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Abstract

We apply the method of variable feedback to obtain complete
synchronization in a coupled map lattice. The conditions under
which such a synchronization is possible are obtained analyti-
cally. We show that synchronization is robust against noise and
parameter mismatches. This method leads to synchronized state
quite rapidly and we discuss its applications for near-real-time
multi-channel communications.
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1 Introduction

Synchronization of chaotic systems has received much attention in the last decade since the work of
Pecora and Carrol [1]. This has been partly fuelled by potential applications of chaos control, syn-
chronized dynamics in various areas ranging from secure communication, neural networks and pattern
formation. Even though, at first sight, it appears that sensitive dependence on initial conditions be-
ing the hallmark of chaos might preclude any synchronization from taking place, it has been amply
demonstrated that synchronization of chaos is possible [2].

Much of the work on chaos synchronization has focused on low dimensional maps and flows [3] since
they form the building blocks for complexity in physical systems. However, many spatio-temporal phe-
nomena in nature are chaotic and at times display synchronization. One of the well known examples
is the synchronized neuronal firings recorded by the Electroencephalograph (EEG) devices [4]-[5]. To
understand such spatially extended systems coupled map lattice (CML) was introduced by Kaneko [6]
as a model for high dimensional chaos capable of displaying a variety of dynamical features including
spatio temporal chaos. Recently, the effects of parameter mismatches in synchronized EEG signals and
CMLs have been studied extensively [7]. The related question is the synchronization of spatio-temporal
chaos in CMLs. The general strategy is to achieve synchronization by an appropriate feedback or drive
mechanism. For instance, a generalization of Pecorra and Carrol method suggested by Kocarev and
Parlitz, called active passive decomposition has been used to synchronize CMLs [8]. This is based on
a general decomposition of any autonomous dynamical system by rewriting it formally as a nonau-
tonomous system with a drive term [8]. In another interesting approach, it was shown that randomly
rewiring the CML leads to synchronization [9]. Furthermore, it was demonstrated by Santhanam and
Arora [10] that two coupled map lattices that are mutually coupled to one another with a delay can
display zero delay synchronization if they are driven by a third coupled map lattice.

In this paper, we obtain complete synchronization in CMLs by applying the continuous feedback
technique introduced by Pyragas [11]. Let us suppose that we have two CMLs, named as Xn+1(i) and
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Yn+1(i), where n and i denote the time and space index respectively. In this method, a suitable form of
the signal from X system is fed with a constant delay k at every instant into Y system to finally obtain
Xn−k(i) = Yn(i) synchronized state, even when X and Y individually continue to execute chaotic
dynamics. This approach was earlier applied to low dimensional maps and flows [12], [13]. We show
that the synchronization obtained is robust against noise and parameter mismatches and hence it is
useful for practical applications such as the multi-channel communications [14].

Several researchers have investigated the efficacy of chaos synchronization for secure communication
[15], [16], [17], [18]. In these applications that require some amount of security, there is a need for
as many different chaotic signals as the number of channels to encode the messages sent in each
of the channels. Signals sent into these channels are encoded by the chaotic time series from one
of the lattice points of the CML. The CML, being a high dimensional chaotic system, is an ideal
candidate for such a purpose. Presence of synchronization allows the receiver to decode the message
in all the channels. Hence, for real-time applications synchronization must be achieved in shortest
possible time. Specifically, the reliability of a chaos-based communication system depends heavily on:
a) the robustness of the synchronization scheme to channel noise and potential mismatch in system
parameters, and, b) the time it takes to achieve complete chaos synchronization at the receiver and
transmitter. In this study, we acheive complete synchronization in CMLs and provide an exhaustive
assessment of the robustness of the employed scheme. Based on the reported findings, we argue that
the synchronization scheme can be potentially useful for multi-channel secure communication.

2 Complete Synchronization Using Variable Feedback

We consider the CML labelled x given by,

xn+1(i) = (1− ǫ)f [xn(i)] +
ǫ

2
(f [xn(i− 1)] + f [xn(i+ 1)]) (1)

where i = 1, 2....L and ǫ is the coupling parameter. We use periodic boundary conditions so that
xn(L+ 1) = xn(1) leading to a ring type lattice. The second CML labelled y is obtained by replacing
x with y in Eq. (1). Here, the local dynamics uses the logistic equation, f(x) = ax(1− x), where a is
the map parameter. The delay feedback technique is implemented by giving a suitable form of xn−k(i)
to the y system (k = 11 for demonstration). Hence, the modified y-CML becomes,

yn+1(i) = (1− ǫ)f [yn(i)] +
ǫ

2
(f [yn(i− 1)] + f [yn(i+ 1)])

+H(xn−k, yn) (2)

where H(.) is the delay feedback term whose specific form we will choose shortly. We are looking for
the synchronization state xn−k(i) = yn(i) and hence we will write the CML dynamics in terms of the
variable zn(i) = xn−k(i)− yn(i). Using Eqns. (1,2), the dynamics of zn(i) is given by,

zn+1(i) = a(1− ǫ)zn(i) +
aǫ

2
[zn(i− 1) + zn(i+ 1)]

− a(1− ǫ)gn(i)−
aǫ

2
[gn(i− 1) + gn(i+ 1)]

− H(xn−k, yn) (3)

where gn(i) = x2n−k(i)− y2n(i). The target synchronization state is zn(i) = 0, for i = 1, 2...L. Now, we
will choose

H = (1− ǫ) [(a− ρ)zn(i)− agn(i)]

+
ǫ

2
[(a− ρ)zn(i+ 1)− agn(i+ 1)

+ (a− ρ)zn(i− 1)− agn(i− 1)] (4)
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such that it would serve to cancel gn(.) and zn(.) in Eq. (3) and introduce ρ as a parameter to control
the strength of the feedback. The general strategy is to choose a H so that all except the terms linear
in ρzn are canceled. Earlier, this has been adapted to synchronize a logistic map [12]. While this is one
simple choice for H, this is not unique. Some of the properties discussed later depend on this particular
strategy for choosing H. Now, substituting H in Eq. (3), we can write down the resulting equation in
matrix form as Zn+1 = AZn, where Zn = {zn(1), zn(2), ......zn(L)}

T is the column vector and A is the
Jacobian matrix given by,

A =











a1 a2 0 ... aL
aL a1 a2 ... 0
...

...
...

...
...

aL 0 ... ... a1











with a1 = ρ(1− ǫ) and a2 = aL = ρǫ/2. The eigenvalues of A are

λk1 =
L
∑

j=1

aj ei2πk1j/L k1 = 1, 2, ..L.

= ei2πk1/L [a1 + 2a2 cos(2πk1/L)] (5)

A homogeneous synchronization state requires | λk1 |< 1 for all k1. It is straightforward to show that
this requirement is equivalent to,

ρ < 1, and ǫ < (1/2)[1 + (1/ρ)]. (6)

As n → ∞, zn+1(i) = xn−k+1(i) − yn+1(i) → 0 and systems (1) and (2) are perfectly synchronized.
Notice that this is also the condition for stable synchronized state and hence ρ < 1 also ensures the
stability of the synchronized state. The conditions in Eq. (6) are independent of the map parameter a
and for ρ < 1, we have ǫ < 1.

We show the results of numerical simulations for CMLs given by Eqns (1,2) with periodic boundary
conditions and starting from different random initial conditions. The parameters used are ρ = 0.1
with a = 4.0 and ǫ = 0.9 corresponding to spatio-temporal chaos [19] and satisfy the requirements for
synchronization. In Fig 1(a,b) we show the CML output drawn from 56th lattice. Except for the first
few iterations, both display similar dynamics. The error zn(i) = xn−k(i)−yn(i) shown in Fig 1(c), is of
O(10−5) after a few iterations and provides an evidence of synchronization, which is achieved in about
4 iterations. In Fig 2, we show zn(i) as a space-time plot. Clearly, all the 100 lattices synchronize very
quickly and remain so as n → ∞.

3 Robustness of the scheme

We check the robustness of the proposed scheme with respect to additive noise and parameter mismatch.
In the presence of noise, the CML in Eqns (1,2) is modified as,

xn+1(i) = F (xn) + νn(i)

yn+1(i) = G(xn−k, yn) + µn(i) (7)

where F and G represent the right hand side of Eqns (1) and (2) respectively. The noise terms νn(.)
and µn(.) are uniformly distributed random numbers in the range [0,0.01]. If νn−k(i) = µn(i), then
the noise in one CML will be canceled by the other and the results discussed above hold without any
change. If νn−k(i) 6= µn(i), then the synchronization persists though with a bounded error. This result
can be obtained as follows. We denote a column vector of noise by Γn = {νn−k(1) − µn(1), νn−k(2) −
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Fig. 1: Temporal evolution of the CML for 56th lattice point. (a) xn(56), (b) yn(56), (c)
zn(56).
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Fig. 2: Error zn(i) for L = 100 lattice points iterated for 20 time steps. Note that synchro-
nization is marked by the flat plane at about zn(i) = 0.0.
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Fig. 3: Error due to the presence of additive noise for the 56th lattice of CML in Eqns
(1,2).

µn(2), ......νn−k(L)−µn(L)}
T . In the presence of noise, the error dynamics is given by Zn+1 = AZn+Γn.

If R is the matrix that diagonalizes A such that RAR−1 = Λ, where Λ = diag{λ1, λ2, .......λL} is a
diagonal matrix. Now, using the shorthand notation Z

′

n = RZn and Γ
′

n = RΓn, we get, Z
′

n+1 =

ΛZ
′

n + Γ
′

n. In scalar form, this equation becomes,

z
′

n(i) = λi z
′

n−1(i) + (ν
′

n−k−1,l − µ
′

n−1,l)(i)

= λn
i z

′

0(i) + (ν
′

n−k,l − µ
′

n,l)(i), (8)

where µ′ and ν ′ are the noise terms transformed by R. The second form of Eq. (8) is obtained by
starting from an initial z

′

0(i) and iterating n times. From this, we obtain the following inequality,

z
′

n(i) 6 λn
i |z

′

0(i)|+ φi

n−1
∑

j=0

λj
i = λn

i |z0(i)|+
φi

1− λi
(9)

where φi = max(ν
′

n−k,l − µ
′

n,l)(i) is bounded and so is the error due to addition of noise. Fig 3 shows

that the error due to additive noise is of O(10−3). In Eq. (9), λn
i → 0 as n → ∞. In our numerics,

φi ∼ O(10−3) and λi < 1. As shown in Fig 3, the error is well within the estimated bounds. It remains
so for all the lattice points.

When the coupling parameters of the two systems are slightly mismatched, synchronization is still
realized though with some error. The basic CML labelled x is given by Eq. (1) and the y-system is,

yn+1(i) = (1− ǭ)f [yn(i)] +
ǭ

2
(f [yn(i− 1)] + f [yn(i+ 1)])

+H(xn−k(i), yn(i)) (10)

The error ẑ for a mismatch ∆ǫ = ǫ− ǫ̃ is,

ẑn+1(i) = zn+1(i)−
∆ǫ

2
F(xn−k) (11)

where zn(.) is defined in Eq. (3) and F(xn−k) = 2f [xn−k(i)] − f [xn−k(i + 1)] − f [xn−k(i − 1)]. It
can be shown that ẑ will remain bounded if F(xn−k) < xmax. This implies that if the condition
| ∆ǫ xmax/2 |≪ 1 is satisfied, synchronization will be achieved but will suffer a small but bounded
error of O(|∆ǫ xmax/2|). In Fig 4, we show the simulation result for the 56th lattice of systems in Eq.
(1,10). We have ∆ǫ/2 = 0.005 corresponding to ǫ = 0.9 and ǭ = 0.89. Since typically xmax ∼ O(1), the
estimated error in this case is O(10−3) which is borne out by the numerical results in the Fig 4. Even
though, we have not shown here, this result holds true for all the lattice sites in the CML.
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Fig. 4: Error ẑ due to parameter mismatch shown for a typical lattice (i = 56) for ǫ = 0.9,
ǭ = 0.89.

Next, we consider the mismatch in the map parameter a. Once again, Eq. (1) represents the
x-system and Eq. (2) is the y-system with its a replaced by ã. In this case, the dynamics of error ẑ
becomes,

ẑn+1(i) = zn+1(i) +
(a− ã)

a
{(1− ǫ)f [xn−k(i)]

+
ǫ

2
(f [xn−k(i− 1)] + f [xn−k(i+ 1)])} (12)

Note that after synchronization is achieved, zn+1(i) = 0 and Eq. (12) is simply the CML equation
scaled by the factor ∆a = (1− ã/a). Hence, the error due to mismatch in the local map parameter a
can be made arbitrarily small by tuning ∆a. In Fig 5, we show CMLs evolved under a mismatch in map
parameter; i.e, we take a = 4, ã = 3.99 such that ∆a = 0.0025. The solid line in the figure corresponds
to ẑn(56) and the dashed line to ∆a xn−k(56), i.e, the output of 56th lattice xn(56) scaled by ∆a.
Except for first few iterations, both the curves coincide to within the numerical errors thus confirming
Eq. (12). Hence, this synchronization scheme is robust against noise and parameter mismatches. Both
these properties are important for devising practical applications based on this scheme. Our results
show that the synchronization discussed here is independent of the system size, i.e, all the properties
discussed above and time Tsync taken to achieve synchronization (defined as the number of iterations
needed at which z(i) < 10−5) are the same irrespective of number of lattice points in the CML.
Physically, this is to be expected since every lattice point is connected to its nearest neighbors and
each of them see the same environment. Hence the properties of all the lattice points are the same.

We investigate if the x and y CMLs are phase synchronized. The phenomenon of phase synchro-
nization has been extensively studied by many researchers [20], [21]. In Fig 6, we plot the phase of the
56th lattice of x and y CMLs, as specified in Eq. (1, 2). As evident from Fig 6, the x and y-system
lattices are phase synchronized.

As pointed out earlier, time to achieve synchronization is Tsync ∼ 4 iterations and is the same
for any number of lattice points in the CML but it does vary with the parameter ρ that controls the
strength of feedback. Fig 7 shows that as ρ → 1, the synchronization time increases monotonically.
This is an indication that for ρ > 1, synchronization is not possible. This, in turn, is in agreement with
the Eq. (6) derived earlier.

This scheme is reasonably robust to noise implying that the noise due to electronic circuits will
not spoil the synchronization features. Similar robustness holds good for small mismatches in circuit
parameters that are required to build electronic equivalents of CMLs. In particular, time to synchronize
is quite short. The properties discussed above lends the scheme to be useful for secure, real-time multi-
channel communication. Another possible extension of this is to choose H such that noise in one
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Fig. 5: Error ẑ due to parameter mismatch shown for a typical lattice (i = 56) for a = 4,
ã = 3.99; The black curve is the CML output in Eq. (1) scaled by ∆a.
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channel is not propogated into any other channel. Further, this scheme can be adopted for any local
map xn+1 = f(xn) other than logistic map. Then, the quantitative details of the results may be different
from that presented here for the case of logistic map. Further, one could consider other types of CMLs
such as the one-way coupled lattices with periodic boundary conditions. We find that qualitatively
we obtain similar results as discussed above. This method can also be extended to synchronize two
dimensional coupled map lattices.

4 Conclusions

In this study, we showed that the complete synchronization of coupled map lattices can be achieved by
applying the method of variable feedback. We analytically obtained the conditions on the parameters
that will lead to synchronization. Furthermore, we demonstrated that this synchronization scheme is
quite fast and is robust against noise and parameter mismatches. This is a crucial feature for practical
applications like near-real-time secure multichannel communications.
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