p-ADIC FOURIER THEORY FOR $\mathrm{Q}_{p^{2}}$ AND THE MONNA MAP

KONSTANTIN ARDAKOV AND LAURENT BERGER

Abstract

We show that the coefficients of a power series occurring in p-adic Fourier theory for $\mathbf{Q}_{p^{2}}$ have valuations that are given by an intriguing formula.

INTRODUCTION

Let L be a finite extension of \mathbf{Q}_{p}, let π be a uniformizer of o_{L} and let LT be the LubinTate formal o_{L}-module attached to π. The formal group maps over $o_{\mathbf{C}_{p}}$ from LT to \mathbf{G}_{m} play an important role in p-adic Fourier theory (see [ST01]). Choose a coordinate Z on LT, and let $G(Z) \in o_{\mathbf{C}_{p}} \llbracket Z \rrbracket$ be a generator of $\operatorname{Hom}_{o_{\mathbf{C}_{p}}}\left(\mathrm{LT}, \mathbf{G}_{\mathrm{m}}\right)$, so that

$$
G(Z)=\sum_{k \geq 1} P_{k}(\Omega) \cdot Z^{k}=\exp \left(\Omega \cdot \log _{\mathrm{LT}}(Z)\right)-1
$$

for a certain element $\Omega \in o_{\mathbf{C}_{p}}$ and polynomials $P_{k}(Y) \in L[Y]$. We have (§3 of [ST01]) $\operatorname{val}_{p}(\Omega)=1 /(p-1)-1 / e(q-1)$ where e is the ramification index of L and $q=\left|o_{L} / \pi o_{L}\right|$. The power series $G(Z)$ gives rise to a function on $\mathfrak{m}_{\mathbf{C}_{p}}$ and the theory of Newton polygons then allows us to compute the valuation of $P_{k}(\Omega)$ for $k=q^{j} / p^{\lfloor(j-1) / e\rfloor+1}$ with $j \geq 0$ (Theorem 1.5.2 of [AB24]). However, the valuation of $P_{k}(\Omega)$ for most $k \geq 2$ has no geometric significance and depends on the choice of the coordinate Z.

During our work on the character variety, we computed the valuation of $P_{k}(\Omega)$ for many small values of k in a special case: we took $L=\mathbf{Q}_{p^{2}}$ and $\pi=p$ and chose a coordinate Z on LT for which $\log _{\text {LT }}(Z)=\sum_{m \geq 0} Z^{q^{m}} / p^{m}$ (this is possible by $\S 8.3$ of [Haz12]). Note that in this setting, the theory of Newton polygons gives $\operatorname{val}_{p}\left(P_{k}(\Omega)\right)$ precisely when k is a power of p. Let $w: \mathbf{Z}_{\geq 0} \rightarrow \mathbf{Q}$ be the map defined by

$$
w(k)=\frac{p}{q-1} \cdot\left(k_{0}+p^{-1} k_{1}+\cdots+p^{-h} \cdot k_{h}\right) \text { if } k=\left(k_{h} \cdots k_{0}\right)_{p} \text { in base } p .
$$

For all k for which we were able to compute $\operatorname{val}_{p}\left(P_{k}(\Omega)\right)$, we found that $\operatorname{val}_{p}\left(P_{k}(\Omega)\right)=$ $w(k)$. The main result of this note is that this formula holds for all k.

Theorem A. For all $k \geq 1$, we have $\operatorname{val}_{p}\left(P_{k}(\Omega)\right)=w(k)$.
The proof involves a careful study of the functional equation that $G(Z)$ satisfies, and a direct computation of $\operatorname{val}_{p}\left(P_{k}(\Omega)\right)$ for small values of k. The function w is related to the Monna map, defined in [Mon52].

1. The polynomials $P_{m}(Y)$

Let $L=\mathbf{Q}_{p^{2}}$ and $\pi=p$, so that $q=p^{2}$, and choose a coordinate Z on LT for which $\log _{\mathrm{LT}}(Z)=\sum_{k \geq 0} Z^{q^{k}} / p^{k}$. The polynomials $P_{m}(Y) \in L[Y]$ are given by

$$
\exp \left(Y \cdot \log _{\mathrm{LT}}(Z)\right)=\sum_{m=0}^{+\infty} P_{m}(Y) \cdot Z^{m}
$$

Proposition 1.1. We have

$$
P_{m}(Y)=\sum_{m_{0}+q m_{1}+\cdots+q^{d} m_{d}=m} \frac{Y^{m_{0}+\cdots+m_{d}}}{m_{0}!\cdots m_{d}!\cdot p^{1 \cdot m_{1}+2 \cdot m_{2}+\cdots+d \cdot m_{d}}}
$$

Proof. Since $\log _{\mathrm{LT}}(Z)=\sum_{k \geq 0} Z^{q^{k}} / p^{k}$ and exp is the usual exponential,

$$
\sum_{m=0}^{+\infty} P_{m}(Y) Z^{m}=\exp \left(Y \cdot \log _{\mathrm{LT}}(Z)\right)=\prod_{k \geq 0} \exp \left(Y \cdot Z^{q^{k}} / p^{k}\right)=\prod_{k \geq 0} \sum_{j \geq 0}\left(Y \cdot Z^{q^{k}} / p^{k}\right)^{j} / j!
$$

The coefficient of Z^{m} is the sum of $Y^{m_{0}+\cdots+m_{d}} / m_{0}!\cdots m_{d}!\cdot p^{1 \cdot m_{1}+2 \cdot m_{2}+\cdots+d \cdot m_{d}}$ over all $d \geq 0$ and $\left(m_{0}, \cdots, m_{d}\right) \in \mathbf{Z}_{\geq 0}^{d+1}$ such that $m_{0}+q m_{1}+\cdots+q^{d} m_{d}=m$.

For example, if $i \leq q-1$, then

$$
\begin{aligned}
P_{i}(Y) & =Y^{i} / i! \\
P_{q+i}(Y) & =\frac{Y^{q+i}}{(q+i)!}+\frac{Y^{i+1}}{p \cdot i!} \\
P_{2 q+i}(Y) & =\frac{Y^{2 q+i}}{(2 q+i)!}+\frac{Y^{q+i+1}}{p \cdot(q+i)!}+\frac{Y^{i+2}}{2 p^{2} \cdot i!} .
\end{aligned}
$$

Because $L=\mathbf{Q}_{p^{2}}$, it follows from Lemma 3.4.b of [ST01] that

$$
\operatorname{val}_{p}(\Omega)=\frac{1}{p-1}-\frac{1}{e(q-1)}=\frac{p}{q-1}
$$

Lemma 1.2. If $i \leq q-1$ and $i=(a b)_{p}$ in base p, then $\operatorname{val}_{p}\left(P_{i}(\Omega)\right)=\frac{a+b p}{q-1}=w(i)$.
Proof. If $i \leq q-1$, then $P_{i}(\Omega)=\Omega^{i} / i$! by Proposition 1.1, so that

$$
\operatorname{val}_{p}\left(P_{i}(\Omega)\right)=i \cdot\left(\frac{1}{p-1}-\frac{1}{q-1}\right)-\frac{i-s_{p}(i)}{p-1}=\frac{s_{p}(i)}{p-1}-\frac{i}{q-1}=\frac{a+b p}{q-1} .
$$

2. The map w

Recall that $w: \mathbf{Z}_{\geq 0} \rightarrow \mathbf{Q}$ is the map defined by

$$
w(k)=\frac{p}{q-1} \cdot\left(k_{0}+p^{-1} k_{1}+\cdots+p^{-h} \cdot k_{h}\right) \text { if } k=\left(k_{h} \cdots k_{0}\right)_{p} \text { in base } p .
$$

Proposition 2.1. The function $w: \mathbf{Z}_{\geq 0} \rightarrow \mathbf{Q}_{\geq 0}$ has the following properties:
(1) $w(k)<1+1 /(q-1)$;
(2) $w(k) \geq 1$ if and only if $k \equiv-1 \bmod q$, and then $w(k)>1$ unless $k=q-1$;
(3) if $\ell>k$, then $w(\ell)-w(k) \in \mathbf{Z}$ if and only if $k=q j$ and $\ell=q j+(q-1)$;
(4) $w(p k)=1 / p \cdot w(k)$;
(5) $w\left(p^{n} k+i\right)=w\left(p^{n} k\right)+w(i)$ if $0 \leq i \leq p^{n}-1$;
(6) For all $a, b \geq 0$ we have $w(a+b) \leq w(a)+w(b)$.

Proof. Item (1) results from the fact that

$$
w(k)=\left(k_{0}+p^{-1} k_{1}+\cdots+p^{-h} \cdot k_{h}\right) \cdot \frac{p}{q-1}<\frac{p^{2}}{q-1}=1+\frac{1}{q-1} .
$$

If $k_{0} \leq p-2$, or if $k_{0}=p-1$ and $k_{1} \leq p-2$, then $w(k) \leq\left(p^{h+1}-1-p^{h-1}\right) / p^{h-1}(q-1)<1$, so if $w(k) \geq 1$, then $k_{0}=p-1$ and $k_{1}=p-1$, and $k \equiv-1 \bmod q$. Conversely, if $k \equiv-1 \bmod q$, then $k_{0}=p-1$ and $k_{1}=p-1$, and $w(k) \geq 1$. Finally, if we have equality, then $k_{i}=0$ for all $i \geq 2$. This proves (2).

Write $k=\left(k_{h} \cdots k_{0}\right)_{p}$ and $\ell=\left(\ell_{i} \cdots \ell_{0}\right)_{p}$. Since $w(k)<1+1 /(q-1)$, if $w(\ell)-w(k) \in$ $\mathbf{Z}_{\geq 0}$, then $w(\ell)=w(k)$ or $w(\ell)=w(k)+1$. If $w(\ell)=w(k)$, then $k_{0}+p^{-1} k_{1}+\cdots+p^{-h} \cdot k_{h}=$ $\ell_{0}+p^{-1} \ell_{1}+\cdots+p^{-i} \cdot \ell_{i}$. By comparing p-adic valuations, we get $h=i$, and then $k_{h} \equiv \ell_{i} \bmod p$ so that $k_{h}=\ell_{i}$. By descending induction, $k_{j}=\ell_{j}$ for all j, and $k=\ell$. If $w(\ell)=w(k)+1$, then $w(\ell) \geq 1$, and hence $\ell=\left(\ell_{i} \cdots \ell_{2}(p-1)_{1}(p-1)_{0}\right)_{p}$ by item (2). We then have $w\left(\left(\ell_{i} \cdots \ell_{2} 0_{1} 0_{0}\right)_{p}\right)=w(k)$ and hence $k=\left(\ell_{i} \cdots \ell_{2} 0_{1} 0_{0}\right)_{p}$. This implies (3).

Items (4) and (5) are straightforward. For item (6), let $\left\{a_{i}\right\},\left\{b_{i}\right\}$ and $\left\{c_{i}\right\}$ be the digits of a, b and c in base p. Let $r_{0}=0$ and let $r_{i} \in\{0,1\}$ be the i th carry when adding a and b, so that $c_{i}=a_{i}+b_{i}+r_{i}-p r_{i+1}$. The result follows from the following computation.

$$
\sum_{i \geq 0} \frac{c_{i}}{p^{i}}=\sum_{i \geq 0} \frac{a_{i}+b_{i}}{p^{i}}+\frac{r_{i}}{p^{i}}-\frac{p r_{i+1}}{p^{i}}=\sum_{i \geq 0} \frac{a_{i}+b_{i}}{p^{i}}-\left(p^{2}-1\right) \sum_{i \geq 1} \frac{r_{i}}{p^{i}} \leq \sum_{i \geq 0} \frac{a_{i}+b_{i}}{p^{i}}
$$

3. Congruences for the $P_{k}(\Omega)$

From now on, we write u_{k} for $P_{k}(\Omega)$ to lighten the notation. Recall that $q=p^{2}$. The power series $G(Z)$ is a map between LT and \mathbf{G}_{m}, so that $G\left([p]_{\mathrm{LT}}(Z)\right)=[p]_{\mathbf{G}_{\mathrm{m}}}(G(Z))$.
Proposition 3.1. We have $\sum_{m=1}^{+\infty} u_{m} Z^{q m} \equiv \sum_{k=1}^{+\infty} u_{k}^{p} Z^{k p} \bmod p \cdot \mathfrak{m}_{\mathbf{C}_{p}}$.
Proof. We have $G(Z) \in \mathfrak{m}_{\mathbf{C}_{p}} \llbracket Z \rrbracket$ and $[p]_{\mathrm{LT}}(Z) \equiv Z^{q} \bmod p$ and $[p]_{\mathbf{G}_{\mathrm{m}}}(Z)=Z^{p} \bmod p$.
Since $G\left([p]_{\mathrm{LT}}(Z)\right)=[p]_{\mathbf{G}_{\mathrm{m}}}(G(Z))$, we get $G\left(Z^{q}\right) \equiv G(Z)^{p} \bmod p \cdot \mathfrak{m}_{\mathbf{C}_{p}}$.
Corollary 3.2. If k is not divisible by p, then $\operatorname{val}_{p}\left(u_{k}\right)>1 / p$.
Corollary 3.3. We have $u_{p m}^{p} \equiv u_{m} \bmod p \cdot \mathfrak{m}_{\mathbf{C}_{p}}$.
Proof. Take $k=p m$ in Proposition 3.1.
Corollary 3.4. Take $m \geq 0$.
(1) Suppose that $\operatorname{val}_{p}\left(u_{m}\right) \leq 1$. Then $\operatorname{val}_{p}\left(u_{p m}\right)=1 / p \cdot \operatorname{val}_{p}\left(u_{m}\right)$.
(2) Suppose that $\operatorname{val}_{p}\left(u_{m}\right)>1$. Then $\operatorname{val}_{p}\left(u_{p m}\right)>1 / p$.

Proof. Both cases follow easily from Corollary 3.3.
We now compare $[p]_{\mathrm{LT}}(Z)$ and $Z^{q}+p Z$ (compare with (iv) of $\S 2.2$ of [Haz12]).
Lemma 3.5. We have $[p]_{\mathrm{LT}}(Z)=Z^{q}+p Z+p^{2} \cdot s(Z)$ for some $s(Z) \in Z^{2} \cdot \mathbf{Z}_{p} \llbracket Z \rrbracket$.
Proof. There exists $r(Z) \in Z^{2} \cdot \mathbf{Z}_{p} \llbracket Z \rrbracket$ such that $[p]_{\mathrm{LT}}(Z)=Z^{q}+p Z+p r(Z)$. By the properties of $\log _{\mathrm{LT}}$, we have $\log _{\mathrm{LT}}\left([p]_{\mathrm{LT}}(Z)\right)=p \log _{\mathrm{LT}}(Z)$. Expanding around Z^{q}, we get $\log _{\mathrm{LT}}\left(Z^{q}+p Z+p r(Z)\right)=\log _{\mathrm{LT}}\left(Z^{q}\right)+(p Z+p r(Z)) \log _{\mathrm{LT}}^{\prime}\left(Z^{q}\right)+\sum_{i \geq 2} \frac{(p Z+p r(Z))^{i}}{i!} \log _{\mathrm{LT}}^{(i)}\left(Z^{q}\right)$ Our choice of $\log _{\mathrm{LT}}$ is such that $\log _{\mathrm{LT}}\left(Z^{q}\right)=p \log _{\mathrm{LT}}(Z)-p Z$ and $\log _{\mathrm{LT}}^{\prime}(Z) \in 1+p Z \cdot \mathbf{Z}_{p} \llbracket Z \rrbracket$ and $\log _{\mathrm{LT}}^{(i)}(Z) \in p \mathbf{Z}_{p} \llbracket Z \rrbracket$ for all $i \geq 2$. Note also that $p^{i+1} / i!\in p^{2} \mathbf{Z}_{p}$ for all $i \geq 2$.

The above equation now implies that $p r(Z) \equiv 0 \bmod p^{2}$ so that $r(Z)=p s(Z)$.
Corollary 3.6. The coefficient of $Z^{q n}$ in $G\left([p]_{L T}(Z)\right)$ is congruent to $u_{n} \bmod p^{2}$. Proof. Since $[p]_{\mathrm{Lt}}(Z) \equiv Z^{q}+p Z \bmod p^{2}$, Lemma 3.5 tells us that

$$
\begin{aligned}
G\left([p]_{\mathrm{LT}}(Z)\right) & \equiv G\left(Z^{q}\right)+p Z \cdot G^{\prime}\left(Z^{q}\right) \bmod p^{2} \\
& \equiv \sum_{k \geq 1} u_{k} Z^{q k}+\sum_{m \geq 1} p m \cdot u_{m} Z^{q(m-1)+1} \bmod p^{2}
\end{aligned}
$$

Hence $p Z \cdot G^{\prime}\left(Z^{q}\right)$ doesn't contribute to the coefficent of $Z^{q n}$ modulo p^{2}.
Proposition 3.7. For all $k \geq 1$, we have $k \cdot u_{k}=u_{1} \cdot \sum_{r=0}^{\left\lfloor\log _{q}(k)\right\rfloor} p^{r} u_{k-q^{r}}$.
Proof. We have $\sum_{k \geq 0} u_{k} Z^{k}=\exp \left(u_{1} \cdot \log _{\text {LT }}(Z)\right)$. Applying $d / d Z$, we get

$$
\begin{aligned}
\sum_{k \geq 1} k u_{k} Z^{k-1} & =\exp \left(u_{1} \cdot \log _{\mathrm{LT}}(Z)\right) \cdot u_{1} \cdot \log _{\mathrm{LT}}^{\prime}(Z) \\
& =u_{1} \cdot\left(\sum_{i \geq 0} u_{i} Z^{i}\right) \cdot\left(\sum_{r \geq 0}(q / p)^{r} Z^{q^{r}-1}\right) .
\end{aligned}
$$

The result follows from looking at the coefficient of Z^{k-1} on both sides.
Corollary 3.8. We have $u_{1} \cdot u_{k-1} \equiv k u_{k} \bmod p$ for all $k \geq 1$.
Proposition 3.9. If $0 \leq i \leq p-1$ and $m \geq p$, then there exists $\zeta_{i, m} \in o_{L}$ such that

$$
u_{m p+i} \equiv\binom{m p+i}{i}^{-1} \cdot u_{m p} \cdot u_{i}+p \cdot \zeta_{i, m} \cdot u_{p(m-p)+i+1} \bmod p^{2}
$$

Proof. We proceed by induction on i. When $i=0$, we can even achieve equality by setting $\zeta_{0, m}:=0$, because $u_{0}=1$. Write $k:=m p+i$ for brevity. For $i \geq 1$ we have

$$
u_{k} \equiv \frac{1}{k} u_{1} \cdot u_{k-1}+\frac{p}{k} u_{1} \cdot u_{k-q} \bmod p^{2}
$$

by Proposition 3.7, because here $k \in o_{L}^{\times}$. By the inductive hypothesis, we have

$$
u_{k-1} \equiv\binom{k-1}{i-1}^{-1} u_{m p} \cdot u_{i-1}+p \zeta_{i-1, m} \cdot u_{k-q} \bmod p^{2}
$$

Note that since $i \leq p-1$, we have $u_{i}=u_{1}^{i} / i$! by Proposition 1.1, so $u_{1} u_{i-1}=\frac{u_{1}^{i}}{(i-1)!}=i u_{i}$. Substituting this information, we obtain

$$
\begin{aligned}
u_{k} & \equiv \frac{u_{1}}{k} \cdot\left(\binom{k-1}{i-1}^{-1} u_{m p} \cdot u_{i-1}+p \zeta_{i-1, m} u_{k-q}\right)+\frac{p}{k} u_{1} \cdot u_{k-q} \\
& \equiv \frac{i}{k}\binom{k-1}{i-1}^{-1} u_{m p} \cdot u_{i}+\frac{p}{k}\left(\zeta_{i-1, m}+1\right) u_{1} \cdot u_{k-q} \bmod p^{2}
\end{aligned}
$$

On the other hand, by Corollary 3.8, we have

$$
p u_{1} \cdot u_{k-q} \equiv p(k-q+1) u_{k-q+1} \bmod p^{2} .
$$

Hence we can rewrite the congruence as follows:

$$
u_{k} \equiv\binom{k}{i}^{-1} u_{m p} \cdot u_{i}+p \frac{k-q+1}{k}\left(\zeta_{i-1, m}+1\right) u_{k-q+1} \bmod p^{2}
$$

Define $\zeta_{i, m}:=\frac{k-q+1}{k}\left(\zeta_{i-1, m}+1\right)$ and observe that this lies in o_{L} because $p \nmid k$.
We need to know what $\zeta_{p-1, m}$ is modulo p.
Lemma 3.10. Take $1 \leq i \leq p-1$ and $m \geq 0$ and let $k=m p+i$.
If $\zeta_{0, m}=0$ and $\zeta_{i, m}=\frac{k-q+1}{k}\left(\zeta_{i-1, m}+1\right)$ whenever $1 \leq i \leq p-1$, then $\zeta_{p-1, m} \equiv 0 \bmod p$.
Proof. Note that modulo p, the recurrence relation satisfied by $\zeta_{i, m}$ is simply

$$
\zeta_{i, m} \equiv \frac{i+1}{i}\left(\zeta_{i-1, m}+1\right) \bmod p
$$

Now set $i=p-1$ to see that $\zeta_{p-1, m} \equiv 0 \bmod p$.

4. Proof of Theorem A

We now use the functional equation of $G(Z)$ modulo p^{2} in order to prove Theorem A.
Definition 4.1. For each $n \geq 0$, let C_{n} be the coefficient of $Z^{q n}$ in

$$
(1+G(Z))^{p}=\left(\sum_{k=0}^{\infty} u_{k} Z^{k}\right)^{p}
$$

We develop some notation to compute C_{n}.

Definition 4.2.

(1) Let $|\mathbf{k}|:=k_{1}+\cdots+k_{p}$ for all $\mathbf{k} \in \mathbf{N}^{p}$.
(2) For each $\mathbf{k} \in \mathbf{N}^{p}$, define $u_{\mathbf{k}}:=u_{k_{1}} \cdot u_{k_{2}} \cdots \cdot u_{k_{p}}$.
(3) For each $n \geq 0$, let $X_{n} \subset \mathbf{N}^{p}$ be a complete set of representatives for the orbits of the natural action of S_{p} on $\left\{\mathbf{k} \in \mathbf{N}^{p}:|\mathbf{k}|=n\right\}$.

In this language, expanding $\left(\sum_{k=0}^{\infty} u_{k} Z^{k}\right)^{p}$ gives the following
Lemma 4.3. We have $C_{n}=\sum_{\mathbf{k} \in X_{q n}}\left|S_{p} \cdot \mathbf{k}\right| u_{\mathbf{k}}$.
Lemma 4.4. We have $\operatorname{val}_{p}\left(\left|S_{p} \cdot \mathbf{k}\right|\right)=1$ whenever $k_{i} \neq k_{j}$ for some $i \neq j$.
Proof. Let H be the stabiliser of \mathbf{k} in S_{p}, so that $\left|S_{p} \cdot \mathbf{k}\right|=\left|S_{p}\right| /|H|$. If $k_{i} \neq k_{j}$ for some $i \neq j$, then H cannot contain any p-cycle. The only elements of S_{p} of order p are p-cycles, so by Cauchy's Theorem, $\operatorname{val}_{p}(|H|)=0$. Hence val $\left(\left|S_{p}\right| /|H|\right)=\operatorname{val}_{p}\left(\left|S_{p}\right|\right)=1$.

Lemma 4.5. If $\mathbf{k} \in X_{q n} \backslash q \mathbf{N}^{p}$, then $\operatorname{val}_{p}\left(u_{\mathbf{k}}\right)>w(n)-1$.
Proof. Since $\frac{1}{q-1}>w(n)-1$ by Proposition 2.1(1), it is enough to show that

$$
\operatorname{val}_{p}\left(u_{\mathbf{k}}\right)>\frac{1}{q-1} .
$$

If some k_{i} is not divisible by p, then by Corollary 3.2,

$$
\operatorname{val}_{p}\left(u_{\mathbf{k}}\right) \geq \operatorname{val}_{p}\left(u_{k_{i}}\right)>\frac{1}{p}>\frac{1}{q-1} .
$$

Assume now that for each $i=1, \ldots, p$, we can write $k_{i}=p m_{i}$ for some $m_{i} \geq 0$ so that $|\mathbf{m}|=\frac{1}{p}|\mathbf{k}|=p n$. Since $\mathbf{k} \notin q \mathbf{N}^{p}$ by assumption, we must have $m_{i} \not \equiv 0 \bmod p$ for some i. Because $|\mathbf{m}|=n p \equiv 0 \bmod p$, in this case there must be at least two distinct indices i, j such that $m_{i} \neq 0 \bmod p$ and $m_{j} \neq 0 \bmod p$. Using Corollary 3.2 again, we obtain

$$
\operatorname{val}_{p}\left(u_{\mathbf{m}}\right) \geq \operatorname{val}_{p}\left(u_{m_{i}}\right)+\operatorname{val}_{p}\left(u_{m_{j}}\right) \geq \frac{2}{p}>\frac{p}{q-1}
$$

Suppose now that $\operatorname{val}_{p}\left(u_{m_{i}}\right) \leq 1$ for all i. Then Corollary 3.4(1) implies that

$$
\operatorname{val}_{p}\left(u_{\mathbf{k}}\right)=\frac{1}{p} \operatorname{val}_{p}\left(u_{\mathbf{m}}\right)>\frac{1}{p} \cdot \frac{p}{q-1}=\frac{1}{q-1} .
$$

Otherwise, for at least one index i we have $\operatorname{val}_{p}\left(u_{m_{i}}\right)>1$, and then Corollary 3.4(2) gives

$$
\operatorname{val}_{p}\left(u_{\mathbf{k}}\right) \geq \operatorname{val}_{p}\left(u_{k_{i}}\right)>\frac{1}{p}>\frac{1}{q-1} .
$$

We can now prove Theorem A.
Theorem 4.6. We have $\operatorname{val}_{p}\left(u_{n}\right)=w(n)$ for all $n \geq 0$.
Proof. We prove the stronger statement $\operatorname{val}_{p}\left(u_{n}\right)=w(n)=p \cdot \operatorname{val}_{p}\left(u_{p n}\right)$ by induction on n. The base case $n=0$ is clear, so assume $n \geq 1$. We first show that $\operatorname{val}_{p}\left(u_{n}\right)=w(n)$.

Write $n=m p+i$ with $0 \leq i \leq p-1$. Then $\operatorname{val}_{p}\left(u_{i}\right)=w(i)$ holds by Lemma 1.2. Since $n \neq 0$, we must have $m<n$ so $\operatorname{val}_{p}\left(u_{m p}\right)=\frac{1}{p} w(m)$ by the inductive hypothesis. Using (4) and (5) of Proposition 2.1, we see that

$$
\operatorname{val}_{p}\left(u_{i} u_{m p}\right)=\operatorname{val}_{p}\left(u_{i}\right)+\operatorname{val}_{p}\left(u_{m p}\right)=w(i)+\frac{1}{p} w(m)=w(p m+i)=w(n)
$$

Suppose first that $n \not \equiv-1 \bmod q$. Then $w(n)<1$ by Proposition 2.1(2), which means that $\operatorname{val}_{p}\left(u_{i} u_{m p}\right)=w(n)<1$. By Proposition 3.9, we have

$$
u_{n} \equiv\binom{m p+i}{i}^{-1} u_{i} u_{m p} \bmod p
$$

We have $\binom{m p+i}{i} \equiv 1 \bmod p$ by Lucas' theorem, and therefore $\operatorname{val}_{p}\left(u_{n}\right)=w(n)$.
Suppose now that $n \equiv-1 \bmod q$. Then $i=p-1$, and Proposition 3.9 tells us that

$$
u_{n} \equiv\binom{n}{p-1}^{-1} u_{m p} \cdot u_{p-1}+p \zeta_{p-1, m} \cdot u_{n-q+1} \bmod p^{2}
$$

We have $\zeta_{p-1, m} \equiv 0 \bmod p$ by Lemma 3.10. Hence in fact $u_{n} \equiv\binom{n}{p-1}^{-1} u_{m p} u_{p-1} \bmod p^{2}$. Since $\operatorname{val}_{p}\left(u_{m p} u_{p-1}\right)=w(n)<2$ by Proposition 2.1(1), we again conclude that

$$
\operatorname{val}_{p}\left(u_{n}\right)=\operatorname{val}_{p}\left(u_{m p}\right)+\operatorname{val}_{p}\left(u_{p-1}\right)=w(n)
$$

To complete the induction step, we must show that $w(n)=p \operatorname{val}_{p}\left(u_{p n}\right)=\operatorname{val}_{p}\left(u_{p n}^{p}\right)$. In order to do this, we compare the coefficients of $Z^{q n}$ in the functional equation for $G(Z)$

$$
G\left([p]_{\mathrm{LT}}(Z)\right)=[p]_{\mathbf{G}_{m}}(G(Z))=(1+G(Z))^{p}-1
$$

modulo p^{2}. Using Corollary 3.6 and Lemma 4.3 , we see that

$$
u_{n} \equiv C_{n}=\sum_{\mathbf{k} \in X_{q n}}\left|S_{p} \cdot \mathbf{k}\right| u_{\mathbf{k}} \bmod p^{2} .
$$

Define $\mathbf{k}_{0}:=(p n, p n, \cdots, p n)$. We will now proceed to show that in fact

$$
\operatorname{val}_{p}\left(\left|S_{p} \cdot \mathbf{k}\right| u_{\mathbf{k}}\right)>w(n) \quad \text { for all } \quad \mathbf{k} \in X_{q n} \backslash\left\{\mathbf{k}_{0}\right\} .
$$

Note that $w(n)<2$ by Proposition 2.1(1) and that $u_{\mathbf{k}_{0}}=u_{p n}^{p}$. Hence congruence (\diamond) together with (\star) imply that $\operatorname{val}_{p}\left(u_{n}-u_{n p}^{p}\right)>w(n)$. Since we already know that $\operatorname{val}_{p}\left(u_{n}\right)=$ $w(n)$ this shows that $\operatorname{val}_{p}\left(u_{n p}^{p}\right)=\operatorname{val}_{p}\left(u_{n}\right)=w(n)$ and completes the proof.

Since at least two entries of \mathbf{k} must be distinct when $\mathbf{k} \neq \mathbf{k}_{0}$, we have $\operatorname{val}_{p}\left(\left|S_{p} \cdot \mathbf{k}\right|\right)=1$ by Lemma 4.4, so we're reduced to showing that

$$
\operatorname{val}_{p}\left(u_{\mathbf{k}}\right)>w(n)-1 \quad \text { for all } \quad \mathbf{k} \in X_{q n} \backslash\left\{\mathbf{k}_{0}\right\} .
$$

Fix $\mathbf{k} \in X_{q n} \backslash\left\{\mathbf{k}_{0}\right\}$. When $\mathbf{k} \notin q \mathbf{N}^{p},(\star \star)$ is precisely the conclusion of Lemma 4.5, so we may assume that $\mathbf{k} \in q \mathbf{N}^{p}$. Write $\mathbf{k}=q \mathbf{m}$ for some $\mathbf{m} \in \mathbf{N}^{p}$, so that $|\mathbf{m}|=\frac{1}{q}|\mathbf{k}|=\frac{q n}{q}=n$. We first consider the case where $m_{i}<n$ for all i, so that by the inductive hypothesis we have $\operatorname{val}_{p}\left(u_{p m_{i}}\right)=w\left(m_{i}\right) / p$. Suppose that $\operatorname{val}_{p}\left(u_{p m_{i}}\right)>1$ for some i. Then by Corollary $3.4(2)$ and Proposition 2.1(1),

$$
\operatorname{val}_{p}\left(u_{\mathbf{k}}\right) \geq \operatorname{val}_{p}\left(u_{k_{i}}\right)=\operatorname{val}_{p}\left(u_{q m_{i}}\right)>\frac{1}{p}>\frac{1}{q-1}>w(n)-1
$$

and $(\star \star)$ holds. Otherwise, $\operatorname{val}_{p}\left(u_{p m_{i}}\right) \leq 1$ for all i and then by Corollary 3.4(1) we have

$$
\operatorname{val}_{p}\left(u_{k_{i}}\right)=\operatorname{val}_{p}\left(u_{q m_{i}}\right)=\frac{1}{p} \operatorname{val}_{p}\left(u_{p m_{i}}\right)=\frac{1}{q} w\left(m_{i}\right) .
$$

Since $|\mathbf{m}|=n$, Proposition 2.1(6) gives

$$
\operatorname{val}_{p}\left(u_{\mathbf{k}}\right) \geq \frac{1}{q} \sum w\left(m_{i}\right) \geq \frac{1}{q} \cdot w(n)>w(n)-1
$$

because $w(n)<1+1 /(q-1)$ by Proposition 2.1(1). Hence ($* *$) follows.
We're left with the case where at least one m_{i} is equal to n. But then since $|\mathbf{m}|=n$, all other m_{j} 's are zero and such m's form a single S_{p}-orbit of size p. Hence we have to show ($\star \star$) holds when $\mathbf{k}=(0,0, \cdots, q n)$.

The congruence (\diamond) together with our estimates above implies

$$
\operatorname{val}_{p}\left(u_{n}-\left(u_{n p}^{p}+p u_{n q}\right)\right)>w(n) .
$$

Now, $u_{n p} \equiv u_{n q}^{p} \bmod p$ by Corollary 3.3 so that $u_{n p}^{p} \equiv u_{n q}^{q} \bmod p^{2}$. Therefore

$$
\operatorname{val}_{p}\left(u_{n}-\left(u_{n q}^{q}+p u_{n q}\right)\right)>w(n) .
$$

Since we already know that $\operatorname{val}_{p}\left(u_{n}\right)=w(n)$, we get that

$$
\operatorname{val}_{p}\left(u_{n q}^{q}+p u_{n q}\right)=w(n) .
$$

We will now see that $\operatorname{val}_{p}\left(p u_{n q}\right) \leq w(n)$ is not possible. Indeed, if $\operatorname{val}_{p}\left(p u_{n q}\right)=w(n)$, then $\operatorname{val}_{p}\left(u_{n q}^{q}\right) \geq w(n)$ so that $\operatorname{val}_{p}\left(u_{n q}\right) \geq w(n) / q$ and $\operatorname{val}_{p}\left(p u_{n q}\right) \geq 1+w(n) / q>w(n)$. And if $\operatorname{val}_{p}\left(p u_{n q}\right)<w(n)$ then $\operatorname{val}_{p}\left(p u_{n q}\right)=\operatorname{val}_{p}\left(u_{n q}^{q}\right)$, $\left.\operatorname{so~}_{\operatorname{val}_{p}\left(u_{n q}\right)}\right)=1 /(q-1)$. But then $\operatorname{val}_{p}\left(p u_{n q}\right)>1+1 /(q-1)>w(n)$ by Proposition 2.1(1).

Hence $\operatorname{val}_{p}\left(p u_{n q}\right)>w(n)$ after all, which is $(\star \star)$ for $\mathbf{k}=(0,0, \cdots, 0, q n)$.

References

[AB24] K. Ardakov and L. Berger, Bounded functions on the character variety, Münster J. Math. (2024), to appear.
[Haz12] M. Hazewinkel, Formal groups and applications, AMS Chelsea Publishing, Providence, RI, 2012, Corrected reprint of the 1978 original.
[Mon52] A. F. Monna, Sur une transformation simple des nombres p-adiques en nombres réels, Indag. Math. 14 (1952), 1-9, Nederl. Akad. Wetensch. Proc. Ser. A 55.
[ST01] P. Schneider and J. Teitelbaum, p-adic Fourier theory, Doc. Math. 6 (2001), 447-481.

[^0]
[^0]: Konstantin Ardakov, Mathematical Institute, University of Oxford
 Email address: ardakov@maths.ox.ac.uk
 URL: http://people.maths.ox.ac.uk/ardakov/
 Laurent Berger, UMPA, ENS de Lyon, UMR 5669 du CNRS
 Email address: laurent.berger@ens-lyon.fr
 URL: https://perso.ens-lyon.fr/laurent.berger/

