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1. INTRODUCTION

The dynamics of cluster growth has attracted consliderable interest in
many apparently unrelated areas of pure and applled science. Examples
Include polymer science, colloidal and aerosol physics, atmospheric
sclence, astrophysics and the kinetics of phase transformations in binary
alloys [5,6,8,10,12,13]. The common link in all these examples is that
they can be considered as a system of a large number of clusters of
particles that can coagulate to form larger clusters or fragment to form
smaller ones.

If ce(t) 30, r=1,2,..., denotes the expected number of
r-particle clusters per unit volume at time t, then the discrete
éoagulatlon—fragmentatlon equations are

r-1 ®

. 1
r =5 L lap_g sCr-sCs = Prog, sCr) - I [ap sCpCg - by sCpysl  (1.1)
s=1 s=1
for r =1,2,..., where the flrst sum Is absent if r = 1. The

coagulatlon rates ap ¢ and fragmentation rates b, o are non-negative
constants with ar.s = 3,r and br,s - bs,r' fhls model neglects
(among other things) the geometric location of clusters and considers only
binary collislons of clusters. For derivations of this and sinilar
equations see [10].

The dependence of the rate coefficlents ar,s'br,s on r and s
depends on the partlicular application. In this paper we shall
concentrate on the Becker-Doring equations in which a g = b =0 if
both r and s are greater than 1. In this case we can write the

equations In the form



Cp = Jpoq - I r 2 2,
- . (1.2)
€, ==J, - EJ;
r=1
where J_ = arC,Cr = bry Cryy- To see that (1.2) is a special case of
(1.1) take ap = ap by, =b, for r:?2 and 2a, = a, ,,
2b, = b, ,. For ease of notation, from now on all summations wlll be

over the positive integers unless stated otherwise.

In sections 2-3 we discuss equation (1.2). The asymptotic behaviour
of solutions Is especially Interesting, both mathematically and for
applicatlions. For example, In the binary alloy problem the essence of the
phase transition Is the formation of larger and larger clusters as t
Increases. Hathematically thls can be lIdentifled with a weak but not
strong convergence as t - <. We only outline the main ldeas involved In
this Investigation; full detalls appear In [3). The general equation
(1.1) Is more difficult to analyse since solutions may have singularitles
not present in (1.2). In sectlon 4 we briefly discuss some of the

difficulties and state a new result on density conservation.

2. BASIC IDEAS

We first review some facts concerning convergence In a space of
sequences. Let X = (c = (c ): L rilc.l <=} and let (cJ)) be a sequence
of elements in X. He say that c converges strongly to ce€X
(symbolically cJ =c) if Erlcd -cl -0 as j-= It Is also
useful to have another notion of convergence In X. HWe say that c)

converges weak * to ceX (symbolically cd ) If
(l)wMErkHld==L&.”)<~ md(H)cH-*% as j - = for each
r=1,2,... . Thus weak * convergence Is In a sense polntuise

convergence. The justification of the terminology comes from functional
analysis (cf. [9], p374). Clearly strong convergence Implies weak *
convergence. However, the converse Is false In general; for example take
o - (J“Grj) where &y =1 If r =) and 0 otherwise. Then c)

converges weak * to the zero sequence but It does not converge strongly.
We can express the weak * convergence as convergence In a metrlic space.

« For p >0 let B, = {(y,) € Xs L rlygl € p}. Then (Bp,d) Is a metric
I

space where d(y,z) =L ly, - z.|. Clearly a sequence tyh ¢ B,
converges weak * to y € X If and only if y € B, and d(yJ,y) -0 as
) - =. Heak * convergence Is useful because Bp Is  compact;
equlvalently, any bounded sequence in X has a weak * convergent
subsequence.

In order to arrive quickly at the most Interesting questions
concerning (1.2) we give a rapid review of its properties. The density is
given by L rcr(t) and since matter Is nelther created or destroyed in an
interaction it Is a conserved quantity. Thus we look for equilibrium
solutions cP = (cP) with p=ZIrcP. From (1.2) we nmust have

J.(cP) =0 for all r so that
r
c? = 0 (c.P) (2.1)
where Q, ='1, Qp,, = Q3. /by, r > 1. It remains to identify c,P. To

do this let

F(z) = £ rQ.z"F

In the binary alloy problem the above serles has finite radius of

iconvergence zg and F(zg) = pg < =. 1In this paper we shall describe our

results for this case; for other cases see [3]. Since F is an
Iincreasing function of 2z, the equation F(z) = p has a unique solution
z=cP If 0 <p <pg and no solution If p > pg. Thus If 0 < p ¢ pg
there is a unique equilibrium cP with density p, while if p > Ps
there Is no equllibrium with density p. Let

V(c) = E c.lan(c,/0Q,) - 1]. (2.2)

The 'free-energy’' functlon V |Is a Lyapunov function for (1.2), that
Is It Is non-increasing along solutions. Also, for 0 ¢ p € pg, the
equlilibrium cP Is the wunique minimizer of v on the set
XP = {c = (cg): cp > 0 for all r, Erc. = pl.

Suppose that the initlal data for (1.2) has density p,. If
po € Pg the above results suggest that the corresponding solution
c(t) = cP strongly In X as t - and this is indeed

the case. If Po > pg the asymptotic behaviour
Is not so clear since there Is no equil ibrium with
density p,. Since V Is non-increasing along solutlions lg is natural
to consider the behavlour of minimlzing sequences of V on X °. The

basic result here Is that If p, > pg and c Is a minimizing sequence



Ps

of V on Xp° then ! converges weak * to ¢ In X but not strongly.

The main result on asymptotic behaviour says that the solution c(t) of
(1.2) with density p, is minimizing for V on x° as t - =, so that,
for 0 ¢ p, € pg, c(t) = cPo strongly In X and, for p, > pg,

Po

c(t) = ¢ in X. Note that for the.case p, > pg We have that

po = L rcp(t) > I r Lim cp(t) = L re,’s = pg.
Lo
The excess density p, - pg corresponds to the formulation of larger and
larger clusters as t increases, l.e. condensation.

To obtain results on the asymptotic behaviour of a solution c(t) we
have to exploit the Lyapunov function V. To do this we apply the
Invariance principle for evolution equations endowed with a Lyapunov
function (cf. [7] for a survey). To apply this method we need to find a
metric with respect to which V Is continuous, the positive orbit
{c(t): t 3 0} is relatively compact and solutions depend contlnuously on
initial data. It might seem natural to try and use the metric Induced by
strong convergence on X, that Is d(y,z) = L rly. - z.|. However, In
the case p, = L rc (0) > pg the positive orbit cannot be relatively
compact with this metric since there Is no equilibrium with density Po-
Horeover, since the only obvious global estimate Is density conservation
Wwe have to use the metric induced by weak * convergence on bounded subsets
of X to achieve relative compactness of positive orblts. Unfortunately,

V defined by (2.2) is not continuous In thils nmetric. Fortunately,

however, because density Is conserved,

Vo(c) = V(c) - tn z L rc,

Is a Lyapunov function for each 2z, and for exactly one value of z,
namely z =2,, V., |Is sequentially weak * continuous. Thus we can apply
the invarlance principle to prove that c(t) 2> P as t -+« for some
p, 0 ¢ p ¢ min(p,,pg) where p, Is the density of the initial data. We
then prove the result described above by using a maximum principle for
(1.2) In the case p < pg. At this stage of the proof In [3] we made
certain hypotheses on the initial data; a more refined argument shows that

these hypotheses are not needed [4].

3. EXISTENCE AND DENSITY CONSERVATION

We prove existence of solutions to (1.2) by taking a limit of

solutions of the finite-dimenslional system

Cp = Jr_‘ - Jr' 2¢r sn-1

n-1 (3.1)
€y = =Ty = r Jps Cp = Jn—l'

r=1

Solutlons of (3.1) satisfy 2 rcy(t) = 2 rc (0) so that ¢, = 0(r")
for all n. Hence if ar,b: 1 o(r) thgnlfor each r, ¢, Is bounded.
Thus by applylng the Arzela-Ascoll Theorem and passing to the limit in the
equations we get a simple global exlistence proof. In fact since
fragmentation can be thought of as a dlssipative mechanism we do not need
any hypotheses on b, and by working harder we need only assume
a. = 0(r) to get global existence. If r'a. -« as r =« there Is
in general no solution of (1.2) even on a short time fnterval.

We remarked earller that formally the density I rc.(t) Is a constant
of the motlon. This is always true for (1.2); It Is not true In general

for (1.1) (cf. section 4). To prove it for (1.2) we consider partlal
sums. Now
n t =
L rlcy(t) - c.(0)]) = - I [an(c(s)) + L Jr(c(s))]ds. (3.2)
r=1 o r=n

For a solution of (1.2) we require that I J.(c) converges so that

t @
I EJ.(c(s))ds -0 as n ==
o r=n

Also, from (1.2)

t
n[ Jple(s))ds = n E (cp(t) - c.(0)) ~0 as n -~ =
o

r=n+l
«© o
since n Lc. ¢ E rce. Thus letting n ~ = in (3.2) proves that
r=n+l r=n+l

the density Is conserved.



4. THE GENERAL DISCRETE COAGULATION-FRAGHENTATION EQUATIONS

We first discuss equations (1.1) when both coagulation and
fragmentation are included. In this case It Is usual to assume the
detalled balance condition. This demands that (1) an equilibrium solution
c = (cy) with ¢, >0 exists and (i1) at equilibrium the net rate of

conversion of r and s «clusters to r + s clusters Is zero, so that

br,scr+s = ap §CrCs- This  places the following restriction on
ar. s br,s'
ar,s0r0g = by 50p4s (4.1)

for some Qp. Assuming (4.1), It follouws that equilibria of (1.1) have
the form Cy = Or(c,)r and a formal calculation shows that
V(c) = £ cplan(c./Qp) - 1] Is a Lyapunov function for (1.1). This is
the same as for the Becker-Ddring equation (cf. equations (2.1) and (2.2))
and so we expect to get simllar results. The analysis for (1.1) however
Is even more complicated than that needed for (t.2). Host of the
analysis has been completed (4] but there are still some technlcalitles to
be finalised. To reveal some of these difficulties we look at some
special cases of (1.2). In particular, we show that the density
I rc.(t), which formally Is a constant of the motion, need not in fact be
conserved.

(a) Let ap g =0, br,s =1 for all r and s so that
. B 1
Cp = L Cpyg = E(r—l)cr. (4.2)
s=1

A solution of (4.2) is

crt) = @2 e ) 4 8 G0 0-e2) 4 (1-e"2)2 (n-r-1))]

n=r+l
(4.3)
and it is easy to check that for this solution the density Is a conserved
quantity [2].  However, for any X > 0, (4.2) has a solution
\t <3
Cp =@ ET00y, (4.4)
where x,. 1Is defined by Xp =1, x4y = (14 “r)xr' and

6 r? 4+ (6% - 2)r + 2» - 1

%y

r*(2 +r+ 2))

Since «p = 0(r?), x. Is bounded and E rc.(t) = e*r rc.(0). The
speclal solutions (4.4) also show that for any Initlal data, solutions of
(4.2) are not unique. Clearly, the solutions given by (4.4) are
unphysical. In this case It Is easy to pick out the correct unique
solution by placing extra requirements on the definition of a solutlion
(cf. [1] for the continuous case of (4.2)). However, in more complicated
situations It 1Is wuseful to know conditions on the fragmentation
coeffliclents which prohiblt non-uniqueness.

(b) Let by =0 for all r and s so that we are only considering

coagulation processes. In this case the denslty conservation can break
down at a finite time t., a phenomenon known as gelation [11]. The gel
polint te Is characterlsed as the flirst time for which

L rap oCpCg diverges and Is interpreted as the formation of a super-

rs
particie (gel phase). In particular, this phenomenon occurs when
ar s = (rs)®, « > 1/2. For t > t. It may be necessary to modify the
equations to account for Interactions of the gel phase with finite

.

clusters.
For appllications to phase transitions, one set of conditions suggested

by O. Penrose on the coagulation and fragmention rates |Is that
ap g = O(r'/? 4+ s'P%) and  that by, s = 8 s0r}s0:0s. where
0, ~ zg"exp(-ar'/?) with a, zg positive constants. Note that in this
case by ¢ ~r'* for r large and s bounded while for r and s

large uléh r - s small, br,s Is small. The physical motivation here
is that surface area conslderations show that It Is unlikely that a large
cluster of size r + s will split Into two large clusters of size r and
s (and hence Iincrease the surface energy by a large amount). It turns
out that under these conditions we can show that density Is conserved.

More generally we have:

Theorem

Suppose that for some n, 3 1 and k > 0 we have that
(1) ap g €« k(r +s) for all r,s 3ng,

r-n

(1) JZ br—],] ¢k for all r,n with r 3 2n 3 2n,,
=-n

L A



(il

wher

Then

L rc

The

REFE

1.

10.

11.

12.

13.

1 m
) = L Jbr—j j < k for all r and n with r > n+ ng
r jon ‘

e m=min(n,r - n).
if c s a solution of (1.1) on [0,T) with p, =L rc.(0) < =,
() =p, forall te [0,T).
proof of the above result is given in [4].
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