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MINIMIZING SEQUENCES IN THEBRMOMECHANICS

ABSTRACT - A common approach to justifying energy minimization in
thermomechanics is to seek an appropriate Lyapunov function for the dyna-
mical equations. Mathematically this leads to the possibility that solu-

tions may have finer and finer structure as time t — @,

The purpose of this article is to make some remarks con-
cerning the classical problem of justifying energy minimization
in thermomechanics. One popular line of thought (see, for ex-
ample, Duhem [1911], Ericksen [1966], Coleman & Dill [1973])
involves the observation that the governing equations possess
a Lyapunov function E, the equilibrium free energy.To establish
that £ is nonincreasing along solutions it is commonly assumed
that the body force and mechanical boundary conditions are con-
servative, that motions obey the second law of thermodynamics
in the form of the Clausius-Duhem inequality, that there is no
volumetric heat supply,and that the thermal boundary conditions
take the form that part of the boundary is perfectly insulated
while the remainder is held at a constant temperature & =6q.
For spatially varying &c Ball & Knowles [1986] have found a
generalization of E that remains a Lyapunov function in certain

interesting but rather special cases (e.g. thermoelasticity with

reference heat flux vector qR=-k(5’)Grad5, where log k(6) is

a concave function of log ). Perhaps other useful Lyapunov
functions remain to be discovered. The idea is now that equi-

librium configurations will be minimizers of £ in an appropriate
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function space X.

It would be useful to have a general theorem about dyna-

mical systems that would lend support to the above reasoning,
but I know of no such result. Such a theorem might assert that
for certain dynamical systems endowed with a Lyapunov function

E, and having no constants of the motion, for most orbits the

states of the system at a sequence of times t —w will form a

"local minimizing sequence’ for E. A possible definition of a

local minimizing sequence {d)n}c X, X a metric space with metric

d, is that for some € >0
lin [E(¢) - inf E(y)) =0. (1)
n-m d(¥,¢, )<E
When there are constants of motion the phase space X should
be chosen to incorporate these as constraints (cf.Man [1985]).
For many boundary conditions the above motivation leads to
consideration of minimizing sequences and minimizers for the
energy functional
I(x) =f W(X,Dx(X))dX +H(x) (2)
Q

obtained from E by setting the velocity to zero and the tempe-
rature to its equilibrium value. (For details see the
above references and Ball [1984].) In (2), x(X) eR®, W=W(X, A)
and H
of the body and applied surface forces. Although
of
now available concerning the existence and propertiesof global
of

the form (2). By contrast the available information concerning

more

is the stored-energy function, is the potential energy

the picture

is far from complete, a substantial amount information 1is

minimizers and global minimizing sequences for integrals

local minimizers and minimizing sequences 1s meagre.

The simplest example of a global minimizing sequence is
one consisting of a sequence of global minimizers.To illustrate
one possibility we take H=0 and W=W(A). We suppose that

W:M°*° =R is Borel measurable and bounded below, where [ A
denotes the set of real 3 X3 matrices and R=RU {-w} U {+0} the
extended real line with

its usual topology; these hypotheses

cover both compressible and incompressible elasticity, for which

it is often assumed that W(A) <o if and only if det A>0 and
det A=1 respectively. Let {1 be bounded and open, 1<p <o,
Me M®™® and consider the problem of minimizing

IQ(x) =f W(Dx(X))dX (3)

Q
in the set
# P _ . 1,p 3 }
y-{x7 x-MXeW, (R ). (4)

Suppose that the global minimum of I on A’; is attained
Provided the boundary 30 of Q

has zero three-dimensional Lebesgue measure we can

at ¥ and that ¥ is not affine.
construct
by the following procedure infinitely many distinct global mi-
nimizers of Iy on ;4M having arbitrarily fine structure.By the
Vitali covering theorem, given any € € (0,1) there exists a fi-
nite or countable family ai+€iQ of disjoint subsets of (O, where

a; GRQ, 0<Ei$8, such that meas(Q\Ui(aiﬂ?iﬁ)) =0. Then

X-a.
xs(X)=Mai+€i'x"< €.l> for a.e. Xeaq, +e. (5)

1
defines a mapping in y+ and it is easily verified (Ball &
Murat [1984]) that In(xg) =Io(x). Hence x, is also a global

minimizer of Iy. We claim that x.#X. Suppose the contrary;then

by (5)

f(ai+8iX)=Mai +€i3c_(X) for a.e. Xefl, all 1, (6)

and hence

DZ(a +e,X) =DZ(X) for a.e. XeQ, all i. (7)



Define Ll.X‘: ai+€iX' X €Q. Consider for each s=1,2,... the

s
partition P_ of 0 into the union of sets( ]__‘ Li.>0 and a set
- J

N, of measure zero. Note that each set in the partition except

N, has the form E=c+5Q for some c €7R3, $e(0,e%), where by (7)

1 1
——— | Dx(X)dX = ——— | Dx(X)dX =M. (8)
meas E . meas () o

Since meas N, =0, for a.e. X €Q there exists a sequence
E=c,+3 (QeP with XeE  for all s. For such an X that is also
a Lebesgue point we have using (8),the Lebesgue differentiation
theorem (Saks [1937 p.115]) and the fact that lim 5, =0,

Randleo]

1 H E
Dx(X) = lim e f Dx(Y)dY =M. (9)
sSdp

s§—m meas
S

Hence ¥ is affine, a contradiction. In the terminology of
Ball & Murat [1984], the hypothesis that x=MX does not globally
minimize Ig in d': says exactly that W is not WI' -quasiconvex
at M. Even if I does not attain a global minimum on 9”;, an
obvious modification of the above construction leads to the
existence of minimizing sequences with arbitrarily fine struc-
ture. This was used in Ball & Murat [1984 Theorem 5.1] to show
that if I given by (2) attains a global minimum on ‘54': for every
smooth body force potential then necessarily ¥ is Wl' -quasi-

A
convex at M. They also showed that inf IQ=WP(M)measQ for some
p
; 2 3x8  —
function WP:M -“R. J"M
Stored-energy functions for elastic crystals are typically

not Wllm—quasiconvex everywhere (Ericksen [1977]),James [1981]),
and piecewise affine equilibrium configurations are frequently
global

yields mini-

observed. For a nontrivial piecewise affine minimizer

with affine boundary values the above procedure

mizers in which the phases are more and more finely distributed.

£, p
Stored-energy functions that are I# '~ -quasiconvex everywhere
cavitation 1in rubber

(Ball [1982], Ball & Murat [1984], Gent & Lindley [1958], Si-
valoganathan [1986 a,bl, Stuart [1985]).It is not known whether

only for p >3 have been used to model

for these stored-energy functions I attains a global minimum

1
on A’M;
patterns of more and more finely distributed holes.

if so, the above procedure would yield minimizers with

sequences for certain
studied by Acerbi &

Acerbi, Buttazzo &

The behaviour of global minimizing
integrals of the form (1), (2) has been
Fusco [1984], Dacorogna [1982], (see also
Fusco [1983], Marcellini [1985]), who showed that global mini-
mizing sequences possess subsequences

converging weakly in

W 'I(Q;IRS) to global minimizers for the integrals obtained by
replacing W with its 'quasiconvex envelope'. It would be inte-
resting if versions of these theorems could be proved that al-
low W to take infinite values and give information on the be-
haviour of local minimizing sequences with respect to an ap-
propriate metric.

The existence of minimizers and minimizing sequences with
arbitrarily fine structure prompts the question as to whether
the dynamic equations of thermomechanics can have solutions
giving rise to minimizing sequences with similar behaviour.(Of
course we here suppose, as above, that surface energy effects
are ignored; these may impose a limit on how fine the structure
of a solution may become.) This is tantamount to asking whether
as t—® solutions can converge weakly, but not strongly, in an
appropriate energy space. We end by mentioning some examples
of simpler dynamical systems endowed with a Lyapunov function
for which this question can be posed, and in some cases re-

solved.

(a) One-dimensional viscoelasticity of rate type

The initial boundary-value problem




utt'—'(O'(ux)‘ruxt)x, 0<x<1,

u(0,t) =0, ofu,(1,t)) +u,, (1,t) =P, (10)

u(x,0) =uo(x), u,(x,0)=ui(x),

was studied by Andrews & Ball [1982] . Here u(x,t) denotes the
longitudinal displacement at time t of the particle at x in a
reference configuration, and P the applied force. The stress-
strain law o is not assumed to be monotone. Thus there are in

general infinitely many equilibria u(x) solving

x€e(0,1), a(0)=0. (11)

O’(L—lx) =P a.e.

The system has the Lyapunov function E(ut,u) where

1

1

E(v,u):=f [311 +W(ux):|dx-Pu(1,t), (12)
0

and W' =co. If {vj'uj} is a global minimizing sequence for £ in

ﬁ={{v,u} eL?(0,1) xwi“"’(o,u: u(0) = 0}

*
=

then v -0 strongly in L2(0,1),butin'general one can have u,

u in Wi’m(O,i) for some u not satisfying (11). Andrews & Ball
showed that under certain hypotheses the solution u of (10)

satisfies

* . 1,
u, —0 1in W

1,
; in W (0,1),

® *
(0,1), u—7

as t~mo, for some @, but left open the question as to whether
u, can oscillate more and more finely as t—o and hence & not

x
Recently B. Pego [1986] has shown that

u (x,t)=u (x) for a.e. x€(0,1), so that @ is an equilibrium.

satisfy (11). in fact
It thus appears that the damping in (10) is too strong to al-

low increasing oscillations. Perhaps with weaker damping or

some other modification to the equation or boundary conditions

increasing oscillations may be possible and generalized curves
in the sense of Young [1969] obtained as asymptotic limits of

u as t—o,

(b) A control problem

The initial-boundary value problem

1
U,, = U, +(f0 uutdx>u= y

u(0,t) =u(1,t) =0, (13)

0<x<1,

u(x,0) =uo(x), u,(x,0)=ui(x),

is one of several examples studied by Ball &Slemrod [1979 a,b)
1

and arising in control theory, p(t) =f uu,dx being a candidate
0

stabilizing feedback control. By exploiting the Lyapunov func-

tion

1
E=‘[ (ut2+u:)dx, (14)
0

they showed that for every solution

{u,u,} ={0,00 in Ho(0,1)xL°(0,1)

as t—®, It is an open problem to decide whether the conver-

gence is strong, i.e. E—0 as t—o.

(c) The Becker-Doring cluster equations

These are the infinite set of coupled ordinary differen-

tial equations

O
1

L= (e)=Jd (c),  r>1,

@ (15)
5‘1 =-Jai(c) - Z: Jr(C),

redd




where c=(cr), Jr(c)=arcicr-b”_1 Cry 4 and a_,b_ are given posi-
tive coefficients.In one of several applications of such eque-
tions cr(t) denotes the expected number of r-clusters per unit
volume at time t of the minority atoms of a quenched binary
alloy. Under certain hypotheses on the coefficients and initial
data Ball, Carr & Penrose [1986]

critical density o, such that if the initial density 1is

have shown that there 1s a

[es]

Z: rcr(0) =po then the solution satisfies

r=1

x  min(pPo,Pyg)

c(t) —c in X as t—ow

o
. P .
where X5={y=(yr) : Erlyrl=“yll<oo} and where ¢ , 0<p<p , is
r=1 ©
the unique equilibrium of (15) having density p. Since ; re,
e

. P
is a conserved quantity it follows that if po >p_ then c(t)+>c ¢

strongly in X as t—~w. The system (15) possesses a Lyapunov

function

E(e) = 2 ¢ [log[——\- 1), (16)
r=1 T Q
-
Q41 a
where Qy = 1, Bl P = for r >1. For any valueof po >0 the
Qr br+1
solution satisfies
lim E(c(t)) = inf E, (17)
to® +
X
Po

+
where X o ={yeX: y, 20 for all rolly = pot.

. If po>p, the

density difference po-p, between the solution and its weak*

asymptotic limit contributes to a 'tail' composed of larger
and larger clusters that describes the condensation of the mi-
think of r

the corresponding variables the

nority component. If we as a wave number we see

that 1in solution oscillates

increasingly as t—w. I am not aware of another example where

this type of behaviour has been rigorously established.
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