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Abstract. We show that the coefficients of a power series occurring in p-adic Fourier
theory for Qp2 have valuations that are given by an intriguing formula.

Introduction

Let L be a finite extension of Qp, let π be a uniformizer of oL and let LT be the Lubin-

Tate formal oL-module attached to π. The formal group maps over oCp from LT to Gm

play an important role in p-adic Fourier theory (see [ST01]). Choose a coordinate Z on

LT, and let G(Z) ∈ oCp [[Z]] be a generator of HomoCp
(LT,Gm), so that

G(Z) =
∑
k≥1

Pk(Ω) · Zk = exp(Ω · logLT(Z))− 1

for a certain element Ω ∈ oCp and polynomials Pk(Y ) ∈ L[Y ]. We have (§3 of [ST01])

valp(Ω) = 1/(p− 1)− 1/e(q− 1) where e is the ramification index of L and q = |oL/πoL|.
The power series G(Z) gives rise to a function on mCp and the theory of Newton polygons

then allows us to compute the valuation of Pk(Ω) for k = qj/pb(j−1)/ec+1 with j ≥ 0

(Theorem 1.5.2 of [AB24]). However, the valuation of Pk(Ω) for most k ≥ 2 has no

geometric significance and depends on the choice of the coordinate Z.

During our work on the character variety, we computed the valuation of Pk(Ω) for many

small values of k in a special case: we took L = Qp2 and π = p and chose a coordinate

Z on LT for which logLT(Z) =
∑

m≥0 Z
qm/pm (this is possible by §8.3 of [Haz12]). Note

that in this setting, the theory of Newton polygons gives valp(Pk(Ω)) precisely when k is

a power of p. Let w : Z≥0 → Q be the map defined by

w(k) =
p

q − 1
· (k0 + p−1k1 + · · ·+ p−h · kh) if k = (kh · · · k0)p in base p.

For all k for which we were able to compute valp(Pk(Ω)), we found that valp(Pk(Ω)) =

w(k). The main result of this note is that this formula holds for all k.

Theorem A. For all k ≥ 1, we have valp(Pk(Ω)) = w(k).

The proof involves a careful study of the functional equation that G(Z) satisfies, and

a direct computation of valp(Pk(Ω)) for small values of k. The function w is related to

the Monna map, defined in [Mon52].
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1. The polynomials Pm(Y )

Let L = Qp2 and π = p, so that q = p2, and choose a coordinate Z on LT for which

logLT(Z) =
∑

k≥0 Z
qk/pk. The polynomials Pm(Y ) ∈ L[Y ] are given by

exp(Y · logLT(Z)) =
+∞∑
m=0

Pm(Y ) · Zm.

Proposition 1.1. We have

Pm(Y ) =
∑

m0+qm1+···+qdmd=m

Y m0+···+md

m0! · · ·md! · p1·m1+2·m2+···+d·md

Proof. Since logLT(Z) =
∑

k≥0 Z
qk/pk and exp is the usual exponential,

+∞∑
m=0

Pm(Y )Zm = exp(Y · logLT(Z)) =
∏
k≥0

exp(Y · Zqk/pk) =
∏
k≥0

∑
j≥0

(Y · Zqk/pk)j/j!

The coefficient of Zm is the sum of Y m0+···+md/m0! · · ·md! · p1·m1+2·m2+···+d·md over all

d ≥ 0 and (m0, · · · ,md) ∈ Zd+1
≥0 such that m0 + qm1 + · · ·+ qdmd = m. �

For example, if i ≤ q − 1, then

Pi(Y ) = Y i/i!

Pq+i(Y ) =
Y q+i

(q + i)!
+
Y i+1

p · i!

P2q+i(Y ) =
Y 2q+i

(2q + i)!
+

Y q+i+1

p · (q + i)!
+

Y i+2

2p2 · i!
.

Because L = Qp2 , it follows from Lemma 3.4.b of [ST01] that

valp(Ω) =
1

p− 1
− 1

e(q − 1)
=

p

q − 1
.

Lemma 1.2. If i ≤ q − 1 and i = (ab)p in base p, then valp(Pi(Ω)) = a+bp
q−1 = w(i).

Proof. If i ≤ q − 1, then Pi(Ω) = Ωi/i! by Proposition 1.1, so that

valp(Pi(Ω)) = i ·
(

1

p− 1
− 1

q − 1

)
− i− sp(i)

p− 1
=
sp(i)

p− 1
− i

q − 1
=
a+ bp

q − 1
. �

2. The map w

Recall that w : Z≥0 → Q is the map defined by

w(k) =
p

q − 1
· (k0 + p−1k1 + · · ·+ p−h · kh) if k = (kh · · · k0)p in base p.

Proposition 2.1. The function w : Z≥0 → Q≥0 has the following properties:

(1) w(k) < 1 + 1/(q − 1);

(2) w(k) ≥ 1 if and only if k ≡ −1 mod q, and then w(k) > 1 unless k = q − 1;
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(3) if ` > k, then w(`)− w(k) ∈ Z if and only if k = qj and ` = qj + (q − 1);

(4) w(pk) = 1/p · w(k);

(5) w(pnk + i) = w(pnk) + w(i) if 0 ≤ i ≤ pn − 1;

(6) For all a, b ≥ 0 we have w(a+ b) ≤ w(a) + w(b).

Proof. Item (1) results from the fact that

w(k) = (k0 + p−1k1 + · · ·+ p−h · kh) · p

q − 1
<

p2

q − 1
= 1 +

1

q − 1
.

If k0 ≤ p−2, or if k0 = p−1 and k1 ≤ p−2, then w(k) ≤ (ph+1−1−ph−1)/ph−1(q−1) < 1,

so if w(k) ≥ 1, then k0 = p − 1 and k1 = p − 1, and k ≡ −1 mod q. Conversely, if

k ≡ −1 mod q, then k0 = p − 1 and k1 = p − 1, and w(k) ≥ 1. Finally, if we have

equality, then ki = 0 for all i ≥ 2. This proves (2).

Write k = (kh · · · k0)p and ` = (`i · · · `0)p. Since w(k) < 1 + 1/(q− 1), if w(`)−w(k) ∈
Z≥0, then w(`) = w(k) or w(`) = w(k)+1. If w(`) = w(k), then k0+p−1k1+· · ·+p−h·kh =

`0 + p−1`1 + · · · + p−i · `i. By comparing p-adic valuations, we get h = i, and then

kh ≡ `i mod p so that kh = `i. By descending induction, kj = `j for all j, and k = `. If

w(`) = w(k) + 1, then w(`) ≥ 1, and hence ` = (`i · · · `2(p − 1)1(p − 1)0)p by item (2).

We then have w((`i · · · `20100)p) = w(k) and hence k = (`i · · · `20100)p. This implies (3).

Items (4) and (5) are straightforward. For item (6), let {ai}, {bi} and {ci} be the digits

of a, b and c in base p. Let r0 = 0 and let ri ∈ {0, 1} be the ith carry when adding a and

b, so that ci = ai + bi + ri − pri+1. The result follows from the following computation.∑
i≥0

ci
pi

=
∑
i≥0

ai + bi
pi

+
ri
pi
− pri+1

pi
=
∑
i≥0

ai + bi
pi

− (p2 − 1)
∑
i≥1

ri
pi
≤
∑
i≥0

ai + bi
pi

. �

3. Congruences for the Pk(Ω)

From now on, we write uk for Pk(Ω) to lighten the notation. Recall that q = p2. The

power series G(Z) is a map between LT and Gm, so that G([p]LT(Z)) = [p]Gm(G(Z)).

Proposition 3.1. We have
∑+∞

m=1 umZ
qm ≡

∑+∞
k=1 u

p
kZ

kp mod p ·mCp.

Proof. We have G(Z) ∈ mCp [[Z]] and [p]LT(Z) ≡ Zq mod p and [p]Gm(Z) = Zp mod p.

Since G([p]LT(Z)) = [p]Gm(G(Z)), we get G(Zq) ≡ G(Z)p mod p ·mCp . �

Corollary 3.2. If k is not divisible by p, then valp(uk) > 1/p.

Corollary 3.3. We have uppm ≡ um mod p ·mCp.

Proof. Take k = pm in Proposition 3.1. �

Corollary 3.4. Take m ≥ 0.

(1) Suppose that valp(um) ≤ 1. Then valp(upm) = 1/p · valp(um).
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(2) Suppose that valp(um) > 1. Then valp(upm) > 1/p.

Proof. Both cases follow easily from Corollary 3.3. �

We now compare [p]LT(Z) and Zq + pZ (compare with (iv) of §2.2 of [Haz12]).

Lemma 3.5. We have [p]LT(Z) = Zq + pZ + p2 · s(Z) for some s(Z) ∈ Z2 · Zp[[Z]].

Proof. There exists r(Z) ∈ Z2 · Zp[[Z]] such that [p]LT(Z) = Zq + pZ + pr(Z). By the

properties of logLT, we have logLT([p]LT(Z)) = p logLT(Z). Expanding around Zq, we get

logLT(Zq+pZ+pr(Z)) = logLT(Zq)+(pZ+pr(Z)) log′LT(Zq)+
∑
i≥2

(pZ + pr(Z))i

i!
log

(i)
LT(Zq)

Our choice of logLT is such that logLT(Zq) = p logLT(Z)−pZ and log′LT(Z) ∈ 1+pZ ·Zp[[Z]]

and log
(i)
LT(Z) ∈ pZp[[Z]] for all i ≥ 2. Note also that pi+1/i! ∈ p2Zp for all i ≥ 2.

The above equation now implies that pr(Z) ≡ 0 mod p2 so that r(Z) = ps(Z). �

Corollary 3.6. The coefficient of Zqn in G([p]LT (Z)) is congruent to un mod p2.

Proof. Since [p]LT(Z) ≡ Zq + pZ mod p2, Lemma 3.5 tells us that

G([p]LT(Z)) ≡ G(Zq) + pZ ·G′(Zq) mod p2

≡
∑
k≥1

ukZ
qk +

∑
m≥1

pm · umZq(m−1)+1 mod p2.

Hence pZ ·G′(Zq) doesn’t contribute to the coeffiicent of Zqn modulo p2. �

Proposition 3.7. For all k ≥ 1, we have k · uk = u1 ·
∑blogq(k)c

r=0 pruk−qr .

Proof. We have
∑

k≥0 ukZ
k = exp(u1 · logLT(Z)). Applying d/dZ, we get∑

k≥1

kukZ
k−1 = exp(u1 · logLT(Z)) · u1 · log′LT(Z)

= u1 · (
∑
i≥0

uiZ
i) · (

∑
r≥0

(q/p)rZqr−1).

The result follows from looking at the coefficient of Zk−1 on both sides. �

Corollary 3.8. We have u1 · uk−1 ≡ kuk mod p for all k ≥ 1.

Proposition 3.9. If 0 ≤ i ≤ p− 1 and m ≥ p, then there exists ζi,m ∈ oL such that

ump+i ≡
(
mp+ i

i

)−1
· ump · ui + p · ζi,m · up(m−p)+i+1 mod p2.

Proof. We proceed by induction on i. When i = 0, we can even achieve equality by

setting ζ0,m := 0, because u0 = 1. Write k := mp+ i for brevity. For i ≥ 1 we have

uk ≡
1

k
u1 · uk−1 +

p

k
u1 · uk−q mod p2
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by Proposition 3.7, because here k ∈ o×L . By the inductive hypothesis, we have

uk−1 ≡
(
k − 1

i− 1

)−1
ump · ui−1 + pζi−1,m · uk−q mod p2.

Note that since i ≤ p− 1, we have ui = ui1/i! by Proposition 1.1, so u1ui−1 =
ui
1

(i−1)! = iui.

Substituting this information, we obtain

uk ≡
u1
k
·

((
k − 1

i− 1

)−1
ump · ui−1 + pζi−1,muk−q

)
+
p

k
u1 · uk−q

≡ i

k

(
k − 1

i− 1

)−1
ump · ui +

p

k
(ζi−1,m + 1)u1 · uk−q mod p2.

On the other hand, by Corollary 3.8, we have

pu1 · uk−q ≡ p(k − q + 1)uk−q+1 mod p2.

Hence we can rewrite the congruence as follows:

uk ≡
(
k

i

)−1
ump · ui + p

k − q + 1

k
(ζi−1,m + 1)uk−q+1 mod p2.

Define ζi,m := k−q+1
k

(ζi−1,m + 1) and observe that this lies in oL because p - k. �

We need to know what ζp−1,m is modulo p.

Lemma 3.10. Take 1 ≤ i ≤ p− 1 and m ≥ 0 and let k = mp+ i.

If ζ0,m = 0 and ζi,m = k−q+1
k

(ζi−1,m+1) whenever 1 ≤ i ≤ p−1, then ζp−1,m ≡ 0 mod p.

Proof. Note that modulo p, the recurrence relation satisfied by ζi,m is simply

ζi,m ≡
i+ 1

i
(ζi−1,m + 1) mod p.

Now set i = p− 1 to see that ζp−1,m ≡ 0 mod p. �

4. Proof of Theorem A

We now use the functional equation of G(Z) modulo p2 in order to prove Theorem A.

Definition 4.1. For each n ≥ 0, let Cn be the coefficient of Zqn in

(1 +G(Z))p =

(
∞∑
k=0

ukZ
k

)p

.

We develop some notation to compute Cn.

Definition 4.2.

(1) Let |k| := k1 + · · ·+ kp for all k ∈ Np.

(2) For each k ∈ Np, define uk := uk1 · uk2 · · · · · ukp.

(3) For each n ≥ 0, let Xn ⊂ Np be a complete set of representatives for the orbits of

the natural action of Sp on {k ∈ Np : |k| = n}.
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In this language, expanding
(∑∞

k=0 ukZ
k
)p

gives the following

Lemma 4.3. We have Cn =
∑

k∈Xqn
|Sp · k| uk.

Lemma 4.4. We have valp(|Sp · k|) = 1 whenever ki 6= kj for some i 6= j.

Proof. Let H be the stabiliser of k in Sp, so that |Sp · k| = |Sp|/|H|. If ki 6= kj for some

i 6= j, then H cannot contain any p-cycle. The only elements of Sp of order p are p-cycles,

so by Cauchy’s Theorem, valp(|H|) = 0. Hence valp(|Sp|/|H|) = valp(|Sp|) = 1. �

Lemma 4.5. If k ∈ Xqn \ qNp, then valp(uk) > w(n)− 1.

Proof. Since 1
q−1 > w(n)− 1 by Proposition 2.1(1), it is enough to show that

valp(uk) >
1

q − 1
.

If some ki is not divisible by p, then by Corollary 3.2,

valp(uk) ≥ valp(uki) >
1

p
>

1

q − 1
.

Assume now that for each i = 1, . . . , p, we can write ki = pmi for some mi ≥ 0 so that

|m| = 1
p
|k| = pn. Since k /∈ qNp by assumption, we must have mi 6≡ 0 mod p for some i.

Because |m| = np ≡ 0 mod p, in this case there must be at least two distinct indices i, j

such that mi 6= 0 mod p and mj 6= 0 mod p. Using Corollary 3.2 again, we obtain

valp(um) ≥ valp(umi
) + valp(umj

) ≥ 2

p
>

p

q − 1
.

Suppose now that valp(umi
) ≤ 1 for all i. Then Corollary 3.4(1) implies that

valp(uk) =
1

p
valp(um) >

1

p
· p

q − 1
=

1

q − 1
.

Otherwise, for at least one index i we have valp(umi
) > 1, and then Corollary 3.4(2) gives

valp(uk) ≥ valp(uki) >
1

p
>

1

q − 1
. �

We can now prove Theorem A.

Theorem 4.6. We have valp(un) = w(n) for all n ≥ 0.

Proof. We prove the stronger statement valp(un) = w(n) = p · valp(upn) by induction on

n. The base case n = 0 is clear, so assume n ≥ 1. We first show that valp(un) = w(n).

Write n = mp+ i with 0 ≤ i ≤ p− 1. Then valp(ui) = w(i) holds by Lemma 1.2. Since

n 6= 0, we must have m < n so valp(ump) = 1
p
w(m) by the inductive hypothesis. Using

(4) and (5) of Proposition 2.1, we see that

valp(uiump) = valp(ui) + valp(ump) = w(i) +
1

p
w(m) = w(pm+ i) = w(n).



p-ADIC FOURIER THEORY FOR Qp2 AND THE MONNA MAP 7

Suppose first that n 6≡ −1 mod q. Then w(n) < 1 by Proposition 2.1(2), which means

that valp(uiump) = w(n) < 1. By Proposition 3.9, we have

un ≡
(
mp+ i

i

)−1
uiump mod p.

We have
(
mp+i

i

)
≡ 1 mod p by Lucas’ theorem, and therefore valp(un) = w(n).

Suppose now that n ≡ −1 mod q. Then i = p− 1, and Proposition 3.9 tells us that

un ≡
(

n

p− 1

)−1
ump · up−1 + pζp−1,m · un−q+1 mod p2.

We have ζp−1,m ≡ 0 mod p by Lemma 3.10. Hence in fact un ≡
(

n
p−1

)−1
umpup−1 mod p2.

Since valp(umpup−1) = w(n) < 2 by Proposition 2.1(1), we again conclude that

valp(un) = valp(ump) + valp(up−1) = w(n).

To complete the induction step, we must show that w(n) = p valp(upn) = valp(u
p
pn). In

order to do this, we compare the coefficients of Zqn in the functional equation for G(Z)

G([p]LT(Z)) = [p]Gm(G(Z)) = (1 +G(Z))p − 1

modulo p2. Using Corollary 3.6 and Lemma 4.3, we see that

(�) un ≡ Cn =
∑

k∈Xqn

|Sp · k| uk mod p2.

Define k0 := (pn, pn, · · · , pn). We will now proceed to show that in fact

(?) valp(|Sp · k|uk) > w(n) for all k ∈ Xqn \ {k0}.

Note that w(n) < 2 by Proposition 2.1(1) and that uk0 = uppn. Hence congruence (�)
together with (?) imply that valp(un−upnp) > w(n). Since we already know that valp(un) =

w(n) this shows that valp(u
p
np) = valp(un) = w(n) and completes the proof.

Since at least two entries of k must be distinct when k 6= k0, we have valp(|Sp ·k|) = 1

by Lemma 4.4, so we’re reduced to showing that

(??) valp(uk) > w(n)− 1 for all k ∈ Xqn \ {k0}.

Fix k ∈ Xqn\{k0}. When k /∈ qNp, (??) is precisely the conclusion of Lemma 4.5, so we

may assume that k ∈ qNp. Write k = qm for some m ∈ Np, so that |m| = 1
q
|k| = qn

q
= n.

We first consider the case where mi < n for all i, so that by the inductive hypothesis we

have valp(upmi
) = w(mi)/p. Suppose that valp(upmi

) > 1 for some i. Then by Corollary

3.4(2) and Proposition 2.1(1),

valp(uk) ≥ valp(uki) = valp(uqmi
) >

1

p
>

1

q − 1
> w(n)− 1

and (??) holds. Otherwise, valp(upmi
) ≤ 1 for all i and then by Corollary 3.4(1) we have

valp(uki) = valp(uqmi
) =

1

p
valp(upmi

) =
1

q
w(mi).
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Since |m| = n, Proposition 2.1(6) gives

valp(uk) ≥ 1

q

∑
w(mi) ≥

1

q
· w(n) > w(n)− 1

because w(n) < 1 + 1/(q − 1) by Proposition 2.1(1). Hence (??) follows.

We’re left with the case where at least one mi is equal to n. But then since |m| = n,

all other mj’s are zero and such m’s form a single Sp-orbit of size p. Hence we have to

show (??) holds when k = (0, 0, · · · , qn).

The congruence (�) together with our estimates above implies

valp(un − (upnp + punq)) > w(n).

Now, unp ≡ upnq mod p by Corollary 3.3 so that upnp ≡ uqnq mod p2. Therefore

valp(un − (uqnq + punq)) > w(n).

Since we already know that valp(un) = w(n), we get that

valp(u
q
nq + punq) = w(n).

We will now see that valp(punq) ≤ w(n) is not possible. Indeed, if valp(punq) = w(n),

then valp(u
q
nq) ≥ w(n) so that valp(unq) ≥ w(n)/q and valp(punq) ≥ 1 + w(n)/q > w(n).

And if valp(punq) < w(n) then valp(punq) = valp(u
q
nq), so valp(unq) = 1/(q− 1). But then

valp(punq) > 1 + 1/(q − 1) > w(n) by Proposition 2.1(1).

Hence valp(punq) > w(n) after all, which is (??) for k = (0, 0, · · · , 0, qn). �
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Math. 14 (1952), 1–9, Nederl. Akad. Wetensch. Proc. Ser. A 55.

[ST01] P. Schneider and J. Teitelbaum, p-adic Fourier theory, Doc. Math. 6 (2001), 447–481.

Konstantin Ardakov, Mathematical Institute, University of Oxford
Email address: ardakov@maths.ox.ac.uk
URL: http://people.maths.ox.ac.uk/ardakov/

Laurent Berger, UMPA, ENS de Lyon, UMR 5669 du CNRS
Email address: laurent.berger@ens-lyon.fr
URL: https://perso.ens-lyon.fr/laurent.berger/


