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1 Phase transformations and microstructure

Suppose that we cool a single crystal (e.g. of InTl, NiMn or CuAlINi) below a temperature
0. at which a phase transformation involving a change of symmetry occurs. On examining
the crystal in an optical or electron microscope we typically observe a characteristic pat-
tern of microstructure, consisting locally of a large number of planar and parallel interfaces
separating layers of the crystal. The orientation of the interfaces (or twins) can vary from
one part of the crystal to another, and other interfaces (sometimes but not always planar)
separate regions in which the twin orientations differ. The scale of the microstructure, as
measured by the average layer thickness, varies considerably from material to material, and
can be as small as a few interatomic distances.

In trying to understand this microstructure, two questions immediately arise:

1. What do the interfaces represent?
2. Why is the microstructure so fine?

To answer the first question we need to understand what occurs at the atomic level
during the phase transformation. Consider as an example the case of the binary alloy
Indium-Thallium (InTl), which for temperatures § > 6. has a face-centred cubic structure
termed austenite. Thus the unit cell of the crystal lattice consists for § > 6. of a cube with
an atom at each vertex and in the middle of each face. InTl is a solid solution, so that the
atom at any particular lattice site can be either Indium or Thallium, and the value of 6,
depends on the overall concentration of Thallium (e.g. 8. = 57°C for 20.73 mass % T1).

For § < 6. the crystal prefers for energetic reasons a face-centred tetragonal structure
termed martensite, in which the cubic cell (of original side-length 1, say) extends in the
direction of one of the three cubic axes to form a tetragon with sides of lengths n;, 7, and
n2, where for InTl 7, < 1 < n,. In fact n; = n1(0) and 92 = n2(0) vary slightly with
temperature, but we ignore this for simplicity. Now suppose that the crystal chooses to
deform so that in one region the longer side of the tetragon corresponds to the (1,0,0) cubic
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axis, say, while in the remainder of the crystal the longer side of the tetragon corresponds
to the (0,1,0) cubic axis. How can this occur while preserving the integrity of the lattice?
The answer is for the two regions to be rotated with respect to one another, the interface
between them being planar with a specific orientation, namely that corresponding to the
(1,1,0) plane in the cubic lattice. In this way the only unit cells of the crystal not having the
preferred tetragonal form are those intersecting the interface, and the distortion of each of
these cells remains bounded, so that the total energy of the crystal is very nearly minimized.

To answer the second question is not so easy, and it is one of the virtues of the elasticity
model in [9, 10] (see also Chipot & Kinderlehrer [14]) and described in the next section that
a very convincing answer can be given in terms of an associated problem of the calculus of
variations.

2 A model based on nonlinear elasticity

Following Ericksen [17] the theory of Ball & James [9, 10] models a crystal as a nonlinear
elastic continuum. The total elastic energy of the crystal is assumed to have the form

Hy)= /Q W (Dy(z),8)dz, (2.1)

where 2 C R3 is a bounded open set with boundary 90 occupied by the crystal in a
reference configuration, Dy denotes the gradient of y, 6 is the temperature, and W is the
stored-energy function (or free energy) of the material. We will suppose that 6 is a constant,
and for simplicity suppress the dependence of W on 6, writing W = W(.). However it is
important to keep in mind that W depends on 8, since it is this dependence that describes
the phase transformation.

We neglect all other contributions to the energy of the crystal, and in particular any
energy associated with interfaces. The neglect of interfacial energy is justified by the very
large interfacial area observed in typical microstructures, which indicates that interfacial
energy must be very small in comparison to the bulk elastic energy. In neglecting interfacial
energy we are of course not denying its existence, but merely taking advantage of its smallness
to develop a more tractable theory in which interfaces and microstructure appear naturally as
singularities of energy-minimizing deformations. The procedure is analogous to the neglect
of viscosity in gas dynamics, the resulting advantage there being the mathematically natural
description of vortices and shock-waves as singularities of solutions. We will see that the zero
interfacial energy theory leads to a number of interesting predictions that are experimentally
verified; however, some more detailed aspects of microstructure morphology can only be
understood within the context of a theory incorporating interfacial energy.

Given a boundary displacement 7 : 9Q — R® we consider the following problem:

Minimize I(y) (2.2)
subject to
y|aQ = y (23)

In terms of this minimization problem the explanation given in [9, 10] for the fineness of
observed microstructures is the following:



(a) In general I does not attain a minimum subject to (2.3).

(b) Let y¥) be a minimizing sequence for I subject to (2.3), i.e. y
lim I(y") = inf I(y).
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Then yU) necessarily develops finer and finer microstructure as j — oo.

It is instructive to compare the situation described by (a),(b) with elasticity models of
rubber, for example with the Mooney-Rivlin theory which in its compressible form has the
corresponding stored-energy function

W(A) = c1]A|* + cy|cof A|* + h(det A), (2.4)

where ¢; > 0, ¢; > 0, cofA denotes the matrix of cofactors of A and h : (0,00) — R is
smooth, convex and bounded below. For this W it is known (cf. [3]) that

(a)’ I attains a minimum subject to (2.3).

(b)’ Minimizing sequences 3) converge to minimizers (after possible extraction of a subse-
quence) and do not develop microstructure.

It is believed, but has not been proved, that minimizers are smooth, at least off a small
set; certainly (see [4]) interfaces of the type observed in crystal microstructure are not
possible, in accordance with observation. The reason that the same mathematical theory of
nonlinear elasticity can lead to such dramatically different predictions for different materials
lies in the properties of W. For example, W given by (2.4) is strongly elliptic, while the W
corresponding to InTl is not. The question of exactly which stored-energy functions W lead
to an attained minimum is open, but has been illuminated by an important counterexample
discovered recently by Sverak [44].

In terms of the continuum theory interfaces are surfaces across which the deformation
gradient jumps. Consider the case of a planar interface z - n = k having unit normal n.
Suppose that y is continuous with Dy = A for z - n < k and Dy = B for ¢ - n > k, where
A, B are given 3 x 3 matrices. Applying the continuity of y across the interface we see that

A-—B=aQ®n (2.5)

for some a € R®, where (a ® n);s := a;n,. Thus nontrivial interfaces correspond to pairs
A, B € M?*® (where we denote by M™*™ the set of real m x n matrices) differing by a
matrix of rank one.

3 Two, three and four gradients

3.1 The two-gradient problem
Let A, B € M3*3 with A # B, and suppose that W : M3*3 — R with
W(A) =W (B) =0, W(F)>0for F # A, B. (3.1)
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(As we explain later, such a W cannot correspond to a real elastic material, but the example
is instructive.) For y : @ — R? we write as before the total energy

I{y) = /Q W (Dy)dz. (3.2)

Case 1
A—B=a®n for some a,n.

In this case we can form an interface with normal n separating the constant gradients A, B.

Let 0 < A < 1. Repeating this construction we can define for each j = 1,2,... a piecewise

affine mapping ¥ : R®> — R3 such that Dyl) = A in alternate layers normal to n of

thickness % and DyY) = B in alternate layers of thickness 1—;—\ By adding a suitable

constant vector to y) we can suppose that y()(0) = 0. Note that by (3.1)
Iy = 0. (3.3)
As j — oo, yY(z) — Cz uniformly in Q, where
C=AX+(1-))B. (3.4)

The y) so defined form a simple laminate zero-energy microstructure. Note that the limiting
deformation y = C'z does not have zero energy. In fact we can prove

Theorem 3.1 The minimum of I in W' (Q; R3?) subject to y|sq = Cx is not attained.

(Here W'? = W'P(Q;R?), 1 < p < oo, denotes the usual Sobolev space of mappings
y : 0 — R® with y, Dy both pt*-power integrable.)

Proof.  Define 7 to equal y) except in a boundary layer E; near 99 of thickness
%, in which we interpolate between y) and the boundary condition C'z in such a way that

79|50 = Cz and D#Y(z) remains uniformly bounded independently of j. Then

1Y) = / W(D§9)de — 0 (3.5)

J

as j — oo. But it is easily checked that there does not exist a y with I(y) = 0 and y|sq = Cx.
O

3.2 Description of microstructure via Young measures

Suppose we are given a sequence y¥) which is bounded in W''(Q; R?). Fix z € Q, j and a

z/gg- the probability measure on M3*3 giving the distribution of

the values of Dy?)(z) as z is chosen uniformly at random from the ball centre z and radius

6. Then

number 8 > 0. Denote by

v, = limlim v} (3.6)
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defines the Young measure (v,)ycq corresponding to Dy). The limit in (3.6) is understood
in the sense of weak * convergence of probability measures. In general we need to extract a
subsequence of y) for the limit to exist. The reader is referred for details to Tartar [40, 41],
and to [5] (whe: (e above intuitive definition is justified). For our purposes the key point
is that v, is for a.e. x € Q a probability measure on M?>*? giving the limiting distribution
of the values of Dy as j — oo near the point .

Ezample

Suppose y) is the simple laminate defined above. Intuitively, near any point « we have a
probability A of finding the value Dyl) = A and a probability 1 — A of finding the value
DyU) = B. Hence v, is independent of  and is given by

vy = A4+ (1= X)bp

Suppose that Dyl is bounded in L? for p sufficiently large (p > 3 will do), with Young
measure (V;)zeq- Then v, satisfies the minors relations

< Vg, >= J(< vy, td >) (3.7)

for any minor (i.e. subdeterminant) J : M3*3 — R, where

< Uy | i /M F(A) dvy(A) (3.8)
and in particular
< Uil e /Ms Adv,(A). (3.9)

The minors relations transcribe into the language of Young measures the results of Reshet-
nyak [34] on the sequential weak continuity of Jacobians on Sobolev spaces. They are a key
technical tool in the analysis of microstructure.

3.3 The two-gradient problem (continued)

Suppose that W is given as in (3.1) but now that
Case 2

rank(A — B) > 1. (3.10)
Thus we can no longer make an interface between A and B.

Question: Is there a zero-energy microstructure?

To answer this, suppose that y() satisfies

I(y9) :/QW(Dy(”)dx S0 (3.11)
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as j — oo. Suppose that W grows sufficiently fast at infinity, for example
W(F) > c+d|F? (3.12)

where d > 0 and c are constants. From (3.11), the fact that W is zero only at A and B, and
the definition of Young measures, it follows that the Young measure (v;),eq corresponding
to (a suitable subsequence of) Dy is supported for a.e. z € Q in the set {A, B}, i.e.

ve = \(z)64 + (1 = Mz))é5, (3.13)

where 0 < A(z) < 1 a.e.. To simplify the calculation we assume without loss of generality

that B = 0. Then rank A > 1, so that there exists a 2 x 2 minor J with J(A) # 0. By the

minors relations
< Yps d 2= J(< Upstd >),

and substituting v, = A(x)é4 + (1 — A(z))éo we obtain
Xz)J(A) = J(Mz)A) = MN=z)?J(A).

Hence A(z) = 0 or 1 a.e.. It is not hard to deduce from this (for the details see [9]) that
either DyU) — A in measure or Dy"Y) — B in measure, so that there is no microstructure.
If rank (A — B) > 1 then if Dy(z) takes both the values A and B on sets of positive
measure it must take some other values as well. A quantitative expression of this fact is given
in [8], where it is applied to study hysteretic phenomena induced by incompatible phases.

3.4 Three and four gradients

For the case of three gradients we have the following deep result.

Theorem 3.2 (Sverék [42]) Let Ay, Az, A3 € M™*™ with rank (A;— A;) > 1 fori # j. Let
yU) be bounded in W'P(Q;R™), p > 1, where  C R™ is bounded and open, and let Dy
have Young measure (v;).cq Satisfying

supp v, C {A1, Ag, A3}, a.e.z € Q,
ie. vp =Y o, Ai(2)8a,, where M(x) >0, T2, M\i(2) = 1. Then v, = b4, a.e. for some i.
Thus if W(A;) =0, W(F) > 0 for F' ¢ {A1, Az, A3}, then no zero-energy microstructure is

possible when the A; have no rank-one connection. It is remarkable that this result does not
extend to the case of four matrices.

Ezample (Bhattacharya et al [13], exploiting an idea of Tartar [39]). There exist four matrices
Ay, Ay, As, Ay € M**? with rank (A; — A;) > 0 for ¢ # j, and a sequence of gradients
Dy with Young measure

4 4
I/I:Z/\i(SA‘, A,’>0,z;)\i=1.
—1 =

The idea of the example is to construct an ‘co-laminate’ (layers within layers within layers

)



4 Predictions of the theory for crystal microstructure

The stored-energy functions W considered in the previous section were minimized on a finite
number of matrices, and thus do not apply to real crystals. This is because of the requirement
that W be frame-indifferent (invariant to superposed rotations), i.e.

W(QA) = W(A) for all A € M¥3, Q € SO(3). (4.1)

Thus if A minimizes W so do the infinite number of matrices QA, @ € SO(3).

As an example, consider the cubic to tetragonal transformation for InTl described in
Section 1. Let us suppose that the temperature 6 equals .. We take as the reference
configuration the cubic phase at § = 6., which is consequently represented by the identity
deformation y(z) = = which has gradient 1. In the light of the discussion in Section 1 it
is reasonable to suppose that at § = 6, both the cubic and tetragonal phases minimize W,
so that in particular 1 minimizes W. By (4.1) we thus have that all matrices @ € SO(3)
minimize W. The linear transformations describing the distortion of the cubic lattice to the
tetragonal lattice in each of the three cubic directions correspond to the matrices.

Ul = diag(n% T, 7]1)7
Uy = diag(n1, 2, m), (4.2)
Ug = diag(m, M, 772)-

We thus suppose that each of the matrices U; also minimizes W, which by (4.1) implies
that all matrices in the sets SO(3)U; minimize W. Assuming without loss of generality that
W >0, we are thus led to the hypothesis that at § = 6, the minimizers of W are given by

M = {A: W(A) =0} = SO(3) U SO(3)U, U SO(3)U; U SO(3)Us. (4.3)

It is easily verified that the four ‘wells’ on the right-hand side of (4.3) are disjoint.

To see what zero-energy microstructures are possible, the first step is to calculate the
possible interfaces, i.e. to find those pairs A, B € M with rank (A — B) = 1. The result of
this calculation is as follows.

(i) If A, B are distinct and belong to the same well then rank (A — B) > 1.
(i) If A€ SO(3), B € SO(3)U; for some i then rank (A — B) > 1.

(iii) If 2 # j and A € SO(3)U; then there exist precisely two matrices B € SO(3)U; with
rank (A— B) = 1.

The pairs A, B in (iii) are called twins, and the orientations of the corresponding interfaces
agree with experiment.

By (ii) we cannot have a standard interface between austenite and martensite. However,
it is possible to have an ‘approximate interface’ z-m = a, say, corresponding to a zero-energy
microstructure with Young measure



VT:{(SQ for z-m > «a (4.4)

Aoa+(1=X)bg for z-m< a

where @ € SO(3), 0 < A < 1, and A, B are twins. This corresponds to finding @ €
SO(3), A€ SO3)U;, B € SO(3)Uj;, A, a, n, b and m such that

A-B=a®n, Q- (M+(1-NB)=bxgm (4.5)

This is possible, and the results correspond to the formulae of the classical crystallographic
theory of martensite (see Wechsler, Lieberman & Read [45]). The phase fraction A and
approximate interface normal m are in good agreement with observation. For details of the
calculation see [9].

The theory we have described applies to other changes of symmetry than cubic to tetrag-
onal in the obvious way. We are typically led to a zero-energy set M of matrices of the
form

M= LNJSO(s)U,-, (4.6)

=1

with U; = UT > 0. The simplest nontrivial case, that of N = 2, is called the two-well
problem. In [10] a detailed study of zero-energy microstructures for the two-well problem
is made for the case when det U; = detU,. In particular it is shown rigorously that for
some linear boundary conditions the minimum of I is not attained. To produce minimizing
sequences constructions involving ‘layers within layers’ are used; such microstructures are
commonly observed (see e.g. Arlt [2] ). Other results for the N-well case, N > 2, are due
to Bhattacharya et al [13], Kinderlehrer & Pedregal [23], Kohn [25], Matos [28], Pipkin [33]
and Sverak [43)].

An interesting feature of the theory is its prediction of special zero-energy microstruc-
tures that are possible only for special values of the lattice parameters defining the change of
shape at the phase transformation. For example, Bhattacharya [12] has studied the ‘wedge’
microstructure observed in certain alloys. In the special case of a cubic to tetragonal trans-
formation he shows that the wedge is a possible zero-energy microstructure if and only if the
relation

2 _ (L=m3)* +4n5(1 +n3)
T - + 80
holds. Materials for which the wedge microstructure is observed do seem to approximately
satisfy (4.7).

A ‘linearized’, but still nonlinear, theory containing several of the ingredients of the
theory in [9, 10], was earlier proposed by Khatachuryan, Roitburd and Shatalov [20, 21,
22, 35, 36]. To avoid inconsistent results this theory has to be used with great care. For
example it predicts that for cubic to tetragonal transformations the wedge angle of the wedge
microstructure is zero. The difficulties with the linearized theory arise to a large extent from
its failure to satisfy frame-indifference. Discussions of the relationship between the linearized
and nonlinear theories can be found in Kohn [24], Bhattacharya [11] and [10, Section 9].

(4.7)



5 Current developments and concluding remarks

Some areas of current activity in connection with the theory are:

(a) understanding the effects of incorporating interfacial energy in the model (see, for
example, [18, 26, 27, 29, 30]),

(b) the numerical computation of microstructure (see [15, 16]),

(c) the study of dynamical models, including attempts to understand whether appropriate
dynamical equations have solutions exhibiting the creation of microstructure (see [1,

6, 7, 31, 38, 37] ),

An interesting analogy to the theory is with the problem of paper-folding (see Kohn &
James [19]). A folded configuration of paper can be regarded as a map y : @ — R?, Q C R?
with Dy(z) € O(2) a.e.. Since O(2) = SO(2) U SO(2) ( (1) 0_1 ) it follows that we have a
(somewhat pathological) version of the two-well problem. The theory holds some surprises;
for example in [19] can be found an example of a deformation y withDy(z) € O(2) a.e.
and y|sg = 0. Similar considerations arise in the deformation of membranes and fabrics (cf.
Pipkin [32]).

Microstructure arises naturally in many optimization problems, for example in the con-
struction of composite materials with optimal properties and the reproduction of images of
varying colour and intensity using a limited number of fixed colours. Perhaps there are other

important areas of application that have yet to be identified.
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