x+ Fn−1R ∈ FnR/Fn−1R ⊆ grR.

If grR is a domain then gr(xy) = gr(x) gr(y) for any nonzero x, y ∈ R.
The Rees ring of R (with respect to the filtration FR) is the following subring

of the Laurent polynomial ring R[t, t−1]:

R̃ :=
⊕
n∈Z

tnFnR.

The Rees ring comes equipped with two natural surjective ring homomorphisms
π1 : R̃ → R and π2 : R̃ → grR which send the indeterminate t to one and zero,
respectively. The map π1 is sometimes called dehomogenisation.

2. Frobenius Pairs

2.1. The classical Frobenius map. Let K be a field of characteristic p and
let B be a commutative K-algebra. Then the Frobenius map x 7→ xp is a ring
endomorphism of B and gives an isomorphism of B onto its image

B[p] := {bp : b ∈ B}

in B provided B is reduced. We remark at this point that any derivation d : B → B
is B[p]-linear:

d(apb) = apd(b) + pap−1d(b) = apd(b)

for all a, b ∈ B.

2.2. Frobenius pairs. Let t be a positive integer. Whenever {y1, . . . , yt} is a t-
tuple of elements of B and α = (α1, . . . , αt) is a t-tuple of nonnegative integers, we
define

yα = yα1
1 · · · y

αt
t .

Let [p− 1] denote the set {0, 1, . . . , p− 1} and let [p− 1]t be the product of t copies
of [p− 1].
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Definition. Let A be a complete filtered K-algebra and let A1 be a subalgebra of A.
We always view A1 as a filtered subalgebra of A, equipped with the subspace filtration
FnA1 := FnA∩A1. We say that (A,A1) is a Frobenius pair if the following axioms
are satisfied:

( i ) A1 is closed in A,
( ii ) grA is a commutative noetherian domain, and we write B = grA,
( iii ) the image B1 of grA1 in B satisfies B[p] ⊆ B1, and
( iv ) there exist homogeneous elements y1, . . . , yt ∈ B such that

B =
⊕

α∈[p−1]t

B1yα.

Remark. It is easy to see that A1 is closed in A if and only if the subspace filtration
{FnA1}n∈Z on A1 is complete.

The canonical example to keep in mind is given by Iwasawa algebras of uniform
pro-p groups G. We will show in §6.6 that (KG,KGp) is always a Frobenius pair.

We will now deduce some consequences of the axioms.

2.3. The structure of A as an A1-module. Let (A,A1) be a Frobenius pair.
We can view A as an A1-bimodule. Let us choose elements u1, . . . , ut ∈ A such
that grui = yi for all i and set uα := uα1

1 · · ·uαt for all α ∈ Nt.

Lemma. The A is a free left and right A1-module with basis {uα : α ∈ [p− 1]t} :

A =
⊕

α∈[p−1]t

A1 · uα =
⊕

α∈[p−1]t

uα ·A1.

Proof. By symmetry it is sufficient to prove the statement about left modules, say.
Suppose for a contradiction that

∑
α∈T aαu

α = 0, where {aα ∈ A1 : α ∈ T} is
some collection of nonzero elements and T ⊆ [p − 1]t is a nonempty indexing set.
Let n denote the maximum of the degrees of the aαuα and let S denote the subset
of T consisting of those indices α where this maximum is attained. Then(∑

α∈T
aαuα

)
+ Fn−1A =

∑
α∈S

gr aα · yα = 0,

which is contradictory to Definition 2.2(iv). Thus the sum M :=
∑
α∈[p−1]t A1 ·uα

is direct.
Now M is a filtered A1-submodule of A and grM coincides with grA. Since A1

is complete, M is equal to A and the result follows. �

2.4. Derivations. Let B1 ⊆ B be commutative rings of characteristic p, such that
B[p] ⊆ B1 and

B =
⊕

α∈[p−1]t

B1yα

for some elements y1, . . . , yt of B.
Fix j = 1, . . . , t and let εj denote the t-tuple of integers having a 1 in the j-th

position and zeros elsewhere. We define a B1-linear map ∂j : B → B by setting

∂j

 ∑
α∈[p−1]t

uαyα

 :=
∑

α∈[p−1]t

αj>0

αjuαyα−εj .
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Let D := DerB1(B) denote the set of all B1-linear derivations of B. We now
collect some very useful results about D and its natural action on B. In particular,
we can give a complete characterisation of the D-stable ideals of B.

Proposition. (a) The map ∂j is a B1-linear derivation of B for each j.
(b) D =

⊕t
j=1B∂j .

(c) For any x ∈ B, D(x) = 0 if and only if x ∈ B1.
(d) An ideal I ⊆ B is D-stable if and only if it is controlled by B1:

I = (I ∩B1)B.

Proof. (a) Because the yi’s generate B as a B1-algebra and ∂j is B1-linear by
definition, to show that ∂j is a derivation it is sufficient to check that

∂j(yα · yi) = ∂j(yα)yi + yα · ∂j(yi)
for all α ∈ [p − 1]t and all i = 1, . . . , t. This can be easily verified, using the fact
that ypk ∈ B1 for all k = 1, . . . , t.

(b) If bj ∈ B are such that
∑t
j=1 bj∂j = 0, then bi = (

∑t
j=1 bj∂j)(yi) = 0 for

all i, so the sum above is direct. Finally, if f ∈ D, then it is easy to see that f
and

∑t
j=1 f(yj)∂j agree on every element of B with the form u · yα for u ∈ B1, so

f =
∑t
j=1 f(yj)∂j and the result follows.

(c) Suppose x /∈ B1 and write x =
∑
α∈[p−1]t xαy

α. Then xα 6= 0 for some α 6= 0
and so αj 6= 0 for some j. Hence ∂j(x) 6= 0. The converse is trivial.

(d) (⇐) Let J = I ∩B1. For any f ∈ D we have

f(I) = f(JB) = Jf(B) ⊆ JB = I

so I is D-stable.
(⇒) Let I be a D-stable ideal and let J = I ∩ B1. Note that the extension

B1/J ⊆ B/JB satisfies the same conditions as B1 ⊆ B, and the image of I in
B/JB is stable under every B1/J-linear derivation of B/JB by part (b). Without
loss of generality we may therefore assume that I ∩ B1 = 0, and it will be enough
to show that I = 0.

Suppose for a contradiction that I 6= 0. If u =
∑
α∈[p−1]t uαy

α ∈ B is a nonzero
element, define

m(u) := max{α1 + · · ·+ αt : uα 6= 0}
and choose u ∈ I\0 such that m(u) is minimal. If ∂j(u) 6= 0 for some j then
m(∂j(u)) < m(u) and ∂j(u) ∈ I\0 contradicting the minimality of m(u). Hence
∂j(u) = 0 for all j and therefore u ∈ B1 by parts (b) and (c). But then I ∩B1 6= 0,
a contradiction. Hence I = 0 as required. �

3. A control theorem for normal elements

3.1. Main result. The purpose of this section is to prove the following

Theorem. Let (A,A1) be a Frobenius pair satisfying the derivation hypothesis,
suppose that B1 is a UFD and let w ∈ A be a normal element. Then the two-sided
ideal wA of A is controlled by A1:

wA = (wA ∩A1) ·A.

The derivation hypothesis is explained below in §3.5 and the proof is given in
§3.6.
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3.2. Inducing derivations on grA. Let A be a filtered ring with associated
graded ring B and let a ∈ A. Suppose that there is an integer n > 0 such that

[a, FkA] ⊆ Fk−nA

for all k ∈ Z. This induces linear maps

{a,−}n : FkA
Fk−1A

→ Fk−nA
Fk−n−1A

b+ Fk−1A 7→ [a, b] + Fk−n−1A

for each k ∈ Z which piece together to give a graded derivation

{a,−}n : B → B.

The idea of inducing derivations of grA in this way was first suggested to the
first author by Chris Brookes and later independently by Ken Brown.

Definition. A source of derivations for a Frobenius pair (A,A1) is a subset a =
{a0, a1, a2, . . .} of A such that there exist functions θ, θ1 : a → N satisfying the
following conditions:

( i ) [ar, FkA] ⊆ Fk−θ(ar)A for all r > 0 and all k ∈ Z
( ii ) [ar, FkA1] ⊆ Fk−θ1(ar)A for all r > 0 and all k ∈ Z,
( iii ) θ1(ar)− θ(ar)→∞ as r →∞.

Let S(A,A1) denote the set of all sources of derivations for (A,A1).

The reason behind this definition will hopefully become clear after Proposition
3.4 below. By (i), any source of derivations a generates a sequence of graded
derivations {ar,−}θ(ar) of B = grA. These derivations are B1-linear for sufficiently
large r by parts (ii, iii).

The subset {0} is clearly an example of a source of derivations. Somewhat less
trivially, we will show in Corollary 6.7 that if G is a uniform pro-p group and g ∈ G,
then {g, gp, gp2 , . . .} is a source of derivations for the the Frobenius pair (KG,KGp).

3.3. The delta function. Let (A,A1) be a Frobenius pair and n be an integer.
Each filtered part FnA1 is closed in A1 by definition of the filtration topology, and
A1 is closed in A by assumption. Hence FnA1 is closed in A, which can be expressed
as follows:

FnA1 =
⋂
k>0

(FnA1 + Fn−kA) .

We can now define a key invariant of elements of A.

Definition. For any w ∈ A, let n = degw. Define

δ(w) =
{

max{k : w ∈ FnA1 + Fn−kA} if w /∈ A1

∞ if w ∈ A1.

Clearly δ(w) > 0. Note that if w ∈ FnA\A1, then w /∈ FnA1 + Fn−kA for some
k > 0 by the above remarks, so the definition makes sense and δ(w) is finite. The
number δ(w) measures how closely the element w can be approximated by elements
of A1. It should be remarked that δ(w) > 0 if and only if grw ∈ B1, since both
conditions are equivalent to w ∈ FnA1 + Fn−1A.
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Now suppose that w ∈ A\A1. By the definition of δ, we can find elements
x ∈ FnA1 and y ∈ Fn−δA such that w = x+ y; if δ = 0 we take x to be zero. Note
that y /∈ Fn−δ−1A by the maximality of δ and hence

Yw := gr y = y + Fn−δ−1A.

In view of our assumption on x, we have Yw = grw when δ = 0.

3.4. a-closures. If w is an element of a right ideal I of A, then the symbol of w,
grw always lies in the associated graded ideal gr I of B. Naturally there are many
elements w having the same symbol, so some information is lost when one passes
to the symbol of w. It turns out that if the ideal I is two-sided, there is a way to
save some of this information.

Definition. Let a be a source of derivations for a Frobenius pair (A,A1) and I
be a graded ideal of B. We say that the homogeneous element Y of B lies in the
a-closure of I if {ar, Y }θ(ar) lies in I for all r � 0.

Proposition. Let (A,A1) be a Frobenius pair, I be a two-sided ideal of A and
w ∈ I\A1. Then Yw lies in the a-closure of gr I for any source of derivations a.

Proof. Let us write w = x + y as in the previous subsection. Since a is a source
of derivations, we can find an integer r0 > 1 such that θ1(ar) − θ(ar) > δ for all
r > r0. Therefore

[ar, x] ∈ Fn−θ1(ar)A ⊆ Fn−δ−θ(ar)−1A and

[ar, y] ∈ Fn−δ−θ(ar)A,

for all r > r0. Hence
[ar, w] ∈ Fn−δ−θ(ar)A, and

[ar, w] ≡ [ar, y] mod Fn−δ−θ(ar)−1A

for all r > r0. We can rewrite the above as follows:

[ar, w] + Fn−δ−θ(ar)−1A = [ar, y] + Fn−δ−θ(ar)−1A = {ar, Yw}θ(ar)

for r > r0. Since w ∈ I and I is a two-sided ideal, this element must always lie in
the ideal gr I of B, and hence Yw lies in the a-closure of gr I as required. �

Each source of derivations a gives rise to a sequence of derivations {ar,−}θ(ar) of
B, and some or all of these could well be zero. To ensure that we get an interesting
supply of derivations of B, we now introduce a condition which holds for Iwasawa
algebras of only rather special uniform pro-p groups.

3.5. Derivation hypothesis. Recall that D denotes the set of all B1-linear deriva-
tions of B and S(A,A1) denotes the set of all sources of derivations for (A,A1). Our
derivation hypothesis is really concerned with the action of the derivations induced
by S(A,A1) on the graded ring B.

Definition. Let (A,A1) be a Frobenius pair and X ∈ B be an arbitrary homoge-
neous element. We say that (A,A1) satisfies the derivation hypothesis if whenever
a homogeneous element Y ∈ B lies in the a-closure of XB for all a ∈ S(A,A1), we
must have D(Y ) ⊆ XB.

Assuming the derivation hypothesis, it is possible to “clean” a normal element
by multiplying it by a unit. The following Proposition forms the inductive step in
the proof of Theorem 3.1.
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Proposition. Let (A,A1) be a Frobenius pair satisfying the derivation hypothesis
and let w ∈ A\A1 be a normal element. Then there exists a unit u ∈ A such that
δ(wu) > δ(w). Moreover, if δ(w) > 0 then u = 1− c for some c ∈ F−δ(w)A.

Proof. Write w = x+y as in §3.3, let X = grw and Y = Yw = gr y. By Proposition
3.4, Y lies in the a-closure of grwA = XB for all a ∈ S(A,A1) and hence D(Y ) ⊆
XB because (A,A1) satisfies the derivation hypothesis.

Suppose first that δ := δ(w) = 0, so that Y = X. Then the ideal XB of B is
D-stable and is hence controlled by B1 by Proposition 2.4(d):

XB = (XB ∩B1) ·B.

Because B is a free B1-module, XB ∩ B1 is a reflexive ideal of B1 by Proposition
1.2(b). Since B1 is a UFD by assumption, XB∩B1 = X1B1 for some homogeneous
element X1 ∈ B1 by Lemma 1.4.

Hence XB = X1B and we can therefore find a homogeneous unit U ∈ B such
that X1 = XU . Choose u, v ∈ A such that gru = U and gr v = U−1; then uv ≡ 1
mod F−1A. But A is complete so 1 + F−1A consists of units in A and hence u is a
unit. Since gr(wu) = XU = X1 ∈ B1, it follows that δ(wu) > 0 = δ(w) as required.

Now suppose that δ > 0; then X must lie in B1. Applying Proposition 2.4(c) to
the image of Y in B/XB yields that

Y ∈ XB +B1.

Since X and Y are homogeneous, we can find homogeneous elements C ∈ B and
Z ∈ B1 such that

Y = XC + Z;

moreover deg Y = degXC if XC 6= 0 and deg Y = degZ if Z 6= 0.
Suppose for a contradiction that C = 0. Then Y = Z ∈ B1. Hence we can find

x′ ∈ Fn−δA1 such that

x′ ≡ y mod Fn−δ−1A.

Thus w − (x + x′) ∈ Fn−δ−1A, which is contradictory to the maximality of δ. So
C 6= 0 and hence degC = deg Y − degX = −δ. Note that degC < 0.

We can find c ∈ A such that gr c = C. Then

w(1− c) = (x+ y)(1− c) ≡ x+ y − xc mod Fn−δ−1A

since deg(yc) < n− δ. But

y − xc+ Fn−δ−1A = Y −XC = Z ∈ B1,

so we can find z ∈ A1 such that y − xc ≡ z mod Fn−δ−1A and hence

w(1− c)− (x+ z) ∈ Fn−δ−1A.

Since degZ = deg Y if Z 6= 0, z ∈ Fn−δA and hence x + z ∈ FnA1. This implies
that δ(w(1− c)) > δ = δ(w).

Finally, since c ∈ F−δ(w)A ⊆ F−1A and A is complete, u := 1− c is a unit in A
and δ(wu) > δ(w) by construction. �
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3.6. Proof of Theorem 3.1.

Proof. It will be enough to construct a unit u ∈ A such that wu ∈ A1.
If w already happens to lie in A1 then we can take u = 1, so assume that w /∈ A1.

By Proposition 3.5 there exists a unit u0 ∈ A such that δ(wu0) > 0.
Let w0 := wu0. Using Proposition 3.5 we can inductively construct a sequence

of normal elements w1, w2, . . . of A and a sequence of elements c1, c2, . . . of A, such
that for all i > 0,

• ci+1 ∈ F−δ(wi)A,
• wi+1 = wi(1− ci+1),
• δ(wi+1) > δ(wi) if wi /∈ A1.

Here we interpret F−∞A as the zero subspace of A. With this convention, the
sequence ci converges to zero as i→∞ by construction, so the limit

u := lim
i→∞

u0(1− c1) · · · (1− ci)

exists in A by the completeness of A. Note that u is unit because we can write
down an inverse having the same form as u, and that wu = limi→∞ wi.

We will now show that wu lies in A1. Since A1 is closed in A, it will be sufficient
to show that wu ∈ A1 + FkA for all k ∈ Z. Let n = degw0 and note that
degwi = n for all i > 0 by construction. Since wi → wu and δ(wi) → ∞ as
i → ∞, we see that for i � 0, wu − wi ∈ FkA and wi ∈ FnA1 + FkA. Hence
wu ∈ FnA1 + FkA ⊆ A1 + FkA, as required. �

4. Microlocalisation

4.1. Notation. We briefly recall some basic facts about the theory of algebraic
microlocalisation, following [Li] and [AVV]. Our notation will be slightly non-
standard. Throughout §4 we will make the following assumptions:

• R is a filtered ring whose Rees ring R̃ is noetherian,
• T is a right Ore subset of grR consisting of homogeneous regular elements.

Since R and grR are homomorphic images of R̃ by §1.5, these rings must also be
noetherian. We should remark at this point that if the filtration on R is complete
and grR is noetherian, then the filtration on R is zariskian: see [LV, Chapter II,
§2.1, Definition 1 and §2.2, Proposition 1]. In particular R̃ is necessarily noetherian.

4.2. Lifting Ore sets. Let T̃ denote the homogeneous inverse image of T in R̃:

T̃ := {r ∈ R̃ : r is homogeneous and π2(r) ∈ T}.

It can be shown that T̃ is a right Ore set in R̃ [Li, Corollary 2.2], so we may form
the Ore localisation R̃T̃ . This is still a Z-graded ring.

Let S := π1(T̃ ) ⊆ R. This is a right Ore set in R and in fact

S = {r ∈ R : gr r ∈ T}.
Note that S consists of regular elements in R, since every element of T is assumed
to be regular. It follows that R embeds into the Ore localisation RS .

The surjection π1 : R̃ � R extends to surjection π1 : R̃T̃ � RS . The grading on
R̃T̃ induces a filtration on RS , as in [Li, Proposition 2.3(1)]:

FnRS := π1((R̃T̃ )n).
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Here (R̃T̃ )n denotes the nth-graded part of R̃T̃ .

Lemma. The filtration on RS is given explicitly by the formula

FnRS = {rs−1 : r ∈ R, s ∈ S and deg r − deg s 6 n}
for all integers n. This filtration is zariskian.

Proof. Before we begin the proof, let us observe that if x ∈ R is nonzero and
y ∈ S then (grx)(gr y) 6= 0 (because grx 6= 0 and gr y ∈ T is regular) and hence
deg(xy) = deg x+ deg y.

Let Ln = {rs−1 : r ∈ R, s ∈ S and deg r − deg s 6 n}. Decoding the definition
of FnRS , we see that FnRS is in fact the additive subgroup of RS generated by Ln.
It will therefore be sufficient to show that Ln is closed under addition.

So let r1s−1
1 and r2s

−1
2 be elements of Ln for some ri ∈ R and si ∈ S. We

can find u1 ∈ S and u2 ∈ R such that s1u1 = s2u2 = s say; then r1s
−1
1 + r2s

−1
2 =

(r1u1+r2u2)s−1. Since s1, s2 ∈ S, we have deg s = deg s1+deg u1 = deg s2+deg u2

by the first paragraph. Now

deg(r1u1 + r2u2)− deg s 6 max{deg r1 + deg u1,deg r2 + deg u2} − deg s =
= max{deg r1 − deg s1,deg r2 − deg s2} 6 n

so (r1u1 + r2u2)s−1 ∈ Ln, as required.
The last assertion follows from [Li, Proposition 2.8]. �

4.3. Microlocalisation of rings.

Definition. The microlocalisation of R at T is the completion QT (R) of RS with
respect to the filtration on RS described in §4.2.

We record some useful properties enjoyed by microlocalisation.

Proposition. (a) QT (R) is a complete filtered ring,
(b) FnQT (R) is the closure of FnRS in QT (R),
(c) R embeds into QT (R),
(d) QT (R) is a flat right R-module,
(e) there are natural isomorphisms

grQT (R) ∼= gr(RS) ∼= (grR)T .

Proof. Parts (a) and (b) are clear from the definition. We have seen in §4.2 that
R embeds into RS , and the filtration on RS is separated by Lemma 4.2 and [LV,
Chapter II, §2.1, Theorem 2]. Hence RS embeds into QT (R) and part (c) follows.
Parts (d) and (e) follow from [AVV, Corollary 3.20(1) and Proposition 3.10]. �

4.4. Microlocalisation of modules. Let M be a finitely generated right R-
module. We define the microlocalisation of M at T to be

QT (M) := M ⊗R QT (R).

This is naturally a right QT (R)-module. Recall that a filtration on M is said to be
good if the associated Rees module is finitely generated over R̃.

Lemma. Let M be a finitely generated R-module equipped with some good filtration,
and N be a submodule of M . Then
(a) grQT (M) ∼= (grM)T ,
(b) the Ore localisation MS is a dense RS-submodule of QT (M),
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(c) QT (N) can be identified with a QT (R)-submodule of QT (M),
(d) the tensor filtration on QT (N) coincides with the subspace filtration induced

from QT (M),
(e) if L is another submodule of M , then QT (N) ∩QT (L) = QT (N ∩ L).

Proof. We should remark that the filtration on QT (M) = M ⊗R QT (R) is the
tensor filtration in the sense of [LV, Chapter I, §6]. Part (a) follows from [AVV,
Proposition 3.10 and Corollary 3.20(2)] and part (b) follows from [Li, Corollary
2.5(3)], whereas parts (c) and (d) follow from [AVV, Corollary 3.16(3)].

Finally, QT (R) is a flat R-module by Proposition 4.3(d), so the microlocalisation
functor M 7→ M ⊗R QT (R) preserves pullbacks, and in particular, intersections.
Part (e) follows. �

4.5. Constructing normal elements. Let I be a right ideal of R. Using Lemma
4.4(c), we can and will identify QT (I) with a right ideal of QT (R). By Lemma
4.4(d) this identification respects filtrations, and by Lemma 4.4(a) the associated
graded ideal grQT (I) is just the localised right ideal (gr I)T of grQT (R) = (grR)T .

Proposition. Let I be a two-sided of R and suppose that there exists a central reg-
ular homogeneous element X ∈ grR such that the localised ideal (gr I)T of (grR)T
is generated by X:

(gr I)T = X · (grR)T .
Then there exists a normal element w ∈ QT (R) such that QT (I) = w ·QT (R).

Proof. Choose any w ∈ QT (I) such that grw = X. Then the right ideal w ·QT (R)
is contained in QT (I) and their graded ideals are equal by assumption. Because
the filtration on QT (R) is complete, it follows that QT (I) = w ·QT (R).

The Ore localisation IS is a two-sided ideal of RS because R is noetherian [MR,
Proposition 2.1.16]. By Lemma 4.4(b), QT (I) is the closure of IS inside QT (R) and
is hence a two-sided ideal of QT (R).

Since X = grw is central and regular in (grR)T , and the filtration on QT (R) is
complete, the fact that w is a normal element in R will follow from the following
rather general lemma. �

Lemma. Let R be a complete filtered ring and w ∈ R. Suppose that wR is a two-
sided ideal of R and that grw is a central regular element of grR. Then w is a
regular normal element in R.

Proof. Because grw is a regular element of grR, w must be a regular element of
R. Since Rw ⊆ wR, for every r ∈ R there exists σ(r) ∈ R such that rw = wσ(r).
Since w is regular, r 7→ σ(r) is an injective ring endomorphism of R. We will show
that σ is surjective, which will complete the proof.

Let r ∈ R be nonzero, so that σ(r) is nonzero. Since grw is central and regular,

gr r grw = gr(rw) = gr(wσ(r)) = grw grσ(r) = grσ(r) grw

and therefore grσ(r) = gr r for any nonzero r ∈ R. Now let s ∈ R be a nonzero
element of degree n. Set rn := s, so that

s ≡ σ(rn) mod Fn−1R.

Set rn−1 = s− σ(rn) ∈ Fn−1R, so that

s− σ(rn) ≡ σ(rn−1) mod Fn−2R.
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Continuing this process, we can construct a sequence of elements rn, rn−1, rn−2, . . .
of R such that ri ∈ FiR for all i 6 n. Because R is complete, the infinite sum∑∞
k=0 rn−k converges to an element r of R and σ(r) = s by construction. The

result follows. �

5. A control theorem for reflexive ideals

In this section we state and prove our main result.

5.1. Microlocalisation of Frobenius pairs. Let (A,A1) be a Frobenius pair.
Because B = grA is noetherian and the filtration on A is complete, the remarks
made in §4.1 show that we may apply the theory developed in §4.

If Z is a nonzero homogeneous element of B, then T := {1, Z, Z2, . . .} is an Ore
set in B consisting of regular homogeneous elements, since B is a commutative
domain by assumption. By abuse of notation, we will denote the corresponding
microlocalisation QT (A) by QZ(A).

It turns out that Frobenius pairs are stable under microlocalisation.

Proposition. Let (A,A1) be a Frobenius pair and Z ∈ B be a nonzero homogeneous
element.
(a) Then (QZ(A), QZp(A1)) is also a Frobenius pair.
(b) If a is a source of derivations for (A,A1), then it is also a source of derivations

for (QZ(A), QZp(A1)).
(c) Suppose B is a UFD. If (A,A1) satisfies the derivation hypothesis, then so does

(QZ(A), QZp(A1)).

Proof. (a) By Proposition 4.3(c), we can identify A with its image in QZ(A). We
will also identify grA1 with its image B1 in B. By Definition 2.2(iii), Zp lies in B1

so the microlocalisation QZp(A1) makes sense.
Let T and T1 denote the multiplicatively closed sets in B and B1 generated by Z

and Zp and let S and S1 be the corresponding right Ore sets in A and A1. Clearly
S1 ⊆ S, so the Ore localisation (A1)S1 naturally embeds into AS . Moreover, using
Lemma 4.2 we see that

(FnAS) ∩ (A1)S1 = Fn(A1)S1

for all n ∈ Z, which means that the filtration on (A1)S1 induced from A1 coincides
with the subspace filtration induced from AS . Passing to completions we see that
QZp(A1) can be identified with a closed subalgebra of QZ(A). Moreover, one can
easily check that

(FnQZA) ∩QZp(A1) = FnQZp(A1)

for all n. Hence Definition 2.2(i) is satisfied for the new pair (QZ(A), QZp(A1)).
Next, grQZ(A) ∼= BZ and grQZp(A1) ∼= (B1)Zp by Proposition 4.3(e). Since

BZ is a commutative noetherian domain and (BZ)[p] = B
[p]
Zp ⊆ (B1)Zp , Definitions

2.2(ii, iii) are satisfied.
Finally, BZ ∼= BZp because Z is becomes a unit when Zp gets inverted. Hence

BZ = BZp =
⊕
α∈Np

t

(B1)Zpyα =
⊕
α∈Np

t

(BZ)1yα,

which shows that Definition 2.2(iv) is inherited by BZ .
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(b) Let a ∈ A and let the integers k, n be such that [a, FkA] ⊆ Fk−nA. For any
y ∈ A and s ∈ S we have

[a, ys−1] = [a, y]s−1 − ys−1[a, s]s−1,

which together with Lemma 4.2 implies that

[a, FkAS ] ⊆ Fk−nAS .
Now FkQZ(A) is the closure of FkAS in QZ(A) by Proposition 4.3(b) and the
bracket operation [a,−] is continuous, so

[a, FkQZ(A)] ⊆ Fk−nQZ(A).

A similar argument shows that if [a, FkA1] ⊆ Fk−nA, then

[a, FkQZp(A1)] ⊆ Fk−nQZ(A).

Part (b) follows.
(c) Let X,Y be homogeneous elements of BZ and suppose that Y lies in the

a-closure of XBZ for all a ∈ S(QZ(A), QZp(A1)).
Let a be a source of derivations for (A,A1). Note that the derivation Dr of

grQZ(A) ∼= BZ induced by the element ar ∈ QZ(A) coincides with the extension
to BZ of the derivation {ar,−}θ(ar) of B induced by ar ∈ A.

Because Y lies in the a-closure of XBZ , Dr(Y ) ∈ XBZ for all r � 0. We can
find an integer n such that Zp

n

Y ∈ B. Then

Dr(Zp
n

Y ) ∈ XBZ ∩B
for all r � 0. Since BZ is a flat B-module, XBZ ∩ B is a reflexive ideal of B by
Proposition 1.2(b). Since B is a UFD, Lemma 1.4 implies that XBZ ∩ B = X ′B
for some homogeneous element X ′ ∈ B. Hence

Dr(Zp
n

Y ) ∈ X ′B
for all r � 0 and therefore Zp

n

Y lies in the a-closure of X ′B for any source of
derivations a for (A,A1). Because (A,A1) satisfies the derivation hypothesis, it
follows that D(Zp

n

Y ) ⊆ X ′B. By Proposition 2.4(b), the localised BZ-module
DZ can be identified with the set of all (B1)Zp-linear derivations of BZ . But
DZ(Y ) ⊆ XBZ and part (c) follows. �

5.2. Applying Theorem 3.1. We can now use the Control Theorem for normal
elements to deduce some information about arbitrary two-sided ideals. Recall the
definition of pseudo-null modules from §1.3.

Theorem. Let (A,A1) be a Frobenius pair satisfying the derivation hypothesis,
such that B and B1 are UFDs. Let I be a two-sided ideal of A and J = (I ∩A) ·A1.
Then gr I/ gr J is pseudo-null.

Proof. The right ideal J is clearly contained in I, and we have the following chain
of inclusions of graded ideals in B:

gr J ⊆ gr I ⊆ gr I ⊆ grR,

where gr I denotes the reflexive closure of gr I in B defined in §1.2. Since B is a
UFD, gr I = XB for some homogeneous element X ∈ B by Lemma 1.4.

Let Z be a nonzero homogeneous element of B such that ZX ∈ gr I, and con-
sider the microlocalisations A′ := QZ(A) and A′1 := QZp(A1). By construction,
(gr I)Z = X ·BZ , so the two-sided ideal I ′ := QZ(I) of A′ is generated by a normal
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element w of A′ by Proposition 4.5. Because the Frobenius pair (A′, A′1) satisfies
the derivation hypothesis by Proposition 5.1(c), the ideal I ′ = wA′ is controlled by
A′1 by Theorem 3.1:

I ′ = (I ′ ∩A′1) ·A′.
By Lemma 2.3, A =

⊕
α∈[p−1]t uαA1 and A′ =

⊕
α∈[p−1]t uαA′1; note that the

same generators occur in both expressions. Hence

A′ = A ·A′1 and I ′ = I ·A′ = I ·A ·A′1 = I ·A′1.

Because A is a finitely generated A1-module, Lemma 4.4(e) implies that

QZp(I) ∩QZp(A1) = QZp(I ∩A1)

or equivalently, (I ·A′1) ∩A′1 = (I ∩A1) ·A′1. Hence

I ′ = (I ′ ∩A′1) ·A′ = (I ∩A1) ·A′1 ·A′ = (I ∩A1)A ·A′

and hence I ·A′ = J ·A′. Passing to the graded ideals and using Lemma 4.4(a), we
obtain (gr I)Z = (gr J)Z , which means that Zn gr I ⊆ gr J for some integer n.

This holds for any Z ∈ X−1 gr I, a finitely generated ideal in B. Hence

(X−1 gr I)m ⊆ AnnB(gr I/ gr J)

for some integer m. But B/X−1 gr I ∼= XB/I is pseudo-null by Lemma 1.4, so
C := B/(X−1 gr I)m is also pseudo-null by Lemma 1.3. Since gr I/ gr J is a finitely
generated B-module, it must be a quotient of a direct sum of finitely many copies
of C and is therefore pseudo-null, again by Lemma 1.3. �

5.3. A control theorem for reflexive ideals. We can now prove our main result.
Recall from §0.3 that a reflexive two-sided ideal is a two-sided ideal which is reflexive
as a right and left ideal. See also the remark below.

Theorem. Let (A,A1) be a Frobenius pair satisfying the derivation hypothesis,
such that B and B1 are UFDs. Let I be a reflexive two-sided ideal of A. Then
I ∩A1 is a reflexive two-sided ideal of A1 and I is controlled by A1:

I = (I ∩A1) ·A.

Proof. Retain the notation of §5.2. Note that A is a free right and left A1-module
by Lemma 2.3. It follows from Proposition 1.2 that I ∩A1 is a reflexive ideal of A1

and J = (I ∩A1)A is a reflexive right ideal of A. It will clearly be enough to show
that I ⊆ J .

LetN be a right submodule of I/J . If we equipN with the subquotient filtration,
then grN is a submodule of gr I/ gr J and is hence pseudo-null by Theorem 5.2 and
Lemma 1.3. In particular, E0(grN) = E1(grN) = 0.

Since the filtration on A is zariskian by the remarks made in §4.1, there is a
good filtration on E1(N) such that grE1(N) is a subquotient of E1(grN) by [Bj,
Proposition 3.1]. Hence grE1(N) = 0. It now follows from [LV, Chapter II, §1.2,
Lemma 9] that E1(N) = 0. Similarly E0(N) = 0, and so I/J is a pseudo-null right
A-module.

Let x ∈ I and (J : x) := {a ∈ A : xa ∈ J} be the annihilator of the image of x
in I/J . By Proposition 1.3(a) we know that (J : x)−1 = A. Now J−1x(J : x) ⊆
J−1J ⊆ A so J−1x ⊆ (J : x)−1 = A. Hence x ∈ J = J , as required. �
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Remark. If B is a UFD, then B is completely integrally closed. In other words, B
is a maximal order [MR, Proposition 5.1.3]. It follows from [MaR, X.2.1] that A is
also a maximal order. Now it is well known that a two-sided ideal I of a maximal
order A is reflexive as a right ideal if and only if it is reflexive as a left ideal [MR,
Proposition 5.1.8].

6. Iwasawa algebras

6.1. The Campbell-Hausdorff series. Following [DDMS], we define

ε :=
{

2 if p = 2
1 otherwise.

Recall [DDMS, §9.4] that a Zp-Lie algebra L is said to be powerful if L is free of
finite rank as a module over Zp and [L,L] ⊆ pεL.

Let Φ(X,Y ) be the Campbell-Hausdorff series [DDMS, Definition 6.26].

Lemma. Let L be a powerful Zp-Lie algebra, v, w ∈ L and k > 0. Then

Φ(−v + pkw, v) ≡ pkw mod pk+1L.

Proof. By the definition of the Campbell-Hausdorff series,

Φ(X,Y ) = X + Y +
1
2
[X,Y ] +

∑
n>3

∑
〈e〉=n−1

qe(X,Y )e

where e = (e1, . . . , es) ranges over all possible sequences of positive integers such
that 〈e〉 := e1 + . . .+ es = n− 1, qe is a certain rational number and

(X,Y )e = [· · · [· · · [· · · [[X,Y ], · · · , Y ], X], · · · , X], · · · ]

is a repeated Lie commutator depending on e of length n. Fix the integer n > 3
and the sequence e for the time being.

Substitute X = −v+pkw and Y = v into this repeated commutator and expand:
this gives a Zp-linear combination of repeated commutators of v and pkw of length
n. With the exception of [v, v, . . . , v] = 0, each one of these involves at least one
pkw and hence is contained in pkLn, where L1 = L,L2 = [L,L], L3 = [[L,L], L], . . .
is the lower central series of L.

Using the fact that L is powerful, we deduce that

(−v + pkw, v)e ∈ pkLn ⊆ pk+ε(n−1)L.

Now as n > 3, pε(n−1)qe ∈ pεZp by [DDMS, Theorem 6.28], so

qe(−v + pkw, v)e ∈ pkqepε(n−1)L ⊆ pk+εL

for all n > 3 and all e such that 〈e〉 = n− 1. Hence

Φ(−v + pkw, v) ≡ pkw +
pk

2
[w, v] mod pk+εL.

Now pk

2 [w, v] ∈ pk+1L since [w, v] ∈ pεL and the result follows. �
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6.2. The exponential map. Recall that there is an isomorphism between the
category of uniform pro-p groups and group homomorphisms and the category of
powerful Zp-Lie algebras and Lie homomorphisms [DDMS, Theorem 9.10].

If L is a powerful Zp-Lie algebra and G is the corresponding uniform pro-p group,
then there is a bijection

exp : L→ G

which allows us to write every element of G in the form exp(u) for some u ∈ L.
The Campbell-Hausdorff series allows us to recover the group multiplication in G
from the Lie structure on L [DDMS, Proposition 6.27]:

exp(u) · exp(v) = exp Φ(u, v)

for all u, v ∈ L. We collect together some useful properties of exp in the following

Lemma. Let L be a powerful Zp-Lie algebra, u, v ∈ L and G be the corresponding
uniform pro-p group. Then
(a) exp(mu) = exp(u)m for all m ∈ Z,
(b) exp(pkL) = Gp

k

for all k > 0,
(c) if u ≡ v mod pkL for some k > 0, then exp(u) ≡ exp(v) mod Gp

k

,
(d) exp induces an Fp-linear isomorphism L/pL→ G/Gp:

exp(u+ v) ≡ exp(u) exp(v) mod Gp.

Proof. For parts (a), (b) and (d) see the proof of [DDMS, Theorem 9.8]. Now
Lemma 6.1 implies that Φ(−u, v) ∈ pkL, so

exp(u)−1 exp(v) = exp(−u) exp(v) = exp Φ(−u, v) ∈ exp(pkL) = Gp
k

and part (c) follows. �

Let (g, h) = g−1h−1gh denote the group commutator of g, h ∈ G.

Proposition. Let u ∈ L be such that [u, L] ⊆ pkL for some k > ε. Then

(exp(u), exp(v)) ≡ exp([u, v]) mod Gp
k+1

for all v ∈ L. In particular, (exp(u), G) ⊆ Gpk

.

Proof. We can compute the conjugate exp(−u) exp(−v) exp(u) in G using [DDMS,
Exercise 6.12]: exp(−u) exp(−v) exp(u) = exp(−z), where

z := v. exp(ad(u)) = v + [v, u] +
1
2
[[v, u], u] +

1
6
[[[v, u], u], u] + · · · ∈ L.

Now exp(pk) = 1 + pk + 1
2p

2k + . . . ≡ 1 + pk mod pk+1Zp and L · ad(u) ⊆ pkL, so

v · ad(u)n

n!
∈ pkn

n!
L ⊆ pk+1L

for all n > 2. Hence z = v+pkw for some w ∈ L such that pkw ≡ [v, u] mod pk+1L.
Applying Lemma 6.1, we deduce that

Φ(−z, v) = Φ(−v − pkw, v) ≡ −pkw ≡ [u, v] mod pk+1L.

Using Lemma 6.2(c), we finally obtain

(exp(u), exp(v)) = exp(−z) · exp(v) = exp Φ(−z, v) ≡ exp([u, v]) mod Gp
k+1

,

as required. �
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6.3. Subalgebras and subgroups. From now on, we will assume that L is a
powerful Zp-Lie algebra of rank d and we will fix a subalgebra L1 of L which
contains pL. We can find a subset {v1, . . . , vd} of L such that

• {vi + pL : 1 6 i 6 d} is an Fp-basis for L/pL, and
• {vi + L1 : 1 6 i 6 t} is an Fp-basis for L/L1 for some t.

In many interesting cases, L1 will in fact be equal to pL.

Lemma. Let G = exp(L) be the uniform pro-p group corresponding to L, let G1 =
exp(L1) and let gi = exp(vi) for all i. Then
(a) G1 is a subgroup of G,
(b) {g1, . . . , gd} is a topological generating set for G, and
(c) {gp1 , . . . , g

p
t , gt+1, . . . , gd} is a topological generating set for G1.

Proof. (a) This is not entirely trivial, since exp(M) doesn’t have to be a subgroup of
G for arbitrary subalgebras M of L — see [I]. However, exp(u) exp(v) ≡ exp(u+v)
mod Gp for all u, v ∈ L by Lemma 6.2 and Gp = exp(pL) ⊆ exp(L1) = G1, so
xy ∈ G1 for all x, y ∈ G1 and G1 is a subgroup.

(b) Let M be the Zp-submodule of L generated by {v1, . . . , vd}. Because

M + pL = L

by assumption, M = L by Nakayama’s Lemma and hence {v1, . . . , vd} is a Zp-basis
for L since L has rank d. Part (b) now follows from [DDMS, Theorem 9.8].

(c) By [DDMS, Theorem 3.6(iii)] and part (b), {gp1 , . . . , g
p
d} is a topological

generating set for Gp. Since {gt+1G
p, . . . , gdG

p} is a basis for G1/G
p by Lemma

6.2(d), {gp1 , . . . , g
p
t , gt+1, . . . , gd} must be a topological generating set for G1, as

required. �

6.4. The group algebra of a uniform pro-p group. Let G is a uniform pro-p
group and let K be a field of characteristic p. Let J be the augmentation ideal of
the group algebra K[G] of G. If {g1, . . . , gd} is a topological generating set for G
and set bi := gi − 1 for all i = 1, . . . , d, then these elements all lie in J .

Proposition. The associated graded ring of K[G] with respect to the J-adic filtra-
tion is isomorphic to the polynomial algebra K[y1, . . . , yd].

Proof. As in the proof of [DDMS, Theorem 7.22], the bi’s commute modulo J3. We
can therefore define a K-algebra homomorphism ϕ : K[y1, . . . , yd] → grK[G] by
setting ϕ(yi) = bi + J2. When the field K is Fp, [DDMS, Theorem 7.24] implies
that ϕ is an isomorphism. The general case now follows, using a simple “extension
of scalars” argument. �

From now on we will identify K[y1, . . . , yd] with grK[G] via the map ϕ. For each
α ∈ Nt, let bα := bα1

1 · · · b
αd

d ∈ K[G] and define

M := {bα : α ∈ Nd}.
Writing |α| := α1 + . . .+ αd, we can define

M<n := {bα ∈M : |α| < n}
for each n > 0, the subsets M=n andM>n being defined similarly.

Corollary. K[G] = Jn ⊕K[M<n] for all n > 0.

Proof. The above proposition implies that Jn+1 = Jn ⊕ K[M=n] for all n > 0.
The corollary follows from this by an easy induction. �
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6.5. Subgroups. Recall the notation of §6.3, so that {gp1 , . . . , g
p
t , gt+1, . . . , gd} is a

topological generating set for G1. Now define

N := {bα ∈M : p|αi for all i 6 t}

and note that the K-linear span K[N ] of N is contained in K[G1].

Lemma. (a) K[N ] is dense in K[G1] with respect to the J-adic topology.
(b) K[N ] ∩ Jn = K[N ∩M>n], for all n > 0.
(c) The image of grK[N ] inside grK[G] is equal to K[yp1 , . . . , y

p
t , yt+1, . . . , yd].

Proof. (a) Let x ∈ G1 and n > 0. It will be enough to show that x ≡ y mod Jn for
some y ∈ K[N ]. Since G/Gp

n

is a finite powerful p-group, by [DDMS, Corollary
2.8] we can find non-negative integers λ1, . . . , λd such that

x = gλ1
1 · · · g

λd

d u

for some u ∈ Gp
n

. Considering the image of x in G/Gp and using the fact that
x ∈ G1, we see that λi is divisible by p for all i 6 t. Write λi = pµi for some
µi ∈ N, for each i 6 t. Let y := gλ1

1 · · · g
λd

d ; then

y = (1 + bp1)
µ1 · · · (1 + bpt )

µt(1 + bt+1)λt+1 · · · (1 + bd)λd ∈ K[N ].

Because Gp
n − 1 ⊆ Jn, the element u is congruent to 1 modulo Jn, and hence

x = yu ≡ y mod Jn

as required.
(b) It will be enough to show that K[N ] ∩ Jn ⊆ K[N ∩ M>n], so let a ∈

K[N ] ∩ Jn. We can decompose a uniquely as a = b + c, where b ∈ K[N ∩M<n]
and c ∈ K[N ∩M>n]. Now c ∈ K[M>n] ⊆ Jn so b = a − c ∈ Jn ∩K[M<n] = 0
by Corollary 6.4. Hence a = c ∈ K[N ∩M>n], as required.

(c) This follows immediately from part (b). �

6.6. Completed group algebras. Let H be a compact p-adic analytic group.
The completed group algebra KH is by definition the inverse limit

KH := lim←−K[H/N ],

as N runs over all the open normal subgroups of H. When the field K is finite,
this algebra is sometimes called the Iwasawa algebra of H.

Proposition. Let A := KG and A1 := KG1. Then (A,A1) is a Frobenius pair.

Proof. For each open normal subgroup N of G, let wN,G be the kernel of the natural
map from K[G] to K[G/N ]. By the proof of [DDMS, Lemma 7.1], this family of
ideals of K[G] is cofinal with the powers of the augmentation ideal J = wG,G.
Therefore A is isomorphic to the completion of K[G] with respect to the J-adic
filtration on K[G]. Let (FnA) be the associated filtration on A; explicitly,

FnA :=
{
J−n if n 6 0
A otherwise.

In this way, A becomes a complete filtered K-algebra, and

B := grA ∼= grK[G] ∼= K[y1, . . . , yd]

is a commutative noetherian domain, by Proposition 6.4.
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Now if N is an open normal subgroup of G, then N ∩ G1 is an open normal
subgroup of G1 and

wN,G ∩K[G1] = wN∩G1,G1 .

Conversely, if N1 is an open normal subgroup of G1, then we can find an open
normal subgroup N of G such that N ∩G1 ⊆ N1, so that

wN1,G1 ⊇ wN∩G1,G1 = wN,G ∩K[G1].

Hence the subspace topology on K[G1] induced from the J-adic topology on K[G]
coincides with the natural topology on K[G1] used in the definition of A1. We may
therefore identify A1 with the closure of K[G1] inside A. In this way A1 becomes
a closed subalgebra of A.

Finally, Lemma 6.5 implies that the image of grA1
∼= grK[G1] ∼= grK[N ] inside

grA can be identified with the subalgebra B1 := K[yp1 , . . . , y
p
t , yt+1, . . . , yd] of B.

This clearly contains B[p] and moreover

B =
⊕

α∈[p−1]t

B1yα,

as required. �

6.7. Sources of derivations for Iwasawa algebras.

Proposition. Let u ∈ L be such that [u, L] ⊆ pkL and [u, L1] ⊆ pk+1L for some
k > ε, and let a = exp(u). Then

(a) (a,G) ⊆ Gpk

,
(b) (a,G1) ⊆ Gp

k+1
,

(c) [a, FnA] ⊆ Fn−pk+1A for all n ∈ Z, and
(d) [a, FnA1] ⊆ Fn−pk+1+pA for all n ∈ Z.

Proof. Parts (a) and (b) follow from Proposition 6.2:

(a,G) = (exp(u), exp(L)) ⊆ exp([u, L])Gp
k+1 ⊆ Gp

k

and
(a,G1) = (exp(u), exp(L1)) ⊆ exp([u, L1])Gp

k+1
= Gp

k+1
.

(c) It is sufficient to prove this for non-positive values of n, since then

[a, FnA] = [a, F0A] ⊆ F−pk+1A ⊆ Fn−pk+1A

for all n > 0. Let h ∈ G and set b := h− 1. Then

[a, b] = [a, h] = ha((a, h)− 1) ∈ K[G](Gp
k

− 1) ⊆ Jp
k

by (a), so by induction we have

[a, bm] = b[a, bm−1] + [a, b]bm−1 ∈ Jp
k+m−1

for all m > 0. Therefore

[a,bα] = [a, bα1
1 ]bα2

2 · · · b
αd

d + · · ·+ bα1
1 · · · b

αd−1
d−1 [a, bαd

d ] ∈ J |α|+p
k−1

for all bα ∈M. Now K[M>−n] is dense in FnA, so

[a, FnA] = [g,K[M>−n]] ⊆ J−n+pk−1 = Fn−pk+1A,

as required.
(d) Again, we may assume that n 6 0. Let h ∈ G1 and set b = h− 1. Then

[a, b] = [a, h] = ha((a, h)− 1) ∈ K[G](Gp
k+1
− 1) ⊆ Jp

k+1
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by (b). Hence in the notation of §6.5, [a, bpmi ] ∈ Jpm+pk+1−p for all i 6 t and
[a, bmi ] ∈ Jm+pk+1−1 ⊆ Jm+pk+1−p for all i > t, whenever m > 0. We can now
deduce as in part (a) that

[a,bα] ∈ J |α|+p
k+1−p

for all bα ∈ N , or equivalently, [a,N ∩M>−n] ⊆ J−n+pk+1−p. Part (d) now follows
because K[N ∩M>−n] is dense in FnA1 by Lemma 6.5. �

Corollary. Let u ∈ L be such that [u, L] ⊆ pkL and [u, L1] ⊆ pk+1L for some
k > ε, and let a = exp(u) ∈ G. Then a = {a, ap, ap2 , . . .} is a source of derivations
for the Frobenius pair (A,A1).

Proof. For all r > 0, [pru, L] ⊆ pr+kL and [pru, L1] ⊆ pr+k+1L. Now let θ(ap
r

) =
pr+k − 1 and θ1(ap

r

) = pθ(ap
r

) and apply the proposition. �

In particular, if G is a uniform pro-p group and g ∈ G, then g = exp(u) for some
u ∈ L. Since L is powerful, [u, L] ⊆ pεL and [u, pL] ⊆ pε+1L. Hence (g, gp, gp

2
, . . .)

is always a source of derivations for (KG,KGp).

6.8. Computing the corresponding derivations. Let u ∈ L be such that for
some k > ε, we have

• [u, L] ⊆ pkL
• [u, L] * pk+1L, and
• [u, L1] ⊆ pk+1L.

Note that if such a k exists, then it is uniquely determined by u. Moreover, if
L1 = pL, then the third condition automatically follows from the first, and in this
case such an integer k always exists for any non-central element u of L.

We can now define a well-defined non-zero Fp-linear map

ρu : L/L1 → L/pL
v + L1 7→ 1

pk [u, v] + pL.

Let a = exp(u). Since [a, FnA] ⊆ Fn−pk+1A for all n ∈ Z by Proposition 6.7(c), u
induces a derivation

Du := {a,−}pk−1

of B = K[y1, . . . , yd] as in §3.2. It turns out that there is a very close connection
between Du and ρu. Recall from §6.3 that {vi + L1 : 1 6 i 6 t} is an Fp-basis for
L/L1, and {vi + pL : 1 6 i 6 d} is an Fp-basis for L/pL.

Theorem. Let (cij) be the matrix of ρu with respect to these bases. Then

Du(yj) =
d∑
i=1

cijy
pk

i

for all j = 1, . . . , t.

Proof. Choose λij ∈ [p− 1] such that cij is the reduction of λij modulo p. By the
definition of cij ,

1
pk

[u, vj ] ≡
d∑
i=1

λijvi mod pL
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for all j = 1, . . . , t. Recall from §6.3 that gi = exp(vi) for all i. By Lemma 6.2(d),

exp
(

1
pk

[u, vj ]
)
≡

d∏
i=1

g
λij

i mod Gp.

Now by [DDMS, Theorem 3.6(iv)], g 7→ gp
k

induces an isomorphism between G/Gp

and Gp
k

/Gp
k+1

. Using Lemma 6.2(a), we see that

exp([u, vj ]) = exp
(

1
pk

[u, vj ]
)pk

≡
d∏
i=1

g
pkλij

i mod Gp
k+1

.

We can now apply Proposition 6.2 and deduce that

(a, gj) ≡ exp([u, vj ]) ≡
d∏
i=1

g
pkλij

i mod Gp
k+1

.

Next, recall that bj = gj − 1 and consider the commutator [a, bj ] inside K[G]:

[a, bj ] = [a, gj ] = gja((a, gj)− 1) = gja

(
hj

d∏
i=1

g
pkλij

i − 1

)
for some hj ∈ Gp

k+1
. Since we’re interested in {a,−}pk−1, we only need to compute

[a, bj ] modulo Jp
k+1. Now hj − 1 ⊆ Gpk+1 − 1 ⊆ Jpk+1 ⊆ Jpk+1, so

hj ≡ 1 mod Jp
k+1.

Because gja ≡ 1 mod J , we can deduce that

[a, bj ] ≡
d∏
i=1

(1 + bp
k

i )λij − 1 ≡
d∑
i=1

cijb
pk

i mod Jp
k+1

for all j = 1, . . . , t. The result follows. �

6.9. Verifying the derivation hypothesis. In a forthcoming paper [AWZ], we
will prove the following result.

Theorem. [AWZ, Theorem A] Let Φ(Zp) be the Chevalley Zp-Lie algebra asso-
ciated to a root system Φ. Let L be the Lie algebra ptΦ(Zp) for some t > 1 and
G be the corresponding uniform pro-p group exp(L). Suppose that p > 5 and that
p - n + 1 if Φ has an indecomposable component of type An. Then (KG,KGp)
satisfies the derivation hypothesis.

For the time being, we only verify that the derivation hypothesis holds in the
special case when G is a congruence subgroup of SL2(Zp).

6.10. Congruence subgroups of SL2(Zp), p > 3. Fix an integer l > 1 and let L
be the powerful Lie algebra sl2(plZp). Thus L has a basis{

e =
(

0 pl

0 0

)
, f =

(
0 0
pl 0

)
, h =

(
pl 0
0 −pl

)}
satisfying the following relations:

• [h, e] = 2ple,
• [h, f ] = −2plf ,
• [e, f ] = plh.
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Let Γl(SL2(Zp)) denote the l-th congruence subgroup of SL2(Zp):

Γl(SL2(Zp)) := ker
(
SL2(Zp)→ SL2(Z/plZ)

)
.

It is well known that G := exp(L) is isomorphic to Γl(SL2(Zp)). We let L1 = pL,
so that the corresponding subgroup G1 is just Gp ∼= Γl+1(SL2(Zp)).

We use the same variables {e, f, h} for the generators of the associated graded
ring B = grKG and hope that this will cause no confusion. Thus

B = K[e, f, h] and B1 = K[ep, fp, hp].

Let { ∂∂e ,
∂
∂f ,

∂
∂h} be the corresponding derivations, which were constructed in §2.4.

Using Theorem 6.8 and Proposition 2.4(b), we can write down the derivations

Dpru = {exp(pru),−}pr+l−1 : B → B

generated by u explicitly, for each u ∈ {e, f, h}:

Dpre = hp
l+r ∂

∂f − 2ep
l+r ∂

∂h ,

Dprf = −hpl+r ∂
∂e + 2fp

l+r ∂
∂h .

Dprh = 2ep
l+r ∂

∂e − 2fp
l+r ∂

∂f .

Proposition. Let l > 1 and let G = exp(sl2(plZp)) as above. Then the Frobenius
pair (KG,KGp) satisfies the derivation hypothesis.

Proof. Let X,Y be homogeneous elements of B and suppose that Y lies in the
a-closure of XB for all a ∈ S(KG,KGp). By Corollary 6.7, (g, gp, gp

2
, . . .) ∈

S(KG,KGp) for all g ∈ G, so we can find an integer s such that

Dpru(Y ) ∈ XB
for all u ∈ {e, f, h} and all r > s. Consider the Dpre–equations for r = s and
r = s+ 1. Eliminating the terms involving ∂Y/∂f yields that

2ep
s+l
(
hp

s+l(p−1) − ep
s+l(p−1)

) ∂Y
∂h
∈ XB,

and using similar operations with the Dprf -equations we have

2fp
s+l
(
hp

s+l(p−1) − fp
s+l(p−1)

) ∂Y
∂h
∈ XB.

The coefficients of ∂Y/∂h appearing in the above two equations are coprime, which
allows us to deduce

∂Y

∂h
∈ XB.

Similar manipulations with the other equations show that ∂Y/∂e and ∂Y/∂f also
lie in XB. Hence D(Y ) ⊆ XB, by Proposition 2.4(b). �

7. Ideals in Iwasawa algebras

7.1. Canonical dimension function. Let A be a noetherian ring. We say that
A is Gorenstein if it has finite injective dimension on both sides. For any finitely
generated left (or right) A-module M , the j-number or grade of M is defined to be

j(M) := inf{n | ExtnA(M,A) 6= 0}.
The ring A is called Auslander-Gorenstein if it is Gorenstein and it satisfies the
Auslander condition:
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For every finitely generated left (respectively, right) A-module M and ev-
ery positive integer q, one has j(N) > q for every finitely generated right
(respectively, left) A-submodule N ⊆ ExtqA(M,A).

An Auslander-regular ring is a noetherian, Auslander-Gorenstein ring which has
finite global dimension. See [Bj] for some details. Note that a noetherian commu-
tative regular algebra is always Auslander-regular. For any Auslander-Gorenstein
ring A, there is a canonical dimension function defined by

Cdim(M) = injdim(A)− j(M)

for all finitely generated left (or right) A-modules M [AB1, §5.3]. This is a dimen-
sion function in the sense of [MR, §6.8.4]. Recall that a finitely generated A-module
is said to be pure if Cdim(N) = Cdim(M) for all nonzero submodules N of M . We
will use the following nice observation of Venjakob [CSS, Lemma 4.12]:

Lemma. Let A be an Auslander-regular domain and I be a proper nonzero right
ideal of A. Then I is reflexive if and only if A/I is pure of grade 1.

7.2. Crossed products. Let R be an Auslander-Gorenstein ring, G be a finite
group and S = R ∗ G be a crossed product. We know by [AB2, Lemma 5.4] that
the restriction M|R to R of any finitely generated S-module M satisfies

CdimS(M) = CdimR(M|R).

Hence S is also Auslander-Gorenstein.

Proposition. R has an ideal I with CdimR(R/I) = n if and only if S has an ideal
J with CdimS(S/J) = n.

Proof. (⇒) Choose a set of units {g : g ∈ G} in S such that Rg = gR inside S
and S =

⊕
g∈GRg. Then αg : r 7→ g−1rg is an algebra automorphism of R. Hence

CdimR(R/αg(I)) = CdimR(R/I) for all g ∈ G. We set I0 :=
⋂
g∈G αg(I), which

is a G-invariant ideal in R. It follows from the fact I0 ⊆ I that CdimR(R/I0) >
CdimR(R/I). Since

R/I0 ↪→
⊕
g∈G

R/αg(I),

we actually have equality. Let us set J = I0 · S; where I0 is G-invariant, J is a
twosided ideal in S and by construction

CdimS(S/J) = CdimR((S/J)|R) = CdimR(R/I).

(⇐) We set I := J ∩ R, which is a G-invariant ideal in R. Then S/IS =⊕
g∈G(Rg/Ig) and hence (S/IS)|R ∼= (R/I)|G|. Since S/IS � S/J , we have

CdimR(R/I) = CdimR((S/IS)|R) > CdimR((S/J)|R).

On the other hand R/I ↪→ (S/J)|R, so we have equality and the result follows. �

7.3. Proof of Theorem A. We present a slightly more general version of Theorem
A this section. Let L(G) denote the Qp-Lie algebra of G.

Theorem. Let K be a field of characteristic p. Suppose G is a compact p-adic
analytic group of dimension d such that L(G) is split semisimple over Qp. Suppose
that p > 5, and that p - n in the case when sln(Qp) occurs as a direct summand of
L(G). Then KG has no two-sided ideals I such that

CdimKG(KG/I) = d− 1.



REFLEXIVE IDEALS IN IWASAWA ALGEBRAS 27

Proof. Note that KG is a crossed product of the Auslander-Gorenstein ring KN
with the finite group G/N , for any open normal uniform subgroup N of G. By
Proposition 7.2, we may replace G by any uniform pro-p group N having the same
Qp-Lie algebra without affecting the conclusion of the Theorem.

By considering a suitable Chevalley basis, we can find a sub Zp-Lie algebra
L ⊂ L(G) such that L ∼= ptΦ(Zp) where Φ is the root system associated to Qp ⊗
L(G). Now take N to be the corresponding uniform pro-p group exp(L). The
Zp-Lie algebra of Npk

is pkL, so the Frobenius pair (KNpk

,KNpk+1
) satisfies the

derivation hypothesis for all k > 0 by Theorem 6.9.
Suppose for a contradiction that I is a two-sided ideal of KN such that

CdimKN (KN/I) = d− 1.

By replacing I by the inverse image of the largest pseudo-null submodule of KN/I
in KN we may assume that KN/I is pure. Note that I is proper and nonzero,
since otherwise d = CdimKN (KN) = d− 1. It follows from Lemma 7.1 that I is a
reflexive ideal of KN . Applying Theorem 5.3 repeatedly, we see that I is controlled
by KNpk

for each k:
I = (I ∩KNpk

) ·KN.

Since I is a proper ideal of KN , we see that I ∩KNpk

must be contained in the
maximal ideal (Npk − 1) ·KNpk

of KNpk

for all k > 0. Hence

I ⊆
∞⋂
k=0

((Npk

− 1) ·KN) = 0,

a contradiction. �

8. The case when p = 2

8.1. Congruence subgroups of SL2(Zp), p = 2. The reader might have wondered
why we didn’t just assume that L1 = pL from §6.3 onwards. The reason is that the
extra generality allows us to be more flexible when choosing the particular open
subgroup of G that we should try to ”descend” towards. The case of open subgroups
in SL2(Zp) when p = 2 should illustrate this flexibility: if G = Γl(SL2(Zp)) and
p = 2, then (KG,KGp) does not satisfy the derivation hypothesis, but we can
circumvent this problem by going down to Gp from G in two steps.

So assume that p = 2 and fix l > 2. We choose the same basis {e, f, h} for
L0 := sl2(plZp) as in §6.10, so that the following relations are satisfied:

• [h, e] = pl+1e,
• [h, f ] = −pl+1f ,
• [e, f ] = plh.

Let L1 = peZp ⊕ pfZp ⊕ hZp and let L2 = pL. The relations in L1

• [h, pe] = pl+1(pe),
• [h, pf ] = −pl+1(pf),
• [pe, pf ] = pl+2h

show that L1 is a powerful Zp-subalgebra of L0 which contains L2. Moreover,
pL1 ⊆ L2, so the pairs (L0, L1) and (L1, L2) both satisfy the assumptions made in
§6.3, and hence (KG0,KG1) and (KG1,KG2) are Frobenius pairs, by Proposition
6.6. However the parameter t equals 2 in the first case and 1 in the second case.
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Proposition. Let Gi = exp(Li) for each i = 0, 1, 2. Then the Frobenius pairs
(KG0,KG1) and (KG1,KG2) both satisfy the derivation hypothesis.

Proof. We first deal with the case (KG0,KG1); in this case, B = K[e, f, h] and
B1 = K[ep, fp, h]. We observe that

[e, L0] ⊆ plL0, [e, L0] * pl+1L0, [e, L1] ⊆ pl+1L0,
[f, L0] ⊆ plL0, [f, L0] * pl+1L0, [f, L1] ⊆ pl+1L0,
[h, L0] ⊆ pl+1L0, [h, L0] * pl+2L0, [h, L1] ⊆ pl+2L0.

By Theorem 6.8, we obtain three sets of derivations of B = grKG0 arising from
sources of derivations of (KG0,KG1):

Dpre = hp
l+r ∂

∂f ,

Dprf = hp
l+r ∂

∂e ,

Dprh = ep
r+l+1 ∂

∂e − f
pr+l+1 ∂

∂f .

Let X,Y be homogeneous elements of B and suppose that Y lies in the a-closure
of XB for all a ∈ S(KG0,KG1); we can thus find an integer s such that

Dpru(Y ) ∈ XB

for all u ∈ {e, f, h} and all r > s. Eliminating the terms involving ∂Y/∂f from the
Dprh equations for r = s and r = s+ 1 shows that

fp
s+l+1

(
fp

s+l+1(p−1) + ep
s+l+1(p−1)

)
∂Y/∂f ∈ XB

Since Dpse(Y ) = hp
s+l

∂Y/∂f ∈ XB and the coefficients of ∂Y/∂f are coprime,

∂Y/∂f ∈ XB.

Similarly ∂Y/∂e ∈ XB, so the derivation hypothesis holds by Proposition 2.4(b).
Now consider the case (KG1,KG2). Recycling notation, let {e, f, h} be the basis

for L1 considered above, so that {e, f, ph} is a basis for L2, and the relations
• [h, e] = pl+1e,
• [h, f ] = −pl+1f ,
• [e, f ] = pl+2h

hold in L1. The corresponding graded rings are B = K[e, f, h] and B1 = K[e, f, hp].
Since

[e, L1] ⊆ pl+1L1, [e, L1] * pl+2L1, [e, L2] ⊆ pl+2L1,
[f, L1] ⊆ pl+1L1, [f, L1] * pl+2L1, [f, L2] ⊆ pl+2L1,

Theorem 6.8 gives us two sets of derivations of B arising from sources of derivations
of (KG1,KG2):

Dpre = ep
l+r+1 ∂

∂h ,

Dprf = fp
l+r+1 ∂

∂h .

Let X,Y be homogeneous elements of B and suppose that Y lies in the a-closure
of XB for all a ∈ S(KG1,KG2); we can thus find an integer s such that

Dpru(Y ) ∈ XB

for all u ∈ {e, f} and all r > s. In particular, Dpre(Y ) = ep
r+l+1

∂Y/∂h and
Dprf (Y ) = fp

r+l+1
∂Y/∂h both lie in XB. Since the coefficients of ∂Y/∂h are

coprime, ∂Y/∂h ∈ XB, so the derivation hypothesis holds. �
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Corollary. Let K be a field of characteristic 2 and suppose that G is an open
subgroup of SL2(Z2). Then KG has no two-sided ideals I such that

CdimKG(KG/I) = 2.

Proof. Follow the proof of Theorem A. �

8.2. Proof of Theorem C. Let I be a prime ideal of KG. The dimension of G
is three, so the possible values for c = CdimKG(KG/I) when I is a two-sided ideal
of KG are 0, 1, 2 or 3. By Theorem 7.3 and Corollary 8.1, c cannot be equal to 2
and by [A, Theorem A], c cannot be equal to 1. Hence c = 0, in which case I is the
maximal ideal of KG since KG is local, or c = 3 in which case I = 0. �
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