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Chapter 1

DYNAMIC ENERGY
MINIMIZATION AND PHASE
TRANSFORMATIONS IN SOLIDS

J. M. BALL
Heriot-Watt University
United Kingdom

1. Introduction. In this article I discuss the question of how to give a dynamical
justification of the variational principles of mechanics and physics. For example, in
classical and continuum mechanics it is common to analyse equilibrium problems
by seeking a configuration that minimizes an appropriate energy functional; how
can this procedure be rationalized on the basis of the behaviour of solutions to the
corresponding dynamical equations?

Central to any discussion of these matters is the Second Law of Thermodynamics.
A formulation of the Second Law which has earned a fair measure of acceptance
by practitioners of continuum thermodynamics, on account of its apparently wide
applicability and clear statement, is the Clausius-Duhem inequality (for an interesting
discussion see Ericksen [25]). Assuming the external volumetric heat supply to be zero,
this inequality has the form

(L1) % [onndz+ [ =R aaxo,
dt Jo an 0

where @ C R3 denotes the region occupied by a material body in a reference con-
figuration, 7 denotes the entropy density, gr the material heat-flux vector, 6 the
absolute temperature, pr = pr(z) the mass density in the reference configuration,
and N = N(z) the unit outward normal to the boundary 9Q2. In two important cases
this inequality endows the governing equations of a material body with a Lyapunov
function, i.e. a real-valued function of the state of the system which is nonincreasing
in time for motions of the body. The first case is that of a thermally isolated body,
when gr = 0 on 8Q, so that (1.1) implies that

d
(1.2) -‘E/n—pnr)dz <0.

The second case is that of a body for which part of the boundary 9Q; is thermally
insulated and the remainder is in contact with a heat-bath at temperature 6, where
0o does not depend on z but could depend on t. Assume for simplicity that the

mechanical boundary conditions do no work. Then combining (1.1) with the energy
equation
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: d
(1.3) = pR(—lv|2+€+¢) dz+/ gr-NdA =0,
t a0

where v denotes the velocity, € the internal energy density, and 9 the potential energy
_ density of the body-forces, we deduce from (1.1) that

‘ d
(1.4) 3 |.P® (—lv|’ +¢+e—ooq) dz <0,

(¢f. Duhem [21], Ericksen [22], Coleman & Dill [19], for example). Note that the
expression € — fon in (1.4) is not the same as the Helmholtz free energy ¢ — 0.

If 6y is allowed to depend on z then in general the existence of a Lyapunov function
is in doubt. However, in some special cases when 6y = 6y(z) and gp = §r(z, 0, Grad 6)
it has been shown by Ball & Knowles [12] that

d

(1.5) & pn (— v +¢+e— (z)r,) dz <0,

where ¢ is the solution to the steady-state heat problem

(1.6) divjr(z,p,Gradp) =0, z€Q,
(1.4 ¢ loavon,= 0o,  dr(z,p,Gradp) - N |sn,= 0

There seems to be a wide gulf between modern continuum thermodynamics as
expressed, for example, by the balance of energy and the Clausius-Duhem inequal-
ity, and nonequilibrium statistical physics and kinetic theory. The Clausius-Duhem
inequality is systematically applied with apparent success to a wide range of differ-
ent materials out of equilibrium, leading to the existence of Lyapunov functions as
described above. On the other hand statistical physics provides Lyapunov functions
only for very special materials, the main example being the H-theorem for the Boltz-
mann equation, which models a moderately rarified monatomic gas. One approach to
trying to bridge this gulf is to attempt to make precise the idea that in a system of
interacting particles local equilibrium is rapidly achieved (¢f. Guo, Papanicolaou &
Varadhan [28], Varadhan [43]).

With the above as motivation, suppose we are given a dynamical system T'(t):>0
on some (say, topological) space X, i.e. a family of mappings T'(¢) : X — X satisfying
(5) T(0) = identity, (it) T(s + t) = T(s)T(¢) for all s,t > 0, (i) the mapping
(t,9) — T(t)p is continuous. Thus T'(t)y represents the state reached by the system
after time ¢ starting with initial data . Let V : X — R be a continuous Lyapunov
function, so that V(T'(t)p) is nonincreasing on [0,00) for each ¢ € X. In order to
justify dynamically the variational principle

(1.8) Minimize V

we would like to show that ift; — oo then T'(¢;)¢ will be a local minimizing sequence
(appropriately defined) for V. As described in Ball [5] (of which this article is an
updated version), there are various obstacles to proving such a result. Some of these
are:
(a) Exceptional initial data (such as an unstable rest-point) must be excluded.
(5) There may be constants of motion ¢; : X — R, so that ¢;(T'(t))¢ = ci(p) for
all 1 and ¢ > 0; the traditional remedy is then to change the variational principle to
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Minimize V(v)
ci(¥) = ai

(c) Nonhyperbolic rest-points. (For example, V(z) = —z is a Lyapunov function
for the ordinary differential equation # = z%(1 — z2) on [—1,1]. This has the three
rest-points -1,0,1. The rest-point 0 is not hyperbolic and is not a local minimizer of
V, but z(t) — 0 whenever —1 < z(0) <0.)

(d) V may not attain a minimum.

As far as I am aware, no sufficiently general theorem for dynamical systems is
known that overcomes these obstacles. Some ideas which are of relevance are to be
found in the study of prolongational limit sets for dynamical systems (cf. Ura [41,42],
Auslander & Seibert [2], Bhatia & Szego [14]), and the behaviour of solutions to dif-
ferential equations with small random perturbations (see for the finite-dimensional
case Freidlin & Wentzell [26], and for results for parabolic partial differential equa-
tions forthcoming work of Freidlin). I intend to discuss this in a future paper. In
particular, the infinite-dimensional situation is far from being understood, and the
main purpose of this article is to discuss some infinite-dimensional examples arising
in models for phase tranformations in solids, in which (d) is an issue. In these exam-
ples the minimum of V is not attained, minimizing sequences for V tending weakly
to a state that is not a minimizer.

In Section 2 I consider systems of coagulation-fragmentation equations, and how
they model the phenomenon of condensation. Here it is shown that the dynamics
realize an absolute minimizing sequence for the free energy. Section 3 concerns a
variational approach to the formation of microstructure arising from displacive phase
transformations in crystals, while in Section 4 I outline some attempts to understand
how this microstructure forms dynamically. Some model problems are discussed which
e xhibit surprising differences between the asymptotic behaviour of solutions for rather
similar systems.

(1.9)

2. Coagulation-fragmentation dynamics. Coagulation-fragmentation equa-
tions occur frequently in applications to fields such as astrophysics, atmospheric
physics, biology, colloidal chemistry, polymer science and the kinetics of phase trans-
formations in alloys. They are appropriate for many systems in which the objects
of interest are a large number of clusters of particles, and model the time-evolution
of the distribution of cluster sizes as the clusters coalesce to form larger clusters and
fragment to form smaller ones. In the case of phase transformations in a binary al-
loy, the clusters consist of atoms of the minority component of the alloy (or, in more
complex cases, atoms of both components in a definite proportion corresponding to a
particular phase of the alloy), and the i nteractions between clusters occur by diffusion
of atoms on the underlying crystal lattice.

We assume that only binary interactions between clusters occur. For example,
a 3-cluster (i.e. a cluster consisting of 3 particles) may coalesce with a 7-cluster to
form a 10-cluster, or the reverse may occur, a 10-cluster fragmenting into a 3-cluster
and a 7-cluster, but we ignore interactions in which, say, a 4-cluster fragments into
a 2-cluster and two 1-clusters. Let ¢; = ¢;(t) > 0, j = 1,2..., denote the expected
number per unit volume of j-clusters in the system at time {. Assuming that the rate
a t which j-clusters coalesce with k-clusters to form (j + k)-clusters is proportional
both to c; and ci, while the rate at which (j + k)-clusters fragment into j-clusters and
k-clusters is proportional to c; 4+, we are led to the discrete coagulation-fragmentation
equations for ¢ = (c;):
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(2.10) ¢ =3 D (@j-kkci—kck — bj—kkci) — D (ajkcicr — bjkciti),
k=1 k=1

JI=0152 00
The rate coefficients a; i, b; ; are assumed to be constant and satisfy the conditions

(2.11) ajr = ag; >0,
(2.12) bj'k = bk_j > 0.

Because each interaction preserves the number of particles, we expect that density
will be conserved, i.e.

(o<}
(2.13) ch,- (t) = p = constant.
j=1

While (2.13) holds formally for solutions of (2.10), it is well known that for some
rate coefficients a; i, b;j ¢ density conservation breaks down after a finite time due to
the formation of an infinite cluster or gel. Mathematically, the situation is analogous
to that for nonlinear hyperbolic equations, for which various entropies which are
conserved for smooth solutions fail to be conserved for solutions containing shock
waves. Here we confine attention to solutions conserving density. It is proved in Ball
& Carr (7] that at least one density-conserving solution exists provided a; ¢ < K(j+k)
for all j,k > 1, where K is a constant. Conditions on a; , b are also given in [7]
under which all solutions conserve density, and under which solutions are unique.
We now assume that the rate coefficients satisfy the detasled balance condition

(2.14) a1 Qi Qk = Qj+kbj,h‘

for positive constants Q; with Q; = 1, and we confine attention to the physically
interesting case

(2.15) 0< 2z, < 00,

where

(2.16) = lim sup Q}/j.
j—oo

It is easily verified that for each z > 0
(2.17) G=Qd, i=12.,

is a rest-point of (2.10). In fact, in this case the net rate W = aj icijck — bjicitk
of conversion of j-clusters and k-clusters to (j + k)-clusters is zero (this being the
physical meaning of detailed balancing). To see whether these rest-points have finite
density given by (2.13), note that by (2.16) the radius of convergence of the series

F(z)=Y;2, jQ;2’ is z,. Let

(2.18) ps = 3Qjz.
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Then for 0 < p < p,, p < 00, there is a unique rest-point c? of the form (2.17) of
density p, namely

(2.19) ¢ = Qiz(py, ji=12.,

where F(z(p)) = p.
Let

(2.20) V(c) = j;c, (m (%) . 1) ,

where ¢ = (¢j). A formal calculation shows that

v 1 &
@21) —=-3 Y (n(ajrcice) —In (j,ci+)) (aj,ecick — b kciti),
k=1

so that V is a Liapunov function (the free energy). Note that (2.21) shows formally
that all rest-points of (2.10) are of the form (2.17).

Since the density (2.13) is a constant of motion, the appropriate variational prin-
ciple for ¢ = (¢;) > 0 is

Minimize V(c)

2.22 :
( ) E?:[ JCi =P

where p > 0. If 0 < p < p,, p < 00, then it is easily verified that c? is the unique
minimizer of (2.22), and that any minimizing sequence c(*) converges strongly in

00
(2:23) XE 20 cll=Y il¢ < o0},
s =1

to c¢?. However, if p, < p < oo then the minimum of V subject to E:';l jej =pis
not attained. In fact, in this case minimizing sequences c(*) for (2.22) converge weak*

toc’ in X ie. cgk) — cf’ a8 k — oo for all j. There is therefore a difference p — p,

between the density of elements c(¥) of the minimizing sequence and the density of
the limit ¢?. This difference corresponds to the formation as k increases of clus-
ters of arbitrarily large size. In this way the variational principle (2.22) predicts the
macroscopic phenomenon of condensation. It is of interest to note (see Ball [4]) that
this same variational structure occurs in a number of other problems, for example the
Thomas-Fermi model of atoms and molecules, the equilibrium of an incompressible
fluid above a surface, and an adiabatic model predicting a finite height for the atmo-
sphere. In each case there is a critical parameter value p, such that for 0 < p < p,
the minimum of the energy is attained, while for p > p, the minimum is not attained,
minimizing sequences converging weakly to the minimizer of maximal parameter value
Ps-

In order to provide a dynamical description of condensation one must show that
given initial data co = (co;j) of denmsity p, the solution ¢ of (2.10) with ¢(0) = co
generates a minimizing sequence for (2.22), that is that if 0 < p < p,, p < co then
¢(t) — c” strongly in X as t — oo, while if p, < p < co then ¢(t) = ¢”* in X ast — co.
This has so far only been established in some special cases. For the Becker-Doring
equations, for which
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(2.24) aj k= bj,lc =10 if both j>1, k>1,

the result was proved by Ball, Carr & Penrose [8] (for technical refinements see Ball
& Carr [6], Slemrod [38]). When all the a; i, b; ¢ are nonzero the only result known
is that of Carr [17] under hypotheses which imply that p; = 0o, so that condensation
does not occur. For the general case, parts of the argument for proving the result
are available in [7] (for the continuous a nalogue of (2.10) see Stewart [39]); what is
missing is an analogue or substitute for the maximum principle technique used in [8].

3. A variational approach to the formation of fine microstructure in
crystals. When cooled below a critical temperature at which a phase transformation
involving a change of symmetry occurs, crystals typically develop characteristic pat-
terns of microstructure. In the simplest case this consists of many fine parallel bands,
in each of which the deformation of the crystal is affine with respect to its original
configuration. In some materials (e.g. InTI [13,16]) this microstructure can be ob-
served in optical microscopes, but in others (e.g. NiMn [3]) high resolution electron
microscopy is required, and reveals that the bands are sometimes only a few atomic
spacings thick.

Why does such microstructure form, and how can its geometric features be pre-
dicted? I describe briefly here a variational approach to this question due to Ball &
James [10,11] (for related work on the same model see, for example, [18,24,20]). Fol-
lowing Ericksen [23] the crystal is modelled using nonlinear (thermo)elasticity, which
allows both for large deformations and nonlinear stress-strain behaviour. While rarely
used by metallurgists, this theory is ideally suited to the study of the mechanical prop-
erties of crystals since it incorporates in a natural way, and without the inappropriate
approximations of linear elasticity, the symmetries arising from the underlying lattice
structure of the crystal and invariance to rigid-body rotations. (There is an earlier
‘linearized’ version of the theory in [10,11], due to Khachaturyan [29,30], Khachatu-
ryan & Shatalov [31] and Roitburd [35,36], which is still nonlinear; for discussions of
the relationship between the two theories see Bhattacharya [15], Kohn [32] and [11].)

Configurations of the crystal are described by invertible mappings y : @ — R3,
where @ C R3 is the region occupied by the crystal in a reference configuration. We
suppose that € is bounded and open with sufficiently smooth boundary Q. The total
elastic energy is given by

(3.25) Iy) = /n W(Dy(z)) dz,

where Dy denotes the gradient of y, and W is the free-energy function of the crystal.
In order to describe phase transformations it is important to allow W to depend
on temperature, but here we assume that the temperature i s held constant, and so
we suppress this dependence. We temporarily ignore all other contributions to the
energy, in particular any energy associated with interfaces across which Dy jumps.
For simplicity, consider a problem in which the deformed position of every point of
890 is specified, so that

(3.26) Y loa= 9(-),
for a given mapping § : 3Q — R3. We now consider the variational principle

(3.27) Minimize I(y) subject to (3.26).
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The key result of the theory is then that for W appropriate for crystals the minimum
is in general not attained, finer and finer microstructure being needed to get closer
and closer to the infimum of I. In this way the static theory explains the occurence
of microstructure as being a natural consequence of the behaviour of minimizing
sequences for a problem of the calculus of variations with a non-attained minimum.

To give some insight into why the minimum of (3.27) need not be attained, con-
sider the case of a cubic to tetragonal phase tranformation, such as occurs for InTIl
or NiMn. We suppose that the temperature is less than the transformation tempera-
ture, but take for the reference configuration the undistorted high-temperature cubic
phase. Then it is natural to assume that the set M of 3 x 3 matrices A which minimize
W = W(A) is given by

(3.28) M = SO(3)U; U SO(3)U, U SO(3)Us,

where

(3:29) U, = diag (n2,m1,m), Uz = diag (m,n2,m), Us = diag (n1,m,n2),

and 1; > 0, 72 > 0 are the lattice parameters of the transformation. The matrices
U; represent linear transformations of a cube into tetragons with sides parallel to the
cubic axes, while the factors SO(3) reflect the invariance of W to rigid-body rotations.
We suppose without loss of generality that W(A) = 0 for A € M. An elementary
(but slightly tricky) calculation shows that given any matrix A € SO(3)U,, say, there
are precisely 2 matrices B € SO(3)U, and 2 matrices B € SO(3)Us which differ from
A by a matrix of rank one. Picking one of these 4 matrices we have

(3.30) B-A=aQ®n

for some non-zero vectors a,n € R3. Thus we can construct a sequence y* of deforma-
tions whose gradients Dy* take the values A and B alternately in layers normal to n of
thicknesses Ae and (1 — A)e respectively, where 0 < X < 1. Clearly W(Dy*(z)) = 0 for
a.e. z € 2. Let 0 € Q2. By adding a suitable constant vector to each y* we can assume
without loss of generality that y*(0) = 0. Then as € — 0, y* — (AA + (1 — A\)B)z
uniformly in Q, but Dy* oscillates, converging only weak* in L> to AA + (1 — A\)B.
Suppose now that the boundary data is given by §(z) = (AA+ (1 — X)B)z. Of course
y° does not satisfy (3.26), but by modifying y* in a thin boundary layer near 02 it
is easy to arrange that the modified sequence i satisfies (3.26) and that the energy
in the boundary-layer tends to zero as ¢ — 0, so that lim._,o I(#*) = 0 and § is a
minimizing sequence. Hence for these boundary conditions inf I = 0. The nontrivial
part of the analysis is to show that any minimizing sequence must behave like . In
fact, it is proved in [11], using the weak continuity properties of Jacobians, that the
gradient Dy of every minimizing sequence y* has the same Young measure (v;)zeq,
namely the constant measure

(3.31) vy = A4 + (1 — N)ép.

Said differently, the values of Dy*(z) converge in measure to the set {A, B} in such a

way that the local volume fractions of points having gradient near A (resp. near B)
tends to A (resp. 1 — )).
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For general boundary conditions § more complicated microstructure than simple
layering seems to be necessary in order to get a minimizing sequence. The construc-
tions in [11] use ‘layers within layers’. For example, a minimizing sequence with Young
measure

(3.32) v = AMvba+ (1 —v)ép] + (1 — A)[udc + (1 — p)ép]

can be constructed by having alternate layers of thicknesses Ae and (1 — A)e respec-
tively, the layers of thickness Ae consisting of sublayers of thicknesses ve?, (1 — v)e?
in which Dy (z) takes the values A and B, and the layers of thickness (1 — A)e con-
sisting of sublayers of thicknesses ue?, (1 — pu)e? in which Dy*(z) takes the values C
and D. In order to achieve compatibility, the matrices A, B,C, D € M must satisfy
the relations

(3.33) B-A=a®n,D-C=b®l,

(3.34) vA+(1-v)B—[pC+(1-p)D]=c®m

for nonzero vectors a,b,c,l,m,n. Boundary layers are needed near the interfaces
between the larger layers. Such microstructures are observed; see, for example, Arlt
[1].

The above theory is quite successful, predicting the correct interface orientations
in a variety of observed microstructures. It also illuminates some central questions
concerning lower-semicontinuity and regularity in the calculus of variations. The the-
ory predicts infinitely fine microstructures. This is both a good and a bad feature,
good because extremely fine microstructures are commonly observed, and bad because
these microstructures are of course not infinitely fine. The conventional explanation
for limited fineness is that there is a small amount of interfacial energy which con-
tributes significantly to the total energy of a fine microstructure. Model 1 in the next
section suggests the interesting possibility that there could be additional dynamic
effects that limit fineness.

4. Dynamics and crystal microstructure. In this section I explore the ques-
tion of whether appropriate dynamical equations for crystals have the property that
solutions produce finer and finer microstructure as time ¢ increases, thus providing a
dynamical justification of the variational principle (3.27). This is a difficult question
both from the point of view of modelling and of analysis. As regards modelling, it
is not clear what dynamics should be assumed (and in particular what dissipation
should be associated with the propagation of interfaces), while the analysis of even
the simplest models seems to be beyond the scope of existing methods. For example,
a simple viscoelastic model, ignoring thermal effects and the influence of anisotropy
on dissipation, is given by the system

(4.35) PRy = div DAW(Dy) + Ay,
(4.36) Y lea= ¥,

with initial data

(4'37) y(z,O) = yo(-""): y,(z,O) = yl(z),
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where pgr > 0 is the density in the reference configuration, 3 > 0 is constant, and yo, y1
are given functions with yo |sn= 9. Under hypotheses on W appropriate for crystals,
Rybka [37] has proved the existence of solutions for the corresponding problem with
zero-traction boundary conditions, and his techniques can probably be adapted for
(4.36). However, I am not aware of any results concerning the asymptotic behaviour
of solutions. A very interesting video of numerical computations of Swart & Holmes
[40] for the case when Q = (0,1)? C R?, y is a scalar, and W has only a finite number
of minimizers, shows in a striking way how microstructure is rapidly generated by
solutions.

With a view to gaining insight into models such as (4.35)-(4.37), a study of some
prototype one-dimensional models was carried out by Ball, Holmes, James, Pego &
Swart [9]. A surprising difference was found between the asymptotic behaviour of
solutions in two closely related models. In both models the unknown is a scalar
u = u(z,t) defined for 0 <z < =, ¢t > 0.

Model 1 consists of the system

(438) Uty = (“2 - “z)z — ot + Pz,
(4.39) u(0,t) = u(m,t) =0

where a > 0, 8 > 0 are constants, with initial conditions
(4.40) u(z,0) = uo(z), us(z,0) = uy(z).

Writing w = u;, and

"[1a,1 2 250 2.2

(4.41) Vi(u,w) = —w®+ —(uz — 1)* + —u?| dz,
o L2 4 2
a formal calculation shows that solutions to (4.38),(4.39) satisfy
d " 2
(4.42) E;Vl(u,ug) =—B [ |ux|"dz<0,
0

so that V; is a Lyapunov function. A phase-plane analysis shows that there are
uncountably many rest points for (4.38),(4.39). Uncountably many of these are weak
relative minimizers of V; in X = Wg'®(0,x) x L?(0, x), but none of them are strong
relative minimizers, i.e. local minimizers in the energy space Wy**(0,7) x L?(0, ).
Furthermore, infy, w)ex V1(4, w) = 0 but the minimum is not attained. The following
theorem is proved in [9] (together with related existence, uniqueness and regularity

theorems for (4.38),(4.39)):

THEOREM 4.1. There is no solution of (4.38),(4.39) with initial data {uo,u;} € X
such that
(4.43) 'l_iglo Vi(u,u) =0.

Thus there is no solution of (4.38),(4.39) which realizes an absolute minimizing se-
quence for V;! It is conjectured in [9] that in fact every solution converges to a rest
point as ¢ — co. Theorem 4.1 and the conjecture are not inconsistent with the possi-
bility that almost every solution converges to a weak relative minimizer of V;; thus a
result of the type discussed in the introduction could hold.

In the simpler case when a = 0, Pego [33] proved that every solution to (4.38)
converges to a rest-point as ¢ — oo when the boundary condition at z = = is changed

e TR
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to that of zero traction, i.e. o(uz) + Buze = 0 at £ = 7, where o(z) = 23 — 2.

However, for this ¢ and the zero displacement boundary conditions (4.39) it is not
known whether every solution converges to a rest-point. If @ = 0 and we drop the u,;,
term in (4.38) then (4.38),(4.39) are seen to be equivalent to the equation

(4.44) Bz = —0(z) + %'/: o(z)dz

for z = u,. Recently, Friesecke [27], following earlier work on a finite-dimensional
version of (4.44) by Pego [34], has shown that each solution of (4.44) that is bounded
in L®(Q) converges boundedly a.e. to a rest-point, provided that o is C! and is not
constant on any interval. It remains to be seen whether these methods.can be adapted
to handle the case of (4.38),(4.39) with a > 0.

Model 2 consists of the system
(4.45) Uyt = (" Uy ”2 Uz — Uz):: — au + PBugs:,
(4.46) u(0,t) = u(m,t) =0

where a > 0, 3 > 0 are constants, with initial conditions
(4.47) u(z,0) = uo(z), ut(z, 0) = u1(z),

which is obtained from (4.38)-(4.40) by replacing the term u2 with the nonlocal ex-
pression || uz ||? uz, where || u. ||= (J; u2 dz)*. Defining

(4.48) aGww) = [ [507+ 7| do+ 01w 1 17,
- | gty 1
we find that solutions of (4.45),(4.46) satisfy
(4.49) %Vg(u,u,) =B / | et | dz < 0.
0

An elementary Fourier analysis shows that there are a countable number of rest-
points {¥, 0} for (4.45),(4.46). Also infy w)ex Va(u, w) = 0, where X = Wy(0, 7)x
L?(0, x) but the minimum is not attained. The following theorem is proved in [9]:

THEOREM 4.2. X can be written as the disjoint union of two dense sets Ay, Az of
first and second category respectively. For initial data {uo, u;} € A;, {u, us} converges
in X to a rest-point {x,0} ast — co. For initial data {uo,u1} € Ay,

(4.50) Jim Va(u,u;) = 0.

Thus in contrast to Model 1, the dynamics of Model 2 generically realize an
absolute minimizing sequence for V5.
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