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Abstract

The existence of synchronization in neuronal firings is by now well established. Oc-
casionally, as recorded by the multichannel electroencephalograph (EEG), most of
the channels covering the entire scalp burst in a synchronous manner. They are
called synchronized burst events. Using the measured multichannel EEG data with
high temporal resolution, we show that the synchronized burst events can be iden-
tified using the correlation matrix formalism. The eigenvectors capture not only the
synchronised burst events but also the complete synchronization among small clus-
ters of channels. This method allows us to detect all the major synchronized activity
in the EEG records and can provide information about the functional connectivity
in the brain from the EEG perspective.
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1 Introduction

Many physiological processes display synchronization [1]. The most easily rec-
ognizable phenomenon of this class in our daily life is the wake-sleep rhythm
that is synchronous with the light-dark cycle [1]. Physiological functions in bi-
ological systems result from complex interactions among various sub-units and
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they also respond to external stimuli. Another instance of synchronization is
in the electroencephalograph (EEG) signals from the brain, which represents
the electrical signal from a collection of neurons in the brain. These signals
display synchrony in individual neuronal spikes as well as the burst events
[2]. For instance, it is now mostly agreed that epilepsy in humans is associ-
ated with pathological synchronization of neurons [3]. Hence it is important

to quantify and understand synchronization in collective neuronal firings and
EEG.

At the neuronal level, many mathematical models and even experimental re-
sults are available for collective burst events of neurons called synchronized
burst events (SBE). Considerable progress has been made in the last decade
in understanding the dynamics of neuronal events and their synchrony [4]. Ex-
perimental approach using lithographically prepared In Vitro networks have
shown spontaneous and stimulated events both of which display SBE and they
are long range correlated [5]. However, most of the work dealing with synchro-
nization in brain at the level of EEG deal with a single or few scalar time
series of EEG signals [6,7]. On the other hand, it is also known that certain
activities of the cerebral cortex take place due to interaction of assembly of
neurons from different parts of the brain [8]. A related and important ques-
tion is of the networks and connectivity; how various parts of the brain get
connected in response to certain stimulus [9].

Therefore, to obtain a complete picture, it is important to take a holistic ap-
proach to the question of synchronization and burst events in EEG signals. In
this paper, we propose a method based on correlation matrix spectra to iden-
tify synchronized burst events in EEG signals. We also study the signatures of
SBEs in spectra of correlation matrix for subjects under two different states of
brain, namely, eyes closed (EC) and eyes open (EO). In the light of results in
Ref. [5], a related question is if the properties of SBE at the neuronal level are
related to that of the EEG signals. While a complete answer to this question
is not straightforward, we hope this work will also shed light on this possible
connection.

In the next section, we discuss the measured EEG data and define the syn-
chronized burst event that forms the basis for this study. In section III, we
introduce the correlation matrix and its spectra and demonstrate how it can
detect synchronized burst event.



2 EEG signals and synchronized burst events

2.1 FEEG signals and data

Electroencephalograph (EEG) signals measured on the scalp record the re-
sultant electrical activity due to millions of neurons in the brain. Since EEG
signals are simultaneously recorded using large number of channels or elec-
trodes on the scalp, the correlations that exist between various channels can
be used to study the connectivity and the collective emergent behaviour of
neural clusters. In the last few years, high space and time resolution EEG
recordings have become possible and they offer a deeper insight into such
processes and connectivity in the brain.

In this work, we study scalp EEG signals from subjects in their eyes closed and
eyes open condition. The data was recorded on a 128 channel high resolution
[10] Electric Geodesic systems at 200 Hz referenced to a vertex electrode.
The positions of the electrodes on the scalp is shown in Fig 1. The data was
processed through a band pass filter operating in the range 0.1 to 70 Hz and its
artifacts removed. This data had earlier been used to study the coordination
in the dynamics of brain and also for complexity analysis [11]. We study a
two minute trace of the EEG time series and identify the synchronized burst
events in them using the correlation matrix formalism.

2.2 Synchronized Burst Events

In Fig 2(a,b) we show a sample of the EEG record from one particular electrode
for subjects in eyes closed and eyes open condition. Let x;(¢) represent the EEG
signal recorded by ith channel (1 < < 128) at time ¢. Here time is discrete
in units of 1/200 second; t = 1,2,....T. A sample of EEG signal recorded at
one particular electrode for the subject in eyes closed (Fig 2(a)) and eyes open
(Fig 2(b)) condition is displayed. Following Segev [5], we create a new time
series y; by integrating the absolute of EEG values within M time bins.

Mt

yi(r) = > |z 7=1,2,3...... Trmaz, (1)

t=M(r—1)+1

where T4, = [I'/M] and [z] represents the integer part of z. For the results
presented in this paper, we have taken M = 25. We also define the mean (y)



Fig. 1. The positions of the electrode for EEG measurement on the scalp of the
subject is shown.
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Fig. 2. (a,b) Sample EEG record, (c,d) Absolute of EEG values and (e,f) y;(t) as
defined by Eq. 1. The figures (a,c,e) is for eyes closed and (b,d,f) for eyes open case.
The dashed line in (c) and (f) denote the threshold given by (y). All the events that
lie above this line are the burst events.
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Fig. 3. The space-time plot of y;(t) for eyes closed (left) and eyes open (right) case.
A black dot is placed at positions of the burst event. The dark, vertical lines, for
instance at ¢ = 52 in the left figure, indicate synchronized burst events.

to be,
1 Tmaz 128
= — p . 2
(V) = 155 — TZZI 2. (1) (2)

A burst event at tth instant is one for which y;(7) > (y). The EEG values
that lie above the threshold marked by dashed line in Fig 2(c,f) are the burst
events. If such burst events happen in at least 80% of the channels, we call it a
synchronized burst event (SBE). In Fig 3, we show y;(¢) as a space-time plot.
Notice that the dark vertical lines extending through most of the electrodes
denote the synchronized burst events. To see this more clearly, in Fig 4 we
display the SBEs in the data using the above criteria. In this figure, every
time an SBE occurs, we have marked it by a dark vertical line. With this
criteria, the presence of such collective burst event implies that the neuronal
firing pattern is mostly sporadic and occasionally they exhibit synchronous
firing activity involving almost all the channels. The data analysis performed
by varying time bin M or the threshold criteria for the burst event indicate
that they do not affect the results presented in this work.

At this point, it is worth pointing out that when one is interested in the
correlations among the burst events, typically the bursts are converted in to
binary signals and then further analysis is performed [5]. However, we dispense
with this pre-processing since the main purpose is to identify the signatures of
SBEs by directly applying our method on the raw data. We have also verified
that for a given data set, whether the binary output is considered or the
raw signal, the correlations that we compute and analyze in the next sections
remain almost unchanged.
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Fig. 4. The synchronised burst events for the cases shown in Fig 3 for EC (left) and
EO (right) obtained by applying the criteria discussed above. If atleast 80% of the

channels exhibit a burst event at any given instant, dark vertical lines are drawn at
those times.

3 Correlation matrix

We assume that the measured strength of EEG signal denoted by z;(t), i =
1,2....N and t = 1,2...T, has been standardised such that it has zero mean and
unit variance. The distribution of EEG data is very close to a Gaussian and
justifies such a standardisation. Let Z denote a T'x N data matrix where each
column contains standardised EEG time series from a given channel. Then,
the correlation matrix C of order N is,

C =17"7, (3)

where the superscript .T represents matrix transposition. The elements Cj; of
C indicate the correlation between the EEG values generated at ith and jth
channels. Hence every element of the matrix C indicates spatial correlations
in the data. If the EEG series from these two channels are uncorrelated then,
|Ci;| = 0 and if they are perfectly (anti)correlated then |C;;| = 1. This is a
linear measure of synchronization and is suitable for EEG time series where
synchronization takes place within some frequency bandwidth.

The major features in the space-time plot of EEG profiles z;(¢), from all the
128 channels for the subject in EC and EO condition, are similar to that
depicted in Fig 3. As can be seen in this figure, some of the SBEs can be
visually identified by inspection but most others require some quantitative
tool to locate them. We will use the correlation matrix formalism to identify
SBEs in this multivariate EEG data.

The correlation matrix computed using Eq. 3 for both the EC and EO cases is
displayed in Fig 5. Based on this figure, qualitatively we can expect a lot more
correlations and hence many more SBEs in the EO case than in EC case. It is
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Fig. 5. The correlation matrix for eyes closed (left) and eyes open (right) case. The
black indicates strong correlations and white indicates weak correlations.

also instructive to note that in EC case we see correlations among channels,
for instance numbered 4 and 120, that are located far apart on the scalp of
the subject. In the EO case, the diagonal dominance of the C shows that
essentially only the contiguous channels are strongly correlated. Notice that
even though burst events are defined through Eqns. (1,2) by taking absolute
values, the correlation matrix is computed from the raw time series z;(t) after
standardisation. Hence, we are attempting to obtain information about burst
events and their synchrony by analysing the raw EEG data.

To determine the major modes of synchronized activity among the EEG chan-
nels, we diagonalize the correlation matrix C to solve the eigenvalue problem,

C Vi = )\kvk, (4)

where A, (kK =1,2,...,N) are the eigenvalues and vy, are the corresponding
eigenvectors. Each eigenvector captures one mode of synchronous activity and
¢r = \g/N denotes the relative significance of the mode. Information about
the correlation structure of the multivariate EEG data is now studied using
the correlation matrix spectra.

Earlier, Kwapien et. al. [12] used correlation matrix to analyze magnetoen-
cephalograph (MEG) signals to quantify the degree of collectivity during
certain latency intervals. They also showed that the random matrix theory
(RMT) can model the MEG correlation matrix. Séba [13] showed that the
EEG correlations can be studied using the RMT framework. This work also
shows that visual stimulation in EEG records leads to deviation from RMT
predictions. Recently, correlation matrix formalism has been used to detect
and characterize changes in the degree of synchronization and correlations in
a multivariate data set [14]. In the present work, we study the eigenmodes of
the correlation matrix to determine the signature of collective behaviour like
the SBEs in the multivariate EEG data.
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Fig. 6. The logarithm of the eigenvalues of the EEG correlation matrix for eyes closed
(circles) and eyes open (triangles) cases are shown. The inset is the magnification
of the 15 largest eigenvalues.

The eigenvalues of C are ordered such that \y > Ay > ... > Ay. In Fig
6, the eigenvalues for the EC and EO cases are shown. Except the top 5
eigenvalues, in a statistical test, the rest would be classified as being noisy.
This tallies with the result of Séba [13] that the dominant eigenvalues of
EEG correlation matrix deviate from random matrix predictions. While these
dominant eigenvalues contain information about SBEs, we will show later that
the last few eigenmodes contain non-trivial information as well. The matrix
formed by putting the columns of eigenvectors together is denoted by E; i.e.,
E = {vy,vs,v3...vy}. Since C is a real symmetric matrix by construction,
its eigenvector E is an orthogonal matrix. The data matrix Z can be written
in terms of the eigenvectors of C as,

Z=AET (5)

where A = Z E is the matrix of principal components. This exact synthesis
formula is the basis for many applications of correlation matrix formalism in
image compression and data denoising [15] and clustering and pattern recog-
nition [16] in many disciplines. We will use this formula to reconstruct EEG
time series by selectively summing over certain suitable eigenvectors.

4 SBE from the eigenvectors
4.1 The dominant eigenvectors

The modes of collective synchronized activity of the EEG signals are obtained
from the eigenvectors of the correlation matrix. Note that the eigenvalues of
C are positive semi-definite, i.e., A\; > 0 for all i. In Fig 7(a,e), |v{|* corre-
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Fig. 7. The eigenvectors |v;|? for EC cases (a) i = 1, (b) i = 2, (c) ¢ = 127 and (d)
i =128. For EO cases (e) i =1, (f) i = 2, (g) ¢ = 127 and (h) ¢ = 128.

BE
SBE

24 48 72 9% 120 24 48 T2 % 120
time (sec) time (sec)
Fig. 8. The SBE reconstructed from the dominant eigenvectors of EEG correlation
matrix for eyes closed (left) and eyes open (right) case. A black line is drawn across
all electrodes (y-axis) if more than 80% of them display a burst event at any instant.
This reproduces most of the SBEs seen qualitatively in Fig 4.

sponding to the eigenvalue with largest magnitude )\; is shown, for eyes closed
and eyes open cases respectively. Almost all the channels contribute to these
eigenvectors. The second dominant eigenvector corresponding to A is shown
in Fig 7(b,f) and it has similar qualitative behaviour. Both these modes cap-
ture the major synchronized bursting events in the EEG signals from all the
channels. To see this clearly, we reconstruct the EEG data using Eq. 5 and the
eigenvectors with eigenvalues A; and \,. The reconstructed data is again pro-
cessed to obtain SBEs and is shown as space-time plot in Fig 8. The vertical
lines in this figure are the location of SBEs.
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Fig. 9. The SBEs in the EEG data reconstructed (Eq 5) using successively more and
more eigenvectors as a function of the eigenvalue index. The dark lines represent
the SBE obtained from the original data.

The above results show that the signature of collective neural synchrony lies
solely in the higher eigenvalues. The results obtained from empirical correla-
tion matrices from stock market data also show that the dominant eigenvector,
dubbed as market mode, has contributions from all the participating stocks
[17]. The dominant eigenvectors shown here could be thought of as an equiv-
alent of such market mode in EEG data. Note that the time at which the
synchronized bursting events occur in the reconstructed data (Fig 8) is same
as that in the original data (Figs 3,4). It is however interesting to note that the
highest eigenvalue overestimates the number of synchronized bursting events
present in the data. Such overestimation cannot be ruled out in general. For
instance, in this case the most coherent representation of SBEs in the data re-
quires a linear combination of at least five eigenvectors of the EEG correlation
matrix. This is seen from the fact that the first few eigenvalues, say, about
five of them, and their eigenvectors lead to proper cancellations which corrects
this overestimation. The number of eigenvectors, about 5 in this case, needed
for a reasonably good representation of the data is obtained by the following
methods. We construct an ensemble of 100 correlation matrices, each of size
128 by 128, with random entries. The eigenvalues are computed for each of
them, appropriately normaised and are averaged over the ensemble. Then, by
comparing the the ensemble averaged eigenvalues with those generated from
the EEG data, we arrive at the number of significant eigenvectors [18].

This can be visualized by plotting the number of eigenvalues and eigenvectors
involved in data reconstruction using Eq 5 against the number of synchronized
bursting events present in the reconstructed data. This is shown in Fig 9
and clearly summing over the first few eigenvectors in Eq. 5 is sufficient to
reproduce nearly accurate SBE in the original EEG data.

The above results show that the detection and quantification of synchroniza-
tion in voluminous multivariate EEG data can be done by correlation matrix
formalism. Recently, a different approach based on eigenvalue decomposition
of the mean phase coherence matrix has been used to identify synchronized
clusters in cortical EEG recordings from epileptic subjects [19]. The main idea
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behind these techniques is to detect phase synchronization clusters in realistic
systems.

4.2 Least dominant eigenvectors

The intermediate eigenvalues mostly correspond to noisy behaviour. However,
the eigenvector corresponding to the last few eigenvalues, say, Aiss,....A198,
display peaks that indicate presence of strongly pair-wise correlated channels
on the scalp. In Fig 7(d,h), |vies|? for the eigenvalue with least magnitude is
shown for EC and EO case respectively. In contrast to the case of dominant
eigenvalues, there are a few peaks in |vi9g|? and the contribution from most of
the channels is nearly zero. This scenario is true for the last few eigenvectors;
the case for |vi97|? in Fig 7(c,g) is for EC and EO respectively. We show
that these pair-wise correlations correspond to nearly identical EEG signals,
to within experimental errors, between the two channels. To see this, we plot
the time series from the EEG channels which display peaks in Fig 7(c). For
instance, consider the EEG series x45(t) and z75(t) (note the peaks at i = 48
and ¢ = 78 in Fig 7(c)) chosen based on the peaks in Fig 7(c) for EC case.
In Fig 10(c), the difference A = x45(t) — x73(t) is shown. Note that A ~ 0
indicates strong correlation between these two channels. For EO case, Fig.
10(e,f) displays EEG series from channels i = 76 and i = 96 corresponding to
the peaks in Fig 7(h). In fact, though we have chosen these two channels for
illustration purposes, groups of peaks in Fig 7(h) display similar characteristic
in their time series. From Fig. 10(f), we see that A = x74(t) — z96(t) =~ 0,
indicating strong correlations in the time series even though the electrodes
are mostly not contiguous on the scalp. Note the electrode positions denoted
by 76 and 96 in Fig 1 that shows the placement of electrodes. The position of
eigenvector peaks is an indicator of the connectivity in the brain. Thus, this
method reveals how brain is functionally connected from the EEG perspective.
In fact, our results indicate that several peaks in Fig 7(c) are either pair
wise correlated or anti-correlated. This is reminiscent of empirical financial
correlation matrices whose lower eigenvectors were found to be pair wise anti-
correlated [17]. This indicates that the organisational principles of complex
systems such as the financial markets or the brain are similar in nature, at
least when seen from the perspective of their internal correlations.

5 Discussion and Conclusions

Thus, using the eigenvectors of the EEG correlation matrix, it is possible
to detect and segregate the synchronized burst events, a collective activity
involving almost all the neurons. Synchronous bursts are spatially larger scale

11
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Fig. 10. The EEG time series from those channels that are peaked in Fig 7(c,d,g,h).
For the EC case (left panel), (a) EEG series x45(t), (b) z78(t) and (c) z4s(t) —z78(t)-
For the EO case (right panel), (d) z76(t), (€) z9s(t) and (f) z76(t) — z96(t)-

phenomena when compared with the complete synchronization in small groups
of channels, which involve only a few EEG channels and affects the neurons
on a smaller area on the scalp. We have shown this using measured EEG
data from subjects in eyes closed and eyes open condition. We have performed
this analysis on 10 subjects for both EC and EO case for which the data is
available with us. The results are qualitatively the same as reported above. We
also stress that our approach to handling the SBEs does not require the EEG
signal to be in binary form. Infact, we have checked that almost all the results
discussed above are independant of whether the signal is in binary or raw signal
form. This is a useful feature in practice since it saves processing time and also
the components that would convert signal to binary form will not be needed.
Experiments to study the connectivity in the brain during various stimulus
such as for example, visualisation, breathing, physical stress etc., attempt to
identify regions of neurons that are involved in processing the stimulus [20]. We
believe that the approach outlined above will provide a time averaged picture
of the brain connectivity. This could be thought as the dominant mode of
brain connectivity during the time of the experiment. If there are N channels
measuring the EEG activity, the largest correlation matrix encountered will
be of order N. Current technology allows for N = 128,256 or occasionally 512
and for these values eigenvalue problems can be solved in less than few seconds
of CPU time of desk top computers. Hence, this method can be automated
to be performed in near real-time for purposes of clinical diagnosis as well.
Further, in this direction, it is necessary to study the physiological states that
lead to large scale SBEs in EEG records.

To summarise, we identify the synchronized burst events in multichannel EEG

records. To obtain a complete picture of the synchronized activity in the brain
from the EEG, we apply the correlation matrix formalism to this multivariate
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data. We have shown that by using the eigenvectors of the correlation matrix,
it is possible to separate the synchronized burst events from the complete
synchronization in small clusters of channels. It would be interesting to see if
the properties of eigenvalues and eigenvectors are sensitive to different physi-
ological states of the subject and if they can be used to identify the source of
classes of EEG signals.

One of us (SA) thanks Physical Research Laboratory for the internship during
which time most of this work was done.

References

[1] L. Glass, Nature 410 277 (2001).
[2] B. W. Colder et. al., J. Neurophysiology 75 2496 (1996)

[3] J.Engel Jr. and T.A. Pedley, Epilepsy: A Comprehensive Textbook, (Lippincott-
Raven, New York, 1997).

[4] Andreas V. M. Herz et. al., Science 314 5796 (2006).
[5] Ronen Segev et. al. Phys. Rev. Lett. 88, 118102 (2002).
[6] F. Mormann et. al., Physica D 144 358 (2000).

[7 R. Q. Quiroga, A. Kraskov, T. Kreuz, and P . Grassberger, Phys. Rev. E. 65
041903 (2002).

[8] P. R. Roelfsema et. al, Nature 385 157 (1997).
[9] T. Koenig et. al., Philos Trans R Soc Lond B Biol Sci. 360, 1015 (2005).
[10] G. Edlinger et. al., IEEE Trans. Biomedical Engg. 45, 736 (1998).

[11] R. Pravitha et. al., Int. J. Neurosci. 111, 175 (2001); R. Pravitha and V. P. N.
Nampoori, Int. J. Neurosci. 112 1245 (2002); R. Pravitha, R. Sreenivasan and
V. Nampoori, Int. J. Neurosci. 115, 445 (2005).

[12] J. Kwapien, S. Drodz, and A. A. Ioannides, Phys. Rev. E 62 5557 (2000).
[13] P. Seba, Phys. Rev. Lett. 91, 198104 (2003).

[14] M. Miller, G. Baier , A. Galka, U. Stephani, and H. Muhle, Phys. Rev. E. 71,
046116 (2005).

[15] R. N. Hoffmann and D. W. Johnson, IEEE Trans. Geosci. Remote Sens. GE-32,
25 (1994), and references therein.

[16] M. Turk and A. Pentland, Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition 586 (1991); M. Turk and A. Pentland, J.
Cognitive Neurosci. 3, 71 (1991).

13



[17] P. Gopikrishnan, B. Rosenow, V. Plerou and H. E. Stanley, Phys. Rev. E 64,
035106(R) (2001); V. Plerou et. al., Phys. Rev. E 65, 066126 (2002).

[18] R. W. Preisendorfer and C. D. Mobley, Principal Component Analysis in
Meteorology and Oceanography, (Elsevier, Amsterdam, 1988).

[19] S. Bialonski and K. Lehnertz, Phys. Rev. E 74, 051909 (2006).

[20] L. Lee, L. M. Harrison and A. Mechelli, Network 14, R1 (2003).

14



