STABILITY IN THE CATEGORY OF SMOOTH MOD-P
REPRESENTATIONS OF SL»(Q,)
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ABSTRACT. Let p > 5 be a prime number and let G = SL2(Q,). Let Z = Spec(Z) denote the
spectrum of the centre Z of the pro-p Iwahori Hecke algebra of G with coefficients in a field
k of characteristic p. Let R C E x = denote the support of the pro-p Iwahori Ext-algebra of
G, viewed as a (Z, Z)-bimodule. We show that the locally ringed space Z/R is a projective
algebraic curve over Spec(k) with two connected components, and that each connected com-
ponent is a chain of projective lines. For each Zariski open subset U of /R, we construct a
stable localising subcategory Ly of the category of smooth k-linear representations of G.
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1. INTRODUCTION

1.1. Background. Let k be a field, let G be a p-adic reductive group and let Mody(G)
denote the category of smooth k-linear representations of G. The centre 3(G) of the category
Modj(G) is called the Bernstein centre of G. When k is the field of complex numbers, 3(G)
was studied in detail by Bernstein [Ber] and it plays a fundamental role in the classical
local Langlands correspondence. Recently there has been interest in the case where k is a
field of characteristic p motivated by considerations from the p-adic and mod-p Langlands
programmes. However in this case, 3(G) turned out to be quite small: in our previous work
[AS23], we showed that 3(G) only depends on the centre Z(G) of G, and in particular, that
3(G) is isomorphic to the finite dimensional k-algebra k[Z(G)] whenever G is assumed to be
connected and semisimple.

This situation is reminiscent of the fact that the ring of global regular functions O(X) on
any projective variety X is also rather small. This observation becomes relevant to the Bern-
stein centre of G when we recall the work of Gabriel [Gab], who proved that the structure sheaf
of a noetherian scheme X can be reconstructed from the category QCoh(X) of quasi-coherent
sheaves on X, by associating with any open subscheme U of X the localizing subcategory L
of QCoh(X) consisting of sheaves supported on the complement of U in X and by showing
that the ring O(U) can be recovered from QCoh(X) as the centre of the quotient category
QCoh(X)/Ly. In our recent work [AS24], we generalised Gabriel’s construction to the case
of an arbitrary Grothendieck category C, as follows.

Recall that the localizing subcategory L of C is said to be stable if it is stable under essential
extensions. The set L5 (C) of stable localizing subcategories of C forms a partially ordered
set under reverse inclusion. For £ and Ly, -, L, in L¥(C) we call {£;}1<i<n a covering
of £ if £ = (0, L;. This notion makes L*(C) into a Grothendieck site, and we proved in
[AS24] Thm. 1.1 that the presheaf £ — Z(C/L) on L*(C) is in fact a sheaf. When the
category C is additionally assumed to be locally noetherian, we showed that there is an order-
reversing bijection U — Ly between the so-called stable subsets of the injective spectrum
Sp(C) of C, and L*(C). We showed in [AS24] Thm. 1.2 that the corresponding presheaf
U+ Z(C/Ly) on Sp(C) satisfies the sheaf condition with respect to arbitrary coverings.
These results suggest that even though Z(Modg(G)) may be small and uninteresting, this
only reflects the fact that this centre is the ring of global sections of the sheaf formed by the
centres of the quotient categories of Modg(G). Of course, this sheaf is only interesting if one
can write down sufficiently many stable localizing subcategories of Mody(G).

1.2. Main results. The main goal in this paper is to construct a large family of stable
localizing subcategories of Mod(G) in the case where p > 5 and G is the group SL2(Q)).
In order to state our results, it will be convenient to introduce an axiomatic framework as
follows. Let A be a full abelian subcategory of a locally noetherian Grothendieck category C.
We say that C is a thickening of A if, roughly speaking', every noetherian object in C has a
finite filtration all of whose subquotients lie in A, and the inclusion functor i : 4 — C has
a left exact right adjoint » : C — A which restricts to the identity functor on A and which

respects non-zero objects in C. We prove that r induces a bijection r : Sp(C) = Sp(A)
between the corresponding injective spectra and that the map £ — £ N A defines a bijection
between the set of localizing subcategories of C and the set of localizing subcategories of A.

lsee Definition 3.1.1 for the precise definition
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The bijection r : Sp(C) = Sp(A) respects stable subsets and therefore induces an injective
map r : L¥(C) — L*!(A); however r is in general not surjective.

Example 1.2.1. Let G = SLy(Q,) and let I be the pro-p Twahori subgroup of G. Let Modj(G)
denote the full subcategory of Mody(G) whose objects are generated by their I-fizved vectors
and let r(V) = k[G] - V! for all V in Mody(G). We show in §2.1 below that Modi(G) is a
thickening of ModL(G), and moreover that the compactly induced representation ind (k) is
in fact a noetherian projective generator of Modi(G).

Returning to our axiomatic framework, we assume in addition that A has a noetherian
projective generator P. The functor Homy(P, —) : A — Mod(H) is then an equivalence of
categories with quasi-inverse P @y — : Mod(H) — A, where H := End 4(P)°P, and in Thm.
3.5.8 we show that the image of r consists precisely of those localizing subcategories of A that
are preserved under the functor P ®py Ext;(P,—) : A — A. To understand this condition
better we introduce the graded (H, H)-bimodule

o0
(1) Ext;(P, P) := D Ext( (P, P)

i=0
which is in particular a module for Z® Z := Z ®z Z where Z := Z(H) is the centre of H. We
let J := Annzgz(Ext; (P, P)) be its annihilator ideal and R := V(J) C Spec(Z ® Z) be the
corresponding Zariski closed subset. Let 71,72 : R — Z := Spec(Z) denote the restrictions of
the two projection maps Spec(Z ® Z) = =. We then have a coequaliser diagram

T
R =—L=/R

—_—
2

in the category of locally ringed spaces (cf. [DG] Prop. 1.1.1.6). To state our main theorem,
we introduce the map 7 : Sp(C) — Z/R by the commutativity of the following diagram:

Sp(A) = Sp(C)
Sp(Mod(H)) r

v
Spec(H) — Spec(Z) == — E/R.

The first vertical arrow on the left comes from the equivalence Hom 4(P, —) : A = Mod(H)
and the map ¢ is given by ¢(P) = PN Z for all P € Spec(H). The second vertical arrow
comes from [Gab] V § 4; it is a bijection if H is finitely generated as a module over its centre.
Our first main result is then the following

Theorem 1.2.2 (Prop. 3.7.4). Let C be a thickening of A. Suppose that A has a noetherian
projective generator P and let H = End 4(P)°P. Assume furthermore that:

15 finitely generated as a module over its centre £,

Al) H 1 tel d dule ' Z

(A2) there is an integer d such that Ext}(P,—)|4 =0 for any j > d, and
(A3) Z® Z/J is noetherian.

Then 7 : Sp(C) — E/R is continuous with respect to the stable topologies.
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In this generality, =/R is just a locally ringed space and 7 is only a surjective map. Section
§4 of our paper is devoted to the computation of Z/R in the situation of Example 1.2.1
above, relying crucially on the calculations of [0522] on the structure of the pro-p Iwahori
Ext-algebra (1). Our second main result is then the following

Theorem 1.2.3 (Thm. 4.5.23, Cor. 4.5.24). Suppose that p > 5, G = SL2(Q,), C = Mod(G)
and A = Modl(@).

a) Z/R is a scheme.

b) Z/R has two connected components.

c) Each connected component of Z/R is a chain of projective lines.

Example 1.2.4. When p = 13, the scheme E/R looks as follows:

OO0 OO0

In Example 4.5.25 below, we sketch how to obtain this gluing from the scheme Z=.

Corollary 1.2.5. Let p > 5 and let G = SL2(Qy,). For every Zariski open subset U of E/R,
77YU) is a stable open subset of Sp(Modg(G)).

Proof. This follows from Thm. 1.2.2, once we verify its conditions. Note that C = Mod(G)
is a thickening of A = Mod} (@), and that P = ind¥ (k) is a noetherian projective generator
of A by Example 1.2.1.

(A1). The pro-p Iwahori-Hecke algebra H = End¢(P)P is finitely generated as a module
over its centre by [Vig]; see also [OS18] Cor. 3.4 and Remark 3.5.

(A2). Since p > 5, the group I has no elements of order p, and therefore has finite p-
cohomological dimension equal to 3, the dimension of I as a p-adic Lie group. Using Frobenius
reciprocity, we see that for all V' in C,

Exté(P, V) = Ext]é(inda, V)= Ext‘}(k, V)=H/(I,V)=0 forall j>3.

(A3). In view of Remark 3.7.5 below, we may replace (A3) by the weaker assumption that
7 ®y, Z is noetherian, because C happens to be a k-linear category. Prop. 4.1.5 and equation
(11) imply that Z is finitely generated as a k-algebra. Hence Z ®y Z is noetherian, by Hilbert’s
Basis Theorem. ]

The paper [DEG] considers, for the group G = GL3(Q,), the full subcategory Mody ¢(G)
of those representations in Mody(G) which have a fixed central character ¢. They associate
with this subcategory a scheme X which is also a chain of projective lines. This scheme is
definitively the analogue of a connected component of our quotient space Z/R in this situation.
But the idea of [DEG] behind X is completely different: X is viewed as a kind of moduli
space of 2-dimensional semisimple Galois representations modulo p. From this point of view,
the relation between X and the representation theory of G comes from Breuil’s semisimple
Langlands correspondence modulo p. Still another approach to the space X is given in [PS].
The paper [DEG] also develops a localisation theory for the category Mody ¢(G) and shows
that the closed points of X parameterize the blocks of the Krull-dimension 0 subcategory of
Mody, ¢(G). We emphasize that in the present paper we work entirely on the representation
theoretic side of the full category Mody(G) and our quotient space Z/R arises from the non-
vanishing (and the structure) of universal Ext-groups. We therefore like to think that these
approaches complement each other in an interesting way.
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2. BASIC FACTS ABOUT THE CATEGORY Mody(G)

We fix a field k of characteristic p > 0. For any locally compact and totally disconnected
group G we denote by Mody(G) the abelian category of smooth G-representations on k-vector
spaces. Let G = SL(Q,). We fix the pro-p Iwahori subgroup I C SLy(Z,) of all matrices
which are upper triangular unipotent mod p.

2.1. Locally noetherian. Let Modl(G) denote the full subcategory of all V in Mody(G)
which are generated by their pro-p Iwahori fixed vectors V. Write H := Endyg)(k[G/1])°P.

Theorem 2.1.1. The functor
Mod!(G) = Mod(H)
Vi— Vi

is an equivalence of categories with quasi-inverse M — k[G/I| @ g M. Moreover, k[G/I] is
projective and faithfully flat as an H-module.

Proof. [Koz] and [OS18] Prop. 3.25 and its proof. O

Lemma 2.1.2. Mod!(G) is an abelian subcategory of Modg(G) closed under the formation
of subobjects, quotient objects, and arbitrary colimits.

Proof. Clearly Mod!(Q) is closed under the formation of arbitrary direct sums. Let 0 — Vy —
Vi — Vi — 0 be an exact sequence in Mod(G) such that V; lies in ModZ(G). Obviously,
then also V4 lies in Modi(G). For Vj we consider the commutative diagram

0 —k[G/I| @ V{ —=k[G/I| @ VI —=k[G/I| @5 Vi

R

0 Vo Wi Va 0.

The upper horizontal row is exact by the left exactness of the functor (—)! and the fact that
k[G/I] is flat as a (right) H-module. By the category equivalence in Thm. 2.1.1 the middle
and right perpendicular arrows are isomorphisms. Hence the left one is an isomorphism as
well. This shows that Vg lies in ModL(@). O

The k-algebra H is finitely generated as a module over its centre, which is a finitely gen-
erated k-algebra ([Vig] or, in an explicit form, [OS18] Cor. 3.4 and Remark 3.5), and hence
noetherian. Therefore the abelian category Mod(H) is locally noetherian Grothendieck.

Lemma 2.1.3. Let G be any locally compact and totally disconnected group with an open
pro-p subgroup J. Any finitely generated G-representation V' in Mody(G) has a finite filtration
{0y c Vi C ... C V; =V by subrepresentations such that each subquotient V;/Vi_1, for
0 <1 <4, is generated by finitely many J-fixed vectors.
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Proof. 1t suffices to consider the case where V is generated by a single vector v. We can
then find an open normal subgroup N C J such that N fixes v. Then V is a quotient of
the G-representation k[G/N]. Hence it actually suffices to consider the case V = k[G/N]. In
V' we then have the J-subrepresentation k[J/N]. Let m denote the augmentation ideal of
the ring k[J/N]. Since J/N is a finite p-group we find an integer £ > 0 such that m‘ = 0.
Observe that J acts trivially on each subquotient m?/m**!. We now define V; C V as the
G-subrepresentation generated by m‘~?. The subquotient V;/V;_; then is generated by the
image of m‘~%/m(~9+1 which is contained in (V;/V;_1)”. O

Proposition 2.1.4. The abelian category Mody(G) is locally noetherian.

Proof. By Lemma 1(iv) [Sch], Modi(G) is a Grothendieck category. We have to show that
any finitely generated G-representation V' in Modg(G) is noetherian. Lemma 2.1.3 reduces us
to the case that V is generated by finitely many [-fixed vectors. According to Lemma 2.1.2
any increasing chain of G-subrepresentations of V already lies in Mod(G). By Thm. 2.1.1
it therefore corresponds to a chain in the finitely generated H-module V!. Hence it must
become stationary. O

The exact inclusion functor ModZ(G) € Mody(G) is left adjoint to the left exact functor
Mod(G) — Modi(G)
V +— V(I) := G-subrepresentation of V generated by V!(= k[G/I] @ V1) .

Lemma 2.1.5. The functor V — V(I)

a) restricts to the identity functor on Modk(Q),
b) respects non-zero objects,

c) respects injective objects, and

d) commutes with arbitrary filtered colimits.

Proof. a) is obvious. b) holds since I is pro-p. c) is a consequence of the functor being right
adjoint to a (left) exact functor. For d) let V = ligj V; be a filtered colimit in Mody(G).

Since filtered colimits are exact in the Grothendieck category Mody(G) we have the inclusion
ligj Vi(I) CV(I). But VI = ligj VjI . Hence this inclusion is an equality. O

2.2. Krull dimension. We briefly recall Gabriel’s notion of a Krull dimension for arbitrary
Grothendieck categories C. Gabriel’s dimension filtration of C is a filtration by localising
subcategories C, of C indexed by ordinals «. His convention is that C_; is the subcategory
of all zero objects of C and Cy is the smallest localising subcategory containing all objects
of finite length. The C, then are defined successively as follows. If & = 8 + 1 then C, is the
preimage of (C/Cg)o under the quotient functor gc, : C — C/Cg; if o is a limit ordinal then
Cq is the smallest localising subcategory containing all Cg for < . This process terminates
as soon as C,C, has no simple objects. But by [Gab] Prop. 7 on p. 387 the latter implies that
Co must be equal to C. The Krull dimension x(C) of C can now be defined as the smallest «
such that C = C,. Similarly the Krull dimension x(Y') of an object Y in C is defined to be
the smallest « such that Y lies in C,. Correspondingly the set Sp(C) of isomorphism classes
of indecomposable injective objects in C admits a stratification

$p(C) =, _, ¢, SPe(©)
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by the subsets Sp,(C) of all [E] € Sp(C) such that gc, (E) contains a simple object ([Gab]
p. 383). In general it is not possible to read off the Krull dimension x(F) of an [E] € Sp,,(C)
from the a.

Remark 2.2.1. Let a < k(C) be an ordinal such that Coy1 is a stable localising subcategory;
then k(E) = a+1 for any [E] € Sp,(C).

Proof. By our assumption E is C,-closed and contains a nonzero subobject S lying in Cy41
(cf. [Gab] p. 383). Since E is an essential extension of any of its nonzero subobjects (cf. [Gab]
Prop. 11 on p. 361) it follows from the stability of C,41 that E lies in Cqq1. ]

Remark 2.2.2. ([Gab] Prop. 7 on p. 387) Suppose that C is locally noetherian. Then C has
a Krull dimension and, for any non-limit ordinal o, the category Co/Ca—1 1S locally finite.

For the convenience of the reader we point out the following elementary consequences of
the fact that the subcategories C, are localising:

- If 0 - U; —» Us — Us — 0 is a short exact sequence in C then
#(Uz) = sup(r(U1), £(Us)) -

— If U in C is the inductive limit of a family of subobjects U; then x(U) = sup; x(U;). In
particular, for any U, we have k(U) = sup; x(U;) where the U; run over all noetherian
subobjects of U.

In [MCR] Chap. 6 the notion of Krull dimension for the category C = Mod(R) of modules
over a noetherian ring R is introduced using posets. By loc. cit. Lemmas 6.2.4 and 6.2.17 it
also has the above two properties. Therefore it follows, e.g., from [GR] Prop. 2.3 (beware that
this reference shifts the Gabriel definition by 1) that these two notions of Krull dimension
coincide for noetherian rings R.

Proposition 2.2.3. The categories Mod(G) and Mod(H) have Krull dimension one.

Proof. The computation of Z(H) in [0S18] §3.2.4 (together with [MCR] Cor. 6.4.8) shows that
Z(H) has Krull dimension one. By [OS18] Cor. 3.4 the centre Z(H ) contains a polynomial ring
Ek[¢] over which H is a finitely generated free module. Using [MCR] Cor. 6.5.3 it then follows
that H has Krull dimension one as well. Hence Mod.(G) ~ Mod(H) has Krull dimension
one. By the proof of Lemma 2.1.2 the subcategory Modé(G) is closed under the passage
to subobjects in Mod(G). Therefore the Krull dimensions of an object in Mod%(G), when
viewed in Mod! (@) or in Mod(G), coincide.

Since the subcategory Mody(G); is closed under extensions it follows from Lemma 2.1.3
that every finitely generated representation lies in Mody(G);. The assertion about Mody(G)
then is immediate from the fact that Mody(G)1 also is closed under inductive limits. 0

3. THICKENINGS
It will be useful to axiomatize the situation in the previous section.

3.1. Definitions. For this we fix a locally noetherian Grothendieck category C together with
a full abelian subcategory A of C.
Definition 3.1.1. The category C is called a thickening of A if:

a) A is closed under the formation of subobjects, quotient objects, and arbitrary colimits
inC;
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b) the inclusion functor A C C has a left exact right adjoint functor r =r¢c 4 :C — A

such that: c
- the functor r:C = A = C is a subfunctor of the identity functor idc,
- rlA =idy,

r preserves non-zero objects, and

r commutes with arbitrary filtered colimits;

c) every noetherian object V in C has a finite filtration 0 =V C V3 C ... CV,, =V
such that all subquotients V;/V;_1, for 1 < j < m, lie in A.

In the following we fix an A as in the above definition. Note that A is a strictly full
subcategory. For any V in C the subobject (V) is the largest subobject of V' which lies in A.
The functor r in fact gives rise to a whole sequence of subfunctors r; : C — C, for j > 0, of
the identity functor ide which are defined inductively as follows. We define

ro:CHASC and r(V)/rya (V) =ro(V/ry (V) for j > 1.
Obviously we have, for any V in C, the increasing filtration by subobjects
r(V)Crm((V)C...Crj(V)C...CV .

Lemma 3.1.2. For any j > 0 the functor rj has the following properties:

a) r; is left exact;
b) rjori=mr;or; =r; for anyi > j;
c) rj preserves filtered unions of subobjects.

Proof. In [Ste] VI§1 the functor rg is called a left exact idempotent preradical of C and the
asserted properties of the r; can be found in the Exercises 1 and 2 of that Chap. VL. O

Correspondingly we introduce, for any j > 0, the strictly full subcategory
A; = all objects V such that r;(V) =V

of C. We have Ay = A, and A; is a subcategory of A, 1. Each functor r; may be viewed as
a functor r; : C — A;.

Lemma 3.1.3. For any j > 0 we have:

a) Aj is an abelian subcategory of C closed under the formation of subobjects, quotient
objects, and arbitrary colimits in C;

b) r; : C = Aj is right adjoint to the inclusion functor A; C C;

C) rj|Aj = idAj,'

d) r; preserves non-zero objects;

e) r; commutes with arbitrary filtered colimits;

f) any object V' in A; has the finite filtration 0 C ro(V) C ri(V) C ... Cr;(V) =V

whose subquotients ;(V')/ri—1 (V) all lie in A.

Proof. a) follows from [Ste] Propositions VI.1.2 and VI.1.7. For b) we observe that for any
homomorphism f : Vo — V; in C we have r;(f) = f|r;j(Vb). ¢), d), and f) hold by construction.
e) We proceed by induction with respect to j. For 7 = 0 the claim is part of the Def. 3.1.1.
Now assume that the claim holds for some j. Let V = hA"lZ Vi be a filtered colimit in C. We
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then have
i1 (V)15 (V) = ro(V/r; (V) = rolling Vi e (ling V) = ro(ling Vi/ L r; (V7))
= ol (Vi /g (Vi) = imy (Vi (V) = (o (Vi) (V)
= limrj1 (Vi) limry (Vi) = (Ui (Vi) /75(V)
where we use for equations 4 and 7 that filtered colimits in C are exact. It follows that
it (V) = ling, 751 (Vi). O

Lemma 3.1.4. Let 0 > X — Y — Z — 0 be a short exact sequence in C such that X lies in
A; for some j >0 and Z lies in A; then Y lies in Ajq.

Proof. Since r; is left exact by Lemma 3.1.2.a, we have the commutative exact diagram

0 0
|
0—> X =rj(X) X 0 0
|
0 ri(Y) Y Y/ri(Y) —0
/1
Z///
0,

which exhibits Y/r;(Y) as a quotient object of Z. Since A is closed under quotient ob-
jects it follows that r(Y/r;(Y)) = Y/r;(Y). On the other hand, by construction we have
i1 (Y)/ri(Y) = ro(Y/r;(Y)). It follows that r; 11 (Y) =Y. O

Lemma 3.1.5. For any V in C we have V = ;57 (V).

Proof. Write V as a filtered union of noetherian subobjects. Using Lemma 3.1.2.c we see that
it suffices to prove the assertion for a noetherian V. But in this case it follows from Def.
3.1.1.c and an iterated application of Lemma 3.1.4 that V = r;(V') for sufficiently large j. O

Proposition 3.1.6. A;, for any j > 0, is a locally noetherian Grothendieck category.

Proof. By [BP] Lemma 3.4 the category A; is Grothendieck. That it is locally noetherian is
clear. g

Remark 3.1.7. Let V be an object in A; for some j > 0; then the Krull dimensions of V'
viewed in A; and viewed in C coincide.

Proof. This is immediate from A; being closed under the passage to subobjects in C. ]
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3.2. A spectral sequence. The Ext-groups in C and A are related by the following spectral
sequence.

Proposition 3.2.1. For objects A in A and V in C we have the Grothendieck spectral sequence
Extly(A, RIr(V)) = Ext7 (A, V) .

Proof. We have the adjunction Hom4(A,r(V)) = Hom¢ (A, V). Since r, being right adjoint
to a (left) exact functor, preserves injective objects, this equation extends to the asserted
composed functor spectral sequence. O

Corollary 3.2.2. Suppose that P is a projective object in A. For any object V in C and any
7 > 0 we then have

Ext(P,V) = Hom4(P, Rir(V)) .

3.3. Injective spectra. We first recall some standard notations. For any object Y in a locally
noetherian Grothendieck category D a choice of injective hull of Y is denoted by Ep(Y') or
simply E(Y'). The injective spectrum Sp(D) is the collection of isomorphism classes [Y] of
indecomposable injective objects Y of D; it is a set, for example, by [Her] p. 523.

In the following we keep the setting of a thickening C of A.

Lemma 3.3.1. For any V in C we have:

a) The inclusion (V) C V is an essential extension. In particular, if V is injective then
V' is an injective hull of r(V').

b) If V is injective in A then V = r(Ec(V)).

c) If V is injective in C then V is indecomposable if and only if r(V') is indecomposable.

Proof. a) Let U C V be a non-zero subobject. Since r preserves non-zero objects we then
have 0 # r(U) C (V) and hence U Nr(V') # 0.

b) We obviously have V- = r(V) C r(E¢(V)) C E¢(V). Since r, as a right adjoint of a (left)
exact functor, preserves injective objects both terms in the essential extension V = r(V) C
r(E¢(V)) are injective in A. Hence we must have equality.

¢) Suppose that r(V) = Uy @ U, with U; # 0 (and necessarily lying in .A). Using [Ste| Prop.
V.2.6 we see that V', being an injective hull of (V') by a), is isomorphic to the direct sum of
injective hulls of U; and Us and hence is decomposable. On the other hand if V = V; & V4
with V; # 0 then r(V) = r(V1) & r(Va) with r(V;) # 0. O

The above lemma implies that the map

Sp(C) — Sp(A)
[E] — r([E]) := [r(E)]

is a bijection with inverse [U] — [E¢(U)]. In fact, because of Lemma 3.1.3 all of the above
remains valid for each functor r;. Hence we have the bijections

(2) Sp(C) — Sp(A;) — Sp(A)
[E] — [rj(E)] — [r(E)] .
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3.4. Localizing subcategories. We recall that a full subcategory £ of a locally noetherian
Grothendieck category D is called localising if it is closed under the formation of subobjects,
quotient objects, extensions, and arbitrary direct sums. In particular, it is strictly full and
contains the zero object (as the empty direct sum). It will be technically useful to also recall
the following fact. Let D" denote the full subcategory of all noetherian objects in D.

Proposition 3.4.1. The map
collection of all localising — collection of all Serre
subcategories of D subcategories of D"
L— LDt

s a bijection; its inverse sends a Serre subcategory S to the smallest localising subcategory
(S) of D which contains S; equivalently (S) is the full subcategory of all filtered colimits of
objects in S.

Proof. [Her] Thm. 2.8. O
Lemma 3.4.2. If L is a localising subcategory of C then AN L is localising in A.

Proof. Each of the categories A and L is closed under subobjects, quotient objects, and
arbitrary direct sums. Therefore the same holds for A N L. It remains to consider extensions.
Let 0 - X - Y — Z — 0 be a short exact sequence in A such that X and Z lie in £. Then
Y must lie in £ and hence in AN L. O

Proposition 3.4.3. The map

collection of all localising — collection of all localising
subcategories of C subcategories of A
L— ANL

is a bijection; its inverse sends a localising subcategory K of A to the smallest localising
subcategory (KC) of C which contains K.

Proof. We obviously have A" = AN "¢ Hence Prop. 3.4.1 reduces the asserted bijec-
tivity to the bijectivity of the map

collection of all Serre — collection of all Serre

Cnoeth Anoeth

subcategories of

S— ANS.

subcategories of

But it follows from Def. 3.1.1.c that any such S is the smallest Serre subcategory of Cmo¢th

which contains A NS. On the other hand let 7 be a Serre subcategory of A" We define
S to be the full subcategory of C™¢*" whose objects V have a finite filtration 0 = Vy C V; C
... C V=V with V;/V;_1 in T for any 1 < j < m. It is straightforward to check that S is
a Serre subcategory of C"°¢*" and that ANS = T. O

The above Prop. 3.4.3, of course, holds true correspondingly with A replaced with A;.
For any localising subcategory £ of a locally noetherian Grothendieck category D one
defines the subset

A(L) :={[F] € Sp(D) : Homp(V, E) = 0 for any V € ob(L)}
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of Sp(D). These subsets A(L) form the closed subsets of a topology on Sp(D) which is called
the Ziegler topology (cf. [Her] Thm. 3.4). In fact, by Prop. 3.4.1 and [Her] Thm. 3.8, the map

(3) collection of all localising — set of all Ziegler-closed
subcategories of D subsets of Sp(D)
L— A(L)

is an inclusion reversing bijection. This means that the Ziegler closed subsets of Sp(D) classify
the Serre subcategories of D¢ ag well as the localising subcategories of D. It also implies
that £ can be reconstructed from A(L) by

ob(L) ={V € ob(D) : Homp(V, E) =0 for all [E] € A(L)}.

Corollary 3.4.4. The maps Sp(C) — Sp(A;) — Sp(A) in (2) are homeomorphisms for
the Ziegler topologies.

Proof. Using [Her] Prop. 3.2 and Cor. 3.5 we see that Def. 3.1.1.c implies that the sets
Oc(U) = {[E] € Sp(C) : Home (U, E) # 0},
resp. O4(U) := {[r(E)] € Sp(A) : Homa(U,r(E)) # 0},

for U € ob(.A), form a base for the Ziegler-open subsets of Sp(C), resp. Sp(.A). But, for such
U, we have Hom¢ (U, E) = Homy (U, r(E)) since r is right adjoint to the inclusion functor. [

Later on another topology on Sp(D) will be more important for our purposes.

Proposition 3.4.5. For a localising subcategory L of D, the following are equivalent:

a) there is a noetherian object C' in D such that L is the smallest localising subcategory
containing C;
b) there is a noetherian object C' in D such that

A(L) = {[E] € Sp(D) : Homp(C, FE) = 0};
c) the Ziegler open subset Sp(D) \ A(L) is quasi-compact.

Proof. For the equivalence of a. and b. we consider more generally an arbitrary object of
D, and we let (C') denote the smallest localising subcategory containing C. Let E be any
injective object in D. If Homp(—, E') vanishes on (C) then obviously Homp(C, E) = 0. But
the injectivity of F easily implies that the converse holds as well. It follows that

A((C)) ={[F] € Sp(D) : Homp(C, E) = 0}.
For the equivalence of b. and c. see [Her] Cor. 3.9. O

The topology on Sp(D) which has as a base of open subsets the complements of quasi-
compact Ziegler-open subsets is called the Gabriel-Zariski topology.

Corollary 3.4.6. The maps Sp(C) — Sp(A;) — Sp(A) in (2) are homeomorphisms for
the Gabriel-Zariski topologies.
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3.5. Stability. We recall that a localising subcategory of a locally noetherian Grothendieck
category D is called stable if it is closed under the passage to essential extensions.

Lemma 3.5.1. For any localising subcategory L of D the following are equivalent:

a) L is stable;
b) any indecomposable injective object of D either lies in L or has no non-zero subobject
lying in L.

Proof. We argue similarly as in [Gol] Prop. 11.3.

a) = b): Let E be an indecomposable injective object in D and let t-(E) denote the
largest subobject of E contained in £. Suppose that t(FE) # 0. Then E is an injective hull
of tz(E) and hence, by stability, is contained in L.

b) = a): We write an injective hull E(V) of an object V lying in £ as a direct sum
E(V) = ®erE; of indecomposable injective objects E;. Since E; NV # 0 lies in £ for any
i € I we see that all F; and hence E(V) lie in L. O

Corollary 3.5.2. Let L be a stable localising subcategory of D; then
A(L) = {[E] € Sp(D) : E ¢ ob(L)} .
The following is a straightforward generalization of [Lou] Prop. 4.

Lemma 3.5.3. For a subset A C Sp(D) the following are equivalent:

a) A= A(L) for a stable localising subcategory L of D;
b) if [E] € Sp(D) satisfies Homp(E, E') # 0 for some [E'] € A, then [E] € A.

Proof. a) = b): Let [E'] € A(L) such that Homp(E, E’) # 0. Then E does not lie in £. Since
L is stable Lemma 3.5.1 applies and tells us that E does not have any non-zero subobject
lying in £. Hence [E] € A(L) = A.

b) = a): Let L be the localising subcategory of D cogenerated by the E’ for [E'] € A. This
means that £ is the full subcategory of those objects V in D which satisfy Homp(V, E') = 0
for any [E'] € A. It is immediate that A C A(L). Consider any [E] € A(L). Then E cannot lie
in £. Hence there must exist an [E’] € A such that Homp(F, E’) # 0. It follows from (b) that
[E] € A. This shows that A = A(L). To establish that £ is stable we use Lemma 3.5.1. We
have just seen that the £ which do not lie in £ must have [E] € A(L). By the very definition
of A(L) such E do not have a non-zero subobject lying in L. O

A subset A C Sp(D) will be called stable, resp. stable-open, if it is of the form A = A(L) for
some stable localising subcategory L of D, resp. if it is stable and open for the Gabriel-Zariski
topology. It is clear, for example from Lemma 3.5.3, that arbitrary intersections and unions of
stable subsets are stable again. Therefore the stable, resp. stable-open, subsets are the open
subsets for a topology which we call the stable, resp. stable Zariski, topology of Sp(D).

Corollary 3.5.4. The bijections Sp(C) — Sp(A;) — Sp(A) in (2) respect stable subsets;
in particular, the inverse maps are continuous for the stable topologies.

Proof. 1t suffices to consider the map Sp(C) — Sp(A) sending [E] to [r(E)]. Let S C Sp(C) be
any stable subset and [r(E’)] be any point in the image of S. Now suppose that we have [U] €
Sp(A) such that Homy (U, r(E")) # 0. Then Home (U, E') # 0 and hence Home(E¢(U), E') #
0. Using Lemma 3.5.3 we deduce that [E¢(U)] € S. But U = r(E¢(U)). It follows that [U] lies
in the image of S. Using again Lemma 3.5.3 we conclude that the image of .S is stable. [
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Lemma 3.5.5. Suppose that L is a stable localising subcategory of C; then the right derived
functors Ror of r, for any j >0, map L to AN L.

Proof. Let V be any object in L. Since L is stable an injective hull E(V') of V in C lies already

in £. Hence we find an injective resolution V' = I® of V in C all of whose terms lie in £.
The values R/r(V) of the right derived functors in question are the cohomology objects of
the complex r(I®). On the other hand, Def. 3.1.1.b easily implies that » maps £ to AN L. It
follows that the complex 7(I*) and then also its cohomology objects lie in AN L. O

For the rest of this section we impose on our thickening C of A the additional condition
that A has a noetherian projective generator P. Note that P then also is noetherian
as an object in C. We let H := End4(P)°® = End¢(P)°P denote the opposite ring of the
endomorphism ring of the generator P. In this situation one has the equivalence of categories

(4) A = Mod(H)
A +—— Homy(P, A) = Hom¢(P, A)
(cf. [Pop] Cor. 5.9.5). In fact, the Ext-functors Exté(P, —) on C, for j > 0, can naturally be
viewed as functors A
Ext}(P,—) : C — Mod(H) .
In particular, the natural isomorphism
(5) Exté(P, V) = Homy(P, Rir(V)) for any V in C and any j > 0
from Cor. 3.2.2 is an isomorphism of H-modules.
Lemma 3.5.6. Let A and V' be objects in A.
a) There is a natural ezact sequence of abelian groups
0 — ExtY (A4, V) — Ext}(A4,V) 2% Hompy (Hom4(P, A), Exts(P,V)) — Ext% (A, V) .
b) If V is an injective object in A, then pav is a natural isomorphism.
Proof. a) By Prop. 3.2.1 we have the convergent Grothendieck spectral sequence
Extiy(A, Rir(V)) = Ext7 (A, V) .
The exact sequence of low degree terms is
0 — ExtY(A,7(V)) = Exti(A, V) — Homy (A, R'r(V)) — Ext% (A, r(V)) .
Since V lies in A we have (V) = V. Moreover, using (5) for the second equality, we obtain
Hom 4 (A, R'7(V)) = Homp (Hom4(P, A), Hom4(P, R'r(V)))
— Hompy (Hom4(P, A), Ext:(P,V)) .
b) Since V is injective, we have ExtY (A, V) = Ext% (A4, V) = 0. O

Now let £ be a localising subcategory of C. Then £ N A is a localising subcategory of A.
We want to investigate how the stability requirements for £ and A N L are related to each
other. It is obvious that if £ is stable in C then AN L is stable in A. The converse is more
subtle. We denote the corresponding localising subcategory of Mod(H) by

LM .= essential image of AN L in Mod(H) under the functor Hom 4 (P, —).
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Proposition 3.5.7. Suppose that AN L is stable in A and that Ext;(P, —) maps AN L to
LH. Let V in C be a nonzero object such that

a) V=r(V), and

b) (V) is the largest subobject of V' contained in L.
Then V =r(V).

Proof. We first note that we have (V') # 0 by Def. 3.1.1.b.
Let E¢(V) be an injective hull of V' in C and let E = r1(E¢(V)). Then r(E) = r(Ec(V)) is
an injective object in A, and (V') C r(FE). In fact, we have the inclusions

r(E) r(Ec(V))

Lk
r(V)——V ——= E¢(V).

By Lemma 3.3.1.a the extension (V) C V is essential. Hence the extension (V) C r(FE) is
essential as well. Since A N L is stable in A and since (V') lies AN L by assumption b), we
see that r(FE) lies in AN L.

Now, because 71 is left exact, V = r (V) C ri(Ec(V)) = E. Next, (r(E)+V)/r(E) =
V/(Vnr(E)) = V/r(V) because r is left exact. Since r(V) is the largest subobject of V'
contained in £, we see that V/r(V) is L-torsion free. Also, V' = r1(V) means that V/r(V)
lies in A. We deduce that (r(E)+ V)/r(E) = V/r(V) lies in A and is L-torsion free. Hence
we need to show that V' C r(E).

Consider any intermediate object r(E) C V/ C V' := r(E)+V C FE in C. We ob-
tain extension classes ¢/ = [0 — 7(E) — V' — V'/r(E) — 0] € Ext;(V'/r(E),r(E)) and
analogously e” € Exts(V"/r(E),r(E)). Note that V'/r(E), V" /r(E), and r(E) are objects
in A with V'/r(E) and V"/r(E) being A N L-torsion free and r(E) being injective in A.
Hence Lemma 3.5.6 applies. We define the H-modules N” := Hom4(P,V"/r(E)) C N’ :=
Hom (P, V'/r(E)) and obtain the commutative diagram

6\

Exts (V! /r(E),r(E)) Hompy (N, Exts (P, r(E)))

| B

Exti (V" /r(E),r(E)) Hompy (N”, Exts (P, r(E))).

14

IR

Sall

with horizontal isomorphisms. Obviously the left perpendicular arrow maps €’ to €”. Since
r(E) lies in A N £ the H-module Ext}(P,r(E)) lies in £# by our assumptions. We have
the H-linear map f' := ¢/(¢’) : N’ — Ext}(P,r(E)). Suppose now that N’ # 0 and choose
a nonzero element v € N'. Let J := Anng(f’(v)) C H be the annihilator left ideal. Then
H/J = Hf'(v) lie in £L¥. We now consider specifically the H-submodule N” := Jv C N'. By
the category equivalence there is a unique V" as above such that N” = Hom (P, V" /r(E)).
We first check that N” 2 0. Otherwise we would have J C Anng(v), so that H/J surjects
onto Hv C N’, which implies that Hov lies in £7. On the other hand the modules Hv C N’
are L -torsion free, which is a contradiction. Hence N” # 0. Now

res(¢’(€))(N") = res(f')(N") = f/(N") = f'(Jv) = Jf'(v) =0 .
The commutativity of the above diagram then implies that the extension class ¢’ = 0, i.e.,
the short exact sequence 0 — r(E) — V” — V”/r(E) — 0 in C splits. But then because
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V" /r(E) # 0 we see r(E) is not essential in E, which contradicts Lemma 3.3.1.a. It follows
that N’ must be zero, i.e., that r(E) + V = r(E). O

Theorem 3.5.8. Suppose that AN L is stable in A. Then the following are equivalent:

a) L is stable in C,

b) Rir maps L to ANL for all j >0,
c) Extc( . —) maps L to LT for all j >0,
d) Extc( . —) maps L to LT,
e) Ext(P,—) maps ANL to LT,

Proof. a) = b). This is Lemma 3.5.5.

b) = c). This follows from (5) and the definition of L.

c) = d) = e). These are trivial.

e) = a). Let E be an indecomposable injective object in C and let Y be its largest subobject
in £. We suppose that Y # 0 and will aim to show that Y = F. Let E, :=ry(F) forn >0

and note that £ = U E, by Lemma 3.1.5. Correspondingly ¥ = U Y, with Y, := r,(Y),

and note that Y,, = Y ﬂ V,, for all n > 0 because each r,, is left exact

Since Y is the largest subobject of E contained in £, E/Y is L-torsion free. Hence for any
n>0,(E,+Y)/Y is also L-torsion free. But (E, +Y)/Y 2 E,/(E,NY) = E,/Y,. Hence
for all n > 0, E,/Y,, is L-torsion free, and Y,, is the largest subobject of E,, contained in L.

With Y # 0 also Yy = r(Y) is nonzero. Since F is an indecomposable injective in C, it
follows that Yj is essential in F.

Suppose for a contradiction that Y # F and let n be minimal such that Y,, # E,. Now,
Yy € Ey is an essential extension in A with Yy lying in AN L; since AN L is stable in A we
see that Yy = Ey. Hence n > 1, and the minimality of n implies that Y,,_1 = E,_1 so that
En—l c Yn

Now, consider the short exact sequence

0—-Y,/En1— E,/E,1— E,/Y, —0

in A. Note that Y,,/E,_1 lies in £, and that E,, /Y, is L-torsion free and nonzero. If Y,,/E,,_1
is also nonzero, then because A N L is stable in A, this extension is not essential. This gives
us some subobject W of E, containing F,,_1, such that W/E, _; is isomorphic to a nonzero
subobject of E,,/Y,; thus W/E, _; is also nonzero and L-torsion free. If Y,, = F,,_, then we
can take W = E,, to obtain an object with the same properties.

Write E_; :=0 and X := W/E,,_5 C E,,/E,,_, and consider the short exact sequence

0= FEn1/Ep2—X—->W/E,_1 —0.

Since the outer terms in this short exact sequence lie in A, we see that r1(X) = X. Also,
r(X) C r(E,/En—2) = En_1/En—o = r(En—1/Ep_2) C r(X), where the left equality uses
Lemma 3.1.2.b, shows that

T(X) = Enfl/En,Q ; X .
Since W/E,_1 is L-torsion free and E,,_1/FE,_2 = Y,_1/FE,_2 is a subquotient of Y, we see

that r(X) is the largest subobject of X contained in £. Applying now Prop. 3.5.7 with X
leads to a contradiction. O
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3.6. A ring-theoretic case. In this section, we discuss stability for the category C =
Mod(H) of left H-modules over a ring H which is assumed to be left noetherian and finitely
generated as a module over its centre Z(H ). This material will be needed in §3.7.

The ring Z(H) is necessarily noetherian by [MCR] Cor. 10.1.11(ii). The ring H is also
right noetherian, and the abelian categories Mod(H) and Mod(Z(H)) are locally noetherian
Grothendieck categories. Of course, Spec(H) and Spec(Z(H)) denote the prime ideal spectra
of the respective rings equipped with its Zariski topology.

Let ¢ : Mod(H) — Mod(Z(H)) denote the functor of passing to the underlying Z(H)-
module. By [Gab] Prop. 10 on p. 428 any localising subcategory of Mod(Z(H)) is stable. We
further have the following facts.

Lemma 3.6.1.

a) For any localising subcategory L of Mod(Z(H)) the localising subcategory o~ *(L) of
Mod(H) is stable.

b) For any ordinal o we have o~ (Mod(Z(H))a) = Mod(H ), which therefore is stable.

c¢) For any ordinal o < K(Mod(H)) we have

Sp,,(Mod(H)) = {[E] € Sp(Mod(H)) : k(E) = a + 1}.

Proof. a) [Gab] Prop. 12 on p. 431. b) The equality is [MCR] Cor. 10.1.10, and the stability
then follows from a). ¢) Because of b) this follows from Remark 2.2.1. O

Next we have:

(A) The continuous map ¢ : Spec(H) — Spec(Z(H)) sending p to p N Z(H) is surjective
with finite fibers (cf. [Gab] Prop. 11 on p. 429).

(B) We recall from [Ste] Chap. VII §1 that a prime ideal p of H is associated to the H-
module M if there exists a non-zero submodule L of M such that p = Anng (L) for
all non-zero H-submodules L’ of L. The map

(6) Sp(Mod(H)) — Spec(H)

[J] — the unique prime ideal associated to J

is a homeomorphism w.r.t. the Gabriel-Zariski and the Zariski topology on the left
hand and right hand side, respectively ([Ste] Thm. VIL.2.1 recalling the fact that H is
fully left and right bounded by [Ste] VII §2 Example 4), [Gab] V §4). Let p € Spec(H).
Fix an injective hull E(H/p) of H/p in Mod(H). From [Ste] Prop. VIL.1.9 we know
that E(H/p) = @ierE, for a single indecomposable injective H-module E,. Using
[Ste] Lemma VII.1.7 we see that the inverse of the bijection (6) is given by p — [E}].

First we describe the stable Zariski topology, where we will always make silently the iden-
tification (6). Hence on Spec(Z(H)) the stable Zariski topology is the Zariski topology. From
[Gab] V §4 we know that the Ziegler-open subsets of Spec(H ) are the possibly infinite unions
of Zariski-closed subsets. Hence the quasi-compact Ziegler-open subsets are the Zariski-closed
subsets. Therefore the open subsets for the stable Zariski topology are the stable Zariski-open
subsets.

Lemma 3.6.2. A(o (L)) = ¢ 1 (A(L)) for any localising subcategory L of Mod(Z(H)).
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Proof. (Recall the notation A(L) from §3.4.) Using Cor. 3.5.2 we compute

A(e™M(L)) = {p & Spec(H) : B, € ob(0™'(£))}
= {p € Spec(H) : H/p ¢ ob(o™"(£))}
= {p € Spec(H) : o(H/p) & ob(L)}
2 {p € Spec(H) : Z(H)/p(p) & ob(L)}
= o (A(L)) -

For the reverse inclusion we suppose that Z(H)/¢(p) lies in £. Being a finitely generated
Z(H)/p(p)-module o( H/o(p)H) also must lie in ob(£) and hence H/p(p)H € ob(o~(L)). Tt
follows that H/p, as a quotient of H/p(p)H, is contained in ob(o~1(L)). O

Lemma 3.6.3. For p,q € Spec(H) we have:

a) Let = € Z(H); if z € p, then z acts locally nilpotently on Ey; if = ¢ p then z acts
invertibly on Ey.
b) If Hompy(Ey, Eq) # 0 then pN Z(H) C qN Z(H).

Proof. a) Let L be a uniform left ideal in H/p so that E, is the injective hull E(L) of L.

Suppose first that z ¢ p. Multiplication by z is an injective H-linear map ¢, : H/p — H/p:
if x+p € H/p is such that z(z + p) = p then (HzH)(HxzH) C p since z is central in H,
so x € p since p is prime and z ¢ p. Since L is an H-submodule of H/p, ¢, : L — L is also
injective. Hence it extends to an injective H-linear map ¢, : E(L) — E(L) by the injectivity
of E(L). The image of ¢, must admit a complement in E(L) since it is itself injective. Since
E(L) = E, is indecomposable, ¢, : E(L) — E(L) is an isomorphism, as claimed.

Now suppose that z € p and let x € E, be non-zero. Since L is essential in £, we see that
Hzxz N L is essential in Hx. Since H is noetherian and z is central, the ideal zH of H satisfies
the left Artin-Rees property by [MCR] Prop. 4.2.6. Since z € p kills L, it also kills Hz N L.
So z™ kills Hx for some n > 1 by the implication (i) = (iii) of [MCR] Thm. 4.2.2.

b) Let ¢ : E, — E4 be a nonzero map. Suppose that there is a z € (p N Z(H)) \ q. Then,
by a), z acts invertibly on FEjy, but locally nilpotently on E,. Consider any x € Ej such that
d(x) # 0. We find a t > 1 such that 2'x = 0. Hence 2'¢(x) = ¢(2'x) = ¢(0) = 0, which is a
contradiction. 0

For any subset A C Spec(H) the full subcategory L4 of all modules U in Mod(H) such
that Hompy (U, E,) = 0 for any p € A is a localising subcategory of Mod(H). Obviously we
have A C A(L4).

We now describe explicitly all localising subcategories of Mod(H) which are of the form
p~ (L) as in Lemma 3.6.1.a.

Recall that a subset S of a topological space T is called generalization-closed if any point
y € T whose closure {y} contains a point in S also lies in S. Equivalently, S is generalization-
closed if and only if it is a (possibly infinite) intersection of open subsets of T'.

Before Lemma 3.6.2 we had noted that the Ziegler-open subsets of Spec(H ) are the unions of
Zariski-closed subsets. Hence the Ziegler-closed subsets are the generalization-closed subsets.
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Therefore the inverse of the bijection (3) is the map

set of all generalization-closed —»  collection of all localising
subsets of Spec(Z(H)) subcategories of Mod(Z(H))

W — L{; := all M with Homy (M, E) = 0
for any [E] € W.
We conclude from Lemma 3.6.2 that
(7) 0 N L) = Loy -

For an ideal I of Z(H), recall that V' (I) denotes the subset of Spec(Z(H)) consisting of all
prime ideals containing I.

Proposition 3.6.4. Let W be a generalization-closed subset of Spec(Z(H)). The following
are equivalent for an H-module M :

a) M lies in L,-1y);

b) V(Annggy(v)) N W =0 for all nonzero v € M;

¢) V(Anng ) (N)) N W =0 for all noetherian submodules N C M.

Proof. Since L,-1(y) is localising we may assume that M is finitely generated. If vy, ..., v,
are generators of the H-module M then

T T
V(Anng (M) =V (ﬂ Anng (w)> = JV(Anngm () -
i=1 i=1
This shows the equivalence of b) and c).

For the equivalence of a) and b) we first note that, because H is noetherian, M contains
an essential submodule N of the form N = Ny @ --- ® N,, where each NN; is a uniform H-
module ([GW] Cor. 5.18 and Prop. 5.15). Hence E(M) = E(N) = @, E(N;). By [GW]
Lemma 5.26, for each ¢ = 1,--- | r there is a unique prime ideal p; of H which is equal to the
annihilator of some nonzero H-submodule N/ of N;, and which contains the annihilators of
all nonzero H-submodules of N;. This p; is the assassinator of N; in the sense of [GW] Def.
on p. 102.

Since H is assumed to be a finitely generated module over its centre, it is an FBN-ring
by [GW] Prop. 9.1(a). Then we can apply [GW] Prop. 9.14 to see that the uniform injective
H-module E(N;) is isomorphic to the H-injective hull E(L;) of any uniform left ideal L; of
H/yp;. In other words ([GW] Lemma 5.14), E(N;) = E,,, and

E(M)=EN)=2@E®N,) =P E, .
i=1 =1

We identify M with its image inside E/(M). Note that M is not contained in the direct sum
D, 25 Ep, for any j, because otherwise we would have M N E,; = 0, which contradicts the fact
that M is essential in E(M). So, Homp (M, E,) is nonzero for any j.

a) = b). Suppose that M lies in £ -1 (yy). From Hompy (M, Ej,) # 0 for any j we deduce that
p;j ¢ ¢ (W) for all j. Now consider any nonzero v € M and any p € ¢~ (V(Anng g (v))).
Because p; N Z(H) acts locally nilpotently on E,, by Lemma 3.6.3.a, we see that

(1N Z(H))(p2 N Z(H)) -+ (pr N Z(H))F v =0
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for some k > 0. This implies that p; N Z(H) C pNZ(H) for some j. Since W is generalization-
closed and p; N Z(H) ¢ W, we see that p N Z(H) ¢ W. Hence V(Anngg)(v)) "W = 0.

b) = a). Suppose that Hompy (M, E,) # 0 for some q € o~ }(W). Then Hompy (Ey,, Eq) # 0
for some 1 <i <randsop,NZ(H)C qnZ(H) by Lemma 3.6.3.b. Hence p, N Z(H) € W
since W is generalization-closed.

Choose a non-zero element v € N/; since p; kills N/ DO Hv we have p; C Anngy(Hv); on
the other hand, p; contains Anngy(Hv) as we saw above and hence p; = Anng(Hwv). Since
Z(H) is central in H, we have Annyg)(v) = Anngg(Hv). This ideal of Z(H) is equal to
Anny(Hv) N Z(H) = p; N Z(H). Thus Annggy(v) = p; N Z(H) lies in W and therefore
V(Annggy(v)) "W # 0. O

Obviously we have a corresponding result for modules over Z(H).

Remark 3.6.5. Let W be a generalization-closed subset of Spec(Z(H)). The following are
equivalent for a Z(H)-module M :

a) M lies in LE,;

b) V(Annggy(v)) N W =0 for all nonzero v € M;

¢) V(Anng ) (N)) NW =0 for all noetherian submodules N C M.

3.7. A stability criterion for thickenings. Throughout this section let C be a locally
noetherian Grothendieck category which is a thickening of its full abelian subcategory A.
Recall from §3 that we then have the increasing filtration A = Ag — A — ... = A; — ...
of C by full abelian subcategories, which all are locally noetherian Grothendieck categories.
By (2) the corresponding injective spectra all are in bijection

Sp(C) — Sp(A;) — Sp(A)
[E] — r;([E]) — r([E]) .
By Cor. 3.4.6 and Cor. 3.5.4 the inverses of these bijections are continuous for the stable as

well as the stable Zariski topologies. Actually it is straightforward to deduce that, for i < j,
the map

Sp(A;j) = Sp(A;)
v = [Ey] v rji(z) = ri(x) = [ri(Ey)]

is a bijection with inverse [U] + [E4;(U)], and this inverse is continuous for the stable as
well as the stable Zariski topologies.

In this section we will present a technique to actually find stable subsets in Sp(C). For this
we assume again from now on that A has a noetherian projective generator P. Recall
that H = End 4(P)°P? = End¢(P)°P and let Z = Z(H) denote its centre. By the equivalence
of categories (4) this centre Z acts naturally on any object in A, i.e., Z = Z(A) is the centre
of the category A.

But we need further assumptions. The first one is:

(A1) H is finitely generated as a module over its centre Z.

The central tool for our investigation will be the (graded) (H, H)-bimodule

(o @]
Ext:(P, P) := (P Extt(P, P) .
=0
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This, in particular, is a module for Z® Z := Z®z Z. We let J := Annygz(Ext:(P, P)) be its
annihilator ideal and R := V(J) C Spec(Z ® Z) be the corresponding Zariski closed subset.
Further let m; : R — Z := Spec(Z), for i = 1,2, denote the restrictions of the two projection
maps Spec(Z ® Z) = Z. We then have a coequaliser diagram

in the category of locally ringed spaces (cf. [DG] Prop. 1.1.1.6). We briefly recall that q is a
topological quotient map which identifies the points 71 (z) and mo(x) for all x € R, and that
the sheaf O3 is given, for any open subset U C =, by the equalizer diagram

03(U) L=5 02(a 1 (1)) : Or((am) (1)) .

In section 3.6 we considered, for any generalization-closed subset W C =, the localising
subcategories £Z, of Mod(Z) and £, := L1y of Mod(H). These satisfy o 1(Lg) =l
by (7). Under the category equivalence (4) the subcategory L, corresponds to the localising
subcategory

L := all Ain A such that Hom4(P, A) lies in LI}
of A. Finally, by Prop. 3.4.3, we have the localising subcategory EIC/V = <£f},> of C, which is
the unique localising subcategory of C such that AN E%V = E{/“V.

Theorem 3.7.1. In addition to (A1) we assume:

(A2) There is an integer d such that Exté(P, —)|a =0 for any j > d.

(A3) Z® Z/J is noetherian.
Then, for any generalization-closed subset W C = with the property that Wg(wfl(W)) cw,
the localising subcategory L’%, is stable.

We begin the proof by recalling the following useful fact.

Lemma 3.7.2. Let M be a noetherian object in C. Then Exté(M, —) commutes with filtered
colimits for all j > 0.

Proof. In the Grothendieck category C filtered colimits are exact. Moreover, because C is
locally noetherian and M is a noetherian object in C, [Gab] Cor. 1 on p. 358 tells us that:

— the full subcategory of injective objects in C is closed under filtered colimits;
— the functor F' := Hom¢ (M, —) from C to the category of abelian groups commutes
with filtered colimits.
In this situation, [KS] Prop. 15.3.3 implies that the derived functors R/ F = Ext}(M,—) of F
commute with filtered colimits. g

Next, we first need an auxiliary result. Since Z = Z(A) the ring Z ® Z acts, for any two

objects A1 and As in A, naturally on the groups Exté (A1, A2) with the first and second factor
in Z ® Z acting through endomorphisms in the category C on A; and As, respectively.

Lemma 3.7.3. Suppose that (A2) holds true, and let A be an arbitrary object in A; then,
for any j >0, the Z ® Z-module Ext},(P, A) is annihilated by NS
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Proof. By Lemma 3.7.2, the functors Ext}(P,—), for any j > 0, commute with arbitrary
direct sums. It follows that J annihilates Extj(P, F') for any F' which is a possibly infinite
direct sums of copies of P. Since P is a generator” of A, using [Ste] p. 93 Prop 6.2 repeatedly
we find an exact sequence in A of the form

. —F,— ... —Fp—A—0
where each F), is a direct sum of copies of P. We break it up into short exact sequences

0—>Yy—>Fy—>A—0
0—-Y1T—>F—>Yy—0

0—-Y,—F,—>Y,-1—0

Applying Extj (P, —) we obtain exact sequences
Exti (P, Fy) — Exti(P, A) % Extit (P, Y)
Exti™ (P, Fy) — Extit (P, Yp) & Extit2(P,v)

Exti (P, Fy) — Bxt5™(P,Y,_1) & Exti " (P,Y,,)

where § denotes the connecting homomorphisms. These are sequences of Z® Z-bimodules. The
first term in each sequence is annihilated by J. Now choose n := d—i. Then Ext," ™ (P,Y,,) =
0. The assertion now follows by downward induction along the above sequences. O

Proof of Theorem 5.7.1. Since ,CIV{/ = Q_I(E%/), it follows from Lemma 3.6.1 that E{,{V is stable
in Mod(H). Hence Lij, = L%, N A is stable in A. Therefore, by Thm. 3.5.8, it is enough to
show that the functor Ext(lj(P, —) maps £{,4V to E{;{,. By Lemma 3.7.2, the functor Exté (P,—)
commutes with filtered colimits. Hence it suffices to show that for any noetherian object A
in £§, N A, the H-module M := Ext}(P, A) lies in £I,. Since the functor Ext}(P, —) is also
half-exact, we may assume further, using a prime series for Hom 4(P, A) as in [GW] Prop.
3.13, that the annihilator of any nonzero H-submodule of Hom4(P, A) is a prime ideal p of
H. Then necessarily p = Anng(Hom 4(P, A)), and we write pz :=pNZ € E.

By Lemma 3.7.3 the Z ® Z-module M = Ext}(P, A) is killed by J9!. Letting Rq :=
Spec((Z ® Z)/ T4, we can then regard M as an O(Ry) = (Z ® Z)/J % -module in a
natural way. Next, consider the commutative diagram

(8) R : Ry

where ¢ is the closed embedding, and the f; are, similarly as before, the restrictions of the
two projection maps.

2The projectivity of P is not needed for this argument.
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Let S := Z\W; then our assumption 7o (7 1 (W)) C W is equivalent to 7, 1 (W) C (W),
which is the same as m, '(S) C 7, *(S). Since 7; = f; o i, this is equivalent to i~'f; *(S) C
flfl_l(S). However, i is a bijection because J is nilpotent modulo %!, so this is in turn
equivalent to f, *(S) C f; 1(S).

Now, p is the annihilator of any nonzero H-submodule of Hom (P, A), so pz = pNZ =
Anny(v) for all nonzero v € Homy (P, A). Since Hom 4(P, A) lies in £, this means that
V(pz) N W = 0 by Prop. 3.6.4, and hence V(pz) C S=E\W.

By assumption O(Ry) = (Z® Z)/J ! is noetherian. Let i3 : Z — (Z® Z)/J %!, sending
zto 1® 2+ J™1, be the ring homomorphism which induces fo. Let Qq,---,Qr € O(Ry)
be the minimal prime ideals lying above ia(pz)O(Rq); then Q7' --- Q% C ia(pz)O(Ry) for
some positive integers ay, - - - ,ax. We have f2(Q;) = (i2) "1(Q;) € V(pz) because Q; contains
i2(pz). Therefore Q; € f5 '(V(pz)) C f51(S) C f71(S). Thus we see that q; := f1(Q;) lies
in S forall j=1,---,k. Hence V(q;) C S for all j, because S is specialization-closed.

With Hom4(P, A) also A is killed by pz. Hence M = Ext}(P, A) is killed by Z ®pyz as well
as J%1. We see that M is killed by i2(pz)O(Rq) 2 Q7' - - Q4*. Hence qf* - -~ q3* - v = 0 for
any v € M, so V(Anngz(v)) € V(q1) U---UV(qr) € S. Therefore the H-module M (where
H acts on M through its action on P) lies in /va by Prop. 3.6.4 as required. ([l

Now we form the following diagram, which defines the map 7:

—1

Sp(A) = Sp(C)
Sp(Mod(H)) T

Spec(H)

> Spec(Z):ET>3:E/9%

Proposition 3.7.4. Assume (A1), (A2), (A3). IfU C 3 is an intersection of open subsets,
then =1(U) is stable.

Proof. Put W = q~}(U). Then
(L (W) = ma(my g (U)) = ma(my ' (U)) Sa M (U) = W
Now apply Thm. 3.7.1. O

Remark 3.7.5. Suppose that our category C is k-linear. Then the Z ®z Z-action on the

Ext-groups Ext}.(M, N) for M,N in A, factors through Z @, Z. Therefore the proof of The-

orem 3.7.1 goes thgugh if we replace (A3) by the weaker assumption that (Z @y, Z)/7d+1 is

noetherian, where J is the image of J under the surjection Z @z Z — Z Qy 4.

We also apply Thm. 3.7.1 to give a sufficient criterion for the stability of the Krull-dimension
filtration of the locally noetherian category C. For every ordinal «, the set

Wy :={p € Z:k(Z/p) > a}

is a generalization-stable subset of =. We identify the corresponding localising subcategory
E%/a of C in Lemma 3.7.7 below, but first we recall a standard fact about Krull dimension.
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Lemma 3.7.6. Let M be a finitely generated module over a commutative noetherian ring A.
Then
k(M) = sup k(Av) = sup sup  k(A/p).
veEM vEM  peV(ann(v))
Proof. An induction on the number of generators of M together with [MCR] Lemma 6.2.4
shows the first equality, namely x(M) = sup, ¢y k(Av).

Let I be an ideal of A. Since A is noetherian, [MCR] Lemma 6.2.4 implies that x(A/I) =
k(A/I™) for all m > 0. Since (vI)™ C I for sufficiently large m, we have w(A/I) >
k(A/VI) = k(A/(VI)™) > k(A/I), so in fact we have the equality x(A/I) = r(A/VI).
Since VT is equal to the intersection of the finitely many minimal primes py,--- ,p, contain-
ing it, there is a natural A-linear embedding A/v/T — @, A/p;. So,

R(A/T) = K(A/VT) < sup w(A/pi) < sup K(A/p) < K(A/T).

1<i<n pev (D)
Therefore for any v € M, k(Av) = k(A/ Anny(v)) =  sup  k(A/p). O
peV (ann(v))

Recall (§2.2) that C, is the full subcategory of C consisting of objects V such that (V') < a.
Lemma 3.7.7. For any ordinal o, we have E%,a =Cq-

Proof. By Gabriel’s definition of Krull dimension found at [Gab] p. 382, we see that (V) =
sup,; k(V;), if we write V' = lim V; as a filtered colimit of its noetherian subobjects V;. Therefore,

it is enough to show that for noetherian V' € C, we have V € E%,a if and only if x(V) < a.
Since C is a thickening of A, we may further assume that V' € A. Hence we are reduced to
showing that for finitely generated H-modules M, we have

Mecrll, & kM) <a

However since H is a finitely generated Z-module, k(M) = k(p(M)) by [MCR] Cor. 10.1.10,
whereas M € Eg,a if and only if p(M) € E‘%Va by equation (7). Next, p(M) € £€Va if and only
if for all v € M and all p € Spec(Z) containing Annz(v), we have x(Z/p) < a. As p(M) is a
finitely generated Z-module, this is equivalent to k(p(M)) < a by Lemma 3.7.6. O

We can now establish the stability of the Krull-dimension filtration on C under certain
fairly restrictive hypotheses on = and R.

Proposition 3.7.8. Suppose that C is k-linear, that Z is a finitely generated k-algebra, and
that there is an integer d such that Ext}(P,.)|4 = 0 for any j > d. Suppose further that
pry : R = = is quasi-finite. Then ,C%/a is a stable localising subcategory of C for all o.

Proof. By assumption, the k-algebra Z ®; Z is also finitely generated, so it is noetherian by
Hilbert’s Basis Theorem. By Thm. 3.7.1 and Remark 3.7.5, it is enough to show that

pra(pry ' (Wa)) C Wa.
Let S, := E\W, be the complement of W, in Z; then it is enough to show that
Pry (prgl(Sa)) C Sa.

Let P € pry'(Sa) and set p; := pr;(P) for i = 1,2. Then py € Sa, s0 #(Z/p2) < a. The
morphisms pr; and pry induce the following diagram of residue fields:

k(p1) = k(P) < k(p2).
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Since pry : R — E is quasi-finite, k(P) is a finite dimensional k(ps2)-vector space. Hence

tr. degy (k(p1)) < tr.degy(k(P)) = tr.degy(k(p2))-

Since Z is a finitely generated k-algebra, we can apply a version of the Noether Normalization
Theorem — see [Mat] Thm. 5.6 — to deduce that

k(Z/p;) = tr.deg,(Z/p;) = tr.deg,(k(p;)) for i=1,2.
Hence x(Z/p1) < k(Z/p2) < a, which means that p; = pr;(P) € S,. O

4. THE QUOTIENT SPACE FOR Modj(SL2(Qp))

4.1. The pro-p Iwahori Hecke algebra and its centre.

4.1.1. The set-up. Let § be a finite extension of Q, with ring of integers O, maximal ideal 90t
and residue field §. We fix a choice of generator m of 9. Necessarily f = F, for some power ¢
of p. We assume that our ground field k£ contains f.

4.1.2. Groups. Let G = SLa(§F) and K = SLo(9), and define the pro-p Iwahori subgroup

{14+ O
(5 9
0
0 g
The projection onto the (1,1)-entry gives group isomorphisms 7’ = &> and T° =5 ox.
Hence T/T° is an infinite cyclic group. The normaliser Ng(T) of T in G is generated by T

Let T' = < ) N G be the subgroup of diagonal matrices in G and let 79 := TN K.

and sg := <_01 (1)>, and Ng(T) is isomorphic to the semi-direct product T x (sg), where

sp acts on T by inversion. This action preserves the subgroup TP, so that 70 is normal in
Ng(T). Then we can form the affine Weyl group W := Ng(T)/T° which is isomorphic to the

-1
infinite dihedral group, generated by the T°-cosets of sg and sq := 0 = > . The subgroup

0
T! := TN1I is also normal in Ng(T') and this gives the extended Weyl group W := Ng(T)/T".
Let Q :=T%/T?; then Q 2§ and we have the short exact sequence

15 Q=W =W — 1.

Note that €2 is isomorphic to F; and is therefore a finite cyclic group of order ¢ — 1.

4.1.3. The pro-p Iwahori Hecke algebra. Let Q= Hom(2, £*) be the group of k-linear char-

acters of {2. Since k contains the residue field § of § by assumption, € is a cyclic group of
order q — 1, generated by the identity character

a O

id: Q- k*, (0 1

>T1»—>a_1—|—im€’fX — k*.
In other words, we have Q= {idj :0<j <q—2} where id® = 1 is the trivial character. The
group algebra k[{)] contains ¢ — 1 primitive idempotents

9) ey = — Z Mw) L, Ae
we
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that form a basis for k[{2] as a k-vector space. These idempotents are pairwise orthogonal:
(10) exey = Oyuen forall A pe Q.
We have the compactly induced G-representation

X :=ind¥ (k) := k[G/I] = k[G] fﬁ] k

from the trivial representation k of I. It is a smooth k-linear representation of G, so k[G/I]
is an object in Mody(G). The pro-p Iwahori Hecke algebra is the opposite ring of the endo-
morphism ring of this representation:

H := Endyjoq, (¢ (k[G/1]).
The following facts are known about H.

Lemma 4.1.1.

a) The double cosets {ry, = Iwl : w € W} form a k-basis for H.

b) The map k[QY] — H given by Q > w > 7, is an injection of k-algebras.

The elements 1y := T, and 11 := 75, generate H as a k-algebra together with k[].
We have T;ey = ex—17; for i =0,1 and any A\ € Q.

We have the quadratic relations TZ-2 = —req fori=0,1.

¢}

¢

(oW
o T

We will never use the notation 7, when w is the identity element of W, because this is equal
to the identity element in H. Therefore writing 71 = 75, should not lead to any confusion.

4.1.4. The centre of H. The centre Z = Z(H) of this k-algebra can be described explicitly.
The following statement is well-known, but see also [OS18] §3.2.2.

Lemma 4.1.2. The element
¢:=(ro+e1)(r+e1)+ 770 = (11 +e1)(r0+e1) + 107
generates a polynomial ring k[(] inside Z(H).
Later on, the localisations Z; of Z and H; of H at ¢ will play an important technical role.

Definition 4.1.3. For each A € Q, we define the following elements of H:

X, — exToTL +ex-111m9 2 AF1L
AT e1( coA=1.

Again, we omit the proof of the following well-known result.

Lemma 4.1.4. Let A\ € Q.

a) X is central in H.

b) If A # )\_1, then (ex +ey-1)¢ = Xy + Xy-1.

c) If A = \71, then ex( = X,.

d) We have ) X, =C(.

el
We will now describe Z completely as a k-algebra with relations and generators. Suppose

that A € Q satisfies A # A~!; then using Lemma 4.1.1, we see that the idempotent ey + ey-1
is central in H. It is known, furthermore, that in this case

X)\'X)\—l :0
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For simplicity, we assume from now on that p # 2. Then precisely two characters A € 0
satisfy A = A~!, namely the trivial character 1 = id® and “the quadratic character” s
All other elements of ) are not equal to their inverse. This gives us the decomposition of Z
as a direct product of non-unital subrings:

q—3

=3
(11) Z=erZ @ e 17 @ Plew +eq-1)2
j=1
From §3.2 of [OS18] we deduce the following
Proposition 4.1.5. Let A € Q and let x,y be indeterminates.
a) Suppose that A\ = A\~'. Then the k-algebra homomorphism
klx] = exZ, 1lw—en, z— X,

s an tsomorphism.
b) Suppose that X\ # A\~'. Then the k-algebra homomorphism

k[z,y]
(zy)
18 an isomorphism.

by :

= (ext+ex-1)Z, le=ext+ey-1, =Xy, y—= Xy

4.2. The normalisation of Spec(Z).

4.2.1. Categorical quotients of schemes. Let R —__Z X be two morphisms of schemes. Recall
g

that a morphism of schemes ¢ : X — Y is said to be a categorical quotient of X by R if it is
a coequaliser of this diagram in the category of schemes.

Given a morphism of locally ringed spaces f : X — Y, we write |f| : | X| — |Y| for the
underlying continuous map of topological spaces.

!
Let R—= X v Y be a diagram of schemes such that ¢ f = g, and let {Y; : i € I}
g

be an open covering of Y. For each ¢ € I, form the fibre products X; := X xy Y; and

fi )
R; := R Xy Y;, and consider the diagram R; —= X; L Y, where f;,g; and 1; are the

9
pullbacks of f, g and v, respectively.
We denote the category of schemes by Sch, and the category of locally commutatively
ringed topological spaces by LRS.

f
Lemma 4.2.1. Let R—Z X v Y be a diagram of schemes such that ¢ f = g, and let
g

{Y; :i €I} be an open covering of Y. Suppose that

| f]

a) |R| —|X| ﬂ> Y| is a coequaliser diagram of topological spaces,
lg]

b) Yi, X; and R; is affine for alli € I, and

c) OY;) v O(X;) — (R;) is an equaliser diagram of commutative rings for all

9i

1el.
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Then R—Z X v Y s a coequaliser in LRS %, and 1) is a categorical quotient of R —= X .
g g

Proof. By the construction of colimits in LRS ([DG] Prop. 1.1.1.6) the first statement is
equivalent to the following conditions:

f
- Rl —= |X| SN |Y| is a coequaliser diagram of topological spaces;
lgl
f
- Oy —=1,0x (Vf)«Or = (¢9).Or is an equaliser diagram of sheaves of
g

commutative rings on Y.
The second condition can be checked after restriction to the open subschemes Y;. By the second
assumption these and their preimages in X and R all are affine. Hence these restricted sheaves
are determined by their global sections in these affine schemes. Therefore this reduces to the
third assumption.
Since Sch is a full subcategory of LRS, the second statement follows from the first. O

We will now give an example of Lemma 4.2.1 in action, which will come in useful later.
Consider the union of two crossing affine lines:

klz,y]
(zy)
We will ‘separate’ the two crossing affine lines to form a disjoint union of two affine lines
X' := Spec (k[z] x k[y])

and then re-glue them together to form X as a quotient of X’ by a certain relation.

To be more precise, note that X’ is the disjoint union of Speck[z] and Speck[y]. Let
S := Speck = {s} be a point, let a : S — X’ be the inclusion of the origin into the first affine
line, and let b: S — X’ be the inclusion of the origin into the second affine line.

Consider the k-algebra homomorphism

:kgjjbkmxk[y], o (7)) = (F(2.0). 70.4)) forany  f(z,y) € Kr.y].

and let 6 := Spec(p) : X’ — X be the corresponding morphism of affine schemes.

X := Spec

a
Proposition 4.2.2. 0 : X' — X is a categorical quotient of S —= X' .
b

Proof. We will apply Lemma 4.2.1. The co-morphism af : O(X') — O(S) (respectively,
bh: O(X') — O(S)) is equal to the composition of the first projection from k[z] x k[y] onto
k[x] (respectively, the second projection k[z] X k[y] onto k[y]) with the evaluation-at-zero map
klx] — k, f(x) — f(0) (respectively, kly] — k, f(y) — f(0)). The k-algebra homomorphisms
afe and b¥p both kill T and 7; since these two elements generate O(X) as a k-algebra, we see
that afp = bp. This gives us a complex of O(X)-modules

k[l‘, y] 4 al —pt

(12) 0— 29) —  klz] xkly] — k.

3Note that the functor from schemes to LRS does not respect coequalisers (see [LMB] for an example).
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Since (z)N(y) = (zy) in k[z, y|, the k-algebra homomorphism ¢ is injective. If u = (f(x), g(y)) €
k[x] x k[y] is such that a(u) = b*(u), then f(0) = g(0), and then
)

o (F@) +9) = (f(@), £(0)) + (9(0), 9(v)) = (9(0), F(0)) + (f(2), 9(w)) = & (F0)) +u

shows that ker(a® — b¥) = Im(y). So, the complex (12) is in fact exact, and this verifies
condition ¢) of Lemma 4.2.1.

We have already observed that Z,7 € O(X) both kill O(S) = k when we consider O(S) as
an O(X)-module via afp = blp. So it is also killed by T +7. Therefore if we localise the exact
sequence (12) at the element ¥ +y € O(X), then we obtain the isomorphism

(k{wvy]) [ L ] = ke < by, y 7]

(zy) ) [T+7Y
Let O := (Z,y) € X be the intersection point of the two crossing affine lines. Then the
restriction of § = Spec(y) to X' —{a(s), b(s)} = Spec (k[z,27'] x k[y,y~!]) is an isomorphism
onto X\{O}. Since § maps both origins in X’ to O € X, we see that |0| is surjective, and that
if p,q € |X'| satisfy |6](p) = |0|(q) but p # g, then necessarily p,q € {a(s),b(s)}. Thus |X| is
obtained as a set by identifying a(s) with b(s) in |X’].
Finally, both |X’| and |X| carry the cofinite Zariski topologies, and the quotient topology

|al
on |X'|/(a(s) ~ b(s)) is still the cofinite topology. Hence |S| —Z |X’/| — |X|is a coequaliser
Io]

diagram of topological spaces, as required for condition a) of Lemma 4.2.1. O
4.2.2. The normalisation of Spec(Z). We return to the notation of §4.1.4.

Definition 4.2.3.
a) Let = = Spec(Z).
b) Let Z' := k[Q][t] where t is a formal variable, and let =" := Spec Z'.
c) Let ¢ : Z — Z' be the k-algebra homomorphism defined by

o(X)) =ext forall Xeq.
d) Let 0 : =" — E be defined by 6 = Spec(p).

Note that =’ is the disjoint union of ]ﬁ\ = ¢ — 1 affine lines Z := Speck[ty], where
ty = ext € Z'. We call 2, the A-component of Z'. We denote the image of the origin (t) € =
inside =’ by O,. Equivalently, O, is the maximal ideal (1 — ey, t) of Z’.

Definition 4.2.4.

a) Let Zging := {51,582, -+ ,84-3} be the disjoint union of % copies of Speck.
2

b) Define a : Eging — =/ and b : Eging — Z' to be the closed embeddings, given by
-3
a(sj) = Oyy5  and b(sj) = Oy-i forall j=1,--- ,qT.

The notation is intended to indicate that Zgpg is a copy of the singular locus of the scheme

=: indeed, in view of the decomposition (11) and Prop. 4.1.5.b, E contains (15—3 copies of the

pair of crossing lines Spec <[ y‘g] so the singular locus of = consists of 452 3 closed points.

'—*/

a
Proposition 4.2.5. 0 : = — E is a categorical quotient of Egng ——2
b
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Proof. The decomposition of Z = O(E) as a direct product of non-unital subrings given in
(11) means that = decomposes into the disjoint union of connected components

[1]
[1]
(1]
(1]

J,—J

g=3
2
(13) == U qzluﬂl
]:

where these connected components are defined by

Zp:=SpecerZ, Zq4-1 := Spec eidq%l Z, and Z;_j:= Spec(e,y + eid_j)Z

2

forall j=1,---, (15—3. On the other hand, we can write
a=3
2
—/ — — =/ =/
(14) 2=E U E .1 U H(:idj UE i)
j=1
Fixj=1,---, %. The morphism 6 maps (] ;UE! ;) onto =; _;; let #; denote the restriction
of 0 to (£} ,; UE ;). Then we have the commutative diagram of affine schemes
- = % =
(15) :‘;dj ‘:;d—]' =g
T
X’ X
0o

where 6y : X' — X is the morphism that was denoted ¢ in Prop. 4.2.2, 5; := Spec(b,y;) is the
isomorphism of affine schemes defined by the isomorphism b,; from Prop. 4.1.5.b, and «; is
the isomorphism of affine schemes defined by the k-algebra isomorphism

052 k] x kly] > Kltgs] x kltiq-s]

given by a?- (x) =ty and ag- (y) = t,q-s. This gives us the commutative diagram of schemes

% = — 0 =
(16) {Sj} ™ =i U Sig—d =g,—j
J
= i aj l = = l Bj
ap
S X’ X
bo %o

where ag and by are the morphisms that were denoted a and b in the statement of Prop. 4.2.2.
Now we can apply Prop. 4.2.2 to see that 0; is a coequaliser of a;, b;.
Note that the morphism 6 sends Zj (respectively, Z' ;) isomorphically onto Zy (respec-
id 2

tively, =/,_,). Taking coproducts of the diagrams (16) over j = 1,--- ,q;f and bearing in

2
mind the decompositions (13) and (14) now gives the result in view of Lemma A.1.3. O
4.2.3. The non-singular locus of =. Let V(t) denote the set of ¢ — 1 closed points in Z’
consisting of the disjoint union of the origins in the ¢ — 1 affine lines =\ = Spec k[t,].

Lemma 4.2.6. The morphism 6 restricts to an isomorphism

0:2-V(EH) — EZ-V().

[1
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Proof. Let A\ € O and write A = id? for some j=0,---,q9— 2. Suppose first that j # 0 and
Jj# %. Then the image of ¢ in O(E) -1) under the restriction map Z = O(Z) — O(&;, ;)
is (ex +ey-1)¢, which is equal to X + X,-1 by Lemma 4.1.4.b. We see that 5;(V(¢) NZE; ;)
is the origin O in the pair of crossing lines X'. Likewise, if j = 0 or j = %, Lemma 4.1.4.c
implies that V(¢) N Eq% = V(ex() is the origin in the affine line Z;. So, V({) C = consists

of precisely % +2 = %1 closed points and contains the singular locus of =, whereas V (¢)
consists of |Speck[€2]| = |Q| = ¢ — 1 closed points in =/

The result now follows from the commutative diagram (15), together with the obser-
vation we made in the proof of Prop. 4.2.2 that 0y restricts to an isomorphism between

X"\{ao(s),bp(s)} and X\{O}. O

Corollary 4.2.7. The map 0°: Z; = O(E—-V(()) — OE = V(1)) = k[Q[t,t7}] is a
k-algebra isomorphism which sends ¢ to t.

Of course, 0" restricts to the basic map ¢ : Z — Z' on Z from Def. 4.2.3.c.
Definition 4.2.8. For each A € Q we define € = (0%)~L(ey).

The family {e) : A € ﬁ} form a complete set of primitive idempotents in Z.
Lemma 4.2.9. We have €) = % for all A € Q.

Proof. Since ¢ is a unit in Z¢, it’s enough to show €x¢? = X, (. Since 6% is a ring isomorphism

that restricts to ¢ on Z, it is enough to show that the equation ex¢(¢)? = ¢(Xx¢) holds in
k[Q][t,t]. However, using Lemma 4.1.4.d together with Def. 4.2.3.c, we have

(17) Q) =p D> Xa| =D eat| =t

aeﬁ aeﬁ
and therefore exp(¢)? = ext® = (ext)t = p(X»)p(C) = p(Xx() as required. O
Corollary 4.2.10. As a k[¢,("Y-module, Z; decomposes as follows:
Ze = P erkl¢, ¢
AeQ

Proof. The isomorphism 6% - Z¢ = E[Q][t,t~1] given by Lemma 4.2.6 sends ¢ to ¢ by equation
(17), and it sends €\ € Z¢ to ey € k[Q[t,t™!] for each X € Q. Since {e) : A € Q} forms a

k[t,t~Y-module basis for k[Q[t,¢7], it follows that {ey : A € Q} forms a k[¢,¢™!]-module
basis for Z. O

4.3. Bimodule annihilators.
4.3.1. Some generalities about annihilators and bimodules.

Definition 4.3.1. Let A be a k-algebra, and let ¢ : A — A be a k-algebra automorphism. Let
M be an A-bimodule. We write My to denote the (A, A)-bimodule M, with action given by

a-m-b=am¢o) foral abecAmeM
and we call My the right ¢-twist of M.
Thus, the left A-action on My is the usual one, whereas the right A-action is twisted by ¢.
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Lemma 4.3.2. Let A be a k-algebra, let M be an (A, A)-bimodule and let ¢ : A — A be a
k-algebra automorphism. Then

AnnA@kA(M¢) = (1 ® ¢_1)(AnnA®kA(M))'

Proof. Let x =Y ;a; ® bj € A®y A. Then - My = 0 if and only if > ; ayme(b;) = 0 for
all m € M. This is equivalent to (1 ® ¢)(x) - M = 0 and the result follows. O

Lemma 4.3.3. Let A be a k-algebra with centre Z and let multy : Z Qx Z — Z be the
multiplication map. Then

Anngg, 7z(A) = Anngg, z(Z) = Anngg, z(1) = kermultz .

n

Proof. For an element x = > "' 1 a; ® b € Z ® Z, we have x -1 = > a;b; = multz(x).
i=1

C

This shows the last equality. Since A O Z > 1, we have Anngg, z(A) C Anngg, z(2)

Anngg, z(1) = kermultz by the above. Let z = """ | a; ® b; € ker multy and let ¢ € A. Then
because a;,b; are central in A, we have z - ¢ = Y1 | ajeb; = (D1 a;ib;) ¢ = multz(z)e = 0.
Hence ker multy; C Anngg, z(A). O

Lemma 4.3.4. Let A be a commutative k-algebra and let multy : A ®x A — A be the
multiplication map.
a) kermulty is generated as an ideal in A®p Aby{a®1l—-1®a:ac€ A}.
b) Suppose that ai,-- - ,an, generate A as a k-algebra. Then {a;®1—1®a; :i=1,--- ,m}
generates kermult 4 as an ideal in A ®y A.

Proof. a) Certainly mult 4 kills a®1—1®a for all a € A. Conversely, if z = > | a,®b; € AQA
is such that mults(z) = > | a;b; = 0, then
n n
x:Z(aZ-@bi—l@aibi) :Z(ai@)l—l@ai)(l@bi)
i=1 i=1
lies in the ideal in A ® A generated by {a ® 1 —1®a:a € A}.
b) Write d(a) =a®1 —1®a for a € A. Then for all a,b € A we have

d(ab) = ab®1—1®ab = (a®1—12a)(b® 1)+ (10a)(b®1—18b) = (a)(b® 1)+ (12 a)d(b).

Hence the ideal generated by {0(a;) : ¢ = 1,--- ,m} contains 8(a’fl -+ akm) for all non-negative
integers ki, -, ky,. Since a — 9(a) is k-linear, and since A = k[ay,- -+ ,a;,] by assumption,
this ideal contains d(a) for all @ € A. Hence it contains kermult4 by part a). The reverse
inclusion is clear because mult4(d(a;)) = 0 for all 7. O
4.3.2. The bimodule %. Recall the canonical involution ¢ : H — H from [0S22],
§2.4.3: it is a self-inverse k-algebra automorphism of H that fixes the subalgebra k[Q] point-
wise, and satisfies
((rp) = —e1—79 and 1) = —e1 — 1.

Lemma 4.3.5.  fizes the centre Z of H pointwise.

Proof. The decomposition (11) together with Prop. 4.1.5 implies that the central elements
{Xx : X € Q} generate Z as a k-algebra. Since t is a k[Q2]-linear involution, it therefore suffices
to check that t fixes each X,. Now if A # 1, then since eje) = eze -1 = 0 by (10), we compute

(X)) = Uextors + ex—17170) = ex(—e1 — 70)(—e1 — 71) + ex-1(—e1 — 11 )(—e1 — 19) = X\
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On the other hand, since ¢ = (19 + e1)(m1 + e1) + 7170 and since t fixes e € k[Q2], we have
L(Xl) = €1L<T0 + 61)[(7’1 + 61) + L(Tl)L(To) = e179T1 + (—61 — 7’1)(—61 — 7'0) =e1( = X1,

where we used the second formula for ¢ from Lemma 4.1.2. O

Let k : H — R be a homomorphism of k-algebras, let z € Z(R) and let u € Q. Then in
[0522], §2.4.7, Ollivier and Schneider explain how to use these parameters to endow the left
R-module R® R with the structure of a right H-module, in fact forming an (R, H)-bimodule,
that they denote (R® R)|k, z, u]. The left R-action on (R R)[k, z, 4] is the obvious one, but
H acts from the right as follows:

(ri,m9)h := (r1,r2)Rk2(h) forall 71,7y € R,h € H.

Here ko : H — M (R) is the explicit k-algebra homomorphism into the ring of 2 x 2-matrices
with entries in R from [OS22] §2.4.7. In this generality, we will explicitly compute the right
action of Z on this bimodule.

Lemma 4.3.6. We have r2(X,) = 22 (ﬂ(ea—BuToTl) n(eau(—)lTlTD)> for all a € Q.
Proof. Recall from [0S22]§2.4.7 that ka(7,) = M, = (“1(“0)”(%) M(w)(;(T )>. Then
Ko(ea) = — ) a_l(w)"@(ﬂu) =-> oz_l(w)Mw
we we
-2 a Hw)pH(w)r(Tw) 0
_ weN
(18) i Y o @)pw)n(n)
weN

= ("5 el )

using (9). On the other hand, we have
HQ(T()) = MO = <—/€(6M) 8) and /‘iQ(Tl) = M1 = (8 ZH(TO) )> .

2k(T1) —k(e,—

Then using (18) together with (10), we compute
_ (k(eap) 0 —k(ey) 0\ (0  zr(70)
Fa(Catom) = < 0 m(ew1)> <zn(7'1) 0/ \0 —kr(e,-1)

o

_ <0 —zn(eauelﬂo)>:<0 —5a1zn(eﬂTo)>‘

0 2%k(enu-17T170) 0 2%K(eq,-17170)

Similarly,

tearmm) = (M O V(S ) (e 0)

22k (eq-1,T071) 0\ _ ( #*kleq-1,m071) O
- \—zkleqg1y1e,1m) 0) 0\ —z0a1k(e,171) 0)°

Suppose first that o # 1 so that X, = eq7071 + €,-17170- Then d,1 = 0, and adding the last
two displayed equations together gives the result in this case.
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Suppose now that a = 1 so that X3 = e1( = e17971 + 17170 + e1(70 + 71 + 1). Adding the
above two equations in this case gives

_ o (k(eumom1) 0 0 —zk(eyu 1)
(19)  ma(eamom1 +e1mim0) = 2 ( 0 (ep-17170) + ~zr{epm) 0 .
Since ka(e1) = (e 0 and ko(mo+ 71 +1) = Rl = ey) 2#(70) we have
2\ 0 r(e,1) 2V zi(1) Kl —ey1))’
_ 0 zk(euTo)
(20) ko(er(mo+ 1 +1)) = <ZI€(6M—1T1) 0 ) .
Adding together (19) and (20) finishes the calculation. O

o (K(10m1) 0
Corollary 4.3.7. k2(¢) = = < 0 /43(7'17'0)>'

Proof. Note that ) e,-1, = > ex = 1. Now apply Lemma 4.3.6 and Lemma 4.1.4.d. [
ae PYS9)

Now we specialise slightly, and take R to be the central localization H¢ of H at (. Let w
be the composition of v : H — H with the natural map H — H, noting that the latter map
is an injection as a consequence of [OS18] Cor. 3.4, and set

zi=—1,_(le€ H: where w_1= <_01 _01> T € Q.

Then we have at our disposal the (H¢, H)-bimodule (Hy @ H¢)lk, 2, ).
Lemma 4.3.8. Heto @ Hemy is an (He, H)-submodule of (He ® He)[k, 2, p].

Proof. When p = id* and k = F,, this is proved in [0S22] § 3.7.3.2. The computation for
general p is entirely analogous, and does not use the restriction on k. ]

Definition 4.3.9. Let B, := %M, an (H¢, H)-bimodule.

We will now calculate the right action of Z on this bimodule.
Proposition 4.3.10.

a) We have v¢ = (v for all v € B,.
b) Let 1:= (1,1) € By. Then ley = €4-1,1 for all o € Q.

Proof. a) We have z = —7,,_,("! so 22 = (2 because ( is central and (w_1)? = w; = 1.
Note that k(mo7m1) = U1om1) = (10 + €1)(m1 +e1) = ( — 70 = ¢ mod Hrp, and similarly
k(m1m0) = ¢ — 71071 = ¢ mod H7y, by Lemma 4.1.2. Writing v = (v7,v2), we apply Cor. 4.3.7:

)¢ = (e mea(O) = orame (S0 0 ) = i) = ¢ o)

¢ — 70T
b) Recall that €, = X, /¢ by Lemma 4.2.9. We will show that
(21) (1X, = X1, 1
Applying Lemma 4.3.6, we calculate
(22)

(T, T)ra(Xo) = (T,T)22 <f~£(ea_6uro7'1) 0 ) _ 2 (6071“(7'07'1),6aM71L(T170)) '

K(ea,u—lTlTO)



STABILITY IN THE CATEGORY OF SMOOTH MOD-P REPRESENTATIONS OF SL2(Q,) 35

Next,

L(T()Tl) = (—To—el)(—’rl —61) =T()T1+61(T0+T1+1), and
(23)
L(TlTo) = (—71—61)(—T0—61) =T17'0+61(T0+7'1+1).

Suppose first that a # p. Then since e,-1,61 = e,,-1€1 = 0 by (10),
1X, = (T, T)K:Q(XCY) = C_Q (eafl,uTOTlvea,uflTlTO) .

On the other hand, using Def. 4.1.3, we have the congruences

€a—1,T0T1 mod Hry

X -1, =€,-1,ToT1 + €,,-1T1T0 =
o H a”tul0 ap~t 7110 €apu-1T170 mod Hy.

Putting these together shows that
Xoﬁlul = (Xaflu,Xaflu) = (eafluTOTl,eauflTlTo) = C21Xa
as required. Suppose now that ae = p. Then applying (22) and (23) again, we have

CZIXH = (61L(T07'1), 61L(7’1T0)) = (617'()7'1 +e171 +e1,e1miTo +e17 + 61),

whereas since X,-1, = X1 = e1( = e1 (7071 + 7170 + 70 + 71 + 1) in this case, we see that

X11 = (X1, X1) = (exmo71 + €171 + €1, e1mi70 + €170 + €1).
Having shown that (21) holds, we use part a) to obtain

le, = (1C_1) Xo =(C1X, = C_l (Clea) = C_lXoﬁlul = 6a*1,u1' O

4.3.3. The annihilator of B,, in Z; ® Z;. Recall from Cor. 4.2.7 that Z; is isomorphic to
k[Q][t,t~1]. Noting that k[] is isomorphic to the direct product of || = ¢ — 1 copies of the
ground field k, the following statement is clear:

Lemma 4.3.11. There is a unique k-algebra automorphism ¢, : Z¢ — Z; such that
Q) =C1 and dulen) = €uja forall ac Q.

Note that this ¢, is in fact an involution.

Proposition 4.3.12. The map v : (H¢)g, — By given by ¥(h) = h1 for all h € H¢ is an
injective homomorphism of (H¢, Z¢)-bimodules.

Proof. The map 1 is clearly left H¢-linear. Using Prop. 4.3.10, we have
P(h)¢ =h1¢ =1 = 9(hgu(C)) and  Y(h)ea = hlea = heyal = Y(hdu(ca))

for any «a € Q. After Cor. 4.2.7, we know that Z; is generated as a k-algebra by the €,’s, ¢
and (1. It follows that 4 is right Z¢-linear.

We have kerv = H¢rg N Hery by definition of B,. This is equal to (Hmo N H7y)e. But
HtmyN Hrp =0 by Lemma 4.3.13 below. (]

Lemma 4.3.13. The sum of left ideals Hmy + HTy is direct.

Proof. Recall that {7, : w € W} forms a basis for H as a k-vector space. Now, W contains
Q) as a normal subgroup and the images of sy and s in W/ generate a copy of the infinite
dihedral group. It follows that every element of W has a unique representation in the form
ww where w €  and w is a reduced word in sy and s;. Therefore the reduced words in 7y
and 71 form a basis for H as a k[Q2]-module. Every non-empty such word ends in exactly one
of either 7y or 7, which gives the result. ]
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Now we study coker 1.
Lemma 4.3.14. The left H-module H/(Hto + Hm1) is killed by ((¢ —1).
Proof. The fact that {7, : w € W} spans H implies that H = k[Q]®(Hmo+H™1) as a k-vector
space. Therefore it is enough to show that ((¢ — 1)ex € Hry + Hm for all A € . However

(=mym+7mi70o+e1mi +e1mg+e1 =e1 mod Hrg+ Hry, so already Cey =0 mod Hrg+ Hry if
A # 1, whereas if A = 1 then (¢ —1)e; = ((Ce1 —e1) =((e} —e1) =0 mod Hro+ Hry. O

Corollary 4.3.15. There exist elements u,v € H such that ((( — 1) = utg + v7y.
Proposition 4.3.16. We have ({ — 1) - coker = 0.

Proof. Let (a@,b) € B, for some a,b € H¢. Define c := avmy + butg, where u,v € H given by
Cor. 4.3.15. Then

c=a(¢(¢—1)—um) +burp =al(¢ —1) mod H¢my

and similarly ¢ = b((¢ — 1) mod H¢ry. Hence (¢ — 1)(@,b) = (¢,¢) = c1 = 1(c), so coker ¢
is killed by ¢(¢ — 1). Since ( is invertible in H¢, coker is already killed by ¢ — 1. O

Lemma 4.3.17. H/Hty and H/HT are k[C]-torsionfree.
Proof. Let Hp be the k-subalgebra of H generated by k[Q2] and 79. We have
Hy = k[Q] S5, k’[Q]TO = k[Q] ® Tok‘[Q}.

Next, by [OS18] Cor. 3.4, H is free of rank 2 as a Hy®y, k[¢]-module, with basis {1, 71 }. If Hy[(]
denotes the subalgebra of H generated by Hy and (, then this means that the multiplication
map Hy ®y k[¢] — Hp[(] is a k-algebra isomorphism, and also that H is free of rank 2 as a
left Hy[¢]-module, with basis {1,711} :

H = Hol¢] @ Hol¢]m.

Let A := k[Q][¢] C Hy[¢]; clearly A is isomorphic as a k-algebra to the polynomial ring in one
variable over k[(2]. Combining the two displayed equations above, we obtain the decomposition

H=A80 Ay ® A1y ® Amomy

of H as a left A-module. Now 712 = —e171 by Lemma 4.1.1, and ej is central in H. This
implies that right-multiplication by 7 sends H into Am & Amy7i. Since this A-module is
clearly contained in H7y, we conclude that Hmy = A1 & A1g71, and therefore

H/H’Tl ~AD A

as a left A-module. Since A is itself free as a k[(]-module, we see that H/H is free of rank
2(q — 1) as a k[¢]-module. Tt is in particular k[(]-torsionfree.
The argument for H/Hy is the same, after switching 79 with 7. O

Corollary 4.3.18. The left H-module B, is k[(]-torsionfree.

Proof. As a left k[¢]-module, B,, is isomorphic to k[¢, (1] k(] (Him ® Hiﬁ) The expression
in the brackets is k[(]-torsionfree by Lemma 4.3.17, and the result follows easily. O
Theorem 4.3.19. . We have Anngz gz (By) = (1 ® ¢,)(kermultz, ).
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Proof. Write R = Z; ® Z. Using Prop. 4.3.12, we see that
AHDR( ) - ADDR((Hc)d,H)

Suppose that r € R kills (H¢)g,; then r kills im(z). By Prop. 4.3.16, (¢ — 1)B,, C im(¢).
Hence r- ((( — 1) ® 1) kills By, so ¢ — 1 kills 7 - B,,. But B,, is k[(]-torsionfree by Cor. 4.3.18,
so r - B;, = 0. This shows that

Anng(By) = Anng((H¢)g,,)-
Now we apply Lemma 4.3.2 to the (Z¢, Z¢)-bimodule H¢ to see that
Annp((He)g,) = (1@ ¢, ") (Annp(He)).
Now Z; is the centre of H¢, so Anng(H¢) = Anng(Z) by Lemma 4.3.3. Since ¢, = ¢;, ',

Anng(By) = Anng((He)g,) = (1 ® ¢p)(Anng(Z;)).
The result now follows from Lemma 4.3.3 applied with A = Z. ([l

Write 0,(a) :==a®1—1® ¢,(a) for all a € Z¢. The following finite set of ideal generators
for Anng gz (B,) will be useful to us later.

Corollary 4.3.20. We have Anng,. gz (B) = (Z¢ ® Z¢)0,(0) + > (Ze ® Z¢)du(€a)-
aeh)

Proof. By Cor. 4.2.7, there is a k-algebra isomorphism Z, = k[Q][t, 1] that sends €, to eq

and ¢ to t. Therefore {¢,¢"1}U{eq : a € Q} forms a set of k-algebra gencrators for Z¢. Write
da)=a®l—1®aforalacZ:and R=Z;® ZC; then by Lemma 4.3.4.b we have

(24) ker multz, = RO(C) + RO(C") + > R(eq).
acl

Note that A((™!) = ¢ '@ 1+10 ¢! = (' ®1I(C), so RA((!) = RI(C). Also, note
that (1® ¢,)0 = 0,,. Therefore, applying 1 ® (;S# to (24) gives

(1® ¢y) (ker multZC )+ Z Ré,(eq)-
aef

The result now follows from Thm. 4.3.19. n
4.4. The bimodule annihilator of Ext{, (X, X). Our goal will be to compute the ideal
Amngg,z E*, where E*=@HE", and E"=Extg(X,X).
n>0
Recall that X = ind{ (k). For brevity, we will write for each n >0
Jp = Anngg, 7 (E").

First, we will use the Poincaré duality isomorphisms from [OS19] to relate J, with Jy_,,
where d is the dimension of G as a p-adic Lie group. For this, we need to look at the anti-
involution J : E* — E* that was introduced in [OS19], §6: it is an anti-automorphism of the
graded algebra E* by [OS19], Prop. 6.1, and therefore in particular restricts to a k-algebra
anti-automorphism of H = E°.

Lemma 4.4.1. J fizes Z pointwise.
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Proof. By [OS19] Prop. 6.1, we know that J(7y) = 7,-1 for all g € G, where 7, denotes the
characteristic function of the double coset Igl — see [OS19], §2.2. It follows therefore that g
restricts to the standard anti-involution on the group algebra k[Q2] C H that sends the group
elements 7, to 7,,-1, for each w € Q. Equation (9) now implies that

J(e)) = exo1 forall e Q.
= —s; for i = 0,1 inside G. Writing € = 7,,_,, it follows that
J(r;) = e, i=0,1.

With these two pieces of information in hand, we can now compute the effect of J on the
algebra generators X of Z from Def. 4.1.3, for each A\ € 2. When \ # 1, we have

H(X)\) = 3(6)\7'07'14-6)\—17'17'0)
d(11)d(10)d(ex) + d(10)d(T1)d(ex-1)

= T1€ TQE €)—1 + TOE T1€E €)

Next, we have s, !

= T1Tpe)-1 + ToT1€E)
= e)\-1T1T0 + exToT1
= X,
We have used here the fact that € is a central involution in H, as well as the relations
Tiex =ex—17, t=0,1

from Lemma 4.1.1. Next, recall from Lemma 4.1.2 that ¢ = (79 + e1)(71 + e1) + 7170. When
A =1, the calculation goes as follows:

I(X1) = d(ea() =3(¢)ea
= ((1o€)(71€) + (T1€ + e1)(T0€ + €1))e1
= (7071 + T170 + €170€ + T1e1€ + e1)ex

= (e1 = X1.
We have used here the fact that eje = 1(€)ex = e1. We have shown that J fixes each X.
Since these generate Z as a k-algebra in view of Prop. 4.1.5, J|z is the identity map. O

For our next result, we need to introduce the k-algebra involution ¢ : Z ® Z — Z Q. Z,
given by o(z1 ® z2) = 29 ® 23 for 21,29 € Z.

Lemma 4.4.2. For eachn=0,--- ,d, we have Jg_, = o(J,).

Proof. For a k-vector space V', let V'V denote the full k-linear dual VV = Homy(V, k). When
V happens to be an (H, H)-bimodule, then V'V is also an (H, H)-bimodule. Following [OS19],
§7.1, this bimodule structure is given by the following rule:

(a-f-b)(v)=f(bva) forall veV,a,bc H, feV".

We are only interested in (Z, Z)-bimodules here. Regarding every (Z, Z)-bimodule V' as a left
A := Z ®;, Z-module in the standard way, we can write this action of A on V'V as follows:

(- f)(v) = f(o(z)v) forall veV,xe A feVY.
It follows immediately that for every (Z, Z)-bimodule V' we have
(25) o Y (Anny V) C Anny(VVY).
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Now, [OS19] Prop. 7.18 gives us an injective homomorphism of (H, H)-bimodules
A" E" — (J(EI)I)Y,
Since J fixes Z pointwise by Lemma 4.4.1, we may write this as
A" E" — (B,
an injective homomorphism of (Z, Z)-bimodules. Using (25), we obtain
Ji—n = Anng(ET™) C o(Anna(E4™)Y) C o(Anna(E™)) = o(Jp).
Replacing n with d — n gives J,, C 0(Jg_n), 50 Jg—n C 0(Jn) C 0?(Jy—) = Ja—n. O
Recall the multiplication map multy : Z ® Z — Z from §4.3.1.

Lemma 4.4.3.

a) We have Jy = ker mult .

b) J(] = O‘(Jo).
Proof. Since Ext%(X,X) = Homg(X,X) = H and since Z = Z(H), Lemma 4.3.3 implies
that Jy = ker mult;. The second statement follows from Lemma 4.3.4.a. ]

We assume from now on that § = Q,, p # 2,3 and 7 = p. This assumption allows us
to apply the results of [O0S22] to study J;. Recall first that by [0S22] Prop. 6.10(1), there is
a certain short exact sequence of (H, H)-bimodules
(26) 0 — ker(f1) @ ker(gy) — E' — C — 0.

Here C' is a certain (H, H)-bimodule with dimy C' = 4.
Lemma 4.4.4. We have Anngg, z(ker g1)) = Jo.

Proof. By [0S22] Prop. 6.3, ker(g1) = F'H as an (H, H)-bimodule, where (F"H),>¢ is the
descending filtration on H defined at [0S22], §2.2.4. Writing A = Z ®j Z, we then have
Ann 4 (ker(g1)) = Anny (FYH) D Anny(H).

For the reverse inclusion, note that F*H = Hry+ Hy, so (¢ — 1) kills H/F'H from the left
by Lemma 4.3.14. Since H is k[(]-torsionfree and since ( is central in H, left-multiplication
by ¢(¢ — 1) gives an injective homomorphism of (H, H)-bimodules H < F'H. Hence

Anna(ker(gr)) = Anna(F'H) = Anng(H) = Anny(E°) = Jo. O

On p. 38 of [0522], Ollivier and Schneider consider a certain twist of (H; @ H¢)[, z,1d?]
that they denote (H; ® H¢)*. The left action of H on (H; @ H¢) is unchanged, but the right
H-action is twisted by pre-composing the previous right H-action by t. They show that the
left H¢-submodule Hemg @ Herp of this direct sum is stable under this new right H-action,
which allows them to pass to the quotient to form the (H¢, H)-bimodule

+
( He  He ) _ (Hco H)*
HCTO H(Tl (HCTQ@HCTl)i'
Then they prove the following Theorem — see [O0S22] Prop. 3.28 and Thm. 6.8:

Theorem 4.4.5. There is an (H¢, H)-bimodule isomorphism

He  He \T =
— k
(HcTo @ H<7'1> er(fl)
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We are only interested in the (Z¢, Z¢)-bimodule structure on ker(fi). Recall the (H¢, H)-
bimodule B, ;2 from Def. 4.3.9.

Corollary 4.4.6. There is an (H¢, Z¢)-bimodule isomorphism By = ker(f1).

Proof. Note that ¢ acts invertibly on ker(f;) from both sides by its definition: indeed the left
C-actions and the right (-actions are mutually inverse. Therefore ker(f1) is in fact a (H¢, H¢)-
bimodule. Since  fixes Z by Lemma 4.3.5, precomposing with t makes no difference to the
right action of Z. Now we can apply Thm. 4.4.5. O

Theorem 4.4.7. Suppose that § = Qp, p # 2,3 and ™ = p.
a) We have Jy = Jo N Anngg, 7(B,42)-
b) J1 = o(J1).
Proof. a) Again, write A = Z ®;, Z. Using (26), we see that
Anny(EY) € Anng(ker(f1) @ ker(gr)).

For the reverse inclusion, suppose that @ € Anng(ker(f1) @ ker(gi)). Since the (H, H)-
bimodule C' appearing in (26) satisfies dimy C' < oo, there is a non-zero g(¢) € k[(] such
that g(¢Q)E' C ker(f1) @ ker(g1). Hence - (g(¢)E') = 0, so g(¢)(x - E*) = 0. Since E' is
k[¢]-torsionfree by [0S22] Lemma 5.1, this forces x - E! = 0. Hence z € Anny(E') and

Anng(E') = Anng(ker(fy) @ ker(g1)) = Anng(ker(f1)) N Anng(ker(g1)).
Using Cor. 4.4.6 and Lemma 4.4.4, we see that
(27) Ji = Anng(E') = Anny(By2) N Jo.
b) We know that B,,2 is in fact a (Z¢, Z¢)-bimodule, so that
Anng(Big2) = AN Anng g, 7. (Big2)-

In view of formula (27) and Lemma 4.4.3.b, it is enough to show that the obvious extension
of o to Z; ® Z; preserves Annz, g, z. (Big2)-

Recall from Thm. 4.3.19 that this ideal is generated by {d,42(a) : @ € Z;}, where we define
Sg2(a) = a®1—1® ¢yy2(a) for each a € A. Since (¢,42)?(a) = a for all a € Z;, we calculate

0(0g2(a)) =0 (a®1—1® ¢2(a)) = —(¢iq2(a) ® 1 — 1 ® a) = —b;42(¢iq2(a)).
Therefore o preserves Annz, g, 7. (Big2) as required. O
Putting everything together, we obtain
Corollary 4.4.8. Suppose that § = Qp, p # 2,3 and ™ = p. Then
Anngg, z(E*) = kermulty N Anngg, z(B;g2).

Proof. Here d = 3, so Anngg, z(E*) = Jo N J1 N Jo N J3. However Jo = o(J1) and J3 = o(Jp)
by Lemma 4.4.2. Using Lemma 4.4.3.b and Thm. 4.4.7.b, we obtain

AnnZ®kZ(E*) =JyNJi.
Now use Thm. 4.4.7.a and Lemma 4.4.3.a to conclude. O

4.5. The computation of the quotient space. Our goal is to compute the quotient locally
ringed space Z/R, where
R = V(AnnZ®kZ(E*)) cCz=xz.
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4.5.1. Passing to the normalisation. Cor. 4.4.8 tells us that
R =R,42, where we define R, :=V (kermulty N Anngg,z(B,)) forany pue Q.

Recall from Def. 4.2.3 that 6 : &' — = is the normalisation of =, where §# = Spec(p) and
¢ : Z — Z' is the map sending X, € Z to ent € Z' = k[Q][t]. Because the localisation map
Z — Z; factors through Z’, we see that the (Z¢, Z¢)-bimodule B, from Def. 4.3.9 can be
viewed as a (Z', Z')-bimodule via restriction along Z’ — Z.

Definition 4.5.1. We define R}, :=V (kermultz: N Anngrg, 7/(By)) CE x Z'.
Lemma 4.5.2. Write A' = Z' @, Z'. Then we have

ker mult z/ :A'(t@l—1®t)—|—ZA’(ea®1—1®ea).
S9)

Proof. The k-algebra Z' = k[Q][t] is generated by {t} U{eq : a@ € Q}. Use Lemma 4.3.4.b. O
It turns out that Annyg, z/(B,) is slightly easier to compute than Annzg, z(B,).
Proposition 4.5.3. Write A’ = Z' @y Z'. Then for any p € Q, we have

Ay (By) =A@t —101)+ > Alea®l-1e,,).
=)

Proof. By Cor. 4.2.7, there is a k-algebra isomorphism Z; = Z;. Under this isomorphism,

t € Z' maps to ( € Z¢ and eq € Z' maps to ¢, = Xo/( € Z, for each a € Q. This
isomorphism also induces k-algebra isomorphisms A}y, = (Z]) Q% (Zt) (Z¢) @k (Z¢) = R.
Regarding By, as an Ajg,-module via this isomorphism, we can apply Cor. 4.3.20 to obtain

AnnA; (By) = Al (t®@1—1@1t" 1 +2At®t a®@1—1®e,/q)
aef

Let I denote the ideal of A’ appearing on the right hand side of the statement. Then A’/T
is isomorphic to S[t,t7!] as a k-algebra, where S := k[Q]®?/ <€a ®1-1®eyn:ac §>

This ring is t-torsionfree. Therefore A’/I is t ® t-torsionfree, so A" N (I - Ajy;) = I. Hence
AHI]A/(BM) =A'nN AIlIlA;®t(BM) =A'nN (I : A:ﬁ@t) =1 g

—_— =/

Recall the coequaliser diagram Egns — 2 = .= from Prop. 4.2.5.
b

pr
Proposition 4.5.4. Let ¢’ : Z' — Z'/R), be a coequaliser in LRS of R, 4§ =, and let
pr2
qa
s: 2 /R, — (Z'/R},)/Zsing be a coequaliser in LRS of ZEsing —Z='/R), . Then
q'b

SRy = (2R Fng
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Proof. The situation is summarised in the following diagram:

Esing
q'b
al|b
da
(28) pr}
/ =/ =/ /
RM ; = q - /RH
pry
0 \
pry X _ — , _
Ry - = 7 E/R, (E'/R,)/Esing-

The result now follows from Lemma A.1.2, provided we can find an epimorphism ¢’ : RL — Ry,
in LRS making the diagram commute, in the sense that pr; 8’ = 0 pr} holds for i = 1, 2.
Write A = Z ® Z and A’ = Z' ®, Z'; then by definition, we have

A A

e d ! — .
) kermultz N Anna(B,,) an O(R“) kermultz: N Anny (B),)

O(R,

The map ¢ ® p : A — A’ is an injective k-algebra homomorphism; furthermore we have
kermulty = (¢ ® ¢) *(kermultz:) and Anna(B,) = (¢ ® ¢)” *(Anna(B,)).

Therefore ¢ ® ¢ descends to a natural injective k-algebra homomorphism

(29) e®e:0(Ry,) — O(RL)

We define 6" := Spec(p ® ¢) : 72; — R, to be the corresponding morphism of affine schemes.
The following diagram of commutative rings

(pr})*

O(R},) Z'
(pr5)*
-
pry
O(Ry) =
pry

is readily checked to be commutative: for example, we have

(pr))f(p(a) =p(@) @1 =p@pa@® 1) = p® p(pri(a)) forany ac Z.

Because the schemes =, 2/, R, RL are all affine, it follows that pr; ' = 6 pr} holds for i = 1, 2.
It remains to show that 6’ is an epimorphism in LRS, and this follows from Lemma 4.5.5
below, once we check its two conditions.

a) We note that Z' = k[Q][t] is a finitely generated Z-module via ¢ : Z — Z’: indeed,
Q) C Z'is a finite generating set as a k[t]-module, and k[t] = k[p(¢)] C ¢(Z). Hence A’ is
a finitely generated A-module, so O(R),) is a finitely generated O(R,,)-module. Hence |¢'| is
surjective by [AM] Prop. 5.1 and Thm. 5.10.

b) The map (¢')(R,) = ¢ ® ¢ is injective, as we saw above in equation (29). O
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Lemma 4.5.5. * Let f: Y — X be a morphism of affine schemes. Suppose that
a) |f|: Y| — |X| is surjective,
b) fH(X): O(X) — O() is injective.

Then f:Y — X is an epimorphism in LRS.

Proof. Suppose that uf = vf for some morphisms u,v : X — Z in LRS. Then |ul|f| = |v]||f|
implies that |u| = |v| because |f| is surjective. Hence it remains to show that uf = v*. Now,
lul« (%) out = (uf)f = (vf)¥ = Jv]«(f*) o ¥, so it is enough to show that f*: Ox — f.Oy is
injective. This can be checked on basic open subsets D(g) of X, g € O(X). But since X,Y
are affine, the map f#(D(g)) : O(D(g)) — O(f~1D(g)) is the localisation of the injective map
fH(X): O(X) = O(Y) at g and is therefore also injective. O

4.5.2. Calculating ='/R),. For each a € Q, we let Z, := V(1 — ey) C = be the closed
subscheme cut out by the idempotent 1 — e, € O(Z') = k[Q][t]. Let t, be the image of
t€ O(F) in O(E,); then O(Z,) = k[ta] and Z' =[] _a E,. Tt follows that

€N
=/ —/ —/ —/
B xE = Ep X B
aﬁeﬁ
We write R, , 5 =R}, N (E, x Ej) for all o, B € Q, so that
r /
Ry = H Ria,8-
a,ﬁeﬁ

For each a, 8 € €, will identify O(Z], x E}) = k[ta] ® k[ts] with the polynomial algebra

klz,y], via = to, ® 1 and y — 1 ® tg. With this notation in hand, we can now calculate the
. . /

defining equations for each Rop

Proposition 4.5.6. For every u, o, 3 € Q we have

s = V(@ —y)>8 (zy — 1)%0m/8).

Proof. Consider the canonical projection 7, 5 : A’ = O(E' x E') — O(E], x Ej) = k[z, y] with
kernel kermy g = ((1 —€qa) ® 1,1 ® (1 — eg)). Then for all 7,0 € Q we have

(30) Tap(ey @1) = bapy,
7Ta”3(1 & 65) = (5,3’5.

Using Lemma 4.5.2 together with equations (30), we have

map(kermuliz) =z~ )+ Y (mapler ©1) = map(1 @)
VEQ

= (z—y)+ Z<5a,v — 08.0)
VEQ
_ _ 6(1 B
= ((z—y)™”").
4Because | -] : LRS — Top is a left adjoint, it must preserve epimorphisms, so condition a) is necessary

for Lemma 4.5.5 to hold. The discussion [KStm] gives an explicit example where Lemma 4.5.5 fails if only
condition b) is assumed to hold.
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Similarly, using Prop. 4.5.3 together with equations (30), we have

Ta8(Anng (By)) = (zy—1)+ Z<7Ta,ﬁ(ev ®1) —map(l®eun))
Veﬁ
= <xy - 1> + Z<5a,u - 5,8,u/l/>
Veﬁ

= ((wy — 1)0nre).
By the elementary Lemma 4.5.7 below, we then have
ma,p(kermulty N Anng/ (B,)) = maplkermulty) N 7o 8(Anngs (By))
= ((w =)™ 0 {(ay = 1))
= (& —y)’es (wy — 1)0enss).

Recalling that R, , 5 = R}, N (E, x Ej), and using Def. 4.5.1, we have

o = V(Tap(kermultz N Anna(B,))) C Z, x Ej.
The result follows. 0

Lemma 4.5.7. Let A be a ring, let e, f € A be two central idempotents and consider the
canonical projection w: A — A/(1 —e,1— f). Then for every pair of ideals I, J of A we have
m(INJ)=n(I)Nx(J).

Proof. Let a € w(I) N w(J). Then we can find € I and y € J such that a = 7w(z) = 7(y).
Now, x = (1 —e+e)(1 — f + f)x implies that 7(z) = 7(efz) and similarly 7(y) = 7(efy).
Hence w(efz) = n(z) = n(y) = n(efy), so efr —efy € kerm. But ef(1 —e) =ef(1 — f) =0,
so efkerm = 0. Hence ef(efr —efy) = 0, so efr = e2f2x = e?f%y = efy. Since efz € I
and efy € J, we see that efr = efy € I NJ. Hence a = w(x) = w(efzx) € n(I NJ), so
m(I)Nx(J) C w(INJ). The reverse inclusion is clear. O

We introduce an equivalence relation ~ on O by setting a ~ f if and only if 8 € {«, u/a}.
p 1

For an equivalence class v € 2/ ~ | we write
“w

= . =/ / o /
(31) = = [[= and R, = [ Rins
acy a,BE
E/ E/
We use the projection maps pry”,pry” : = x =) — =/ to define the map
=/
Y. i . ! =/ .
f=pr7 ry, Ry, 2 E, for i=1,2.

Then for each v € Q / ~ , we may form the coequaliser diagram in LRS
o

fiy / / /
= =5/ R

(32) R

13

Lemma 4.5.8. We have =’ = [[ = and R, = [[ R
7eQ/~ veQ/~
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Proof. Only the second statement needs proof. For this, we have

Ro= I ®ep= 11 L I Rucs

11,0,8€Q 7EQ/~ @€Y pe

But by Prop. 4.5.6, we have R}, , 5 =0if 3 ¢ {a,/a}. Hence R, = H/ Rq O
yEQ/~
o

Corollary 4.5.9. We have Z'/R), = [] E=./R], ., in LRS.
veQ/~
o

Proof. We have =/ = ]:[ =) and R), = L[ R}, by Lemma 4.5.8. Note also that pry =
vEQ/~ vEQ/
[T f fori=1,2. Now the result follows from Lemma A.1.3. 0
vEQ/~
n

Recall [Sta] Section 01JA that a gluing datum in LRS consists of the following data:
e an index set I,
e a locally ringed space X; for each i € I,
e an open subspace ¢; ; : U; ; < X; for each 7,j € I,
e an isomorphism ¢; ; : U; = Uj; in LRS for all 4,5 € I,
such that
(1) Uj; = X; for all i € I, and
(2) pjro ‘Pi,j|U¢,jﬂU¢,k = i klu; ;nu,,, holds for all 4,5,k € I.
Recall from [DG] Prop. 1.1.1.6 that LRS admits all colimits.

Definition 4.5.10. Let (I,{X;}icr, {ti;}ijer {@ijtijer) be a gluing datum in LRS. Form
the coproduct U := [] X; and let £; : X; — U be the canonical inclusions for each i € I.

i€l
Define
(33) H U@j H X, =U
i,J v iel
by setting u = (u; )i jer and v = (v; ;)i jer, where
(34) wij=4Liotj and wvj=~{;jou;0pi; forall i,j€l.

If ¢ : U — X is a coequaliser of diagram (33) in LRS, then we call X the gluing of the X;’s
with respect to the gluing datum.

Remark 4.5.11. It is shown in [Sta], Lemma 01JA that the glued locally ringed space X
admits an open covering {U; : i € I} such that U; =2 X; for all i € I. It follows immediately
that X is a scheme whenever each U; is a scheme.

Theorem 4.5.12. Suppose that v = {a, B}, where 8 = p/a and o # B. Then ZL /R, . is
isomorphic to the projective line PL.

Proof. We will first recall the well-known gluing datum that is used in the construction of
the projective line P!: see, for example [Sta], Example 01JE. The indexing set is I := {a, 3}.
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The spaces to be glued are X, := Zf, = Speck[to] and X := Ej; = Speck[tg]. The U;;’s are
as follows:

Usa = Z4, Ugp=Ep, Uap = Spec Elta,ty'] and Ug, = Spec k[tg,tgl]
The inclusions ¢, g are made clear by the notation, and the gluing isomorphisms ¢; ; are as

follows: ¢q o = idy,, vs,s = idu,, a0 = cp;lﬁ, and ¢, : Uap = Us,q is determined by

the corresponding map cpi 5 on coordinate rings, which is given by cpﬁa B(tg) =t 1. Hence we

have the coequaliser diagram
= - q
U—y = - H Ui,j - .::XH.:.,B Pl .
ije{a,f}

Recall that =. /R, . is defined by the coequaliser diagram (32). We see that to show that
= / Rﬁw >~ P! as locally ringed spaces, it will be enough find an isomorphism of schemes

LRl =
T.RM77—>U'Y

such that the following two diagrams of affine schemes are commutative:

/ =/ =/ / =/ =/
Ry~ =, xE, and R, =y X &
le lprl T\LN iprz

) =/
U, - = U, . =

Here, both of the top horizontal arrows are the closed embedding of R/, ., into =/, x Z/,. Now,
the relation R;m also decomposes as a disjoint union

!/ _ / =/ =/ _ ,:/ v:\/_
Ruy = H Ruij © Eyx=E= H =i X2
i,je{a,B} i,j€{a,B}

so it will be enough to work componentwise, and for each i, j € v to find an isomorphism

I %
Tij * Ryuig — Uij

such that the following two diagrams of affine schemes are commutative:

/ = =/ / = =
. =" =" .. =L =L
(35) 223 ? X J and 12,7 1 J
Tij i% \LPH Ti,j ii iprz
. =/ . =/
Ui Us 5 1 Ui Vi, =

/ ..
ILLV,L’]

Rioa = V(ta®1-1®t)),

Because « # 3, the connected components R of R;m are given by Prop. 4.5.6 as follows:

e = V({ta®tg—1®1)), and

Suppose first that j = 4. In this case u;; = idg;, so we define 7; ; := pry ‘RL o then the first
diagram in (35) commutes by definition. For the second diagram, note that v;; = w;; o @i



STABILITY IN THE CATEGORY OF SMOOTH MOD-P REPRESENTATIONS OF SL2(Q,) 47

is also equal to idz;, so v;; 0 Ti; = pry |R/ = pry |R/ _in view of the first two equations in
1 X3

(36). Hence the second diagram in (35) commutes as Well
Suppose now that j # i. Looking at the last two equations in (36), we see that the el-

ement prg (tl)|7g;“ =t;®1 is a unit in O(R],; ;). Therefore the k-algebra homomorphism

(prq ]R;j)ﬁ : O(E]) = O(R},; ;) extends to the localisation O(U; ;) of O(E}), which means

that pr71 |rs . factors through the Zariski open subset U; j of =}. In other words, there exists
My
a morphism 7 ; : R/, . — U, j, making the first diagram in (35) commutative. Looking at

)
the last two equations in (36) again, we see that the corresponding map on coordinate rings
¢ 1 klti] ® k[t;]
TRl e T e )
i O
sends t; to t; ® 1 and tl-_l tot; ® T =1 ®t;, and that it is an isomorphism. Therefore 7; ;

is also an isomorphism. It remains to check that the second diagram in (35) is commutative.
Since all schemes involved are affine, it will be enough to check this on coordinate rings.
Suppose that (4, j) = (o, 8). Since vq 3 = ug o © Pa,p by (34), this diagram is

klta]®k[ts]

(ta®t5—1<§)1) klta] ® kltg]
Tc{,BT Prﬁz
Eltan 5]~ kit t5] klts]

Pa,B

and it is commutative because Tiﬁ(cpua 5(tg)) = Tib,(t;l) =1®itg= prg(tg).
Similarly, when (i,7) = (8, o), because vg o = uq,8© Pg. by (34), this diagram is

klts|®k[ta]
(tﬁgta—ltg)l) k[ts] ® klta]
TE,QT pr
U E— ) klta]
PB,a
and it is commutative because Tg@(cpga(ta)) = Tg7a(t§1) =1®ty, = prg(ta). O

Next, we will study the following diagram of k-schemes:

pr
(37) R—=Al Y. pl

Pra
where Al = Spec k[z] is an affine line, R = AUH = V((z — y)(zy — 1)) C A? = Speck|x,y]
is the union of the hyperbola H = V( xy — 1) and the diagonal A = V(z — y), pry, pry are
the projection morphisms whose respective comorphisms are determined by prg (x) = z and

prg(x) =y, and the morphism v : Al — P! viewed as a natural transformation between the

corresponding functors of points, is given by the rule
Y(a) = (a®>+1:a) forall acAl
Lemma 4.5.13. We have ¢ o pry = ) o pry.
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Proof. Let (a,b) € R. Then v (pry(a,b)) = ¥(a) = (a®> + 1 : a) and ¥(pry(a,b)) = ¥(b) =
(b + 1 : b). However (a,b) € R implies that @ = b or ab = 1, and in either case we have
(a% +1)b = a(b? + 1). Hence 9 (pry(a,b)) = 1 (pry(a,b)). O

We let y be a local coordinate on P!, determined by y((a : 1)) = a, so that Yy := Spec k[y]
and Yo, := Spec k[1/y] form a standard open covering of P! by two affine lines.

Lemma 4.5.14. Let X; = %~ 1(Y;) and R; = prl_l(Xi) fori=0,00. Then X; is a basic affine
open in A', and R; is a basic affine open in R.

Proof. We have X = {a € Al : (a®>+1:a) € Yo} = {a € Al : a # 0}, which is the basic affine
open D(z) C Al. Similarly, Xoo = {a € Al : (e’ +1:4a) € Yoo} = {a € Al : a®> +1 # 0}, which
is the basic affine open D(z2+1) C Al. The preimage of any basic affine open D(f) C Spec k[z]
under the morphism of affine schemes pr; : R — Al is D(pr’i( f)), which is a basic affine open

in R. Therefore Ry and R, are basic affine opens in R. ([l
i pr’i

Proposition 4.5.15. 0 — O(Y;) — O(X;) = O(R;) s an equaliser diagram of com-
f
pry

mutative rings if i = 0 or i = oo.

Proof. Let H; = R; NH for i = 0,00. By postcomposing p]r’i,p]rﬁ2 with the restriction maps

O(R;) = O(H;), we can replace R; by H; in this proof.
First we consider the case ¢ = 0, where the diagram becomes

b prg
klz,z™Y) —= K[z, 27!
o

0 kly]

and the maps are given by ¥f(y) = z + 271, prﬁ (z) =z, prg () = 21, Clearly 1" is injective,

and pr§ Yt = prg Yf by Lemma 4.5.13.
n .
Suppose that a = > a;a* € ker(prti —pruz) for some a; € k. Then a; = a_; for all 4, so

i=—n

m
a lies in the k-linear span of {z" + ™" : n > 0}. Hence a € F,,, := > k(2" + z™") for
n=0

some m > 0. We will show by induction that F, C k[x + 17_1] for all » > 0. The base case
r = 0 is clear. Assuming inductively that F,_; C k[z + 271] for some r > 1, we see that
2" +2"=(r+27!) mod F,_1,s0 2" +x7" € klz + 27| as well. Hence

(38) ker(prf —pr§) = klz + 27,

and the sequence is exact in the middle as required.
Next, we consider the case where ¢ = co. The diagram becomes

1y ¥ P -
0— Ky == Ko, gl =2 k[, e
pr
where the maps are now given by ¥f(y~1) = x+i,1 = 251 prﬁ (x) =z, and prg(a:) =z LIt

is again clear that ¥ is injective, and that pr’i YPf = prg Y* by Lemma 4.5.13.
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(ngl))n € ker(prg - prg) for some a(x) € k[x] and some n > 0. Then
a(@) _a@@h)
(1»2 + 1)TL - (l‘iQ + 1)n
Multiplying through by (22 4 1)" shows that a(x) = a(z™!)z?". Hence deg(a) < 2n, and
dividing through by z" shows that a(x)z™™ € k[r,27!] is invariant under the substitution
x + z~ L. Using (38), we see that a(z)z™" = b(x + 7 !) for some b(z) € k[z] with degb < n.
Write b(x) = by + bix + - - - + bpa™ for some by, - - - , b, € k; then

(msf)l)” = (x;jill)” > <x2; 1)i -y <:c2$+1>n_ €k [x;i 1] '

i=0 =0

Suppose that

Hence (m‘;fl))n ek {z;il] and the sequence is exact in the middle as required. O

T
Proposition 4.5.16. R % Al N Pl is a coequaliser diagram in LRS.

T2
Proof. Noting that ¢ o pr; = 1 o pry by Lemma 4.5.13, this follows from Lemma 4.2.1,
applied with the standard covering {Yy = Speck[y], Yoo = Speck[y~!]} of Y = P!, once we
have checked its three conditions. Condition b) follows from Lemma 4.5.14 and condition c)
follows from Prop. 4.5.15, so it remains to check condition a). This amounts to checking the
following;:

(i) || : |AY] — |PY| is surjective,

[ pry
(ii) the equivalence classes of the equivalence relation ~ on |A!| defined by |R| —= |A!|
® pTy

are equal to the fibres of ||,
(iii) the induced map |A'|/ ~ — |P!| is a homeomorphism.
m

For (i) and (ii), for any k-variety of finite type X, we use [MO], Chapter IV, Thm. 2.3 to
identify |X| with the set of G-orbits in [X%|, where G = Aut(k/k) and X3 = X x;, k is the
base-change of X to k. Then we have the following commutative diagram

K
Rzl —= [AL] —— [Py

R

IRl —= |AY| ——|P!|
]

where the vertical arrows are surjective. Chasing this diagram reduces us to the case k = k.

(i) The map |¢| sends the generic point in |Al| to the generic point in |P!|, and 0 € Al to
the point at infinity (1 :0) € PL. Any other point in |P!] is of the form (c: 1) for some ¢ € k;
since k is algebraically closed, the equation a + a~! = ¢ has a solution, so (c: 1) € im(|¢)]).

(ii) Let a,b € |Al| be such that 1(a) = 1 (b). If (a) is the generic point of P!, then a and
b must both be equal to the generic point of Al, so assume otherwise. Then necessarily a,b
are closed points in Al. Since k = k we may assume that a,b € Al (k) = k. Now (a) = 1 (b)
implies that (a®? 41 :a) = (b®> +1:b), hence (a® + 1)b = a(b? + 1), so (a — b)(ab— 1) = 0 and
(a,b) € R(k). Setting u = (a,b) € |R|, we see that a = pry(u) and b = pry(u) as required.
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(iii) The map [¢| : |AY| — |P!| is surjective and has finite fibres. Hence the quotient topology
on |P!| induced by this map from the Zariski topology on |A!| is the cofinite topology, and
therefore coincides with the Zariski topology on |P!|. O

Theorem 4.5.17. Suppose that v = {a}, where a = p/a. Then = /R, . is also isomorphic
to the projective line P'.

Proof. Since v = {a}, we have =/

= = =, = Specklty] and R}, , =R},

a,a 0 view of equation

(31). Since o = /v, Prop. 4.5.6 tells us that R}, , , = V((z — y)(zy — 1)), where x =1, ® 1
and y = 1 ® t,. Hence we have a commutative diagram of schemes
/ fiy =/ — /
(39) R, 5 =, —=E /R,
l . l,
R——————— Al — P!

where the top line is the diagram (32), and the vertical arrows are the isomorphisms of schemes
whose corresponding comorphisms are

_ k[xvy] / an D — Ll = _ -/
O(R> - <($ - y)(a:y o 1)> _> O(R,uaa) d O(A ) k[ ] — k[ta] O(‘—'a)v

given by z +— £, ® 1,y — 1 ® tg and x ~ t,, respectively. Since v is a coequaliser of pry, pry

in LRS by Prop. 4.5.16, this gives the required isomorphism of schemes E’7 / R;‘W =Pl O
We specialize from now on to the case where p = id?.
Corollary 4.5.18. E’/Rfd2 is 1somorphic to the disjoint union of 5 ptl projective lines.

Proof. After Cor. 4.5.9, Thm. 4.5.12 and Thm. 4.5.17, :’/’R’d2 is isomorphic to the disjoint

union of | /~| projective lines. There are exactly 2 elements a €  that satisfy o = id? /a:
id?

if @ = id’ for some j = 0,--- ,p — 2, then a = id? /o if and only if 25 =2 mod p — 1 which

is equivalent to j =1 or j = B 'ZH. These correspond to the singleton equivalence classes, and
all other classes have size two. Therefore |2/ ~ | =2+ % = %. O
id

4.5.3. Re-gluing the projective lines to form =Z/R. At this point we have to introduce more
notation.

Definition 4.5.19. For each 1 <r < }%1, let 4, := {id",id*™"} and define

=/ /
ZT T '_"Yr/Rid27'yT

Note that Z'/R; , = Z1 [[ Z2 ][+ ][] Zps1 by Cor. 4.5.9 and Cor. 4.5.18. After Thm. 4.5.12
2
and Thm. 4.5.17, we know that each Z, is isomorphic to the projective line P'. Note also that
if « =1id", then a = p/av if and only if r =1 or r = %.
Definition 4.5.20. Let 1 <r < % and write o = id".

o Ifr =1, let z, be the local coordinate on Z, that pulls back to tQtil under the morphism
=! — P from the proof of Thm. 4.5.17
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o Ifr#1 andr # %, let z. be the local coordinate on Z,. that pulls back to t, under
the morphism Zf, [ = > o™ P! from the proof of Thm. 4.5.12.
o Ifr= %, let z, be the local coordinate on Z,. that pulls back to t, + t;l under the
morphism =!, — P from the proof of Thm. 4.5.17.
o Let O, 00, € Z, be the closed points defined by O, := {z, = 0} and oo, := {z, = o0}.
Recall that for any o € SA), the origin on the affine line =/ is denoted by O, and that
¢+ E - E'/Rl > denotes the quotient map. After revisiting the proofs of Thm. 4.5.12 and
Thm. 4.5.17, we have the following

Lemma 4.5.21. Let 1 <r < 23%.
o Ifr =1, then ¢'(O;q1) = Os.
o Ifr#1 andr # pgl, then ¢'(Oiar) = Oy and ¢'(O;g2-+) = 00,
o Ifr= pTH, then q’(Od

., pt1
id 2

):OOE.
2

Recall the coequaliser diagram Egng —= =/ .= from Prop. 4.2.5. After Prop. 4.5.4,
b

we wish to better understand the coequaliser diagram

'a

q
Esing : E//R;dQ L (E//R£d2>/Esing .
q'b

Lemma 4.5.22. The pairs {(¢'a(s;),q'b(s;)) :r=1,--- ,p%?’} are explicitly given as follows:

(da(s),q'b(sr)) = (Or,00,42) forall r=1,-- ,?.

Proof. Suppose first that r # ?. Then using Def. 4.2.4.b and Lemma 4.5.21, we have
q,(a(sr)) = q/(OidT) =0, and q,(b(sr)) = q/(Oid*T) = q/(OidQ*(Nﬂ)) = OOr+2,
where the last equality holds because 1 < r < 1%3 implies that 1 <r 42 < %.
Suppose now that r = 2%3. Then we still have ¢/(a(s,)) = ¢'(Oigr) = O,, but now the last

case in Lemma 4.5.21 gives

q/(b(SPT—?»)) =4'(0 d_(@)) = q/(Oid%) = 0Opt1. a

i 2 2

Theorem 4.5.23. The locally ringed space Z/R is a scheme.

Proof. We know that =/ /R! , is a scheme for each v € (AZ/ ~ by Thm. 4.5.12 and Thm.
Y id“,y 12
4.5.17. Hence E’/Rgc12 is a scheme by Cor. 4.5.9. By Prop. 4.5.4, it remains to show that the
ptl

2
locally ringed space (Z'/R! 2)/Esing is a scheme. Now, =/ /R, = ]_[1 Z, and we define
r=

Xy = H Z, and Xg:=
r=1or2 mod4 r =3 or 0 mod4
so that X1 [[ X, =Z'/ RI 42+ We also define maps 01,02 : Eing — =/ R: g2 as follows:

| O if r=1lor2 mod4 _J oopyo if r=1lor2 mod4
91(87)_{oo7n+2 if r=3o0r0 mod4 and QQ(ST)_{OT if r=30r0 mod4

=

Z,
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so that 61(Esing) € X1 and 02(Zging) € Xo. Using Lemma 4.5.22, for all s, € Zgng we have

(01(sr), 02(sr)) = (q'a(sr),q/b(sr)) or (q/b(sr),q/a(sr)) :

/

qa
Let s: Z// Ri 2 =/ R; d2) /Zsing be a coequaliser of Egng —2= X1 [[ Xo ; it follows that

q'b
_ 01 - =00 )
Ssing ?- X3 H X9 —— (:‘ /Rid2)/‘:‘sing
2

is a coequaliser diagram in LRS. Hence (Z'/ R: d2) /Zsing is isomorphic to the gluing of X; and
Xo along 01 : Eging — X1 and 0 : Egng — Xo. Since ¢ and 6 are both closed embeddings,
this gluing is a scheme by Prop. 1.1.1 [Ana]. O

Using Lemma 4.5.22, we can also deduce the following

Corollary 4.5.24. Write P, := s(Z;) C (E'/R.}2)/Zsing forr=1,--- ,%.

a) Suppose that p =1 mod 4, so that % 1s odd and % 1s even. Then the connected

component of Py in (E//R;dg)/Esing is given by
PIUPsUPsU---U Ppt1
2
and the connected component of Py in (E'/’Rng)/Esing is given by

PBUP,UFPU---UPp1.
2

b) Suppose that p = 3 mod 4, so that % 1s odd and % 1s even. Then the connected
component of Py in (E//R;dg)/Esing is given by

PLUPsUP;U---UPpa
2
and the connected component of Py in (E'/Rgdz)/Esing is given by
PoUP,UP;U---UPpy1.
2

Example 4.5.25. When p = 13, the schemes E, E', E'/R!, and Z/R look as follows:
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w+x

0 2 4 10 8 1
—/ /
Z2 Z4 ZG Z1 ZJ Zo Z7
Py Py Ps Py Ps Ps Pr

53

The blue colour indicates those connected components of Z' that are glued only to them-

selves in =/ /R’.

APPENDIX

Lemma A.1.2. Let C be a category, containing the following diagram:

(40)

R/

f

g q

R

Suppose that in this diagram, we have

a) q is a coequaliser of R —Z X,
g

A.1. Some categorical results about colimits and coequalisers. We omit the proof of
the following standard result.

Lemma A.1.1. Suppose that q : Y — Z is a coequaliser of the arrows f,g: X — Y in a
category C. Then q is an epimorphism.
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!

b) ¢ is a coequaliser of R' —= X',

g
a
c) 0 is a coequaliser of S —= X', and
b

qa

d) s is a coequaliser of S —Z Y.
q'b
Suppose further that there exists a morphism 0’ : R — R such that:
e) 0 is an epimorphism, and
f) 6f = f0' and 69 = gb'.
Then there exists an isomorphism ¢ : Y =4 Z such that sq' = pqb.

Proof. By d), we have s¢’a = sq'b. Hence by c), there is a unique morphism o : X — Z

b
such that . Using this, we have o f6’ £ adf' = sq' f! 2 sq'g = abg’ ) agt’. Then

af = ag by e), so by a), there is a unique morphism ¢ : ) — Z such that .

Next, we have ¢f f’ D qft’ 2) qqb’ 1) q0q’, so by b), there is a unique morphism 7 : Y’ — Y
such that | g0 = 7¢’|. Then 7¢'a = qba g q0b = 7¢'b, so by d), there is a unique morphism
¥ : Z — Y such that . We will show that ¢ and 1) are mutually inverse.

Firstly, ovsq = o1¢ = g8 = af = s¢’. But ¢’ and s are coequalisers by b) and d),
hence they are epimorphisms by Lemma A.1.1. Therefore ¢y = 1z. Secondly, ¥pqf = Yol =
wsq = 7q¢ = ¢f. Since 0 and ¢ are coequalisers by c¢) and a), they are epimorphisms by
Lemma A.1.1. Hence ¥¢ = 1y. Finally, pgf = af = s¢'. O

We omit the proof of the following standard result.
Lemma A.1.3. Let T be a set and let C be a category with coproducts. Suppose that

@i qi
Ri—ZX,——=Y; 1€l
b;

s a family of coequaliser diagrams in C. Then

11 a; Il %
el iel

iel II & iel iel
el

s also a coequaliser diagram in C.

A.2. An alternative stability proof. By Prop. 2.2.3, Mody(G) has Krull dimension 1,
so the only non-trivial term in the Krull-dimension filtration of Mody(G) is Modg(G)o. Its
stability then follows from our general result, Prop. 3.7.8. Here we give an alternative, more
direct, argument for the stability of Mody(G)g. Our argument is inspired by Paskunas’ proof
of the corresponding result for the group GL2(Q,) and representations with a fixed central
character ([Pas] Prop. 5.16).

An H-module is called locally finite if each of its elements is contained in a submodule of
finite length. By Remark 2.2.2 the locally finite H-modules form the localising subcategory
Mod(#H)o of objects of Krull dimension 0.
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Lemma A.2.1. Mod(H)y is stable.

Proof. By [MCR] Cor. 13.1.13(iii) and Thm. 13.10.3(i), any simple module over the affine PI
k-algebra H is finite dimensional over k. Hence a locally finite module is the same as a module
in which every element is contained in a finite dimensional submodule. It easily follows that
Mod(H)o satisfies the criterion [Gab] Prop. V.6.12. O

Correspondingly, a G-representation in Mody(G) is locally finite if each of its elements is
contained in a subrepresentation of finite length.

Lemma A.2.2. If the representation V' in Mody(SLa(Zy)) is admissible then also its injective
hull in Mody,(SL2(Z,)) is admissible.

Proof. Put K := SLy(Z,). It is well know that a representation V' in Mody(K) is admissible
if and only if its Pontrjagin dual V'V is finitely generated as a module over the completed
group ring k[[K]]. The inclusion V < E(V) into an injective hull dualizes to a projective
cover E(V)Y — VV. Since the ring k[[H]] is noetherian (cf. the explanations in the proof of
[Sch] Prop. 5) this cover E(V)Y must be finitely generated as a k[[H]]-module. It follows that
E(V) is admissible. O

Lemma A.2.3. For a representation V in Mody(G) we have:

a) V is of finite length if and only if V' is finitely generated and admissible.
b) V is locally finite if and only if it is locally admissible (in the sense of [EP]).

Proof. a) Suppose that V is of finite length. Then it obviously is finitely generated. In order
to see that V is admissible we may assume that it is irreducible. But then, by Thm. 2.1.1
the H-module V! is finite dimensional, which means that V is admissible. Now assume, vice
versa, that V is finitely generated and admissible. Using a filtration of V' as in Lemma 2.1.3
and the fact that admissibility is preserved by passing to subquotients ([F:me] Prop. 2.2.13)
we may assume that V lies in Mod!(G). Since V' is finite dimensional the equivalence in
Thm. 2.1.1 tells us that V is of finite length.

b) If V is locally finite then, by a), it is locally admissible. Suppose therefore that V' is locally
admissible. But then it is the union of admissible and finitely generated subrepresentations.
Again by a) it follows that V' is the union of subrepresentations of finite length. 0

Lemma A.2.4. IfV is an injective object in Mod(G)o then V is also an injective object in
MOdk(SLQ(Zp)).

Proof. The proof is almost literally the same as for [EP] Cor. 3.8. For the convenience of the
reader we note:

— Use Lemma A.2.3.b to replace the assumption that V' is locally finite by the assump-
tion that V is locally admissible, which loc. cit. uses.

~ The group SL3(Q,) is the amalgam of SLy(Z,) and (3 (1))SL2(ZP)((1] pal) along the
Iwahori subgroup (cf. [Ser] I1.4.1 Cor. 1).

We also point out that in loc. cit. a version of Lemma A.2.2 is used without mentioning it. [
Proposition A.2.5. Mod(G)o is stable.

Proof. By Gabriel’s criterion (cf. [Ste] Prop. VI.7.1) we have to check the following: Let
Vo C V be any essential extension in Mod(G) (in particular Vy # {0}) such that V} is locally
finite. We then have to show that V is locally finite as well. First of all, by replacing V by
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an injective hull, we may assume that V is an injective object. Secondly since Mody(G)o
is localising, by possibly enlarging V, we may assume that Vj is the maximal locally finite
subrepresentation of V. It is then straightforward to see that V{ is an injective object in
Mody(G)o. Hence using Frobenius reciprocity we deduce from Lemma A.2.4 that

(41) Extoa, () (I0d%(0), Vo) = Extyroq, 5y (0, Vo) = 0

for any smooth representation o of the subgroup K := SLy(Z,).

Reasoning by contradiction we assume that Vy # V. It suffices to construct a nonzero
locally finite subrepresentation of V/V}. For this we pick an irreducible K-subrepresentation
o in the K-socle of V/Vy. We also pick a vector v € (V/Vy)! which generates o as a K-
representation. We let X C V/Vj denote the G-subrepresentation generated by v and by X
its preimage in V. We obtain:

a) The short exact sequence 0 — Vo — X — X — 0 in Mod(G) does not split since
Vo — X is an essential extension.

b) By the Frobenius reciprocity equality Homy (0, X) = Homyg (ind% (o), X) the in-
clusion o C X corresponds to a G-homomorphism 1) : indg’;(a) —» X, which is surjec-
tive since v lies in its image.

Applying (41) to a) shows that the map Homk[G](ind%(U),X) — Homk[G](ind%(J),X) is
surjective, so that 1) has a preimage v : ind?{(a) — X. If ¢ would also be injective then
Yol X = X would split the sequence in a). It follows that 1 is a proper quotient map.
Since 9 is a map in Mod}(G) the equivalence of categories in Thm. 2.1.1 implies that the
sequence 1’ : ind% (o)) — X! is a proper quotient map of H-modules. We claim that any
proper H-quotient of ind$ (c)! has finite k-dimension. Again Thm. 2.1.1 then implies that X
has finite length, which would contradict the maximality of V.

In order to determine the H-module structure of ind%(c)! we introduce the finite dimen-
sional subalgebra Hoy := Endyg(k[K/I])° of H. It is well known that the Hp-module of
invariants o/ is one dimensional and therefore provides a character x : Hy — k. By [Ol]]
Lemma 3.6 there is an isomorphism of H-modules ind% (o) = H @y, x.”

On the other hand recall the notations introduced in §4.1. Note 75 and e; lie in Hy and
that Z(H) contains the polynomial ring k[(] by Lemma 4.1.2. As a consequence of [OS18]
Cor. 3.4 we have the isomorphism of k[(]-modules

k[C] @ k[C] i H ®Ho X

which sends (1,0) to 1 ® 1 and (0,1) to 71 ® 1.

Let @ := k(() be the field of fractions of k[(] and let V := Q @] (H ®n, X). Then V is a
2-dimensional vector space over () with basis v,w where v :=1® 1® 1 and w:=1® 71 ® 1.
Suppose now that we have a nonzero H-submodule of infinite codimension in H ®g, x. It
gives rise to a line in the vector space V which is respected by the @)-linear action of 7y and
71. Let a := x(e1) and b := x(70). So, a is 0 or 1 and b is some element of k. We calculate that

b (—a(b+1)

the matrix A of the action of 7y with respect to the basis v, w is ( ) and the matrix

0 —(a+bd)
B of the action of 7 with respect to the same basis is (§ % ). The minimum polynomial of B
is visibly X2 4+ aX. If a = 0 then B is nilpotent and the only 7-stable line in V is spanned

by w. If a = 1 then B is diagonalizable, and there is an additional 7-stable line spanned by

®In [O1]] the field k is assumed to be an algebraic closure of F,. But in our situation all irreducible mod p
representations of SLa(Fp) are defined over Fp, which makes this assumption unnecessary.
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v+ w. So we just need to check that these two lines are not g-stable. Passing to the matrices
we need to check that the column vectors () and ({) are not A-eigenvectors:

- AY) = (S y g not in Q(Y) since ¢ — a(b+ 1) is not zero in Q;

—(a+bd)
- A(Y) = (_%;fb)) = ¢( 1) for some ¢ € @ implies ¢ = —(a + b) € k, but also { —a =
ca € k, which is impossible. ]
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