
PRIME IDEALS IN NILPOTENT IWASAWA ALGEBRAS

KONSTANTIN ARDAKOV

Abstract. Let G be a nilpotent complete p-valued group of finite rank and
let k be a field of characteristic p. We prove that every faithful prime ideal

of the Iwasawa algebra kG is controlled by the centre of G, and use this to

show that the prime spectrum of kG is a disjoint union of commutative strata.
We also show that every prime ideal of kG is completely prime. The key

ingredient in the proof is the construction of a non-commutative valuation on
certain filtered simple Artinian rings.
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1. Introduction

1.1. Prime ideals and Iwasawa algebras. Let G be a compact p-adic analytic
group and let k be a field of characteristic p. The completed group algebra kG of G
with coefficients in k, also known as an Iwasawa algebra, is an interesting example
of a non-commutative Noetherian complete semilocal ring with good homological
properties — see the survey article [2] for an introduction to this area. A long-
running project aims to understand the prime spectrum Spec(kG) of kG, guided
in part by the list of open questions in §6 of this survey paper. Progress so far has
been rather limited: the strongest known result to date, [3, Theorem 4.8] asserts
that (under mild restrictions on the prime p) when the Lie algebra g of G is split
semisimple, the homological height of a non-zero prime ideal in kG is bounded below
by an integer u depending only on g; for example if g = sln(Qp) then u = 2n− 2.
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1.2. Complete p-valued groups. Lazard proved in 1965 that it is always pos-
sible to find a closed normal subgroup N of finite index in G with particularly
nice properties. For any such subgroup there is a crossed product decomposition
kG = kN ∗ (G/N), and the going-up and going-down theorems [19] for such crossed
products give a strong connection between Spec(kG) and Spec(kN). Because of
this it is important to first better understand Spec(kN). Typically one can choose
N to be a uniform pro-p group, but it will be more convenient for us to work with
a slightly larger class of groups — Lazard’s complete p-valued groups of finite rank.
See §4.1 for the precise definitions.

1.3. Construction of the ‘obvious’ prime ideals. Let, then, G be a complete
p-valued group of finite rank. Currently, the only known way to obtain two-sided
ideals in kG is to either take a centrally generated ideal, to induce up from a closed
normal subgroup or to take an inverse image ideal. Let us make this more precise.

We say that a prime ideal P is faithful if G embeds faithfully into the group of
units of kG/P , or equivalently, if P † := (1 + P ) ∩G is the trivial group. Let

Specf (kG)

denote the set of all faithful prime ideals of kG. If N is a closed normal subgroup
of G, we say that N is isolated if G/N is a torsion-free group, and we will write
N /icG to denote this. We show in Lemma 5.3 that P † /icG for any P ∈ Spec(kG).

Let N /ic G and let ZN = Ñ/N denote the centre of G/N ; this is a free abelian
pro-p group of finite rank dN > 0 say. Then the algebra kZN is just a commutative
formal power series ring in dN variables over k. Now if Q is a faithful prime ideal

of kZN , let Q̃ be its preimage in kÑ and let Q̃kG be its extension to kG. It follows

from Theorem 8.6 below that Q̃kG is always a prime ideal in kG, and in this way
we obtain a map

Θ :
∐

N/icG

Specf (kZN ) → Spec(kG)

Q 7→ Q̃kG.

There is a natural bijection between the set of closed isolated normal subgroups of
G and the set of ideals of the Lie algebra g of G.

1.4. A partial inverse map to Θ. Let P be a prime ideal in kG. Then P ∩ kP̃ †
is a prime ideal in kP̃ † containing P † − 1 because P̃ † is central modulo P †, so we
obtain a prime ideal

Ψ(P ) :=
P ∩ kP̃ †

(P † − 1)kP̃ †

of kZP † . It is easy to see that Ψ(P ) is faithful, and in this way we obtain a map

Ψ : Spec(kG)→
∐
N/icG

Specf (kZN ).

Here is our main result:

Theorem A. Let G be a complete p-valued group of finite rank. Then

(a) Ψ(Θ(Q)) = Q for any N /ic G and Q ∈ Specf (kZN ), and
(b) Θ(Ψ(P )) = P for any P ∈ Spec(kG), whenever G is nilpotent.

Every ideal of the form Θ(Q) is completely prime.
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Thus Spec(kG) always contains the disjoint union of the “commutative strata”

Θ
(

Specf (kZN )
)

and is actually equal to this union when G is nilpotent. In fact,

the evidence we have so far leads us to suspect that this assumption on G is not
necessary. The proof is given in §8.7.

We expect that Theorem A will be useful in the study of two-sided ideals in the
Iwasawa algebra ZpG with Zp-coefficients, but possibly new ideas will be required
to fully treat this case.

1.5. Zalesskii’s Theorem. Let I be a right ideal in kG. We say that a closed
subgroup U of G controls I if and only if I = (I ∩kU)kG. In §2.7 of the companion
paper [6], we defined the controller subgroup of I to be the intersection Iχ of all
open subgroups of G that control I:

Iχ =
⋂
{U 6o G : I = (I ∩ kU)kG}.

It follows from [6, Theorem A] that a closed subgroup H of G controls I if and only
if H ⊇ Iχ. In particular, Iχ itself controls I, and (I ∩ kIχ)χ = Iχ.

Let Z be the centre of G. The real content of Theorem A, namely part (b),
quickly follows from Theorem 8.4 which asserts that

if G is nilpotent, then every faithful prime ideal P of kG is controlled by Z,

or equivalently, that G must act trivially on Pχ by conjugation. Of course this
is a direct analogue of Zalesskii’s Theorem on prime ideals in group algebras of
nilpotent groups — see [25]. Theorem 8.4 in turn follows from our main technical
result, namely

Theorem B. Let G be a complete p-valued group of finite rank and let P be a
faithful prime ideal of kG. Let ϕ be a non-trivial automorphism in AutωZ(G) such
that ϕ(P ) = P . Then P is controlled by some proper closed subgroup H of G.

Here AutωZ(G) is a certain “small” group of automorphisms of G that act trivially
modulo Z — see §4.9 for the precise definition. The deduction of Theorem 8.4 from
Theorem B is performed in §5; this is not entirely trivial because P ∩ kPχ need
not in general be a prime ideal of kPχ. Theorem B can also be viewed as a non-
commutative analogue of Roseblade’s [21, Theorem D].

1.6. The strategy of the proof. To prove Theorem B, we let τ : kG→ Q be the
natural map from kG to the classical ring of quotients Q of the prime Noetherian
ring kG/P , and consider certain Mahler expansions

τϕp
r

=
∑
α∈Nd

τ
(
〈ϕp

r

, ∂(α)
g 〉

)
· τ∂(α)

g for all r > 0

inside the vector space of all k-linear maps from kG to Q — see Corollary 6.6 and

§7.7. We study the growth rates of the Mahler coefficients τ
(
〈ϕpr , ∂(α)

g 〉
)

as r →∞
and define an appropriate Q-linear combination

ζ(i)
r :=

m∑
j=1

(M−1
r )ij(τϕ

pr+j−1

− τ)

of these τϕp
r

. On the one hand, each of these operators sends P to zero since ϕ

preserves P . On the other hand, we show in Theorem 7.11 that the limit of ζ
(i)
r as
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r →∞ equals one of the “quantized derivations”

τ∂i : kG→ Q.

This is enough to deduce Theorem B — see §7.14 below.

1.7. A key ingredient. In order to make sense of limr→∞ ζ
(i)
r and to construct

the “correct” ζ
(i)
r , we need to equip the simple Artinian ring Q with a well-behaved

filtration. This is obtained from

Theorem C. Let R be a prime ring and let w : R → Z ∪ {∞} be a Zariskian
filtration. Suppose that F := R0/R1 is a field and that grR is a commutative
infinite-dimensional F -algebra. Then there exists a filtration v : Q → Z ∪ {∞} on
the classical ring of quotients Q of R and a central simple algebra C, such that

(a) the natural inclusion (R,w)→ (Q, v) is continuous,
(b) if w(x) > 0 then v(x) > 0, and
(c) grQ ∼= C[X,X−1].

Moreover, the restriction of v to the centre of Q is a valuation.

Even though R itself is prime, the associated graded ring grR with respect to
the original filtration w is in general not prime; worse still, it could contain non-zero
nilpotent elements. For an example of such behaviour, consider the (commutative!)
ring R = k[[x, y]]/〈x2 − y3〉 equipped with the 〈x, y〉-adic filtration. Theorem C
shows that under rather mild hypotheses it is always possible to “improve” this
filtration to one whose associated graded ring is as nice as one could possibly hope
for. Perhaps our v deserves to be called a “non-commutative valuation”.

We hope that Theorem C will be of independent interest, since it is applicable
to prime factor rings of not only Iwasawa algebras, but also universal enveloping
algebras of finite dimensional Lie algebras. It is proved in §3.

1.8. Another application. Let G be a compact p-adic analytic group. We say
that a finitely generated kG-module M is just infinite if M is infinite dimensional
over k but M/N is finite dimensional over k for every non-zero kG-submodule N
of M . Equivalently M is a critical kG-module of Krull dimension 1.

Using Theorem B we can give an example of a just infinite “parabolic Verma
module” for kG. We do not strive for the maximal generality here, and just wish
to illustrate the method.

Theorem D. Let G be the second congruence subgroup of SLn(Zp), let p be a
maximal parabolic subalgebra of g = sln(Qp), and let P = exp(p ∩ log(G)) be the
corresponding uniform subgroup of G. Then the induced module k ⊗kP kG is just
infinite.

The proof is given in §8.3. This result can be viewed as further (rather weak)
evidence for the Krull dimension conjecture — see [2, Question D]. Note also that
k ⊗kP kG can be arbitrarily “large”, since its canonical dimension dim g/p has no
upper bound as n increases.

1.9. Acknowledgements. This research was supported by an Early Career Fel-
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2. Preliminaries

2.1. Filtered rings. Recall that a filtration on a ring A is a function

v : A→ R ∪ {∞} := R∞,

such that v(ab) > v(a) + v(b), v(a+ b) > min{v(a), v(b)} for all a, b ∈ A, v(1) = 0
and v(0) =∞. If the filtration on A is understood, then we say that A is a filtered
ring. If the stronger condition v(ab) = v(a) + v(b) is satisfied for all a, b ∈ A, then
we say that v is a valuation.

We now fix a filtration v on A and define an additive subgroup Aλ of A for any
λ ∈ R as follows:

Aλ := {x ∈ A : v(x) > λ}.

These subgroups have the following properties:

• Aλ ·Aµ ⊆ Aλ+µ for all λ, µ ∈ R,
• Aλ ⊇ Aµ if λ 6 µ,
• ∪λ∈RAλ = A, and
• 1 ∈ A0.

The filtration v is said to be separated if the two-sided ideal v−1(∞) = ∩λ∈RAλ is
zero. Since this ideal is proper, we see that any filtration on a field is necessarily
separated.

For any λ ∈ R, let Aλ+ := {x ∈ A : v(x) > λ}, and define

grλA := Aλ/Aλ+

. Since Aλ+ ·Aµ +Aλ ·Aµ+ ⊆ A(λ+µ)+ for all λ, µ ∈ R, the direct sum

grA :=
⊕
λ∈R

grλA

is naturally an R-graded ring, called the associated graded ring of A. The filtration
v is a valuation if and only if grA is a domain.

2.2. Zariskian filtrations. Let A be a filtered ring with filtration w : A → R∞.
We say that w is a Zariskian filtration if

• w takes integral values,

• the Rees ring Ã =
⊕

n∈ZAnt
n ⊆ A[t, t−1] is Noetherian,

• the Jacobson radical of the subring A0 contains A1:

1 +A1 ⊆ A×0 .

This agrees with the standard definition given in [16], except that our filtrations
are descending and those in [16] are ascending.
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2.3. Filtered modules. Let A be a filtered ring with filtration v and let M be a
(left) A-module. Then a filtration on M is a function

vM : M → R∞,

such that vM (am) > v(a) + vM (m) and vM (m + n) > min{vM (m), vM (n)} for all
m,n ∈ M and a ∈ A. If the filtration on vM is understood, we will say that M is
a filtered A-module.

The filtration vM gives rise to a filtration topology on M , such that M is a
topological group under addition, and such that the subgroups

Mλ := {m ∈M : vM (m) > λ}

form a base for the open neighbourhoods of 0. This topology is Hausdorff if and
only if v−1

M (∞) = 0; in this case the filtration vM is separated. We say that vM is
complete if every Cauchy sequence in M with respect to this topology converges to
a unique limit in M . Thus every complete filtration is by definition separated.

2.4. Bounded linear maps. Let k be a field equipped with the trivial valuation
v(k×) = 0, and let M and N be two separated filtered k-vector spaces. We say
that a k-linear map f : M → N is bounded if there exists λ ∈ R∞ such that

vN (f(x)) > vM (x) + λ for all x ∈M.

The set B(M,N) of all such maps is a k-vector space. The degree of a bounded
k-linear map f is given by

deg(f) := inf{vN (f(x))− vM (x) : x ∈M\{0}}.

The degree function turns B(M,N) into a separated filtered k-vector space and
can be viewed as a generalization of the operator norm from functional analysis.
In that setting, our next result is well-known — see, for example [23, Chapter I,
Proposition 3.3]. We give the proof for the convenience of the reader.

Lemma. Let M and N be separated filtered k-vector spaces, and suppose that N
is complete. Then B(M,N) is also complete with respect to the degree filtration.

Proof. Let (fn)n be a Cauchy sequence in B(M,N). For each x ∈M , the sequence
(fn(x))n is Cauchy, hence converges to an element f(x) ∈ N because N is complete.
The function x 7→ f(x) is clearly k-linear. Now if deg fn → ∞ then fn → 0 by
definition, so assume that the sequence (deg fn)n is bounded. It is then eventually
constant with value d say. Because each fn is bounded,

vN (f(x)) = vN ( lim
n→∞

fn(x)) = lim
n→∞

vN (fn(x)) > lim
n→∞

deg fn + vM (x) = d+ vM (x)

for any non-zero x ∈M , so f is also bounded. It remains to show that fn → f .
Fix a non-zero element x ∈M . Since (fn)n is Cauchy, for any λ ∈ R there exists

an integer t, independent of x, such that vN (fn(x) − fm(x)) > λ + vM (x) for all
n,m > t. Since fm(x)→ f(x) as m→∞, we can find an integer m > t such that
vN (fm(x)− f(x)) > λ+ vM (x). Hence

vN (fn(x)− f(x)) > min {vN (fn(x)− fm(x)), vN (fm(x)− f(x))} > λ+ vM (x)

for any non-zero x ∈M , so fn → f with respect to the degree filtration. �
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Whenever A is a filtered k-algebra and N is a filtered A-module, B(M,N) be-
comes a filtered A-module, with the action of A given by (a.f)(m) = a.f(m) for all
a ∈ A,m ∈ M . Note also that B(A) := B(A,A) is a filtered ring and B(A,N) is a
filtered right B(A)-module, via composition of functions.

3. The construction of a non-commutative valuation

We now start working towards the proof of Theorem C, which is concluded in
§3.14. Assume from now on that R satisfies the hypotheses of the Theorem.

3.1. Minimal prime ideals of grR. Because grR is a commutative Noetherian
Z-graded ring by assumption, it has finitely many minimal primes p1, . . . , pm say.
It is well-known that these ideals are graded.

Lemma. At least one of the pi differs from grR in at least one homogeneous
component of degree different from zero.

Proof. Suppose not. Let n = p1 ∩ · · · ∩ pm be the prime radical of grR, a graded
ideal. Because (grR)/n embeds into the direct sum of all the (grR)/pi, the graded
module (grR)/n is concentrated in degree zero. But (grR)0 = F is a field by
assumption, so n∩ (grR)0 = 0 and therefore grR = F ⊕n. In particular, the factor
ring (grR)/n is isomorphic to F . Since grR is Noetherian, nk = 0 for some k and
nr/nr+1 is a finitely generated (grR)/n-module for all r > 0. Therefore grR must
be finite dimensional over F , contradicting our assumption on grR. �

3.2. Homogeneous localisation. We now fix a minimal prime ideal, p1 say, which
differs from grR in at least one non-zero homogeneous component, and define

T := {X ∈ grR\p1 : X is homogeneous}.
This is a homogeneous multiplicatively closed set, so the localisation (grR)T is a
Z-graded ring.

Proposition. Let E := (grR)T = ⊕n∈ZEn and let E>0 := ⊕n>0En be the non-
negative part of E.

(a) The ideal p := (p1)T of E is nilpotent.
(b) E0 is a local ring with maximal ideal E0 ∩ p.
(c) There exists a homogeneous element Y ∈ E of positive degree such that

E/p ∼= (E/p)0[Y , Y
−1

].

(d) E is a finitely generated E0[Y, Y −1]-module and E0 is Artinian.
(e) E is gr-Artinian: every descending chain of graded ideals terminates.
(f) E>0/Y E>0 is an Artinian ring.

Proof. (a) Because grR is Noetherian, some product of the minimal primes of grR
is zero:

pn1
1 · p

n2
2 · · · · · pnmm = 0.

If pn2
2 · · · · · pnmm ⊆ p1 then pi ⊆ p1 for some i > 1, which forces pi = p1 because p1

is a minimal prime. But the pi are all distinct, so

pn2
2 · · · · · pnmm * p1

and we can find some homogeneous element t ∈ pn2
2 · · · · · pnmm \p1. Hence p1

n1t = 0
and therefore p is nilpotent.
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(b) Let r/t ∈ E0\p for some r ∈ grR and t ∈ T . Then r ∈ E0t is homogeneous
because t is homogeneous, and r /∈ p1. So r ∈ T and r/t is a unit in E. Because r
and t have the same degree, the inverse t/r lies in E0, so every element of E0\E0∩p
is a unit in E0.

(c) The argument used in part (b) above shows that D := E/p = ⊕n∈ZDn is a
gr-field : every non-zero homogeneous element of D is a unit. Moreover, Dn 6= 0 for
some non-zero n by construction. Therefore the set {n ∈ Z : Dn 6= 0} is a non-zero
subgroup of Z, and hence equals `Z for some ` > 0. Pick Y ∈ E` whose image Y

in D is non-zero. Now if x ∈ D`k, then xY
−k ∈ D0, so

D = D0[Y , Y
−1

].

Because p is a graded ideal of E, D0 = (E/p)0 = E0/p0 = E0/(E0∩p) is the residue
field of E0.

(d) By part (a), we have a finite filtration of E by graded ideals:

E > p > p2 > · · · > pn1 = 0.

Each subquotient pi/pi+1 is finitely generated over E/p = D0[Y , Y
−1

], so E is
finitely generated over E0[Y, Y −1]. Also, (pi/pi+1)0 is finite dimensional over D0

for all i > 0, so E0 admits a finite filtration

E0 > p0 > (p2)0 > · · · > (pn1)0 = 0

with each subquotient finite dimensional over the residue field D0. Hence E0 is
Artinian.

(e) By part (a), we can find a finite composition series consisting of graded ideals
for E, with each factor isomorphic to E/p (possibly with shifted degrees). But E/p
has no proper non-zero graded ideals because it is a gr-field. So E is gr-Artinian.

(f) Let x1, . . . , xr be a generating set for E as a E0[Y, Y −1]-module consisting of
homogeneous elements. By multiplying these generators by a power of Y , we may
assume that di := deg(xi) > 0 for all i. Hence

Ek =

r∑
i=1

xiE0Y
k−di
`

for all k ∈ Z, with the understanding that fractional powers of Y are zero. Now
Ek ⊆ Y E>0 whenever k > max di+`, so the factor ring E>0/Y E>0 is concentrated
in finitely many degrees and is therefore a finitely generated E0-module. Since E0

is Artinian by part (d), this ring must also be Artinian. �

3.3. Ore localisation. The saturated lift of T , namely

S := {r ∈ R : gr(r) ∈ T}

is a right and left Ore set in R by [17, Corollary 2.2]. By [17, Proposition 2.3], the
Ore localisation RS carries a filtration such that

gr(RS) ∼= (grR)T

and this filtration is actually Zariskian by [17, Proposition 2.8].

Lemma. RS is equal to the classical ring of quotients Q of R.
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Proof. Because the filtration on RS is Zariskian and because gr(RS) is gr−Artinian
by Proposition 3.2(e), it follows from [16, Chapter II, Corollary 3.1.2] that RS is an
Artinian ring. Now R is prime by assumption and 0 /∈ S because 0 /∈ T . Let ass(S)
be the right S-torsion submodule of R; then ass(S) is a two-sided ideal of R by
[18, Lemma 2.1.9] and is finitely generated as a left ideal since R is left Noetherian.

Let ass(S) =
∑t
i=1Rxi and choose si ∈ S such that xisi = 0. Since S is a right

Ore set, by [18, Lemma 2.1.8] we can find elements s′ ∈ S and r′i ∈ R such that
s′ = sir

′
i for all i. Now

ass(S) · (Rs′R) = ass(S)s′R =

t∑
i=1

Rxisir
′
iR = 0

so ass(S) = 0 because R is prime and s′ 6= 0. Hence S consists of regular elements
in R by [18, Proposition 2.1.10(ii)], even though T may contain zero-divisors in
grR. Therefore RS is a subring of Q containing R. But RS is Artinian and regular
elements in R stay regular in RS , so every regular element of R is a unit in RS by
[18, Proposition 3.1.1]. Therefore RS = Q as claimed. �

3.4. Microlocalisation. By definition, the microlocalisation of R at the homoge-

neous set T is the completion Q̂ of RS with respect to the Zariskian filtration used
in §3.3. This ring still carries a natural Zariskian filtration deg, with respect to
which we have

gr Q̂ ∼= gr(RS) ∼= (grR)T .

So Q̂ is still Artinian. However, in general it will not be a simple ring; worse still,
it may fail to be semi-simple even in the case when R is a commutative domain.
We will deal with this issue very soon, but let us first focus on the “unit ball” of

Q̂, namely

U := (Q̂)0 = {u ∈ Q̂ : deg(u) > 0}.
It follows from [16, Chapter II, Lemma 2.1.4] that U is Noetherian. Proposition
3.2 now translates into the following properties of U :

Proposition. There exists a regular normal element y in the Jacobson radical
J(U) of U such that U/yU is Artinian and U is y-adically complete. U has Krull
dimension at most 1 on both sides and U/J(U) is a commutative field.

Proof. Equip U ⊆ Q̂ with the subspace filtration and identify grU with the positive

part (gr Q̂)>0 of gr Q̂ ∼= (grR)T . Choose a homogeneous element Y ∈ gr Q̂ as in
Proposition 3.2 and choose any lift y ∈ U such that gr y = Y . Since Y has positive

degree, y ∈ U ∩ (Q̂)1 = U1 ⊆ J(U) because the filtration on Q̂ is Zariskian.

Now Y is a homogeneous unit in gr Q̂ because it is a unit in gr Q̂/p by construc-

tion and p is nilpotent by Proposition 3.2(a). Therefore y is a unit in Q̂ and

deg(y−1uy) = deg(u)

for all u ∈ Q̂. So y−1Uy = U and hence y ∈ U is a regular normal element. Now

gr(U/yU) = (grU)/(Y grU)

is Artinian by Proposition 3.2(f), so U/yU must also be Artinian.
To show that U is y-adically complete, it is sufficient to show that the y-adic

filtration is topologically equivalent to the degree filtration on U , since the latter

is complete by definition of Q̂. Since deg(y) > 1, Un contains ynU . Given ynU
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choose an integer m larger than ndeg(y) and let u ∈ Um; then deg(y−nu) =
deg(u)− n deg(y) > m− ndeg(y) > 0 so y−nUm ⊆ U and ynU contains Um.

Because y ∈ U is normal, the associated graded ring of U with respect to the
y-adic filtration is a skew polynomial ring

gry U = (U/yU)[X;σ]

where σ is the ring automorphism of U/yU induced by conjugation by y. Since
U/yU is Artinian, K(gry U) 6 1 by [18, Proposition 6.5.4(i)]. Since the y-adic
filtration on U is complete, K(U) 6 K(gry U) 6 1 by [16, Chapter II, Corollary
3.1.2(2)].

Now U/U1
∼= ((grR)T )0 is a commutative local Artinian ring by Proposition 3.2.

Let m/U1 be its maximal ideal; then U/m is a commutative field and mn ⊆ U1 ⊆
J(U) for some n, because the filtration on Q̂ is Zariskian. Hence J(U) = m. �

3.5. Prime factor rings of U . Let A be the factor ring of U by any of its minimal
prime ideals. Then A is a prime Noetherian ring and we will denote its classical

ring of quotients by Q(A). This is one of the finitely many prime factor rings of Q̂.

Proposition. There exists a regular normal element z ∈ J(A) such that A/zA is
Artinian and A is z-adically complete. The ring A has Krull dimension at most 1
on both sides and A/J(A) is a commutative field. Moreover Q(A) is the localisation
Az of A at the powers of the regular normal element z ∈ A.

Proof. Let z ∈ A be the image of the element y ∈ U given by Proposition 3.4.
This element is normal; it is non-zero because the map U → Q(A) factors through

Q̂ and because y is a unit in Q̂. Non-zero normal elements in a prime ring are
necessarily regular. Proposition 3.4 also implies that K(A) 6 1 and that A/J(A) is
a commutative field. Since U is y-adically complete and gry U is Noetherian, every
ideal of U is closed in the y-adic topology by [16, Chapter II, Theorem 2.1.2], so A
is also z-adically complete.

Since z ∈ A is regular and normal, its powers form an Ore set in A and we can
form the partial localisation Az ⊆ Q(A). Now if ac−1 ∈ Q(A) for some a ∈ A and
some regular element c ∈ A, then the descending chain of right ideals A > cA >
c2A > · · · has each subquotient isomorphic to A/cA, so A/cA must have finite
length as an A-module since K(A) 6 1. Hence zt ∈ cA for some t because z ∈ J(A),
so zt = cx for some x ∈ A. Therefore ac−1 = axz−t ∈ Az and Q(A) = Az. �

3.6. Orders and maximal orders. Let B be a subring of Q(A) containing A.
Recall [18, §3.1.9] that B is equivalent to A as an order if there are units a, b ∈ Q(A)
such that aBb ⊆ A. We define

S := {B 6 Q(A) : A 6 B and B is equivalent to A}.
Elements of S maximal with respect to inclusion are called maximal orders. It
turns out that these maximal orders have a very precise structure. We say that
a Noetherian domain D with skewfield of fractions Q(D) is a non-commutative
discrete valuation ring if for all non-zero x ∈ Q(D), either x ∈ D or x−1 ∈ D.

Theorem. Let B ∈ S be a maximal order. Then there exists an integer k > 1 and
a non-commutative complete discrete valuation ring D, such that B is isomorphic
to a complete k × k matrix ring over D:

B ∼= Mk(D).
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The proof is given below in §3.10.

3.7. Rings of Krull dimension 1. Orders B ∈ S have properties similar to A.
More precisely:

Proposition. Let B ∈ S. Then

(a) B is contained in Az−k = z−kA for some k > 0,
(b) B is a prime, Noetherian order in Q(A),
(c) B has right and left Krull dimension 1,
(d) B is semilocal,
(e) B is right and left bounded.

Proof. (a) Since B is equivalent to A we can find units a, b ∈ Q(A) such that
B ⊆ a−1Ab−1. By Proposition 3.5, Q(A) = Az so there exists an integer k such
that a−1, b−1 ∈ Az−k. Since z ∈ A is normal, B ⊆ Az−k = z−kA.

(b) By part (a), B is a Noetherian A-module on both sides, so B is itself Noe-
therian. Also B is a prime order in Q(A) by [18, Corollary 3.1.6 (i)].

(c) Since B is finitely generated over A on both sides, [18, Lemma 6.2.5] and
Proposition 3.5 together imply

K(BB) 6 K(BA) 6 K(AA) 6 1.

If K(B) = 0, then the regular element z ∈ B is a unit in B by [18, Proposition
3.1.1], and A < z−1A < z−2A < z−3A < · · · is a strictly ascending chain in the
Noetherian A-module B. Hence K(BB) = 1 and similarly K(BB) = 1.

(d) Since z ∈ A is normal, B/Bz is an A − A/zA-bimodule, which is finitely
generated on both sides. Since A/zA is Artinian, B/Bz must also be Artinian as
a left A-module by Lenagan’s Lemma [18, Theorem 4.1.6]. Because z ∈ J(A), we
deduce that znB ⊆ Bz for some n > 1. Now if M is a simple right B-module, then
M is a finitely generated non-zero right A-module, so Mz < M by Nakayama’s
Lemma. Hence

MznB ⊆MBz ⊆Mz < M ;

but MznB is a B-submodule of M , so MznB = 0 because M is simple. Therefore
zn ∈ J(B) and hence B/J(B) is Artinian as a right A-module and therefore as a
right B-module. Hence B is semilocal.

(e) Recall that B is right bounded if every essential right ideal of B contains
a non-zero two-sided ideal of B. Now if I is an essential right ideal of B, then
K(B/I) < K(B) = 1 by [18, Proposition 6.3.10(i)], so B/I is Artinian and therefore
J(B)m ⊆ I for some m. Now J(B) 6= 0 because K(B) = 1 by part (c) and
K(B/J(B)) = 0 by part (d). Finally B is prime, so J(B)m is a non-zero two-sided
ideal of B contained in I. A similar argument shows that B is also left bounded. �

3.8. Reflexive ideals. Recall that an essential left ideal I of an order B ∈ S is
reflexive if (I−1)−1 = I where I−1 = {q ∈ Q(A) : Iq ⊆ B} and (I−1)−1 = {q ∈
Q(A) : qI−1 ⊆ B}. Reflexive right ideals are defined similarly. A prime c-ideal is a
non-zero prime ideal of B which is reflexive as a left ideal. In the case when B is a
maximal order, it follows from [18, Proposition 5.1.8] that a prime ideal is reflexive
as a left ideal if and only if it is reflexive as a right ideal.

Proposition. Let B ∈ S be a maximal order. Then every non-zero prime ideal I
of B is reflexive.
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Proof. Since K(B) = 1 by Lemma 3.7(c), B/I is Artinian by [18, Proposition
6.3.11(ii)] so I contains a power of J(B). Because I is prime, J(B) ⊆ I. Since B is
semilocal by Lemma 3.7(d), we see that B only has finitely many non-zero prime
c-ideals P1, . . . , Pn, say.

Since B is a prime maximal order, every prime c-ideal of B is localisable by a
result of Goldie [10] — see also [7, Proposition 1.7]. Let Bi denote the localisation
of B at C(Pi). Because B is bounded by Lemma 3.7(e), it follows from the work of
Chamarie [7, Proposition 1.10(b)] that

B = B1 ∩B2 ∩ · · · ∩Bn.

Note that this result implies that B has at least one prime c-ideal. Moreover each
Bi is a local ring, with Jacobson radical J(Bi) = PiBi, by [7, Proposition 1.9].

Let x ∈ P1 ∩ P2 ∩ · · · ∩ Pn. Then x ∈ J(Bi) for all i, so

1 +BxB ⊆ 1 +BixBi ⊆ B×i
for all i, and therefore 1 +BxB ⊆ B×1 ∩ · · · ∩B×n ⊆ B×. Hence x ∈ J(B) and

P1 · P2 · · · · · Pn ⊆ P1 ∩ P2 ∩ · · · ∩ Pn ⊆ J(B) ⊆ I.

Because I is prime, we deduce that Pi ⊆ I for some i. But Pi is a maximal two-sided
ideal since J(B) ⊆ Pi. Hence I = Pi is reflexive. �

3.9. Dedekind prime rings. Recall that a Noetherian ring B is left (right) hered-
itary if every left (right) ideal of B is projective. Equivalently, B has left (right)
global dimension 6 1. B is said to be a Dedekind prime ring if

• B is a prime maximal order,
• B is left and right hereditary.

Proposition. Let B ∈ S be a maximal order. Then B is a Dedekind prime ring.

Proof. By symmetry, it is enough to show that B is left hereditary. Let P be
a maximal two-sided ideal of B. Then P is reflexive by Proposition 3.8. Now
P ⊆ P−1P ⊆ B so P−1P = P or P−1P = B by the maximality of P . Consider
Ol(P ) := {q ∈ Q(A) : qP ⊆ P} — this is an order in Q(A) equivalent to B by
[18, Lemma 3.1.12(i)]. Now P−1P = P implies P−1 ⊆ Ol(P ) = B because B is a
maximal order contained in Ol(P ), and then B = (P−1)−1 = P , a contradiction.
So P−1P = B: every maximal two-sided ideal of B is left invertible. It now follows
from the Dual Basis Lemma [18, Lemma 3.5.2(ii)] that every maximal two-sided
ideal of B is projective as a left B-module.

Let M be a simple left B-module. Since B is semilocal by Lemma 3.7(d), P :=
AnnB(M) is a maximal ideal of B and B/P is isomorphic to a direct sum of finitely
many copies of M as a left B-module. Let pd(N) denote the projective dimension
of a B-module N ; then

pd(M) = pd(B/P ) 6 1

because P is projective. Now let I be any non-zero left ideal of B; then we can find
another left ideal J of B such that L := I ⊕ J is essential. Since K(B) 6 1, B/L
has finite length by [18, Proposition 6.3.10(i)] and therefore

pd(B/L) 6 1

by [18, §7.1.6]. Hence L is projective by Schanuel’s Lemma [18, §7.1.2] and therefore
I is also projective. �
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3.10. Proof of Theorem 3.6. The hard work has already been done; it remains
to apply a result of Gwynne and Robson [12].

By Proposition 3.9, B is a Dedekind prime ring. So B is an Asano order, by
[18, Theorem 5.2.10]. Let P1, . . . , Pn be the maximal two-sided ideals of B and
J = J(B). Then J = P1P2 · · ·Pn and

Jk = P k1 P
k
2 · · ·P kn = P k1 ∩ P k2 ∩ · · · ∩ P kn for all k > 1

by [18, Theorem 5.2.9]. Hence each factor ring B/Jk decomposes as a direct sum

B

Jk
∼=

B

P k1
⊕ B

P k2
⊕ · · · ⊕ B

P kn
.

Passing to the inverse limit, we see that the J-adic completion of B isomorphic to
the direct sum of the Pi-adic completions of B:

B̂J ∼= B̂P1 ⊕ B̂P2 ⊕ · · · ⊕ B̂Pn .

But B is a finitely generated A-module which is z-adically complete by Proposition
3.5, so B is also complete with respect to the z-adic filtration

B > Bz > Bz2 > · · · .

We saw in the proof of Lemma 3.7(d) that zn ∈ J(B) for some n and that B/Bz is
an Artinian left A-module; therefore B/Bz is also an Artinian left B-module and

J(B)m ⊆ Bz for some z. It follows that B is J(B)-adically complete: B̂J = B.
Since B is prime, we deduce that B has a unique non-zero prime ideal P and

B̂P = B. In this situation, [12, Theorem 2.3] states that

B ∼= Mk(D)

for some complete, scalar local, principal ideal domain D. But any such D is a
non-commutative complete discrete valuation ring. �

3.11. Existence of maximal orders in S. The theory developed above must be
well-known to the experts. However it would not be very useful unless we could
show that maximal orders in S actually exist. Our assumptions on A are fortunately
strong enough to allow us to prove precisely this.

Definition. The left conductor of B ∈ S is the largest left ideal IB of B contained
in A.

Lemma. IB is a non-zero two-sided ideal of A, and IC ⊆ IB whenever B ⊆ C are
in S.

Proof. By Proposition 3.7(a), B is contained in Az−k for some k > 0. Hence Bzk

is a non-zero left ideal of B contained in A, whence IB 6= 0. If a ∈ A, then IBa ⊆ A
is still a left ideal of B contained in A so IBa ⊆ IB by the maximality of IB ; hence
IB is a two-sided ideal of A. Finally if B ⊆ C then BIC ⊆ IC so IC is a left ideal
of B contained in A, whence IC ⊆ IB . �

We need one more preparatory result.

Proposition. Suppose that I1 ⊇ I2 ⊇ I3 ⊇ · · · is a descending chain of left ideals
of A such that In * Az for all n. Then I∞ := ∩∞n=1In is non-zero.
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Proof. Since A/Az is Artinian, the chain

I1 +Az ⊇ I2 +Az ⊇ · · ·

stops: there exists k1 > 1 such that In + Az = Ik1 + Az for all n > k1. Pick
x1 ∈ Ik1\Az. Since A/Az2 is Artinian, the chain

I1 +Az2 ⊇ I2 +Az2 ⊇ · · ·

stops: there exists k2 > k1 such that In + Az2 = Ik2 + Az2 for all n > k2. Pick
x2 ∈ Ik2 such that x2 ≡ x1 mod Az. Continuing like this, we construct a sequence
of integers 1 6 k1 < k2 < k3 < · · · and a sequence of elements

x1 ∈ Ik1 , x2 ∈ Ik2 , x3 ∈ Ik3 , · · · ,

such that xn ≡ xn−1 mod Azn−1 for all n.
Since A is z-adically complete by assumption, the limit

x∞ := lim
n→∞

xn

exists in A. Fix n > 1; then xm ∈ Ikm ⊆ Im ⊆ In whenever m > n because
km > m. Since the z-adic filtration on A is Zariskian by Lemma 3.5, each left ideal
In is closed by [16, Chapter II, Theorem 2.1.2], so x∞ ∈ In for all n > 1. Moreover
x∞ ≡ x1 mod Az so x∞ is non-zero by construction. Hence

0 6= x∞ ∈ ∩∞n=1In

as claimed. �

Theorem. The collection S of orders containing A and equivalent to A satisfies
the ascending chain condition.

Proof. Let B1 ⊆ B2 ⊆ B3 ⊆ · · · be an ascending chain in S. Let In = IBn be the
left conductor of Bn; then

I1 ⊇ I2 ⊇ I3 ⊇ · · ·

is a descending chain of non-zero two-sided ideals of A by the Lemma. If In ⊆ Az for
some n then Inz

−1 ⊆ A is still a left ideal of Bn so Inz
−1 ⊆ In by the maximality of

In. Therefore Inz = In, which forces In = 0 by Nakayama’s Lemma, a contradiction
— so in fact In * Az for any n. Since A is z-adically complete, I∞ := ∩∞n=1In is
non-zero by the Proposition.

Fix n > 1 and let m > n. Then

BnI∞ ⊆ BnIm ⊆ BmIm ⊆ Im

so BnI∞ ⊆ I∞ for all n. Hence every term Bn in our ascending chain is contained
in Ol(I∞) := {q ∈ Q(A) : qI∞ ⊆ I∞}. Since I∞ is a non-zero two-sided ideal of the
prime ring A, it contains a regular element by Goldie’s Theorem [18, Proposition
2.3.5(ii)]. Therefore Ol(I∞) ∈ S by [18, Lemma 3.1.12(i)]. In particular, Ol(I∞)
is a Noetherian A-module on both sides by Proposition 3.7(a). So the chain B1 ⊆
B2 ⊆ B3 ⊆ · · · ⊆ Ol(I∞) of A-modules must terminate. �
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3.12. Remarks. 1. Theorem 3.11 and Proposition 3.11 both fail if A is not as-
sumed to be z-adically complete, even in the case when A is commutative. This is
clearly illustrated by Akizuki’s example [1] of a one-dimensional commutative Noe-
therian local domain A whose integral closure is not a finitely generated A-module.
See [20] for a more modern version of this example. This explains the need to pass
to the microlocalisation of R.

2. It is well-known [11, Théorème 23.1.5] that a commutative complete local
Noetherian domain A is a Japanese ring, so in particular the integral closure of
A in its field of fractions is a finitely generated A-module. This is usually proved
using Cohen’s Structure Theorem for complete local commutative Noetherian rings,
which is not available in the non-commutative case. In the special case when
K(A) = 1, Theorem 3.11 gives another proof of this fact: the maximal order B is
a commutative complete discrete valuation ring by Theorem 3.6 and it is integral
over A, so it must be the integral closure of A in Q(A).

3.13. Properties of B/J(B). Before we can give the proof of Theorem C, we need
to study the factor ring B/J(B) more carefully.

Proposition. Let B ∈ S be a maximal order. Then C := B/J(B) is a central
simple algebra and the associated graded ring of B with respect to the J(B)-adic
filtration is isomorphic to the polynomial ring C[X].

Proof. By Theorem 3.6, B is isomorphic to Mk(D) for some non-commutative
discrete valuation ring D. Pick any element c ∈ J(D)\J(D)2; then c is a regular
normal element in B which generates J(B), and

grB = C[gr c;α]

is a skew-polynomial ring, where α : C → C is the automorphism induced by
conjugation by c.

By Proposition 3.7(a), C is a finitely generated Artinian A-module on both sides.
By Proposition 3.5, A is scalar local with maximal ideal J(A) and commutative
residue field A/J(A). Hence C is a finitely generated right A/J(A)t module for
some t > 1, say. Now because A/J(A) is commutative and J(A)/J(A)t is nilpotent,
A/J(A)t satisfies the polynomial identity (xy − yx)t. Hence C is a PI ring by [18,
Corollary 13.4.9(i)]. But C = B/J(B) is primitive by construction, so C is a central
simple algebra by Kaplansky’s Theorem [18, Theorem 13.3.8].

Now by the Skolem-Noether Theorem [22, Theorem 3.1.2], the automorphism
α : C → C is given by conjugation by some element q + cB ∈ C×. Because
cB = J(B), q must be a unit in B. Replacing the uniformizer c by q−1c then
has the effect of making the symbol X of c central in the graded ring grB, so
grB ∼= C[X] as claimed. �

3.14. Proof of Theorem C. By Theorem 3.11, we can find a maximal order B
of Q(A) equivalent to A. Then we have the following commutative diagram of
rings, where the vertical maps are inclusions of the rings in the top row into their
respective classical rings of quotients:

R �
� //� _

��

U // //� _

��

A
� � //� _

��

B� _

��
Q
� � // Q̂

η
// // Q(A) Q(B).
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Let η : Q̂ � Q(A) be the natural surjection, and let v : Q → Z ∪ {∞} be the
restriction of the J(B)-adic filtration on Q(A) to Q; thus

v(x) = min{n ∈ Z : η(x) ∈ J(B)n}
if x 6= 0 and v(0) =∞. Note that this filtration is separated because Q is a simple
ring and v(1) = 0.

(a) Recall from Proposition 3.2(c) that Y ∈ gr Q̂ ∼= (grR)T is a unit of degree
` > 0. By construction, the element y ∈ J(U) satisfies gr y = Y , so

(Q̂)n` = ynU for all n ∈ Z.

By the proof of Lemma 3.7(d), zt ∈ J(B) for a large enough integer t, where
z = η(y) ∈ J(A). Hence

η
(

(Q̂)tn`

)
= ztnA ⊆ J(B)n

for all n > 0. This means that the map η is continuous with respect to the natural

filtration on Q̂ and the J(B)-adic filtration on Q(A). But the map R → Q̂ is
continuous by the definition of the filtration on Q so the composite map (R,w)→
(Q, v) must also be continuous.

(b) This is clear, because η(R0) ⊆ η(U) = A ⊆ B by construction.

(c) The inclusion Q ↪→ Q̂ is continuous with dense image, and η : Q̂→ Q(A) is
a continuous surjection. Therefore η(Q) is dense in Q(A), and

grv Q ∼= gr η(Q) = grQ(A).

By Proposition 3.13, grB = C[X] where C = B/J(B) is a central simple algebra,
so grQ(A) = C[X,X−1].

Recall from Theorem 3.6 that B ∼= Mn(D) for some non-commutative discrete
valuation ring D. The restriction of v to Q(D) is a valuation by construction and
Z(Q) is a subring of Q(D), so the restriction of v to Z(Q) is also a valuation.

4. Automorphisms of p-valued groups

4.1. p-valued groups and p-saturated groups. Recall [15, Definition III.2.1.2]
that a p-valuation on a group G is a function

ω : G→ R∞
such that for all x, y ∈ G we have

• ω(xy−1) > min{ω(x), ω(y)},
• ω(x−1y−1xy) > ω(x) + ω(y),
• ω(x) =∞ if and only if x = 1,
• ω(x) > 1

p−1 , and

• ω(xp) = ω(x) + 1.

The group G is said to be p-valued if it has a p-valuation ω. A morphism of p-
valued groups is a group homomorphism f : G→ H such that ω(f(x)) > ω(x) for
all x ∈ G.

Define, for each ν ∈ R, Gν = {g ∈ G : ω(g) > ν}; this is a normal subgroup
of G. The group G carries a natural topology which has the Gν as a fundamental
system of open neighbourhoods of the identity; in this way G becomes a topological
group and we say that G is a complete p-valued group if it is complete with respect
to this topology.
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Recall [15, Definition III.2.1.6] that a complete p-valued group G is said to be
p-saturated if the following condition holds:
• if ω(x) > 1/(p− 1) + 1, there exists y ∈ G such that x = yp.

4.2. Ordered bases. Let G be a complete p-valued group. Recall [15, III.2.2.4]
that an ordered basis for G is a subset {xi : i ∈ I} of G for some totally ordered
index set I, such that

• every element y ∈ G can be written uniquely as a convergent product
y =

∏
i∈I

xλii for some λi ∈ Zp, and

• ω(y) = inf
i∈I

(ω(xi) + vp(λi)).

Recall that the associated graded group of G is the group

grG =
⊕
ν∈R

Gν/Gν+

where Gν+ := {g ∈ G : ω(g) > ν}. This has the structure of an R-graded Fp[π]-Lie
algebra, where the action of π on homogeneous components is given by π · gGν+ =
gpG(ν+1)+ . The p-valuation ω on G is said to be discrete if ω(G\{1}) is a discrete
subset of R.

We say that the complete p-valued group G has finite rank if it has a finite
ordered basis. This property turns out to be independent of the particular p-
valuation on G.

Lemma. Let H be a closed subgroup of a complete p-valued group G of finite rank.
Then there exists a sequence of integers n1 6 n2 6 · · · 6 ne and an ordered basis

{g1, . . . , gd} for G such that {gp
n1

1 , gp
n2

2 , · · · , gpnee } is an ordered basis for H.

Proof. Consider the Fp[π]-modules grH ⊆ grG; by the elementary divisors theorem
[15, Theorem I.1.2.4] we can find a homogeneous basis {ξ1, . . . , ξd} for grG over
Fp[π] such that {πn1ξ1, . . . , π

neξe} is a basis for grH over Fp[π] for some e 6 d and
some increasing sequence of non-negative integers ni.

Let gi ∈ G be any lift of ξi ∈ grG. Because the p-valuation on G is discrete
by [15, Proposition III.2.2.6], we deduce that {g1, . . . , gd} is an ordered basis of G

and that {gp
n1

1 , . . . , gp
ne

e } is an ordered basis for H by applying [15, Proposition
III.2.2.5]. �

Clearly d = dimG and e = dimH are the ranks of H and G respectively, and
e = d = dimG if and only if H is open in G.

4.3. Lazard’s isomorphism of categories. Let g be a Lie algebra over Zp. Recall
[15, I.2.2.4] that g is said to be valued if there exists a function w : g→ R∞ satisfying

• w(x− y) > min{w(x), w(y)},
• w([x, y]) > w(x) + w(y),
• w(x) =∞ if and only if x = 0,
• w(λx) = vp(λ) + w(x)

for all x, y ∈ g and λ ∈ Zp. The Lie algebra g is said to be saturated if it is complete
with respect to the topology defined by the submodules gν = {x ∈ g : w(x) > ν}
of g, and the following extra conditions hold:

• w(x) > 1
p−1 for all x ∈ g, and

• if w(x) > 1/(p− 1) + 1, there exists y ∈ g such that x = py.
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A morphism of saturated Zp-Lie algebras is a Lie homomorphism f : g → g′ such
that w(f(x)) > w(x) for all x ∈ g.

Lazard proved [15, IV.3.2.6] that there is an isomorphism between the category
of p-saturated groups and the category of saturated Zp-Lie algebras. Let us recall
how this isomorphism works. If G is a p-saturated group, let the corresponding
saturated Zp-Lie algebra be called log(G). We view it as a set of formal symbols
{log(g) : g ∈ G}; the Zp-Lie algebra structure on this set is given by the formulas

λ · log(g) = log(gλ), g ∈ G,λ ∈ Zp
log(g) + log(h) = log

(
lim
r→∞

(gp
r

hp
r

)p
−r
)
, g, h ∈ G

[log(g), log(h)] = log
(

lim
r→∞

(gp
r

hp
r

g−p
r

h−p
r

)p
−2r
)

g, h ∈ G

and the valuation w is given by w(log(g)) = ω(g). Conversely, if g is a saturated
Zp-Lie algebra, let the corresponding p-saturated group be called exp(g). We view
it as a set of formal symbols {exp(u) = eu : u ∈ g}; the group structure on this set
is given by

eu · ev = exp(Φ(u, v)) u, v ∈ g,
(eu)−1 = e−u u ∈ g

and the p-valuation is given by ω(eu) = w(u) for all u ∈ g. Here Φ(u, v) =
u+ v + 1

2 [u, v] + · · · is the Baker-Campbell-Hausdorff series, an infinite series with
rational coefficients consisting only of Lie words in u and v; see [15, Théorème
IV.3.2.2].

4.4. Transport of structure. Let f : G→ H be an increasing map between two
p-saturated groups G and H in the sense that

ω(f(g)) > ω(g) for all g ∈ G

but f is not necessarily a group homomorphism. Because log : G → log(G) and
exp : log(G)→ G are isometries by definition, f induces an increasing map

f∗ := log ◦f ◦ exp : log(G)→ log(H)

between the associated saturated Zp-Lie algebras. Similarly if g : g → h is an
increasing map between two saturated Zp-Lie algebras g and h, then

g∗ = exp ◦g ◦ log : exp(g)→ exp(h)

is an increasing map between the associated p-saturated groups exp(g) and exp(h).
These notations extend Lazard’s isomorphism of categories in the sense that f∗
is the morphism of saturated Zp-Lie algebras associated with a morphism of p-
saturated groups f , and g∗ is the morphism of p-saturated groups associated with
a morphism of saturated Zp-Lie algebras g.

4.5. Automorphisms.

Definition. Let G be a p-valued group and let ϕ : G → G be an automorphism.
We define the degree of ϕ to be

degω(ϕ) := inf
g∈G

(ω(ϕ(g)g−1)− ω(g)).

We also define Autω(G) :=
{
ϕ ∈ Aut(G) : degω(ϕ) > 1

p−1

}
.
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Note that ω(ϕ(g)g−1) > ω(g) + degω(ϕ) for all g ∈ G, and

degω(ϕ) > 0 if and only if ω(ϕ(g)) > ω(g) for all g ∈ G

because ω(ϕ(g)) > min{ω(ϕ(g)g−1), ω(g)}. Thus ϕ is an increasing map whenever
degω(ϕ) > 0.

Lemma. Let ϕ,ψ ∈ Aut(G) and suppose that degω(ϕ) > 0. Then

(a) ω(ϕ(g)) = ω(g) for all g ∈ G,
(b) degω(ϕψ) > min{degω(ϕ),degω(ψ)},
(c) degω(ϕ−1) = degω(ϕ).

Proof. We have already seen above that degω(ϕ) > 0 implies that ω(ϕ(g)) > ω(g).
Since ω(h−1) = ω(h) for all h ∈ G, we have ω(gϕ(g)−1) = ω(ϕ(g)g−1) > ω(g)
because degω(ϕ) > 0 by assumption. Now if ω(ϕ(g)) > ω(g) then

ω(g) > min{ω(gϕ(g)−1), ω(ϕ(g))} > ω(g)

gives a contradiction, and part (a) follows. Next,

ω((ϕψ)(g)g−1) = ω
(
(ϕψ)(g)ψ(g)−1 · ψ(g)g−1

)
>

> min{ω(ϕ(ψ(g))ψ(g)−1), ω(ψ(g)g−1)} >
> min{degω(ϕ),degω(ψ)}

for any g ∈ G, so deg(ϕψ) > min{degω(ϕ),degω(ψ)}. Finally, ω(ϕ−1(g)) =
ω(ϕ(ϕ−1(g))) = ω(g) for any g ∈ G by part (a), so

ω(ϕ−1(g)g−1) = ω(gϕ−1(g)−1) > degω(ϕ) + ω(ϕ−1(g)) = degω(ϕ) + ω(g)

for all g ∈ G. Hence degω(ϕ−1) > degω(ϕ), and applying the same argument to
ϕ−1 in place of ϕ gives degω(ϕ) > degω(ϕ−1). �

Corollary. ϕ is an isometry whenever degω(ϕ) > 0, and Autω(G) is a subgroup
of Aut(G).

Similarly, we define the degree of a Zp-linear endomorphism σ : g→ g of a valued
Zp-Lie algebra g by the formula

degw(σ) := inf
u∈g

(w(σ(u))− w(u)).

In this way A = EndZp(g) becomes a valued associative Zp-algebra in the sense of
[15, I.2.2.4]. Then

GLw(g) :=

{
σ ∈ A : degw(σ − 1) >

1

p− 1

}
is a subgroup of the group of units GL(g) of A and the map

σ 7→ degw(σ − 1)

is a p-valuation on GLw(g) by [15, Exercise III.3.2.6]. See also [24, Example 23.2]
for more details.
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4.6. Proposition. Let G be a p-saturated group and let g = log(G). The transport
of structure map ϕ 7→ ϕ∗ defines an isometric monomorphism Autω(G) ↪→ GLw(g).

Proof. The fact that ϕ∗ is an automorphism of g and that ϕ 7→ ϕ∗ is a group
homomorphism follows from the isomorphism of categories theorem [15, IV.3.2.6].
Now

w(ϕ∗(log(g))− log(g)) = w(log(ϕ(g)) + log(g−1))

= ω
(

lim
r→∞

(ϕ(g)p
r

g−p
r

)p
−r
)
.

However [15, Proposition III.2.1.4] shows that

ω
(

(ϕ(g)p
r

g−p
r

)p
−r
)

= ω(ϕ(g)g−1)

for all r, so we see that

w(ϕ∗(log(g))− log(g)) = ω(ϕ(g)g−1) for all g ∈ G.
Therefore

degw(ϕ∗ − 1) = inf
u∈g

(w(ϕ∗(u)− u)− w(u)) =

= inf
g∈G

(ω(ϕ(g)g−1)− ω(g)) = degω(ϕ)

which shows that ϕ∗ ∈ GLω(g) whenever ϕ ∈ Autω(G). �

Corollary. Let G be a p-saturated group. Then degω is a p-valuation on Autω(G)
and Autω(G) is saturated with respect to this filtration.

Proof. Apply the Proposition and [15, Exercise III.3.2.6]. �

4.7. The functor Sat. The restriction of a p-valuation on a group G to any sub-
group of G is again a p-valuation, so every subgroup of a p-valued group is p-valued.
In particular, every subgroup of a p-saturated group is p-valued. Conversely, Lazard
shows in [15, III.3.3.1] that if G is a p-valued group then there exists an isometric
inclusion ιG : G → Sat(G) into a p-saturated group Sat(G), and that Sat(G) = G
if and only if G is p-saturated. Moreover every morphism f : G → H of p-valued
groups extends to a unique morphism Sat(f) : Sat(G) → Sat(H) making Sat into
a functor. Thus p-valued groups are precisely the subgroups of p-saturated groups.

Lemma. Let G be a complete p-valued group of finite rank. Then f 7→ Sat(f) is
an isometric embedding of Autω(G) into Autω(Sat(G)).

Proof. Let G̃ = Sat(G) and let ϕ̃ = Sat(ϕ) be the extension of ϕ ∈ Autω(G) to

Aut(G̃). Since ιG : G→ Sat(G) is an isometry, we will view G as a subgroup of G̃

and denote the p-valuation on G̃ by the same letter ω.
Now clearly degω(ϕ̃) 6 degω(ϕ). To see that the reverse inequality holds, let

g ∈ G̃. Because G has finite rank, [15, Theorem IV.3.4.1] tells us that we can find
n ∈ N such that gp

n ∈ G. Now by [15, Proposition III.2.1.4],

ω(ϕ̃(g)g−1) = ω(ϕ̃(g)p
n

g−p
n

)− n
= ω(ϕ(gp

n

)g−p
n

)− n >
> degω(ϕ) + ω(gp

n

)− n = degω(ϕ) + ω(g).

because ϕ̃|G = ϕ. Therefore

ω(ϕ̃(g)g−1) > degω(ϕ) + ω(g) for all g ∈ G̃,
and degω(ϕ̃) > degω(ϕ). �
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Corollary. Let G be a complete p-valued group of finite rank. Then

(a) degω is a p-valuation on Autω(G), and
(b) Autω(G) is torsion-free.

Proof. (a) This follows from Corollary 4.6.
(b) This is clear. �

4.8. The logarithm of an automorphism. Let G be a p-saturated group. By
Proposition 4.6, degw(ϕ∗−1) > 1/(p−1) for any ϕ ∈ Autω(G). Hence the logarithm
series

∞∑
k=1

(−1)k+1

k
(ϕ∗ − 1)k

converges to an element logϕ∗, say, inside EndZp(g) by [15, III.1.1.5]. It is easy to
see that

w((logϕ∗)(u)) > w(u) + degω(ϕ)

so logϕ∗ is an increasing function g→ g and we can transport it back to G.

Definition. Let G be a p-saturated group and let ϕ ∈ Autω(G). Define the loga-
rithm of ϕ by the formula

z(ϕ) = (logϕ∗)
∗ : G→ G.

Recalling the notation of §4.4, we see that z(ϕ) is a priori just an increasing map
z(ϕ) : G → G. We will shortly see that in some cases, there is a way of defining
z(ϕ) more directly using the group structure on G.

4.9. Automorphisms trivial mod centre. Let G be a p-saturated group and
let Z be its centre. Let AutωZ(G) denote the subgroup of Autω(G) which consists
of automorphisms that induce the trivial automorphism of G/Z. Equivalently,

AutωZ(G) = {ϕ ∈ Autω(G) : ϕ(g)g−1 ∈ Z for all g ∈ G.}

Proposition. Let G be a p-saturated group and let ϕ ∈ AutωZ(G).

(a) For all g ∈ G and all r > 0, there exists εr(g) ∈ G such that

ϕp
r

(g)g−1 = z(ϕ)(g)p
r

εr(g)p
2r

.

(b) z(ϕ)(g) = lim
r→∞

(ϕp
r

(g)g−1)p
−r

for all g ∈ G.

(c) z(ϕ) is a group homomorphism from G to Z.

Proof. (a) Using transport of structure, let us compare the expressions

ϕp
r

(g)g−1 and z(ϕ)(g)p
r

.

Write g = eu ∈ G for some u ∈ g = log(G), and σ = ϕ∗ = eα for some α ∈
EndZp(g). Then

log(z(ϕ)(eu)p
r

) = pr(log σ)(u) = prα(u),

whereas
log(ϕp

r

(eu)e−u) = log(eσ
pr (u)e−u) = Φ(σp

r

(u),−u).

Now because ϕp
r ∈ AutωZ(G), σp

r − 1 maps g into Z(g) and therefore

[σp
r

(u),−u] = [σp
r

(u)− u,−u] = 0.

Therefore
Φ(σp

r

(u),−u) = σp
r

(u)− u = prα(u) + p2rβr(u)
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for some βr(u) ∈ g. So

log(z(ϕ)(g)−p
r

ϕp
r

(g)g−1) = Φ(−prα(u), prα(u) + p2rβr(u)) ∈ p2rg

and part (a) follows.
(b) The above computation shows that

log((ϕp
r

(g)g−1)p
−r

) = α(log(g)) + prβr(log(g)) = log(z(ϕ)(g)) + prβr(log(g))

for all g ∈ G. Therefore

lim
r→∞

log((ϕp
r

(g)g−1)p
−r

) = log(z(ϕ)(g))

for all g ∈ G. Part (b) now follows because log : G→ g is a homeomorphism.
(c) For each r > 0 and g, h ∈ G we have

ϕp
r

(gh)(gh)−1 = ϕp
r

(g)ϕp
r

(h)h−1g−1 = ϕp
r

(g)g−1 · ϕp
r

(h)h−1

because ϕp
r

(h)h−1 is central in G by assumption on ϕ. So g 7→ ϕp
r

(g)g−1 is a
group homomorphism G→ Z for all r. Now take limits. �

4.10. Proposition. Let G be a p-valued group of finite rank, let ϕ ∈ AutωZ(G) and

let ϕ̃ be the extension of ϕ to G̃ = Sat(G). Then ϕ̃ is also trivial mod centre.

Proof. By [15, Theorem IV.3.4.1], we can find an integer n such that G̃p
n

6 G.

Because G̃ is torsion-free, it follows that Z(G) 6 Z(G̃). Hence ϕ(g)g−1 ∈ Z(G̃) for

all g ∈ G̃pn .
Now fix g ∈ G̃ and consider log(ϕ̃(g))− log(g) ∈ log(G̃). We have

pn(log(ϕ̃(g))− log(g)) = log(ϕ(gp
n

))− log(gp
n

) = log( lim
r→∞

(ϕ(gp
n+r

)g−p
n+r

)p
−r

)

which lies in log(Z(G̃)) because G̃/Z(G̃) is torsion-free. Since log(G̃) is a torsion-

free Zp-module we deduce that log(ϕ̃(g))− log(g) = log(z) for some z ∈ Z(G̃), and
therefore ϕ̃(g) = gz because log is a bijection. Thus ϕ̃ is trivial mod centre as
claimed. �

5. Γ-primes and open subgroups

5.1. Completed group rings. From now on, k will denote an arbitrary field of
characteristic p and G will denote a compact p-adic analytic group. Let kG denote
the completed group ring of G with coefficients in k:

kG := lim
←−

k[G/U ]

where the inverse limit is taken over all the open normal subgroups U of G.

Lemma. Let H be a closed subgroup of G, and let I1, . . . , Im, J be right ideals of
kH. Then

(a) I1kG ∩ · · · ∩ ImkG = (I1 ∩ · · · ∩ Im)kG, and
(b) JkG ∩ kH = J .

Proof. The proof of [5, Lemma 5.1] shows that kG is a faithfully flat kH-module.
Now part (a) follows by applying the − ⊗kH kG functor to the exact sequence
0 → I1 ∩ · · · ∩ Im → kH → ⊕mj=1kH/Ij , and part (b) follows by applying [18,
Lemma 7.2.5] to the kH-module kH/J . �
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5.2. I† and Iχ. Let I be a right ideal in kG and recall the controller subroup Iχ

of I from §1.5. Following Roseblade, we define another subgroup associated to I as
follows:

I† := (1 + I) ∩G
and say that I is faithful precisely when I† is trivial. Since kG has a Zariskian
filtration that generates its natural topology, every right ideal I is closed. Since the
natural map G → kG that sends g 7→ g − 1 is continuous and I† is the preimage
of I under this map, we see that I† is always a closed subgroup of G. We remark
that I† is the largest subgroup H of G such that (H − 1)kG is contained in I.

Lemma. Let I be a right ideal of kG and let ϕ ∈ Aut(G). Suppose that the
extension of ϕ to an algebra automorphism of kG preserves I. Then

(a) ϕ preserves both I† and Iχ, and
(b) I† is contained in Iχ whenever I 6= kG.

Proof. (a) Since kG is Noetherian, the ascending chain I ⊆ ϕ−1(I) ⊆ ϕ−2(I) ⊆ · · ·
terminates so ϕ−1 preserves I. Applying ϕ−1 to the equation I = (I ∩ kIχ)kG
shows that ϕ−1(Iχ) controls I and therefore contains Iχ. Hence ϕ(Iχ) ⊆ Iχ, and
ϕ(I†) ⊆ I† is clear.

(b) Choose an open subgroup U that controls I, let {g1 = 1, . . . , gm} be a
complete set of right coset representatives for U in G and let x ∈ I†. Then x− 1 ∈
I so x − 1 =

∑m
i=1 rigi for some ri ∈ I ∩ kU . Since I is a proper right ideal

by assumption, equating coefficients shows that x must lie in U , since otherwise
−1 = r1 ∈ I. Hence I† ⊆ U for every open subgroup U that controls I and the
result follows. �

5.3. Isolated subgroups. We say that a closed normal subgroup H of a complete
p-valued group G is isolated if G/H is torsion-free.

Lemma. Let I be a two-sided ideal of kG.

(a) I† and Iχ are closed normal subgroups of G.
(b) If I is semiprime and G is pro-p, then G/I† has no non-trivial finite normal

subgroups.
(c) If I is semiprime and G is p-valued, then I† is isolated.

Proof. (a) Lemma 5.2(a) shows that Iχ is stable under every inner automorphism
of G, so Iχ is normal. It is clear that I† is also normal.

(b) Let N/I† be a finite normal subgroup of G/I†. Since G is pro-p, N/I† is a
finite p-group, so some power of the augmentation ideal of k[N/I†] is zero. Hence
((N − 1)kG)a ⊆ I for some integer a, but I is semiprime so in fact (N − 1)kG ⊆ I.
Therefore N 6 I† and N/I† is trivial.

(c) By [15, IV.3.4.1], Sat(I†)∩G is a closed normal subgroup of G containing I†

as a subgroup of finite index, so I† = Sat(I†)∩G by part (b). Hence G/I† embeds
into Sat(G)/ Sat(I†), which can be seen to be torsion-free by using [15, Proposition
III.2.1.4]. �

If we identify the completed group ring kZ2
p with the commutative power series

ring k[[x, y]], then we see that the controller of the prime ideal 〈x−yp〉 of k[[x, y]] is
the proper open subgroup Zp× pZp of Z2

p. This shows that the controller subgroup
need not be isolated, in general.
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5.4. Γ-prime ideals. Let Γ be a group acting on G by automorphisms. We say
that an ideal P of kG is Γ-prime if P is Γ-invariant, and whenever I, J are Γ-
invariant ideals of kG such that IJ ⊆ P , we have either I ⊆ P or J ⊆ P .

Lemma. Let P be a Γ-prime ideal of kG.

(a) P is semiprime.
(b) The minimal primes P1, . . . , Pm above P form a single Γ-orbit.

Proof. (a) Clearly the prime radical
√
P of P is Γ-invariant, and

√
P
n ⊆ P for

some n since kG is Noetherian. Therefore P =
√
P as P is Γ-prime.

(b) Let P1, . . . , P` be the Γ-orbit of P1. If ` < m then I := ∩i6`Pi and J :=
∩i>`Pi are Γ-invariant ideals and I ∩ J = P since P = P1 ∩ · · · ∩ Pm is semiprime
by part (a). Since P is Γ-prime, either I ⊆ P or J ⊆ P . If I ⊆ P then P1 · · ·P` ⊆
P ⊆ Pm forces Pm to be equal to one of the Pi for some i 6= m, a contradiction.
J ⊆ P is similarly impossible, so ` = m and Γ acts transtively on the Pi. �

If B is a subring of a commutative ring A and P is a prime ideal of A then
P ∩ B is always a prime ideal of B. In the non-commutative setting, P ∩ B will
in general not be a prime ideal; it may even fail to be semiprime. However for
completed group rings (and for group algebras of polycyclic groups) we have the
following positive result.

Proposition. Let P be a prime ideal of kG and let N be a closed normal subgroup
of G. Then P ∩ kN is a G-prime ideal of kN . In particular P ∩ kN is semiprime.

Proof. Let I, J be G-invariant ideals of kN with IJ ⊆ P ∩ kN . Then IkG and
JkG are two-sided ideals in kG whose product is contained in P , so without loss
of generality we may assume that IkG ⊆ P . Therefore I = IkG ∩ kN ⊆ P ∩ kN
by Lemma 5.1(b) and the result follows. �

5.5. Non-splitting primes. To prove our analogue of Zalesskii’s Theorem for a
prime ideal P , we would like to first reduce to the case when Pχ = G. Since
(P ∩kPχ)χ = Pχ, it is tempting to try to replace P by P ∩kPχ. However P ∩kPχ
will not in general be a prime ideal.

Definition. Let P be a prime ideal of kG. We say that P is non-splitting if P ∩kU
is again prime for any open normal subgroup U of G that controls P .

The reason for this definition is the following

Proposition. Let P be a non-splitting prime ideal of kG. Then P ∩kPχ is a prime
ideal of kPχ.

Proof. Since P is a two-sided ideal, Pχ is a closed normal subgroup of G. Let
P1, . . . , Pm be the minimal primes over P ∩ kPχ. Since P ∩ kPχ is G-prime by
Proposition 5.4, the conjugation action of G on the Pi is transitive by Lemma
5.4(b). Let U be the kernel of this action; then U is an closed normal subgroup of
G of finite index and therefore also open. Moreover U contains Pχ since the Pi are
two-sided ideals in kPχ, so P ∩ kU is prime by assumption. Now

P ∩ kU = (P ∩ kPχ)kU = P1kU ∩ · · · ∩ PmkU
by Lemma 5.1(a), and the PikU are two-sided ideals in kU by the definition of U .
Since P ∩ kU is prime, PikU = P ∩ kU for some i and therefore

P ∩ kPχ = P ∩ kU ∩ kPχ = (PikU) ∩ kPχ = Pi



PRIME IDEALS IN NILPOTENT IWASAWA ALGEBRAS 25

by Lemma 5.1(b). Hence P ∩ kPχ = Pi is prime. �

5.6. Essential decompositions.

Definition. Let A be a ring and let J1, . . . , Jm be proper right ideals of A with
intersection I.

(a) We say that I = J1 ∩ · · · ∩ Jm is an essential decomposition of I if the natural
embedding A

I ↪→
A
J1
⊕ A

J2
⊕ · · · ⊕ A

Jm
has essential image.

(b) If H is a subgroup of the group of units of A then we call the decomposition
H-invariant if H acts transtively by conjugation on the right ideals Ji.

It follows from the definition of uniform dimension [18, §2.2.10] that

udim(A/I) =

m∑
i=1

udim(A/Ji)

whenever I = J1 ∩ · · · ∩ Jm is an essential decomposition of I. This implies that
the number of terms m in any essential decomposition of I is bounded above by
udim(A/I).

Example. Let A be a semiprime Noetherian ring and let P1, . . . , Pm be the minimal
primes of A. Then 0 = P1∩· · ·∩Pm is an essential decomposition of the zero ideal.

Proof. Let A′ = (A/P1)⊕ · · · ⊕ (A/Pm) and let Q be the classical ring of quotients
of A. Then there exists a unit q ∈ Q such that qA′ ⊆ A ⊆ A′ by [18, Proposition
3.2.4(iii)]. By clearing denominators we may assume that q ∈ A is a regular element.
Suppose that M is an A-submodule of A′ such that A∩M = 0. Then qA∩qM = 0,
but qA ∼= A as a right ideal so udim(qA) = udim(A) and therefore qA is essential
in A by [18, Corollary 2.2.10(iii)]. Hence qM = 0, but q is regular so M = 0 and A
is essential in A′. �

5.7. Virtually prime right ideals.

Definition. Let I be a right ideal of kG. We say that I is virtually prime if
I = PkG for some prime ideal P of kU for some open subgroup U of G. If in
addition P is non-splitting, then we say that I is virtually non-splitting.

Clearly every prime ideal is virtually prime as a right ideal, and every non-
splitting prime ideal is a virtually non-splitting right ideal.

Lemma. Suppose that G is a pro-p group, let V be an open subgroup of G and let
M be a kV -module. If N is an essential kV -submodule of M then N ⊗kV kG is an
essential kG-submodule of M ⊗kV kG.

Proof. By an easy induction on the index of V in G, we are reduced to the case
when V is maximal in G. Because G is pro-p, V is normal in G. Now M ⊗kV kG
is isomorphic as a kV -module to a finite direct sum of twists Mg of M , as g ranges
over a set of coset representatives for V in G. Since Ng is essential in Mg for all
g ∈ G, N⊗kV kG is essential in M⊗kV kG by [18, Lemma 2.2.2(iv)] as a kV -module,
and therefore per force also as a kG-module. �

We now present a method of constructing virtually non-splitting right ideals
starting from arbitrary prime ideals.
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Theorem. Suppose that G is a pro-p group, let P be a prime ideal of kG and let
P = I1 ∩ I2 ∩ · · · ∩ Im be a G-invariant essential virtually prime decomposition of
P with m as large as possible. Then each Ij is virtually non-splitting.

Proof. By symmetry, it is enough to prove that I := I1 is virtually non-splitting.
Choose an open subgroup U of G such that J := I ∩ kU is prime and such that
I = JkG. Let V be an open normal subgroup of U which controls J and let
Q1, . . . , Qr be the minimal primes above J ∩ kV . Then (QikG)∩ kV = Qi for each
i by Lemma 5.1(b), so each QikG is virtually prime and we obtain a virtually prime
decomposition

I = JkG = (J ∩ kV )kG = (Q1 ∩ · · · ∩Qr)kG = Q1kG ∩ · · · ∩QrkG

by applying Lemma 5.1(a). Since J∩kV is semiprime by Proposition 5.4, kV/J∩kV
is an essential kV -submodule of (kV/Q1)⊕· · ·⊕(kV/Qr) by Example 5.6. Therefore
kG/I is an essential kG-submodule of (kG/Q1kG)⊕· · ·⊕(kG/QrkG) by the Lemma.
Since our original decomposition of P was G-invariant, we can find gj ∈ G such
that Ij = gjI for each j, and then the composite embedding

kG

P
↪→

m⊕
j=1

kG

Ij
↪→

m⊕
j=1

r⊕
i=1

kG

(gjQi) kG

has essential image. Therefore

P =

m⋂
j=1

r⋂
i=1

(gjQi) kG

is another essential virtually prime decomposition of P . Because U acts transitively
on the Qi by Lemma 5.4(b), we see that G acts transitively on the gjQikG, so this
decomposition is also G-invariant. The maximality of m now forces r = 1, so
J ∩ kV is prime for any open normal subgroup V of U that controls J . Therefore
J = I ∩ kU is a non-splitting prime and I is virtually non-splitting. �

5.8. Orbital subgroups. Let the group Γ act on a set X. Imitating Roseblade
[21, §1.3], we say that an element x ∈ X is Γ-orbital if the Γ-orbit of x is finite, and
that a profinite group G is orbitally sound if for any closed G-orbital subgroup H
of G, the intersection H◦ of all G-conjugates of H has finite index in H.

Theorem. Let G be a torsion-free, orbitally sound, pro-p, p-adic analytic group.
Let A be a closed subgroup of G such that every faithful virtually non-splitting right
ideal I of kG is controlled by A. Then every faithful prime ideal P of kG is also
controlled by A.

Proof. Since kG/P is Noetherian, its uniform dimension provides an upper bound
to the number of terms in any essential decomposition of P . Since P is prime, it
is virtually prime as a right ideal, so P = P is a G-invariant essential virtually
prime decomposition of P . Choose such a decomposition P = I1 ∩ · · · ∩ Im with m
as large as possible. Fix j; then Ij is virtually non-splitting by Theorem 5.7 and

(I†j )◦ = P † = 1 because P is faithful, so the G-orbital subgroup I†j is finite since G

is orbitally sound. But G is torsion-free so I†j = 1 and each Ij is faithful. Therefore

every Ij is controlled by A by assumption, and it follows from Lemma 5.1(a) that
P is also controlled by A. �
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This result is very useful. As we will see in §8.4, it allows us to assume that the
ideal P ∩kPχ is actually prime and not just G-prime, after the minor inconvenience
of passing to an open subgroup of G. By replacing G by Pχ and P by P ∩ kPχ, we
may then focus on showing that a faithful prime P of kG which is not controlled by
any proper subgroup of G must be rigid : it cannot be stabilized by any sufficiently
nice non-trivial automorphism in Autω(G). We expect Theorem 5.8 to come in
useful in future work on prime ideals in Iwasawa algebras.

The wide applicability of Theorem 5.8 is guaranteed by our next result.

5.9. Proposition. Every complete p-valued group G of finite rank is orbitally
sound.

Proof. Let H be a closed G-orbital subgroup of G. Since G has finite index in its
saturation by [15, IV.3.4.1], we may assume that G is p-saturated. We will now

show that H̃ := Sat(H) is normal in G.
Let g ∈ G and let ϕ ∈ Autω(G) be the conjugation action of g. Because H is

G-orbital and G is pro-p, ϕp
m

stabilizes H for some integer m, so ϕp
m

also stabilizes
H̃. By Lazard’s isomorphism of categories §4.3, (ϕp

m

)∗ = (ϕ∗)
pm stabilizes the Lie

subalgebra h := log(H̃) of g := log(G). Since ϕ ∈ Autω(G), we can consider the
logarithm ψ := logϕ∗ : g→ g of ϕ∗ defined in §4.8. Now

pmψ(h) = log((ϕ∗)
pm)(h) ⊆ h

so ψ preserves h since h is a saturated Lie algebra. Hence ϕ∗ = exp(ψ) also preserves

h and therefore ϕ = (ϕ∗)
∗ stabilizes H̃.

Thus H̃ is normal in G as claimed, and its open subgroups H̃pn are also normal
in G for all n. But H contains one of these subgroups by [15, IV.3.4.1], H̃pr say, so

H̃pr =
(
H̃pr

)◦
6 H◦.

Hence H◦ is open in H. �

6. The Mahler expansion of an automorphism

6.1. Rational p-valuations. From now on, G will denote a complete p-valued
group of rank d.

By [15, Proposition III.3.1.11], G has a p-valuation ω which takes takes rational
values. In fact, by [8, Lemma 7.3] it is possible to find a p-valuation ω on G and
an integer e such that

• ω(g) ∈ e−1Z for all 1 6= g ∈ G, and
• grG is an abelian Fp[π]-Lie algebra.

We will henceforth fix such a p-valuation ω on G. Until the end of §6, we also fix
an ordered basis g := {g1, . . . , gd} for G in the sense of §4.2. Whenever α ∈ Nd is
a multi-index, define

〈α, ω(g)〉 :=

d∑
i=1

αiω(gi).

We also define coordinates of the second kind on G to be the function

θg : G → Zdp
gλ 7→ λ.
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Let bi = gi − 1 ∈ k[G] for each i, and write

bα = bα1
1 · · · b

αd
d ∈ k[G] for each α ∈ Nd.

6.2. The valuation w on k[G]. Recall the associated graded group grG of G from
§4.2, let grG denote the Fp-vector space grG/π · grG and let ξ denote the image

of ξ ∈ grG in grG.

Lemma. (a) There is a filtration w on k[G] such that

gr k[G] ∼= Sym(grG⊗Fp k).

(b) gr k[G] can be identified with the polynomial algebra k[X1, . . . , Xd] where Xi =
gr bi ∈ gr kG has degree w(bi) = ω(gi) for all i.

(c) w(bα) = 〈α, ω(g)〉 for all α ∈ Nd.
(d) The completion of k[G] with respect to the filtration w is isomorphic to kG.

Proof. (a) When k is the finite field Fp, this follows from [15, Theorem III.2.3.3];
the general case follows from an easy extension of scalars argument.

(b) The following are equivalent by [15, Proposition III.2.2.5]:

• {g1, . . . , gd} is an ordered basis of G,
• {gr g1, . . . , gr gd} is a basis for grG as an Fp[π]-module,

• {gr g1, . . . , gr gd} is an Fp-basis for grG.

But gr bi ∈ gr k[G] corresponds to gr gi in the isomorphism of part (a).
(c) The polynomial algebra k[X1, . . . , Xd] has no zero-divisors, so the filtration

w is a valuation. Now apply part (b).
(d) This follows from the proof of [15, Theorem III.2.3.3]. �

Corollary. (a) Every element of kG can be written uniquely as a convergent power
series in b1, . . . , bd:

kG =

∑
α∈Nd

λαbα : λα ∈ k

 .

(b) The extension of the valuation w to kG is given by

w

∑
α∈Nd

λαbα

 = inf{〈α, ω(g)〉 : λα 6= 0}.

Proof. View k as a complete filtered ring with the trivial filtration v given by
v(λ) = 0 if λ 6= 0 and v(0) = ∞. Then kG is a complete filtered k-module and
gr kG is free over gr k by the Lemma. The valuation w on kG is discrete because
the p-valuation ω on G takes values in e−1Z by construction, so the result follows
from [15, Théorème I.2.3.17]. �

6.3. Mahler’s Theorem. For each multiindex α ∈ Nd, there is a continuous func-
tion (−

α

)
: Zdp → Zp
λ 7→

(
λ
α

)
:=
(
λ1

α1

)
· · ·
(
λd
αd

)
.

It turns out that these binomial coefficients form a nice topological basis for the
space of continuous functions C(Zdp,Zp). More generally, Mahler’s Theorem [15,
III.1.2.4] states the following:
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Theorem. Let M be a complete Zp-module and let f : Zdp → M be a continuous

function. Then there is a collection of elements {Cα(f) ∈ M : α ∈ Nd} depending
only on f such that

• Cα(f)→ 0 as α→∞,

• f(λ) =
∑
α∈Nd Cα(f)

(
λ
α

)
for all λ ∈ Zdp.

We call these Cα(f) the Mahler coefficients of f . There is an explicit formula
for Cα(f) in terms of the values that f takes:

Cα(f) = (∆αf)(0) :=
∑
β6α

(−1)α−β
(
α

β

)
f(β)

where by convention β 6 α means that βi 6 αi for all i = 1, . . . , d.

6.4. The action of C∞ on kG. Let C∞ = C∞(G, k) denote the set of locally
constant functions f : G → k. Because we always view the base field k as a
discrete topological space and because the group G is profinite, C∞ is also the set
of continuous functions C(G, k).

We showed in [6, §2] that C∞ is naturally a commutative Hopf algebra over k
and that kG is a C∞-module algebra. Let ρ : C∞ → Endk(kG) be the associated
k-algebra homomorphism; the proof [6, Proposition 2.5] shows that the action of
C∞ on kG has the following properties:

• if U is an open subgroup of G with characteristic function δU ∈ C∞ and
{1, g2, . . . , gm} is a complete set of right coset representatives for U in G,
then ρ(δU ) is the projection of kG onto kU along the decomposition

kG = kU ⊕
m⊕
i=2

kUgi,

• f · g = f(g)g for all f ∈ C∞ and g ∈ G.

The k-vector space spanned by the characteristic functions δUg of right cosets of U
in G can be identified with the subalgebra C∞ U of right U -invariants in C∞:

C∞ U = {f ∈ C∞ : f(Ug) = f(g) for all g ∈ G}.
It follows from [6, Lemma 2.6(a), Proposition 2.8] that U controls I if and only if
I is a C∞ U -submodule of kG via ρ.

6.5. Quantized divided powers. Since k is a field of characteristic p, there is a
unique “reduction mod p” ring homomorphism ιk : Zp → k. We will frequently
abuse notation and simply write λ = ιk(λ) for any λ ∈ Zp. The following endomor-
phisms of kG will play a crucial role in what follows.

Definition. Let ∂
(α)
g := ρ

(
ιk ◦

(−
α

)
◦ θg

)
∈ Endk(kG) for all α ∈ Nd.

The notation is designed to suggest a “divided power differential operator” and
is supported by the following computation. Recall the notion of bounded k-linear
maps from §2.4.

Theorem. Let α ∈ Nd. Then

(a) ∂
(α)
g (gλ) =

(
λ
α

)
gλ for all λ ∈ Zdp.

(b) w
(
∂

(α)
g (bβ)−

(
β
α

)
bβ−α

)
> w

((
β
α

)
bβ−α

)
for all β ∈ Nd.

(c) The operator ∂
(α)
g : kG→ kG is bounded in the sense of §2.4.



30 KONSTANTIN ARDAKOV

(d) deg ∂
(α)
g = −〈α, ω(g)〉.

Proof. (a) Since ρ(f)(g) = f · g = f(g)g for all f ∈ C∞ and g ∈ G, we have

∂(α)
g (gλ) =

(
ιk ◦

(
−
α

)
◦ θg

)
(gλ)gλ =

(
λ

α

)
gλ.

(b) Suppose first that d = 1 and write g = g1 and b = b1 = g − 1. Then

∂(α)
g (gλ) =

gα

α!

dα

dbα
(gλ)

for all λ ∈ Zdp. Since the group elements gλ span a dense subset of kG = k[[b]] and

since both ∂
(α)
g and the differential operator gα

α!
dα

dbα are continuous, we see that

∂(α)
g =

gα

α!

dα

dbα

and in particular,

∂(α)
g (bβ) = gα

(
β

α

)
bβ−α

in this case. Returning to the general case and applying part (a), we have a factor-
ization

∂
(α)
g (bβ) =

∑
γ6β(−1)γ

(
β
γ

)(
γ
α

)
gγ

=
β1∑
γ1=0
· · ·

βd∑
γd=0

(−1)γ1+...+γd
(
β1

γ1

)
· · ·
(
βd
γd

)(
γ1
α1

)
· · ·
(
γd
αd

)
gγ11 · · · g

γd
d

=
d∏
i=1

βi∑
γi=0

(−1)γi
(
βi
γi

)(
γi
αi

)
gγii

=
d∏
i=1

gαii
(
βi
αi

)
bβi−αii

by the one-dimensional case applied to each procyclic subgroup 〈gi〉 of G. Thus

(1) ∂(α)
g (bβ) =

(
β

α

) d∏
i=1

(1 + bi)
αibβi−αii for all α, β ∈ Nd.

Using Lemma 6.2(c), we see that the leading term of this expression with respect

to the valuation w is simply
(
β
α

)
bβ−α as claimed. Note that in particular it is zero

whenever αi > βi for some i.
(c), (d) Using part (b) and Corollary 6.2(b) shows that

w(∂(α)
g (x)) > w(x)− 〈α, ω(g)〉

whenever x is a finite k-linear combination of monomials bβ . Since elements of this
form span a dense subalgebra inside kG by Corollary 6.2(a), the inequality holds

for all x ∈ kG. So ∂
(α)
g is bounded with

deg ∂(α)
g > −〈α, ω(g)〉.

On the other hand, taking β = α in the formula (1) above shows that

∂(α)
g (bα) = 1

which forces deg ∂
(α)
g 6 −〈α, ω(g)〉. �
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So the graded endomorphism of gr kG = k[X1, . . . , Xd] induced by ∂
(α)
g is the

divided power 1
α!

∂α

∂Xα , which suggests that we should think of ∂
(α)
g as being a

“quantized divided power”.

Corollary. ρ(C∞) ⊆ B(kG).

Proof. Since k carries the discrete topology, the condition Cα(f)→ 0 on the Mahler
coefficients of f ∈ C∞ means that Cα(f) = 0 for all sufficiently large α. Thus
Mahler’s Theorem 6.3 implies that C∞ is spanned over k by the binomial coefficients

ιk ◦
(−
α

)
◦ θg. But ∂

(α)
g = ρ

(
ιk ◦

(−
α

)
◦ θg

)
∈ B(kG) by the Theorem above. �

We will view these quantized divided powers as a particularly nice “orthonormal
basis” for the space B(kG) of bounded endomorphisms of kG.

6.6. Extending automorphisms to kG.

Lemma. Let ϕ : G→ H be a continuous group homomorphism to another complete
p-valued group H of finite rank. Then the linear extension

k[ϕ] : k[G]→ k[H]

is continuous with respect to the topologies on these group rings defined by the
valuations w given in §6.2 and therefore extends to a continuous map ϕ : kG→ kH.

Proof. By Lemma 6.2(d), the topology on k[G] defined by the valuation w has the
augmentation ideals (Gλ − 1)k[G], λ ∈ R, as a fundamental system of neighbour-
hoods of 0. If f(Gµ) ⊆ Hλ then k[f ] sends (Gµ − 1)k[G] into (Hλ − 1)k[H] which
shows that k[f ] is continuous. The second statement is clear. �

The assumption of continuity on ϕ is actually redundant because any abstract
group homomorphism from a finitely generated pro-p group to another profinite
group is automatically continuous by [9, Corollary 1.21(i)].

Proposition. Let ϕ ∈ Autω(G) and let ψ(g) = ϕ(g)g−1. Then

ϕ(g) =
∑
α∈Nd

(∆αψθ−1
g )(0)∂(α)

g (g)

for all g ∈ G, the right hand side converging in the topology of kG.

Proof. The map ψ ◦ θ−1
g : Zdp → G is continuous, so we can view it as a continuous

map from Zdp to the complete Zp-module kG. By Mahler’s Theorem 6.3,

ψ(gλ) =
∑
α∈Nd

(∆αψθ−1
g )(0)

(
λ

α

)
for all λ ∈ Zdp. But ∂

(α)
g (gλ) =

(
λ
α

)
gλ by Theorem 6.5(a), so multiplying both sides

of this convergent sum on the right by gλ gives the result. �

Definition. Let ϕ ∈ Autω(G) and let α ∈ Nd. The α-Mahler coefficient of ϕ is
the element

〈ϕ, ∂(α)
g 〉 := (∆αψθ−1

g )(0) ∈ kG

where ψ : G→ G is the function g 7→ ϕ(g)g−1.
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Corollary. Suppose that the Mahler coefficients 〈ϕ, ∂(α)
g 〉 of ϕ satisfy

w(〈ϕ, ∂(α)
g 〉)− 〈α, ω(g)〉 → ∞ as α→∞.

Then the extension of ϕ to kG is a bounded linear endomorphism of kG and

ϕ =
∑
α∈Nd
〈ϕ, ∂(α)

g 〉∂(α)
g

inside B(kG).

Proof. Let us identify kG with the subring of B(kG) consisting of left multipli-
cations by elements of kG; clearly then deg(x) = w(x) for all x ∈ kG. Now

deg ∂
(α)
g = −〈α, ω(g)〉 for all α by Theorem 6.5(d) and

deg(〈ϕ, ∂(α)
g 〉∂(α)

g ) > w(〈ϕ, ∂(α)
g 〉)− 〈α, ω(g)〉 → ∞

as α → ∞ by assumption, so the infinite sum
∑
α∈Nd〈ϕ, ∂

(α)
g 〉∂(α)

g converges to an
operator in B(kG) by Lemma 2.4. Since this operator agrees with ϕ : kG → kG
on the dense subspace k[G] of kG by the Proposition, the two operators are equal
everywhere and the result follows. �

6.7. Calculating Mahler coefficients. In general it is not completely straight-

forward to compute the Mahler coefficient 〈ϕ, ∂(α)
g 〉 of the extension ϕ : kG→ kG;

but in some cases we do get a nice result.

Lemma. Let ϕ ∈ AutωZ(G) and let ψ(g) = ϕ(g)g−1. Then

(2) 〈ϕ, ∂(α)
g 〉 = (ψ(g1)− 1)α1 · · · (ψ(gd)− 1)αd .

for all α ∈ Nd.

Proof. Because ϕ is trivial mod centre by assumption, ψ : G → Z is a group
homomorphism:

ψ(gh) = ϕ(gh)(gh)−1 = ϕ(g)
(
ϕ(h)h−1

)
g−1 = ψ(g)ψ(h)

for all g, h ∈ G. Hence ψ(gβ) =
d∏
i=1

ψ(gi)
βi for all β ∈ Nd. Now

〈ϕ, ∂(α)
g 〉 =

∑
β∈Nd

(−1)α−β
(
β
α

)
ψ(gβ) =

∑
β∈Nd

(−1)α−β
(
β
α

) d∏
i=1

ψ(gi)
βi

=
d∏
i=1

αi∑
βi=0

(−1)αi−βi
(
βi
αi

)
ψ(gi)

βi =
d∏
i=1

(ψ(gi)− 1)αi

by the binomial theorem. �

In fact it can be shown that the Lemma holds for an automorphism ϕ ∈ Autω(G)
if and only if ϕ is trivial mod centre.

Corollary. The extension of any ϕ ∈ AutωZ(G) to kG is bounded.

Proof. By Lemma 6.7 we have

w(〈ϕ, ∂(α)
g 〉)− 〈α, ω(g)〉 =

d∑
i=1

αi(ω(ϕ(gi)g
−1
i )− ω(gi)) > degω(ϕ)|α|

which tends to∞ as α→∞ because degω(ϕ) > 1/(p−1) > 0 by assumption. Now
apply Corollary 6.6. �
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7. Control theorem for faithful prime ideals

7.1. Notation. We now start working towards the proof of Theorem B, which is
given in §7.14. From now on, we will fix the complete p-valued group G of finite
rank with p-valuation ω and centre Z. We assume that ω takes values in 1

eZ∪{∞}
— see §6.1. We also fix the prime ideal P of kG, and assume that P is not the
maximal ideal m of kG.

Let Q be the Goldie classical ring of quotients of the prime Noetherian algebra
R = kG/P , and let τ : kG→ Q be the composition of the surjection kG� R with
the inclusion R ↪→ Q. We will denote by F the centre of Q; this is a commutative
field which contains τ(kZ).

7.2. Finding a good filtration on kG/P . Recall from Lemma 6.2 that kG carries
a filtration w which is independent of any choice of ordered basis for G. Since ω
takes values in 1

eZ ∪ {∞}, the function x 7→ ew(x) actually takes integer values on
non-zero elements in kG. Note that this function is also a filtration on kG.

Let ew : R→ Z ∪ {∞} be the quotient filtration on R defined by

ew(τ(x)) = sup
y∈P

ew(x+ y).

Let Rn = {x+ P ∈ R : ew(x+ P ) > n} be the corresponding subgroups of R.

Lemma. The filtration {Rn : n ∈ Z} is Zariskian, the associated graded ring grR
is commutative, R0/R1 is a field and grR is infinite dimensional over R0/R1.

Proof. Choose an ordered basis {g1, . . . , gd} for G as in §6.1. Since gr kG ∼=
k[X1, . . . , Xd] and the filtration w is complete by Lemma 6.2, ew is a Zariskian
filtration on kG by [16, Proposition II.2.2.1]. This property is inherited by the
factor ring R = kG/P , so {Rn : n ∈ Z} is a Zariskian iltration on R and moreover
grR = gr kG/ grP is commutative.

Using Corollary 6.2(b) we see that kG = k+
∑d
i=1 bikG, so R = k+

∑d
i=1 τ(bi)R.

But ew(τ(bi)) > ew(bi) = eω(gi) > 0 for all i by Lemma 6.2(b), so τ(bi) ∈ R1 for
all i since ew takes integer values. Hence R = k +R1 and R0/R1

∼= k is a field.
Finally, if grR is finite dimensional over k then so is R — but then P = m

since P is prime and m is the unique maximal ideal of kG. This is not the case by
assumption. �

7.3. Finding a good valuation on Q. We will always consider kG as a filtered
ring with the filtration w given by Lemma 6.2. The heart of our proof is concerned
with manipulations involving bounded linear maps kG→ Q, and it will be essential
to know that the natural algebra homomorphism τ : kG→ Q is bounded.

Theorem. There exists a filtration v : Q→ Z ∪ {∞} such that

(a) v(τ(x)) > 0 for all x ∈ kG,
(b) the restriction of v to F = Z(Q) is a valuation,
(c) v(τ(x)) > w(x) for all x ∈ kZ, and
(d) the map τ : (kG,w)→ (Q, v) is bounded.

Proof. By Lemma 7.2 and Theorem C, we can find an integer valued filtration
v0 on Q such that the natural inclusion (R, ew) → (Q, v0) is continuous and (a)
and (b) are satisfied for v0. Hence τ : (kG,w) → (Q, v0) is also continuous, but
unfortunately, not every continuous map is bounded. We will remedy this problem
by rescaling v0.
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The inclusion of G into the group of units of kG is continuous; since τ is contin-
uous, the subgroup

U := {g ∈ G : v0(τ(g)− 1) > 1}
is open in G. By Lemma 4.2 we can choose an ordered basis {g1, . . . , gd} for G such

that {h1, . . . , hd} is an ordered basis for U where hi = gp
ni

i for some integers ni.
Let M be any integer greater than each of the ω(hi) and define

v := Mv0 : Q→ Z ∪ {∞}.
Then v is a filtration on Q which satisfies (a) and (b). If z ∈ Z then zp

a ∈ U for
some integer a because U is open in G, so

v0(τ(z)− 1) =
v0

(
(τ(z)− 1)p

a)
pa

=
v0(τ(zp

a

)− 1)

pa
>

1

pa

because v0 is a valuation on F ⊇ τ(kZ). Since v0 takes integer values, we see that
Z is contained in U .

Write cβ = (h1−1)β1 · · · (hd−1)βd ∈ kU for any β ∈ Nd. Our choice of U forces
v0(τ(cβ)) > |β| for all β ∈ Nd, so

v(τ(cβ)) >M |β| > 〈β, ω(h)〉 = w(cβ) for all β ∈ Nd

by Lemma 6.2(c). Let x =
∑
β∈Nd

λβcβ ∈ kU , then w(x) = inf{w(cβ) : λβ 6= 0} by

Corollary 6.2(b), so

(3) v(τ(x)) > w(x) for all x ∈ kU
and in particular v(τ(x)) > w(x) for all x ∈ kZ since Z ⊆ U . It remains to show
that τ : (kG,w)→ (Q, v) is bounded.

Define S = {α ∈ Nd : 0 6 αi < pni for all i = 1, . . . , d}. Since gr kG is a free
gr kU -module with basis {gr bα : α ∈ S}, [15, Théorème I.2.3.17] tells us that every
element x ∈ kG can be written in the form x =

∑
α∈S xαbα for some xα ∈ kU , and

moreover
w(x) = inf{w(xα) + 〈α, ω(g)〉 : α ∈ S}.

Because v0(τ(bα)) > 0 for all α ∈ S by construction, applying (3) shows that

v(τ(x)) = v

(∑
α∈S

τ(xα)τ(bα)

)
> inf{v(τ(xα)) : α ∈ S}

> inf{w(xα) : α ∈ S} > w(x)− sup{w(bα) : α ∈ S}
for all x =

∑
α∈S

xαbα ∈ kG. Therefore τ : (kG,w) → (Q, v) is bounded, and

deg(τ) > − sup{w(bα) : α ∈ S}. �

From now on we fix a filtration v on Q satisfying the conclusion of Theorem 7.3.

7.4. The number λ. Recall from §4.10 and Proposition 4.9(c) that for any ϕ ∈
AutωZ(G) we have defined a group homomorphism z(ϕ̃) : Sat(G) → Sat(G), and
that the image of z(ϕ̃) is contained in Z(Sat(G)) by Propositions 4.9 and 4.10. A
priori this image is not even contained in G.

Lemma. There exists an integer r1 such that for any ϕ ∈ AutωZ(G) and any r > r1,
the image of z(ϕ̃p

r

) is contained in Z and

v
(
τ(z(ϕ̃p

r

)(g)− 1)
)
> 1 for all g ∈ G.
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Proof. It is easy to see that Z(Sat(G)) = Sat(Z). Since Z has finite rank, Z is
open in Z(Sat(G)) by [15, Theorem IV.3.4.1], so

Z(Sat(G))p
r1 ⊆ Z

for some integer r1. But z(ϕ̃p
r

)(g) = z(ϕ̃)(g)p
r

by the definition of z(ϕ̃), so the
image of z(ϕ̃p

r

) is contained in Z whenever r > r1. Now v(τ(x − 1)) > 0 for all
x ∈ Z by Theorem 7.3(c); since v takes integer values, actually v(τ(x− 1)) > 1 for
all x ∈ Z. The result follows. �

We now fix a non-trivial automorphism ϕ ∈ AutωZ(G) such that z := z(ϕ̃) sends
Sat(G) into Z, and such that v(τ(z(g)−1)) > 1 for all g ∈ G. Such an automorphism
always exists because Autω(G) is torsion-free by Corollary 4.7(b). We define

λ := inf
g∈G

v(τ(z(g)− 1)) > 1.

7.5. Using the fact that P is faithful. We now assume that P is faithful, and
crucially use this fact in the proof of the following

Proposition. λ is finite and there exists 1 6= g ∈ G such that λ = v(τ(z(g)− 1)).

Proof. Suppose for a contradiction that λ = ∞. Because v|F is a valuation by
Theorem 7.3(b) and τ(z(g)) ∈ F for all g ∈ G, we see that z(g) − 1 ∈ P for all
g ∈ G. Since P is faithful, this implies that z(g) = 1 for all g ∈ G. But z = (log ϕ̃∗)

∗

by definition, so log ϕ̃∗ must send everything in log(G̃) to zero, which forces ϕ̃ and
hence ϕ to be the trivial automorphism, a contradiction.

By Lemma 7.4, g 7→ v(τ(z(g) − 1)) is a function G → [1,∞]. If we give [1,∞]
the topology where the open neighbourhoods of ∞ are the sets (ν,∞] for all ν > 1,
then this function is continuous and therefore attains its minimum value at some
g ∈ G because G is compact. �

7.6. The subgroup H. Consider the λ-th piece Qλ/Qλ+ of grQ as an abelian
group, and define

σ : G→ Qλ/Qλ+ by σ(g) = τ(z(g)− 1) +Qλ+ .

We now construct the subgroup H which features in the statement of Theorem B.

Lemma. The map σ is a group homomorphism, and H := kerσ is a proper sub-
group of G which contains the Frattini subgroup Φ(G) of G.

Proof. Since z is a group homomorphism by Proposition 4.9(c),

z(gh)− 1 = (z(g)− 1) + (z(h)− 1) + (z(g)− 1)(z(h)− 1) for any g, h ∈ G
and v(τ((z(g) − 1)(z(h) − 1))) > 2λ > λ because λ > 1. So σ is a group homo-
morphism and σ(g) 6= 0 for some g ∈ G by Proposition 7.5. Finally Qλ/Qλ+ is an
abelian group of exponent p so H must contain Φ(G). �

We choose an ordered basis {g1, . . . , gd} for G such that {gp
n1

1 , . . . , gp
nd

d } is an
ordered basis for H for some increasing sequence of integers ni, using Lemma 4.2.
Let us reorder these bases in such a way that the sequence of integers ni becomes
decreasing; we also know that ni 6 1 for all i because Gp ⊆ H by the Lemma. Let
m be the greatest integer such that nm = 1; since H is a proper subgroup by the
Lemma, 2 6 m 6 d so

• {g1, . . . , gd} is an ordered basis for G,
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• {gp1 , . . . , gpm, gm+1, · · · , gd} is an ordered basis for H.

So equivalently, m = logp |G/H|. We fix this ordered basis of G until the end of §7.

7.7. Expansions in B(kG,Q). By Corollary 6.6, we know that inside B(kG)

ϕ =
∑
α∈Nd
〈ϕ, ∂(α)

g 〉∂(α)
g .

The map τ : kG→ Q is bounded by Theorem 7.3, so the sequence

τϕ−
∑
|α|6k

τ
(
〈ϕ, ∂(α)

g 〉
)
· τ∂(α)

g

converges to zero inside B(kG,Q) and we may write

τϕp
r

=
∑
α∈Nd

τ
(
〈ϕp

r

, ∂(α)
g 〉

)
· τ∂(α)

g for all r > 0

inside B(kG,Q). For each i = 1, . . . , d, define the element

yi := τ(z(gi)− 1) ∈ Q,
and for each α ∈ Nd, write yα := yα1

1 · · · y
αd
d ∈ Q. It turns out that the Mahler

coefficient τ
(
〈ϕpr , ∂(α)

g 〉
)

is asymptotically very close to the power yαp
r

for each

α ∈ Nd. More precisely, we have the following

Proposition. There exists an integer r2 > r1 such that

v
(
τ
(
〈ϕp

r

, ∂(α)
g 〉

)
− yαp

r
)
> p2r−r1 + λpr(|α| − 1)

for all 0 6= α ∈ Nd and all r > r2.

Proof. Recall the integer r1 from Lemma 7.4. Fix r > r1, and define for each
i = 1, . . . , d the “error terms”

bir := τ(ϕp
r

(gi)g
−1
i − 1)− yp

r

i ∈ Q.

Using Lemma 6.7, we can then rewrite the image of the Mahler coefficient 〈ϕpr , ∂(α)
g 〉

in Q as follows:

(4)
τ
(
〈ϕpr , ∂(α)

g 〉
)

= τ
(
(ϕp

r

(g1)g−1
1 − 1)α1 · · · (ϕpr (gd)g−1

d − 1)αd
)

= (yp
r

1 + b1r)
α1 · · · (yp

r

d + bdr)
αd

.

On the other hand, for any g ∈ G there exists some εr(g) ∈ Sat(G) such that

ϕp
r

(g)g−1 = z(g)p
r

εr(g)p
2r

by Proposition 4.9(a). Since z(g) ∈ Z and ϕ is trivial mod centre, we see that

εr(g)p
2r ∈ Z and therefore εr(g) ∈ Sat(Z). But Sat(Z)p

r1 ⊆ Z by the definition of
r1 so ε′r(g) := εr(g)p

r1 ∈ Z always and

ϕp
r

(g)g−1 = z(g)p
r

ε′r(g)p
2r−r1

whenever r > r1, say. Therefore

v(bir) = vτ
(
ϕp

r

(gi)g
−1
i − 1− (z(gi)− 1)p

r)
= vτ

(
z(gi)

pr
(
ε′r(gi)

p2r−r1 − 1
))

> vτ
(

(ε′r(gi)− 1)p
2r−r1

)
> p2r−r1 whenever r > r1

for each i, because vτ(x− 1) > 1 for all x ∈ Z.
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Choose r2 > r1 such that p2r−r1 > λpr whenever r > r2; expanding (4) shows

that if r > r2 then τ(〈ϕpr , ∂(α)
g 〉)−yαp

r

is a linear combination of products of length
|α|, where each product contains at least one bir with the bir of greater value than
λpr by the choice of r2. The result follows. �

7.8. The values of certain linear forms. Proposition 7.7 tells us that the terms

yp
rατ∂

(α)
g are dominant in the Mahler expansion of τϕp

r

. We will now study the
growth rates of these terms more closely.

Lemma. (a) For any µ1, . . . , µm ∈ Fp, not all zero, and any r > 0,

v

(
m∑
i=1

µiy
pr

i

)
= prλ.

(b) λ = v(y1) = · · · = v(ym) < v(y`) for all ` > m.

Proof. (a) Choose α1, . . . , αm ∈ N such that µi is the image of αi in Fp for each i,
and define g := gα1

1 · · · gαmm ∈ G. Because some µi is non-zero, g /∈ H, so σ(g) 6= 0.
Now σ(gi) = yi +Qλ+ and σ is a group homomorphism by Lemma 7.6, so

σ(g) =

m∑
i=1

αiyi +Qλ+ =
m∑
i=1

µiyi +Qλ+ 6= 0.

Therefore v(
∑m
i=1 µiyi) = λ and

v

(
m∑
i=1

µiy
pr

i

)
= v

(
(

m∑
i=1

µiyi)
pr

)
= prλ

because v|F is a valuation by Theorem 7.3(b).
(b) Part (a) implies that v(y1) = · · · = v(ym) = λ. If ` > m then g` ∈ H by our

choice of ordered basis of G, so σ(g`) = τ(z(g`)− 1) +Qλ+ = 0 and v(y`) > λ. �

7.9. The Smith matrix. Write ∂i := ∂
(ei)
g where ei = (0, . . . , 1, . . . , 0) ∈ Nd is

the i-th standard unit vector. By Proposition 7.7, we may write

τϕp
r

− τ = yp
r

1 τ∂1 + yp
r

2 τ∂2 + · · ·+ yp
r

m τ∂m + · · · whenever r > r2

where the undisplayed terms are growing faster with r than the yp
r

1 , · · · , yprm , which
are all growing at the same uniform rate λpr by Lemma 7.8. We wish to “ex-
tract” the operators τ∂i from these expansions. To do this, we consider m of these
expansions at a time starting with τϕp

r

:

τϕp
r − τ = yp

r

1 τ∂1 + yp
r

2 τ∂2 + · · ·+ yp
r

m τ∂m + · · ·
τϕp

r+1 − τ = yp
r+1

1 τ∂1 + yp
r+1

2 τ∂2 + · · ·+ yp
r+1

m τ∂m + · · ·
... =

...
...

...

τϕp
r+m−1 − τ = yp

r+m−1

1 τ∂1 + yp
r+m−1

2 τ∂2 + · · ·+ yp
r+m−1

m τ∂m + · · ·
and take an appropriate F -linear combination of them. For any r > 0, define the
Smith matrix Mr with entries in the field F as follows:

Mr :=


yp

r

1 yp
r

2 · · · yp
r

m

yp
r+1

1 yp
r+1

2 · · · yp
r+1

m
...

... · · ·
...

yp
r+m−1

1 yp
r+m−1

2 · · · yp
r+m−1

m

 .
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This matrix has already appeared in [4, §1]. The expansions considered in §7.7 can
now be rewritten in matrix form as follows:

(5)


τϕp

r − τ
τϕp

r+1 − τ
...

τϕp
r+m−1 − τ

 = Mr ·


τ∂1

τ∂2

...
τ∂m

+Nrv +


ηr
ηr+1

...
ηr+m−1


where v is the infinite column vector containing the remaining basis vectors

v :=
(
τ∂m+1 · · · τ∂d τ∂

(2e1)
g · · · τ∂

(2ed)
g · · ·

)T
,

Nr is the m-by-infinite matrix

Nr :=


yp

r

m+1 · · · yp
r

d y2pr

1 · · · y2pr

d · · ·
yp

r+1

m+1 · · · yp
r+1

d y2pr+1

1 · · · y2pr+1

d · · ·
...

...
...

...
...

...
...

yp
r+m−1

m+1 · · · yp
r+m−1

d y2pr+m−1

1 · · · y2pr+m−1

d · · ·


and ηr :=

∑
α∈Nd

(
τ
(
〈ϕpr , ∂(α)

g 〉
)
− yαp

r
)
τ∂

(α)
g is an “error term”.

7.10. Some linear algebra. The fact that v|F is a valuation is used crucially in
the following

Proposition. The matrix Mr is invertible, and the entries of its inverse satisfy

v
(
(M−1

r )ij
)
> −pj+r−1λ

for all i, j = 1, . . . ,m.

Proof. Let [µ] denote the image of (µ1, . . . , µm) ∈ Fmp \{0} in the projective space
P(Fmp ). By [4, Lemma 1.1(2)],

detMr = c ·
∏

[µ]∈P(Fmp )

(
µ1y

pr

1 + · · ·+ µmy
pr

m

)
for some non-zero scalar c ∈ Fp. Since |P(Fmp )| = (pm − 1)/(p− 1) and since v|F is
a valuation, Lemma 7.8(a) implies that

v(detMr) = (1 + p+ · · ·+ pm−1)λpr.

In particular, detMr is non-zero and Mr is invertible.
By Cramer’s rule, (M−1

r )ij · detMr is (up to a sign) equal to the determinant
of the matrix obtained from Mr by removing the j-th row and i-th column. This
determinant is a signed sum of monomials of the form

yp
r

i1
yp

r+1

i2
· · · ŷpr+j−1

ij
· · · yp

r+m−1

im
,

where the hat indicates that the factor yp
r+j−1

ij
has been omitted. So

v
(
(M−1

r )ij · detMr

)
> (1 + p+ · · ·+ p̂j−1 + · · ·+ pm−1)prλ

and the Proposition follows because v|F is a valuation. �
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7.11. The maps ζ
(i)
r . Let us left-multiply the equation (5) by the inverse of Mr:

M−1
r


τϕp

r − τ
τϕp

r+1 − τ
...

τϕp
r+m−1 − τ

 =


τ∂1

τ∂2

...
τ∂m

+M−1
r Nrv +M−1

r


ηr
ηr+1

...
ηr+m−1


and let ζ

(i)
r ∈ B(kG,Q) be the ith element on the left hand side. Precisely,

ζ(i)
r :=

m∑
j=1

(M−1
r )ij(τϕ

pr+j−1

− τ).

We can now state the main technical result of §7.

Theorem. For each i = 1, . . . ,m, the limit

lim
r→∞

ζ(i)
r

exists in B(kG,Q) and equals the operator τ∂i : kG→ Q.

We begin the proof with the following technical estimate.

Lemma. inf
|α|>2

{prλ(|α| − 1) + deg τ∂
(α)
g } > 1

2p
rλ for all r � 0.

Proof. Let ωmax = max
16i6d

ω(gi) and note that deg ∂
(α)
g > −|α|ωmax for all α ∈ Nd

by Theorem 6.5(d). Since λ > 0, we can find s > 0 such that λps > ωmax. Suppose
that |α| > 2 and r > s; then λpr − ωmax > 0, so

prλ(|α| − 1) + deg τ∂
(α)
g > prλ(|α| − 1) + deg τ − |α|ωmax

= (λpr − ωmax)(|α| − 1) + deg τ − ωmax

> λpr + deg τ − 2ωmax

= 1
2λp

r +
(

1
2λp

r + deg τ − 2ωmax

)
.

The expression in the brackets on the right hand side is eventually positive, and
the result follows. �

7.12. Proof of Theorem 7.11. Fix the index i and write ζr = ζ
(i)
r . For each

α ∈ Nd, define the “coefficient”

Cr,α :=

m∑
j=1

(M−1
r )ijy

pr+j−1α ∈ Q.

We may now write

(6) ζr =
∑

0 6=α∈Nd
Cr,ατ∂

(α)
g + εr,

where εr is the error term

εr :=

m∑
j=1

(M−1
r )ij

∑
α 6=0

(
τ
(
〈ϕp

r+j−1

, ∂(α)
g 〉

)
− yαp

r+j−1
)
τ∂(α)

g ∈ B(kG,Q).

The definition of the matrix Mr gives

Cr,e` =

m∑
j=1

(M−1
r )ijy

pr+j−1

` =

m∑
j=1

(M−1
r )ij(Mr)j` = δ`i :=

{
1 if ` = i
0 if ` 6= i
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provided that 1 6 ` 6 m, whence

(7)

m∑
`=1

Cr,e`τ∂
(e`)
g = τ∂i.

We now proceed to estimate the remaining terms of equation (6). Applying Lemma
7.8(b) and Proposition 7.10 we see that

v
(

(M−1
r )ijy

pr+j−1α
)
> pr+j−1λ(|α| − 1)

for any α ∈ Nd, any j = 1, · · · ,m and any r > 0. Therefore

v(Crα) > prλ(|α| − 1)

for all r > 0 and 0 6= α ∈ Nd, and Lemma 7.11 shows that

(8) inf
|α|>2

deg(Crατ∂
(α)
g ) >

1

2
prλ

for all r � 0. Next, by Propositions 7.7 and 7.10,

deg(εr) > inf
16j6m

inf
α6=0
{−pr+j−1λ+ p2(r+j−1)−r1 + pr+j−1λ(|α| − 1) + deg τ∂

(α)
g }

> inf
α 6=0
{p2r−r1 − pr+m−1λ+ prλ(|α| − 1) + deg τ∂

(α)
g }

> p2r−r1 − pr+m−1λ+ inf{deg τ∂1, · · · ,deg τ∂d,
1
2p
rλ}

for all r � 0, again using Lemma 7.11. Thus

(9) deg(εr) > p
2r−r1 − pr+m−1λ+ C

for some constant C, for all r � 0. This exhausts the terms of (6), unless m < d
and α = e` for some ` > m. In this case, let µ := min{v(y`)− λ : m < ` 6 d}; then
µ > 0 by Lemma 7.8(b) and for any α = e` with ` > m, we have

v
(

(M−1
r )ijy

pr+j−1

`

)
> pr+j−1(v(y`)− λ) > prµ

by Proposition 7.10. Therefore

(10) deg(Cr,e`τ∂
(e`)
g ) > prµ+ deg τ − inf

i>m
ω(gi)

for all m < ` 6 d and all r > 0. It now follows from the estimates (7), (8), (9) and
(10) that

deg(ζr − τ∂i)→∞ as r →∞
and the Theorem is proved. �

We are now just one Lemma away from our proof of Theorem B. Recall the map
ρ : C∞ → Endk(kG) from §6.4.

7.13. Lemma. Let Hgν = Hgν11 · · · gνmm be a coset of H in G for some 0 6 νi < p,
and let δHgν ∈ C∞ be its characteristic function. Then inside the ring B(kG),

ρ(δHgν ) =

m∏
i=1

(
1− (∂i − νi)p−1

)
is a polynomial in the quantized divided powers ∂1, . . . , ∂m.
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Proof. Both sides are left kH-module endomorphisms of kG, so it is enough to
check that they agree on elements of the form gµ := gµ1

1 · · · gµmm , 0 6 µi < p. Since

1− (a− b)p−1 = δab for any a, b ∈ Fp
by Fermat’s little theorem and ∂i(g

µ) = µig
µ by Theorem 6.5(a), we have

m∏
i=1

(
1− (∂i − νi)p−1

)
(gµ) = gµ

m∏
i=1

(1− (µi − νi)p−1) = gµ
m∏
i=1

δνiµi = ρ(δHgν )(gµ)

as required. �

7.14. Proof of Theorem B. Using Theorem 7.3, choose a filtration v on the
Goldie quotient ring Q of kG/P such that the natural map τ : kG→ Q is bounded
and such that v|F is a valuation on the centre F of Q. Since AutωZ(G) is torsion-free

by Corollary 4.7(b), ϕp
r

is non-trivial for any r > 0. In view of Lemma 7.4, we
may assume that z := z(ϕ̃) sends Sat(G) into Z and that v(τ(z(g)− 1)) > 1 for all
g ∈ G.

Let x ∈ P , let i = 1, . . . ,m and define ζ
(i)
r : kG→ Q as in §7.11. Then ζ

(i)
r (x) = 0

for all r > 0 because ϕ preserves P by assumption. Since ζ
(i)
r converges to τ∂i uni-

formly on kG by Theorem 7.11, it converges pointwise: τ∂i(x) = limr→∞ ζ
(i)
r (x) =

0. But ker τ = P by definition, so ∂i(x) ∈ P and therefore ∂i(P ) ⊆ P for all
i = 1, . . . ,m. Since ρ(δHg) is a polynomial in the ∂i for each Hg ∈ G/H by Lemma
7.13, P is a (C∞)H -submodule of kG. It now follows from [6, Lemma 2.9, Definition
2.6 and Proposition 2.8] that P = (P ∩ kH)kG. �

8. Applications

8.1. Roseblade’s Theorem D. Let A be a free abelian pro-p group of finite rank
and let Γ be a closed subgroup of Aut(A). Lemma 5.2 implies that Γ acts on Pχ/P †

for any proper Γ-invariant ideal P of kA, and we write ΓP for the image of Γ in
Aut(Pχ/P †).

We begin our list of applications of Theorem B with an exact analogue of Rose-
blade’s [21, Theorem D].

Theorem. For any Γ-invariant prime ideal P of kA, ΓP is finite.

Proof. Since P † is isolated by Lemma 5.3(c), by replacing A by A/P † and P by
its image in k[[A/P †]], we may assume that P is faithful. Now P = (P ∩ kPχ)kA
by [6, Theorem A] and P ∩ kPχ is still a Γ-invariant prime of kPχ because kA is
commutative, so we may assume that Pχ = A.

Let ω : A → Z ∪ {∞} be the standard p-valuation given by ω
(
Ap

n\Apn+1
)

=

n + 1; then ϕ ∈ Autω(A) if and only if for all n > 0, ϕ(a)a−1 ∈ Apn+1

whenever
a ∈ Apn . Hence Autω(A) is the kernel of the natural map Aut(A) → Aut(A/Ap).
But ΓP ∩ Autω(A) is trivial by Theorem B, so ΓP embeds into the finite group
Aut(A/Ap). �

We say that Γ acts rationally irreducibly on A if every non-trivial Γ-invariant
subgroup is open inA. If L(Γ) denotes the Qp-Lie algebra of Γ then this is equivalent
to L(A) being an irreducible L(Γ)-module. We can now prove [3, Conjecture 5.1].

Corollary. Suppose that [Γ, A] 6 Ap.

(a) Every faithful Γ-invariant prime ideal P of kA is controlled by AΓ.
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(b) If Γ acts rationally irreducibly on A then the zero ideal and the maximal ideal
are the only Γ-invariant prime ideals of kA.

Proof. (a) Let ω be the standard p-valuation on A; then Γ is contained in Autω(A)
by assumption. Let ϕ ∈ Γ; then ϕ stabilizes Pχ and degω|Pχ (ϕ|Pχ) > degω(ϕ) by

definition. Hence ΓP is contained in Autω|Pχ (Pχ), which is a torsion-free group by
Corollary 4.7(b). So ΓP is trivial by the Theorem, whence Γ fixes Pχ pointwise
and Pχ 6 AΓ.

(b) Suppose first that P † is non-trivial. Then it contains Ap
n

for some n, being
a Γ-invariant subgroup of A. But then (a−1)p

n ∈ P for all a ∈ A; since P is prime
we deduce that P is the augmentation ideal of kA.

Now suppose that P † = 1. Then Pχ 6 AΓ by part (a). Since Γ acts rationally
irreducibly on A, either AΓ is trivial or A = Zp and Γ is trivial. In the first case
Pχ = 1 which forces P = 0, and in the second case P = 0 also because the only
non-zero prime of kZp ∼= k[[t]] is the maximal ideal, which isn’t faithful. �

Corollary 8.1 is also of interest in connection with the mod-p local Langlands
programme: see [13] for more details. In that paper, a special case of part (b)
appears as [13, Theorem 1.1].

8.2. Just infinite induced modules. Recall the definition of just infinite modules
from §1.8.

Theorem. Let A be a free abelian pro-p group of finite rank, let Γ be a closed
subgroup of Aut(A) and let G = A o Γ be the semi-direct product. If [Γ, A] 6 Ap

and Γ acts rationally irreducibly on A, then the induced module k ⊗kΓ kG is just
infinite.

Proof. Let π : kG�M := k⊗kΓ kG be the map x 7→ 1⊗x and let N be a non-zero
kG-submodule of M . Then π−1(N) is a right ideal of kG since π is right kG-linear.
Let x ∈ π−1(N) and γ ∈ Γ; then

π(γxγ−1) = 1⊗ γxγ−1 = 1.γ ⊗ xγ−1 = 1⊗ xγ−1 = π(x)γ−1 ∈ N,
so π−1(N) is a Γ-invariant right ideal of kG. Since A is stable under conjugation
by Γ inside G, I = π−1(N)∩kA is a Γ-invariant right ideal of kA and I is non-zero
because the restriction of π to kA is bijective by construction. Furthermore I is
two-sided since A is abelian.

Let P be a minimal prime ideal above I; since I is Γ-invariant, P is Γ-orbital
so its stabilizer S has finite index in Γ. Therefore L(S) = L(Γ) so S still acts
rationally irreducibly on A which forces P to be the maximal ideal m of kA by
Corollary 8.1(b). Hence the prime radical

√
I of I is equal to m and therefore I

contains some power of m which has finite codimension in kA. The result follows

since π induces a k-linear bijection kA/I
∼=−→M/N . �

We now present another example of a just infinite induced module, arising from
split semisimple groups.

8.3. Proof of Theorem D. Let g = sln(Qp) = L(G), let p− be the opposite
parabolic to p and let a be its nilradical. Note that a is abelian because g = sln(Qp)
and p is a maximal parabolic. Following [14, §II.1.8] we call l := p∩p− the standard
Levi factor of p. Then we have a semi-direct product decomposition

p− = ao l
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and a vector space decomposition

g = a⊕ p.

If P−, A and L denote the corresponding uniform subgroups of the uniform group G
— see [9, Theorem 7.15] — these vector space decompositions imply that PP− = G
and and P− ∩ P = L. Therefore there is an isomorphism

L\P−
∼=−→ P\G

of right P−-spaces, which induces an isomorphism

k ⊗kL kP−
∼=−→ k ⊗kP kG

of right kP−-modules. Since every kG-submodule of k ⊗kP kG is also a kP−-
submodule, it is now enough to prove that k ⊗kL kP− is just infinite as a kP−-
module.

Consider the adjoint action of l on a. Using the natural representation of g =
sln(Qp) and the assumption that p is a maximal parabolic, we can identify l with the
reductive Lie subalgebra

(
glm(Qp)× gln−m(Qp)

)
∩ g of g for some 1 6 m 6 n− 1.

Then l contains the block diagonal subalgebra d := slm(Qp) × sln−m(Qp). If Vr
denotes the natural irreducible representation of slr(Qp), then a is isomorphic to
HomQp(Vn−m, Vm) ∼= Vm ⊗ V ∗n−m as a d-module and is therefore irreducible as
such. Therefore the adjoint representation of l on a is also irreducible: a is a
minimal abelian ideal of p−.

Now P− = Ao L is a semi-direct product, and L acts rationally irreducibly on
A by the above. Because L normalizes A, G is uniform and A is isolated in G,
[L,A] 6 A ∩ [G,G] 6 Ap inside P−, so the kP−-module k ⊗kL kP− is just infinite
by Theorem 8.2. �

8.4. Zalesskii’s Theorem.

Lemma. Let G be a complete p-valued group of finite rank. Then

(a) Z(G) is isolated in G, and
(b) Z(U) = Z(G) ∩ U for any open subgroup U of G.

Proof. (a) Let g ∈ G be such that gp
n ∈ Z(G) for some n. Then (x−1gx)p

n

= gp
n

for all x ∈ G and it follows from [15, Proposition III.2.1.4] that g ∈ Z(G).
(b) Let g ∈ Z(U). Since U contains Gp

n

for some large enough n, (g−1xg)p
n

=
xp

n

for all x ∈ G. As in part (a), we deduce that g ∈ Z(G) so Z(U) ⊆ Z(G) ∩ U .
The reverse inclusion is trivial. �

We can finally give a proof of our analogue of Zalesskii’s Theorem.

Theorem. Let G be a nilpotent complete p-valued group of finite rank with centre
Z. Then every faithful prime ideal P of kG is controlled by Z.

Proof. By Theorem 5.8 applied with A = Z, it is enough to show that every faithful
virtually non-splitting right ideal I of kG is controlled by Z. Now I = (I ∩ kU)kG
for some open subgroup U of G with I ∩ kU a non-splitting prime of kU . Since Z
contains Z(U) by Lemma 8.4(b), it is enough to prove that I ∩ kU is controlled by
Z(U). So by replacing G by U and P by I ∩ kU we may further assume that our
faithful prime ideal P is non-splitting.

Let H := Pχ and define K = CG(H/Z(H)) = {g ∈ G : [g,H] 6 Z(H)} to be
the centralizer in G of H/Z(H). Then K contains the centralizer CG(H) of H in
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G and Γ := K/CG(H) acts faithfully on H by group automorphisms; since K is
p-valued and acts on H by automorphisms which are trivial mod Z(H), we will
identify Γ with a subgroup of AutωZ(H)(H).

Let Q = P ∩ kH; then P = QkG by [6, Theorem A]. Since H is the controller
subgroup of P , we see that Q cannot be controlled by any proper subgroup of H.
On the other hand, since P is non-splitting, Q is a prime ideal of kH by Proposition
5.5. Since Γ preserves Q, Theorem B implies that Γ must be trivial and therefore
K = CG(H).

Now the definition of K shows that K∩H is the second term Z2(H) in the upper
central series of H. On the other hand, since K = CG(H) this intersection is just
the centre of H. Because H is nilpotent, it must actually be abelian. Inspecting the
definition of K again gives K = NG(H) = G, but also K = CG(H) and therefore
G centralizes H. In other words, H is central in G and P is controlled by Z. �

8.5. A completed crossed product. Our final application of Theorem B is that
when G is nilpotent, every prime ideal P of kG is completely prime, that is, kG/P
has no zero-divisors. This will require a little preparation.

Lemma. Let G be a complete p-valued group of finite rank and let N be a closed
isolated normal subgroup of G. Then we can find c1, . . . , ce ∈ kG such that

(a) every element of kG can be written uniquely as a (possibly non-commutative)
formal power series in c1, . . . , ce with coefficients in kN :

kG =

∑
γ∈Ne

rγc
γ : rγ ∈ kN for all γ ∈ Ne

 ,

(b) the valuation w on kG satisfies

w

∑
γ∈Ne

rγc
γ

 = inf
γ∈Ne

w(rγ) + w(cγ).

Proof. Let d = dimG and e = dim(G/N). By Lemma 4.2, we can choose an

ordered basis {g1, . . . , gd} for G such that {gp
n1

1 , . . . , gp
nd−e

d−e } is an ordered basis
for N for some integers n1 6 n2 6 · · · 6 nd−e. Since G/N is torsion-free, [15,
IV.3.4.2] implies that the quotient filtration on G/N is a p-valuation, so gr(G/N)
has no π-torsion. Since grG/ grN naturally embeds into gr(G/N) by [15, II.1.1.8.3],
n1 = n2 = · · · = nd−e = 0 and {g1, . . . , gd−e} is an ordered basis for N .

Let ci = gd−e+i−1 ∈ kG for all i = 1, . . . , e and let Yi = grw(ci) be the principal
symbol of ci in grw kG. Then Lemma 6.2(a) implies that

grw kG ∼= (grw kN)[Y1, . . . , Ye]

so {grw cγ : γ ∈ Ne} is a free generating set for grw kG as a grw kN -module. The
result now follows from [15, Théorème I.2.3.17]. �

Thus kG ∼= kN [[c1, . . . , ce]] as a kN -module. Because of this result, it is tempting
to think of kG as a kind of “completed crossed product” of kN with G/N . But we
will not develop this intuition any further.
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8.6. Theorem. Let G be a complete p-valued group of finite rank with centre Z,
and let P be a prime ideal of kZ.

(a) PkG is completely prime.
(b) If P is faithful, then so is PkG.

Proof. (a) Let τ : kZ � kZ/P be the natural projection and let Q be the field of
fractions of kZ/P . Applying Theorem 7.3 to the group Z and the prime ideal P
of kZ, we obtain a valuation v : Q → R∞ such that vτ(x) > w(x) for all x ∈ kZ.
This valuation is separated because Q is a field.

Since Z is isolated in G by Lemma 8.4(a), we can apply Lemma 8.5 to find
c1, . . . , ce ∈ kG such that kG ∼= kZ[[c1, . . . , ce]] as a kZ-module. Now define a
function f : kG→ R∞ by the rule

f

∑
γ∈Ne

rγc
γ

 := inf
γ∈Ne

vτ(rγ) + w(cγ).

We claim that f is a ring filtration on kG. To see this, consider the product cαcβ

inside kG for α, β ∈ Ne; using Lemma 8.5(a) we can rewrite it as

cαcβ =
∑
γ∈Ne

ηαβγ cγ

for some ηαβγ ∈ kZ, and these coefficients satisfy

w(cαcβ) = inf
γ∈Ne

w(ηαβγ ) + w(cγ)

by Lemma 8.5(b). Now

w(cαcβ) = w(cα) + w(cβ) for all α, β ∈ Ne

because w is a valuation on kG. Since vτ(x) > w(x) for all x ∈ kZ, we see that

(11) vτ(ηαβγ ) + w(cγ) > w(cα) + w(cβ) for all α, β, γ ∈ Ne.

Let r =
∑
α∈Ne rαcα ∈ kG and s =

∑
β∈Ne sβcβ ∈ kG; then

rs =
∑
γ∈Ne

 ∑
α,β∈Ne

rαsβη
αβ
γ

 cγ .

Applying the definition of f and equation (11), we obtain

f(rs) = inf
γ∈Ne

vτ
(∑

α,β∈Ne rαsβη
αβ
γ

)
+ w(cγ)

> inf
γ∈Ne

(
inf

α,β∈Ne
vτ(rα) + vτ(sβ) + vτ(ηαβγ )

)
+ w(cγ)

> inf
α,β∈Ne

vτ(rα) + vτ(sβ) + w(cα) + w(cβ)

> f(r) + f(s).

The inequality f(r + s) > min{f(r), f(s)} is easy to verify, so f is indeed a ring
filtration on kG, satisfying

f(r) > w(r) for all r ∈ kG
by Lemma 8.5(b).

Next, equip kZ with the valuation vτ ; this valuation is not separated and in fact
(vτ)−1(∞) = P because v is a separated valuation on Q. Since f(r) = vτ(r) for
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all r ∈ kZ, the natural map (kZ, vτ) → (kG, f) is strictly filtered and induces an
inclusion of associated graded rings

ι : grvτ kZ ↪→ grf kG.

Since grw kG is commutative and w(ci) = f(ci) by definition, we have

f([ci, cj ]) > w([ci, cj ]) > w(ci) + w(cj) = f(ci) + f(cj)

for all i, j = 1, . . . , e which shows that the principal symbols grf ci of the ci’s
commute pairwise. Therefore we obtain a ring homomorphism

ψ : (grvτ kZ) [Y1, . . . , Ye]→ grf kG

which extends ι and sends Yi to grf ci. Using the definition of f , it is straightforward
to verify that ψ is actually a bijection. Because vτ is a valuation, grvτ kZ is a
domain so grf kG is a domain, which implies that f−1(∞) is a completely prime
ideal of kG.

Finally, by choosing a finite generating set for P as an ideal, it is easy to see that

(12) PkG =

∑
γ∈Ne

rγc
γ : rγ ∈ P for all γ ∈ Ne

 .

Since P = (vτ)−1(∞), it follows that PkG = f−1(∞) is completely prime.
(b) Let h ∈ (PkG)†. Then h = zgα1

d−e+1 · · · g
αe
d for some z ∈ Z and α ∈ Zep, and

PkG 3 h− 1 = z(1 + c1)α1 · · · (1 + ce)
αe − 1

= (z − 1) +
∑
γ 6=0 z

(
α
γ

)
cγ

by the binomial expansion. Applying (12), we deduce that z− 1 ∈ P and z
(
α
γ

)
∈ P

for all 0 6= γ ∈ Ne. The first constraint forces z = 1 as P is a faithful prime by
assumption. Because the prime ideal P is proper, we must have

(
α
γ

)
= 0 in the field

k for all 0 6= γ ∈ Ne. By applying Mahler’s Theorem 6.3, we see that every locally
constant function f : Zep → k satisfies f(α) = f(0). But locally constant functions
on Zep separate points, so α = 0. Therefore h = 1 and PkG is faithful. �

Corollary. Let G be a nilpotent complete p-valued group of finite rank. Then every
prime ideal P of kG is completely prime.

Proof. The normal subgroup P † of G is isolated by Lemma 5.3(c), so G/P † is again
a complete p-valued group of finite rank by [15, IV.3.4.2]. By replacing G by G/P †

we may therefore assume that our prime ideal P is faithful. Now P = (P ∩ kZ)kG
by Theorem 8.4 and P ∩ kZ is a prime ideal in kZ since Z is the centre of G, so
the result follows from Theorem 8.6(a). �

8.7. Proof of Theorem A. (a) Let P = Θ(Q) = Q̃kG; then P ∩ kÑ = Q̃

by Lemma 5.1(b). Clearly N 6 (Q̃)† 6 P †; on the other hand if g ∈ P † then

gN ∈ (Qk[[G/N ]])
†

which is the trivial group by Theorem 8.6(b) since Q is faithful.
So P † = N and therefore

Ψ(Θ(Q)) =
P ∩ kP̃ †

(P † − 1)kP̃ †
=

Q̃

(N − 1)kÑ
= Q.



PRIME IDEALS IN NILPOTENT IWASAWA ALGEBRAS 47

(b) Let Q = Ψ(P ) = P∩kP̃ †
(P †−1)kP̃ †

so that Q̃ = P ∩ kP̃ †. Because G is nilpotent,

the image P/(P †− 1)kG of P in k[[G/P †]] is controlled by ZP † by Theorem 8.4, so

P = (P ∩ kP̃ †)kG = Ψ̃(P )kG = Θ(Ψ(P )).

Every ideal in kG of the form Θ(Q) is completely prime by Theorem 8.6 (a).
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