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1. Introduction.

Let © ¢ R” be measurable and let z(j):ﬂ —> R® be a given sequence of

functions. The fundamental theorem concerning Young measures asserts that
W o z(j) and a

under appropriate hypotheses there exists a subsequence 2z
family of probability measures (vx) on R™ (the Young measure) such that the

weak limit of f(z(p')) is given by the expectation

<v,f>=J FQ) dv (A)  a.e. x e (1)
x [Rm x

for any continuous function f :R™— > R. The purpose of this note is to give a
version of the theorem that is convenient for some applications to nonlinear
partial differential equations and variational problems of mechanics, together

with a reasonably self-contained proof. Although sharper than some statements

in the literature as regards the hypotheses on the z(j) and f, the form of

the theorem given here is not essentially new. In particular, E.J.Balder has
shown me how it may be regarded as a consequence of a very general lower
semicontinuity theorem he has proved in [3 Theorem 2.1]. Nevertheless, I hope

that the statement given here may be of some use.

The Young measure A(vx) can intuitively be thought of as
w near x. To

giving the

1imiting probability distribution as g — of the values of z(
be more precise, suppose that Q is open and that x € Q. Denote by B(x,8) the
open ball with centre x and radius & > 0. Keeping x,u and & fixed, let v;“; be

the probability distribution of the values of z(w(y) as y is chosen uniformly

at random from B(x,8). Then it is shown below that

vy = lim lim v(”é , (2)

x 350 o

almost everywhere, where the convergence is weaLk* in the sense of measures.
The Young measure was introduced by L.C.Young (see [39,40]) as a means of
treating problems of the calculus of variations for which there does not exist
a minimizer in a classical sense. Meny applications and developments to the
calculus of variations and optimal control theory have been made by MacShane
[28], Gamkrelidze [24] and others. More abstract ideas in the same spirit are

the integral currents of Federer & Fleming [23] and varifolds (see, for
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example, Allard [1]). The Young measure was developed as a tool for analysing
nonlinear partial differential equations by Tartar [36], who suggested how it
could help to prove existence theorems for nonlinear hyperbolic systems, a
programme he carried out for a single hyperbolic equation. These ideas were
then significantly developed by DiPerna [18] to prove the existence of

solutions for a system of two hyperbolic equations in one space dimension.
lines have been given by, for example,

Further results along these
Rascle [31], Roytburd & Slemrod [32],

Dafermos [15], DiPerna [18],
Schonbek [33] and Serre [34]. Applications of the Young measure to variational
problems of continuum mechanics have been made by Ball & Knowles [8], Ball &
James [7,8], Chipot & Kinderlehrer [14], and Kinderlehrer [27]. In the last
four papers cited, the application is to the description of the microstructure
of crystals. (The order in which the limits are taken in (2) corresponds to
the way in which the microstructure is experimentally observed; namely, a
small region of diameter & of the crystal is examined microscopically, but

this region is typically larger than the length scale u-i of the

microstructure. )
The method used here to prove the fundamental theorem delivers (vx)

directly via duality rather than by disintegration of a measure on a product
space; the principal idea can be found in Castaing & Valadier [13], Warga
[38,391, Balder [3,4], and recent descriptions appear in Capuzzo Dolcetta &
Ishii [12], and Slemrod & Roytburd [35]. An alternative direct construction is
suggested in Tartar [37 pp268-8]. For the more usual method see Berliocchi &
Lasry [11], Tartar [36] and Balakrishnan [2]. A Young measdbe‘corresponding to
a bounded sequence in LP capable of detecting some concentrations as well as

oscillations has been introduced by DiPerna & Majda [19,20] as a tool for

studying vortex dynamics.

2. The fundamental theorem for Young measures.

Our aim is to prove the following result:

Theorem

Let @ c R" be Lebesgue measurable, let X ¢ R®™ be closed, and let

1,2,..., be a sequence of Lebesgue measurable functions
given any open

2P 0 SR 5=

satisfying z(J)(-) —> K in measure as j — o, i.e.
neighbourhood U of K in R"
lim meas {x € Q : z(j)(x) ¢U} = 0.
Jo00
Then there exists a subsequence zM of z and a family (vx), x € Q, of

ositive measures on Rm, depending measurably on x, such that
p
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(i) v § == I dv = 1 for a.e. xe€ Q,
x M IRm X
(ii) supp v _C K for a.e. x € Q, and
*
(1i1)  f(z'") s w > = f £(A) dv (A)
X Rm x

in L®(Q) for each continuous function f : R'—— R satisfying

lim £(a) = O.

PYESS

Suppose further that {z'™)} satisfies the boundedness condition

0, (3)

lim sup meas {x € Q n BR: Iz(“)(x)[ z k }
k0 p
for every R > 0, where BR= B(0,R). Then HvaH

a probability measure), and given any measurable subset 4 of Q
in L'(4) (4)

=1 for a.e. xe Q (i.e. v Iis
X

f(z(u)) [N <vx,f >

for any continuous function f :R'—— R such that (2"} 1s sequentially

weakly relatively compact in L.

Remarks

1. The condition (3) is very weak, and is equivalent to-the following: given

' any R > O there exists a continuous nondecreasing function gh:[O,m) — R,

with lim gk(t) = ©, such that

t->0
sup gh(lz(”)(x)l) dx < o, (5)

13 QnBR
In fact suppose that {(5) holds. Then, since g, is nondecreasing,

sup meas {x € @ n B_: Iz(“)(x)l = t}.g(t) = sup f 4 (lz(”)(x)l) dx.
R R L
® R

n
Since lim gh(t) = w, we obtain (3).
T30
Conversely, if (3) holds, we may choose O < tj< tj+1' Jj=1,2,..., so that
sup meas {x € QnB;: 1z (x| = tj) = j°
In
and let
_ 0 if te[0,t),
gR(t) =
j if te [tj,tj+1L
Then
[+
- w _ , (w
sup glz™(x)]) dx = supYjmeas {xeQnB: t > |z (x)] >t}
R R J+t h]
B TOnB Hog=1

mz
= YJjT<w,
j=1

Choosing a suitable continuous &= ék we thus obtain (5).
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Conditions similar to (5) are used by Berliocchi & Lasry [11
Proposition 51, and by Balder [3 Section 2] (who calls it ‘tightness’; see.

also Balder [51).

An application of the theorem to the case when the z”)

are bounded in

LI(Q;IRm) (i.e. with gR(t) = t) appears in Ball & Murat [10].

2. If the functions z”) are uniformly bounded in Lw(Q;IRm) then the functions
f(zu)) are uniformly bounded in L¥(Q) for any continuous f :R™——> R. Hence
by the theorem there is a family of probability measures (vx) and a

subsequence z(“ ) such that
£z%) S wr> i %@

for all such f. In this way we recover the form of the theorem given by Tartar
[38]. If Q is bounded and if the zU) are uniformly bounded in LP(Q;R™) for
some p, 1 < p < o, then we obtain from the theorem the existence of a family

of probability measures (Vx) and a subsequence z(w such that

f(z(”)) —_— <vx,f > in LT(Q) (8)

for any continuous f : R'——> R satisfying
I£(A)] = const. (1 + 1alT), A eR", (7)

where g > 0 and 1 < r < p/q (see Schonbek [33]).

3. If A is bounded, the condition that {f(z(“))} be sequentially weakly

relatively compact in Ll(A) is satisfied if and only if
supf!ﬁ(lf(z(w)l) dx < ®
p A

for some continuous function ¥ :[0,w) —— R with lim P(A)/A = o (de la
A0

Vallée Poussin’s criterion; cf.MacShane [29], Dellacherie & Meyer [161).

4. As explained in the introduction, the Young measure (vx) can be thought of
as the limiting probability distribution of the values of z(w near the point
x. In fact if Q is open and x € Q then for & > O sufficiently small the open

ball B(x,8) with centre x and radius 8 is contained in Q, and the formula

(4w _ W
<ww Pl f> = fFlz" (y)) dy (8)
x,8 ][B(x,a)

. s M s . m
defines a continuous 1linear form on continuous functions f : R—— R of

compact support. (Here and below ]( (+) dx denotes (meas E)—if () dx .) The
E E

Radon measure v;“()s is a probability measure giving the distribution of the

values of z(p’) in B(x,8), and can be written

(§13] Jt
v = 8 dy,
x,3 B(x,5) z™(y)
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where Ba denotes the Dirac mass at a € R". As L — o, vi’% SN vx 5 in the

sense of measures, where by the theorem

v ,f> = J[ <w ,f > dy, (10)
%3 B(x,8)
that is,
v = ][ v dy . (11)
8 B(x,8) ¥ v
By Lebesgue’s differentiation theorem, for any fixed f
<vx6,f> — <vx,f> as'd —> 0 for a.e. x € (.

set of functions f we deduce easily that

Choosing a countable dense
x € Q. The number

vos . v, in the sense of measures as 8§ —» 0 for a.e.
1~ lluxlfH represents the limiting proportion of the points in B(x,8) at which

z(p') becomes unbounded.

Proof of the theorem

We denote by CO(IRm) the Banach space of continuous functions f :R"—— R

satisfying 1lim f(A) = O, with the norm llfllco = sup [f(A)]. A well known
2] AeR"
(Hewitt & Stromberg [25 p364])

form of the Riesz representation theorem
asserts that there is a isometric isomorphism between the dual space CO(IRm)*
of CO(IRm) and the Banach space M(R") of bounded Radon measures on R" obtained
by associating with each v € M(R") the linear form f — mef(A) dv  on

Co(lRm). The norm on M(R™) is given by llvllH= fmdlvl. We associate with z'Ythe
R
mapping v 9 — 5 M(R™) defined by

v = s (12)

Z(j)(x)'
For each j, pd belongs to the space L:(Q;H(Rm)) of equivalence classes of
weak* measurable mappings p : Q@ — M(R") that are essentially bounded, i.e.
l!ullm’H 1= ess supllu(x)uH < o . (13)
X €
(We say that p is weak* measurable if <u(x),f > is measurable with respect to

Since C_(R™) is separable, there is an isometric isomorphism between the dual
space of LI(Q;CO(!Rm)) and LS(Q;M(IR"')) obtained by associating with each

x for every f € Go(lRm).) Under the norm II-HOO " L:(Q;M(Rm)) is a Banach space.

I L:(Q;H(Rm)) the linear form

U o— f <pl(x),¥(x, «)> dx (14)
Q

on Li(Q; Co(lRm)) (see Edwards [22 p588], A. & C. Ionescu Tulcea [26 p93], Meyer

[30 p244]). But

1w =1 for all j.
0,4

hence (cf. Dunford &

Since Co(lRm) is separable, so is Li(Q;CO(IRm)), and
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Schwartz [21 pp 424-426]) there exists a subsequence »H op and an
element v = (v ) of LT(Q;H(R™) such that ™+ ip LT(QH(R™). By (14)
this implies that
[ 90 2% 0y ax — [ v utx)> ax (15)
Q Q2

as U — for every v e Ll(ﬂ; Co(Rm)). In particular, taking
W(x,A) = ¢(x)F(A), where ¢ € L(Q) and £ e C(R™), we have that

2y 2. w,f> in L@ (186)
for every f e CO(IRm), which is (iii). By weak* lower semicontinuity of the

norm, Hvllw,H = 1, which is (i). To prove (ii), assume that K # R™ and let
fedR" = {ge C (R™) ; &= 0 }. Then, taking U = {z € R |f(z)] < e},
it follows from the hypothesis that z(”(-) — K in measure that
f(z(“)(-)) — 0 in measure. Since f is bounded, we deduce that

f¢(x) w,f>dx = lin| ¢(x) £(z"™ (%)) ax
X
Q U300" Q

=0
for every ¢ e L(Q). Since Co(Rm) is separable so is Gi(lRm), and it follows

that for a.e. x € 2 we have <vx,f > =0 for all f e C::(IR'"), i.e. supp LA K.
Since v”)(x) = 0 a.e. we deduce similarly that vxz 0 a.e..

Now suppose that (3) holds. Define ¢ e Co(!Rm) by

1 for (A} =k , .
) = {1+ k-~ |2l for k= JAl =k + 1, (17)
0 for jA]l =z k + 1

Then if E < Q is bounded and measurable

lim Jt ﬁ(k)(z(“)(x)) dx = f<v ,G(k)> dx
p>o YE E ¥
= Jf vl dx . (18)
E

But

i

. (1 .
0 = { [1- 9(k)(z(m(x))) dx = meas{x € E: |z "' (x)| = Kk}
E meas E

so that letting k —— o we get from (3) and (18) that

1 = ]fuv I dx . (19)
E X M

Since vallM = 1 a.e. and E is arbitrary, (19) implies that Ilvxllx =1 a.e..

Suppose further that f : R—— R is continuous and that f(z(m) is
sequentially weakly relatively compact in LI(Q). Let f' = max (f,0),
£ =max (~£,0), so that £ = £~ f". By the Dunford-Pettis theorem (Dunford &
Schwartz [21 p292]) f+(z(m)_ and f-(z(w) are both sequentially weakly

relatively compact in Ll(n). Hence to prove (4) we can and will suppose that




(§})

an
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£z 0. It also clearly suffices to prove (4) for the case when A is bounded
and f(z(m) —— x , say, in Ll(A). Define f* e Co(!Rm) by = 19kf, where o is

given by (17). Let ¢ € LY(4). We claim that
f¢ Fz™) ax — f¢ £(z'™) ax. (20)
A A

as k — », uniformly in u. In fact
[ ¢ ™) - £2'")) ax ’
A

= const. f(z(’“) dx , (21) i
J‘{xeA: lz(p’)(x) =k} g

and, given € > 0, by the Dunford-Pettis theorem there exists an M > O such
that

sup - f(z(”)) dx = g . ;

p {xed: £ (z 7 (x))=M} o

Hence by (3) e

K

f(z(#)) dx = & + M meas {xed : lz”’l)(x)l = k} 3

J‘{xeA: lz(“)(x) |=k}
= 2e ,

for all p if k is sufficiently large, which together with (21) gives (20).

Since also by (iii)
liqu}fk(z(m) dx = f¢<v,fk> dx
pso 4 4

lim f

k0 VA
Choosing ¢ = 0 and noting that £ is increasing, we deduce from the monotone

(22)

it follows that )
¢ <vx,fk> dx = f ¢ x dx . (23)
A

convergence theorem that <vx,f > =x a.e. in 4 as required.

Remarks on the proof

1., The proof makes contact in several places with that of Balder

[3 Theorem 2.1].

2. The reader is warned that the mappings V”)do not in general belong to the

space L°°(n; ‘M(R™)) of essentially bounded strongly measurable mappings from

to M(R") even when the z(j) are smooth. This space cannot be identified with

the dual of LI(Q;CO(R'")) via (14).

3. The same argument as in the proof shows that under the hypothesis (3), for

any measurable A ¢ Q,
£,z") — @ rx 0> 1Ll (24)

for every Carathéodory function f :4 x R"——> R such that {f(-,z(m)} is

sequentially weakly relatively compact in LI(A).
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