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1 Introduction

Vital to a proper understanding of mathematical models of nature is knowl-
edge of the possible singularities possessed by solutions of the governing equa-
tions together with physical interpretations of these singularities. The un-
derlying theme of this article will be to discuss this within the context of
elasticity theory, for which such knowledge has important implications for
the understanding of the behaviour of materials. In elasticity theory materi-
als are characterised by their corresponding free-energy functions, and so we
need to know how different assumptions on the free-energy function can give
rise to various types of singularity in the solution. This philosophy might
lead one also towards a strategy for proving that solutions for certain par-
tial differential equations (PDE’s) are smooth, namely to classify the possible
singularities of a class of such equations and to identify hypotheses on the
form of the equations to eliminate each kind of singularity in turn. This is
not how regularity theory for PDE’s is generally approached, but we will see
some hints that such a strategy might be viable in the future.

We consider three main topics:

(a) ‘Mathematically well-behaved materials’, i.e. the study of a special
class of free-energy functions leading to the existence of energy min-
imisers with mathematically desirable properties, and including some
commounly used models of particular materials.

(b) Fracture and its mathematical description.

(c) Materials that can undergo phase transformations.

We shall see that the description of (b) and (c) cannot be subsumed under
(a) because of the nature of the corresponding singularities.
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2 Elasticity and Energy Minimisation

We begin by reviewing how to describe the deformation of an elastic body. We
consider only the static case, that is, only deformations independent of time
are considered; and mo attempt is made to describe the dynamical process
by which these deformations arise. This is partly for simplicity, but largely
because our understanding of dynamics is, by comparison, very limited. Let
) C R" represent the reference configuration of an elastic body which we use
to label its material points. Using the Lagrangian description, the position
of a point z € R in a typical deformed configuration is denoted by y(z) € R®
(see Fig. 1). Thus y : @ — R™. Of course, the cases of interest are n = 1,2
or 3. The gradient of y at z is written Dy(z), and can be identified with the
n x n matrix of partial derivatives (gi’j(x))

The material will be assumed homogeneous, so that its mechanical response
(i.e. the stress corresponding to a given strain) is independent of the point z.
Note that this is more restrictive than saying that 2 is occupied by the same
material at each point, due to the possibility of pre-existing stresses.

The first question we consider is concerned with the choice of functions
which should'be used for a suitable mathematical model of deformations.

To be physically acceptable a deformation y should be invertible. This is
essentially to avoid interpenetration of matter. However we still might want
to allow cases where self-contact occurs. For example the deformation of a bar
illustrated in Fig. 2 is an acceptable deformation, although it is not invertible
on . Also cases where y is invertible in §2 except on a set of measure zero
could be considered (e.g. when the inverse image of a point is a line or a
surface). In order that the deformation y be orientation preserving and have
the same orientation’as in the reference configuration we require that
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Figure 1: Description of deformation of a three-dimensional elastic body.
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Figure 2: A deformation which is invertible on Q but not on .

det Dy(z) > 0 (2l

almost everywhere (a.e.) in Q. If y € C'(; R"™), (2.1) implies local invert-
ibility, this being a consequence of the Inverse Function Theorem. However
local invertibility does not imply global invertibility as the deformation of a
bar illustrated in Fig. 3 shows.

If y ¢ C'(;R™) then (2.1) does not even imply local invertibility. As
an example consider the mapping y : (r,6) — (r,26) of the unit disc in
R? to itself. It is easily checked that the gradient is bounded a.e. and that
its determinant is a positive constant. However y is not invertible in any
neighbourhood of the origin. A key tool for proving global, and even local,
invertibility is degree theory. For various results see [10, 26, 33, 44, 65, 68].

Suppose now that €2 is a bounded, open connected set with a Lipschitz
boundary 99 (i.e. each point z € 9 has a neighbourhood in which 9§ can
be represented as the graph of a Lipschitz function and in which 2 lies on one
side of Q). Let 852, C 89 be a portion of the boundary with #*~1(8Q;) > 0,
where H™~! denotes (n—1)-dimensional Hausdorff measure (i.e. surface area).
We consider the boundary condition

Yloa, = f (2.2)

for a given mapping f : 9Q; — R. We impose no boundary conditions on
the remaining part of the boundary dQ\92;. For the variational problem we

Figure 3: A locally invertible deformation that is not globally invertible.
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consider this will formally correspond to requiring that the applied traction
vanish on 9Q\99Q;. The elastic energy corresponding to the deformation y is
defined as

I(y) = /n W(Dy) dz, (2.3)

where W : M™ ™ — [0, 00] is the free-energy (or stored-energy) function and
M™*™ denotes the space of real m x n matrices. The assumption that W > 0
is made simply for convenience (it is natural to assume that W is bounded
below, and adding a constant to W does not change the problem). We assume
that W (A) is finite and continuous for det A > 0, and that

W(A) -0  as det A — 0+, (2.4)

which physically means that an infinite amount of energy is required to crush
the material down to zero volume. Consistent with the constraint (2.1) we
suppose that W (A) = oo for det A < 0. Thus W is continuous with respect
to the natural topology on [0, 00] = [0, c0) U {c0}.

Question. Does there ezist a § minimising I subject to the boundary condi-
tion (2.2)7

The above question is imprecise since the class of admissible functions is
not clearly specified. Also it is not clear what we mean by Dy. These issues
can be explored by considering the underlying physics of the problem. In
general enlarging the set of admissible functions can change the nature of the
solution. It may result in the infimum of the energy functional changing (the
Lavrentiev phenomenon) and affect whether or not the infimum is attained. It
is thus important to assess whether or not a given set of admissible functions
has a physical justification. For example the absolute minimum of the energy

I(y)=/01y'2dz

subject to the boundary condition y(0) = 0, y(1) = 1 is attained by the
well-known Cantor function when ' is interpreted as the limit of a difference
quotient, with minimum value zero. However such a function would usually
be regarded as too irregular to represent an acceptable physical deformation.
Among more regular functions, such as we use below, the minimum value
is 1, attained by the function y(z) = z. Other more surprising examples
can be found in [16]. In our case we make the set of admissible functions
precise by using the standard notion of Sobolev spaces (see, for example,
[2, 25, 32, 52, 54]).

For 1 < p < oo define the Sobolev space W'? = W1?(Q; R") to be the set
of equivalence classes of mappings y : 2 — R" which together with their first
order weak derivatives belong to LP. This means that

llho = ([AyP+1DyP)ds)" <o if 1<p<oo,
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lylheo = esses‘gpﬂ y(z) | + | Dy(z) |) < oo,

where Dy = (g’f—) denotes the matrix of first order weak partial derivatives
2]
of y, defined to satisfy

Oy;
Q ij

dp
=— [yt %(Q). 2.
pdz /ny, az; dz for all ¢ € C§°(R) (2%5)

In (2.5) C§°(€2) denotes the space of infinitely differentiable real-valued func-
tions on §2 which vanish outside a compact subset of 2. We can now pose
our question more precisely by setting

A={ye W™ :ylo, = f, I(y)<oo}. (2.6)

In (2.6) the boundary condition is to be understood in the sense of trace (for
the precise meaning see the general references cited above).

Question (precise formulation). Assume that A is not empty. Does there
ezist a function § € A minimising I ¢

3 Mathematically Well-Behaved Materials

In this section we consider a class of materials for which a positive answer
to the above question can be given, and highlight some limitations of the
existing theory.

3.1 Statement of the existence theorem

Suppose n = 3 and that

(H1) W is polyconver i.e. there exists a convex function g : M3%3 x M3*3 x
(0,00) — R such that W(A) = g(A, cof A, det A) for all A € M3*® with
det A > 0;

(H2) W(A) > co(| AP + | cof A|?) — 1, where o > 0,p>2,¢> 2.

Here cof A denotes the matrix of cofactors of A. Then we have the following
result.

Theorem 1 Let (H1) and (H2) hold. Then there ezists § minimising I in
A. Furthermore det Dj(z) > 0 for a.e. T € Q.
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3.2 Commentary

Theorem 1 is of the type first proved in Ball [8] under somewhat stronger
growth hypotheses. It was refined by Ball & Murat [17], who assumed that
¢ > 3%, and then by Miiller, Qi & Yan (48] in the version stated here.

The theorem avoids the blunder of assuming W to be convex. This is not
a physically realistic assumption. For example, a consequence of convexity
of W would be that any equilibrium configuration (solution of the Euler-
Lagrange equation) is an absolute minimiser, in particular ruling out buckling
phenomena. Also note that the set M3*3 = {4 € M3*3 : det A > 0} is not
convex, so that W cannot both be convex and satisfy (2.4).

To give examples of materials satisfying (H1), (H2) and (2.4), let us first

look at some general properties of the free-energy function. First, W should
satisfy the frame-indifference condition

W(A)=W(RA) forall A€ M3*®, Re SO(3).

This condition reflects the fact that rigid rotations of a body do not change
its energy, and is assumed to hold for all materials.

The symmetry of the material is expressed by the condition
W(A)=W(AR) forall Ae M3>* ReS,

where we will assume that the symmetry group S of the material is a subgroup
of SO(3). A particular case is when the material has no preferred grain. This
corresponds to the case S = SO(3), and the material is called isotropic. Using
the polar decomposition theorem it can be shown that W is frame-indifferent
and isotropic if and only if W has the representation

W(A) = ®(vy, v, v3)

for det A > 0, where v;, v, and vs are the singular values of A (i.e. the
eigenvalues of (ATA)2) and ® is symmetric with respect to permutations of
the v;. Writing

¢(e)
$(B)

then the well-known Ogden materials ([56, 57]) have the form

of 4+ v3 + v§ — 3,
(vav3)P + (v301)? + (n102)P - 3,

M N
B(vy,v2,v3) = Y aid() + Y bio(B;) + h(vivavs),

i=1 =1

where a; >0, b; >0, ;;y 2 > ... 2ay 21, fi 2B > ... > By 2 1,
and where h : (0,00) — [0,00) is convex, with h(6) — oo as § — 0. These
free-energy functions satisfy (H1) and (2.4). If o1 > 2 and B; > 2 then they
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also satisfy (H2). For appropriate values of the constants good fits can be
obtained for the behaviour of rubber-like materials.

In order to place the polyconvexity hypothesis (H1) in perspective we con-
sider some related classes of free-energy functions. We say that W is rank-
one conver if and only if it is convex in every rank-one direction, that is
t — W(A+t\ ® p) is a convex function of t for every A € M3**3 and
Ap € RE Ift — W(A+tA ® p) is strictly convex for ¢ > 0 whenever A,
A+ )X ®p € M3 we say that W is strictly rank-one convex.

In the case when W € C?(M3*3), rank-one convexity is equivalent to the
Legendre-Hadamard condition

%W(A + @0 >0 forall Ae M¥®, A\ peR?

that is
az—W(A))\-u-)\km >0 forall Ae M¥® X pueR? (3.1)
6AijaAk[ il = + ) )

where we have used the summation convention. If strict inequality holds in
(3.1) whenever A and u are nonzero, then W is said to be strongly elliptic.

W I )'U d.‘] > [/[/ A (iﬂ

for every bounded open set E C R? and v € C}(E;R?) with v = Az in
a neighbourhood of GE. It can be shown by a scaling argument that the
definition of quasiconvexity is independent of E. The definitions of polycon-
vexity, rank-one convexity and quasiconvexity extend in the obvious way to
arbitrary dimensions, i.e. to integrands W : M™ " — [0, 00]. The following
implications then hold:

polyconvexity =—> quasiconvexity == rank-one convexity.

In particular all the above notions coincide with the usual convexity when
eithern=1o0rm=1.

The importance of rank-one matrices lies in the fact that a deformation
y € WH(Q; R™) can have its gradient equal to A and B respectively above
and below a specific (n — 1)-dimensional hyperplane intersecting Q if and
only if the difference A — B is a rank-one matrix. To justify this statement,
known as the Hadamard jump condition, let y be such that

[ A fzoa>k
Dy"{B el
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for some k£ € R and unit vector z € R". Applying the continuity on the in-
terface (the existence of a continuous representative follows from the bound-
edness of Dy and the Sobolev Embedding Theorem), we obtain Cut = 0
whenever ut - 4 = 0, where C = A — B. Since

(C-Cu®pp = 0,
(C-Cu®@uut = 0 for pt-p=0,

it follows that C = Cu ® p and therefore A — B = A ® u for some A € R™.
Conversely if A— B = A® p one can easily find a deformation whose gradient
is equal to A and B respectively below and above an (n — 1)—dimensional hy-
perplane with normal . This construction will be used frequently in Section
5 below.

It would be less restrictive in Theorem 1 to replace the polyconvexity of
W by quasiconvexity. There are various results in the calculus of variations
of this type following from the pioneering work of C.B. Morrey [45, 46] (see,
for example, [1, 43]). However the assumptions made are not consistent with
the growth conditions of nonlinear elasticity. Quasiconvexity is a difficult
condition to verify as it is not defined in a pointwise manner, and no equiv-
alent pointwise condition (i.e. one depending on W and its derivatives at an
arbitrary matrix) is known. For over 40 years it was a conjecture arising out
of the work of Morrey that quasiconvexity was equivalent to rank-one convex-
ity. However in 1992 V. Sverak [66] produced a counterexample for a quartic
W = W (Dy) for the case when y : @ C R®* - R™ and n > 2,m > 3. The
case when m = n = 2 remains open, and there is some evidence that rank-one
convexity might imply quasiconvexity in this case (see [27, 28, 59, 60]).

Theorem 1 (and many others similar to it by nature) guarantees the ex-
istence of at least one (global) minimiser. However it does not say anything
about how smooth such a minimiser is. In particular one is interested to
know whether or not the Euler-Lagrange equations are satisfied. To derive
the Euler-Lagrange equations we need to calculate the first variation of I.
Let ¢ :  — R? be smooth with ©|sq, =0. Then §+tp € A for any t € R
and so

d a7 pa— a7 —
ZI(F+tp)l=0 = /n D4W(Dg) - Dpdz =0 (3.2)

provided this derivative ezists and is given by the anticipated ezpression in
(3.2). To justify this we need the existence of the limit

li 17+ t) ~ 1)) = lig [ W(Dy+tDy) ~W(Dp)| ds,  (33)

where we assume that W € C'(M3*®) say. But it is not obvious how to pass
to the limit inside the integral in (3.3) unless we have additional information
on 7, so that for example the integrands are bounded pointwise by an inte-
grable function (for the application of the Dominated Convergence Theorem).
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This is the case if § € W1 with det Dj > € > 0 for some £ > 0. However,
the only readily available piece of information is that I(3) < co. In fact there
are one-dimensional counterexamples (see [16]) of minimisers which do not
satisfy the corresponding Euler-Lagrange equation, even for elliptic polyno-
mial integrands. The Euler-Lagrange equation is then an elliptic ordinary
differential equation; weak solutions of such equations are smooth, but the
minimisers are not. It is not known whether the minimiser ¢ given by The-
orem 1 satisfies (3.2). However, it is possible to derive other weak forms of
the Euler-Lagrange equation under supplementary growth hypotheses on W
(see [12, 19]).

The condition of strict rank-one convezity is intimately related to the pos-
sible occurrence of the type of singularity we previously considered in which
Dy jumps across a hyperplane. In fact (see [9]), under the very mild supple-
mentary hypothesis that the integrand W has a minimiser, strict rank-one
convexity is necessary and sufficient for the nonexistence of such singularities
in solutions to the Euler-Lagrange equations.

The general question of whether the minimisers in Theorem 1 are smooth
is unresolved. A well-known theorem of Evans [31] implies ‘partial regular-
ity’ of minimisers § of integrals of the form (2.3) with W satisfying a strict
form of quasiconvexity, though again unfortunately under growth hypotheses
inconsistent with (2.4). More precisely he proves that under his hypothe-
ses 7 is smooth off a closed set S of measure zero. Such a result would
be very interesting for the minimisers in Theorem 1, especially if S were
nonempty for physically reasonable W. The existence of points zo € S where
|Dg(zo)| = oo in some sense might, for example, have something to do with
the onset of fracture, though as we discuss in Section 4, the energy functional
I needs modification for actual fracture to be described. The counterexample
of Necas [53] shows that if § is in fact smooth (so that S is empty) this must
have something to do with either the special form of W or with special fea-
tures of 3 (or low) dimensions. Even under the growth hypotheses of Evans
essentially nothing is known about regularity up to the boundary.

For recent advances in the regularity theory of minimisers in elasticity see
(18, 19, 20, 21, 34, 35, 64].

In Theorem 1 the minimisation was carried out in a space A of deforma-
tions y satisfying the condition det Dy > 0 a.e.. As we saw in Section 2 such
deformations need not even be locally invertible, and to be physically realistic
we should instead minimise over globally invertible deformations. In the case
of pure displacement boundary conditions (i.e. 9Q; = 9Q) this turns out not
to be a serious issue, since in fact the minimiser § in Theorem 1 can be shown
to be a homeomorphism provided the boundary data f is consistent with
Jinvertibility and provided somewhat stronger growth conditions are imposed
on W (see [10, 65]). However, for mixed boundary conditions (8Q; # 0f2)
there is no escaping the need for a new approach, and one way is to proceed
as in Ciarlet & Necas [26]. However, there is much to be done before the true
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complications of self-contact can be satisfactorily addressed.

4 Fracture and Cavitation

4.1 Towards a theory of fracture

Why and how do materials break? These are the questions studied in the
important technological subject of fracture mechanics. By far the largest
proportion of work in fracture mechanics concerns the possible extension and
evolution of pre-ezisting cracks under diiferent loadings. In contrast, com-
paratively little is said about fracture initiation. Although there are isolated
rigorous treatments of parts of classical fracture mechanics (see, for example,
[58]), from the mathematical perspective fracture mechanics is in a some-
what primitive state, reflecting the difficulty of considering (or eliminating
from consideration on some rational basis) very complicated potential frac-
ture patterns. There is perhaps now the beginnings of a more general and
rigorous approach to be seen in the work on problems with ‘free discontinuity
sets’ based on ideas of geometric measure theory (see [3, 4, 30, 51]). But there
is a need to link these new ideas with classical work in fracture mechanics, a
necessary preliminary to a more comprehensive theory.

A first mathematical difficulty which arises is that we cannot use Sobolev
spaces to directly model fracture in general. In the typical fracture patterns
illustrated in Fig. 4 the deformations y shown jump across a two-dimensional
surface, and hence y ¢ Wh1.

Let us consider the static case. The idea in (3, 4, 30, 51] is to seek to
minimise the modified energy

I(y,K) = /Q WDy dz+ KHA(K), k>0, (4.1)

LA

—— Lz

Figure 4: Examples of deformations y involving fracture: such deformations
do not belong to Sobolev spaces.
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subject to some boundary conditions. Here 2 and W are as before, and the
new unknown K is the crack set. The second term is the simplest way to
take into account the contribution of the surface energy due to the creation
of cracks. Here #?(K) denotes the two-dimensional Hausdorff measure of K
and coincides with usual definitions of surface area for smooth sets K. The
competing functions y are supposed to belong to W (Q2\K; R?). This allows
them to have a jump across the crack set.

The main difficulty here is that we want to minimise I without making
any a priori assumptions on the set K. A key technical device introduced by
Ambrosio & de Giorgi in [30, 3, 4] is to remove the dependence of the integral
in (4.1) on K by using the space SBV(;R3). This space is defined in
terms of the space BV (€; R?) of mappings v : @ — R3 of bounded variation,
consisting of those y € L'(£; R?) whose gradient Dy is a bounded measure.
This gradient can be decomposed as the sum of a part Vy that is absolutely
continuous with respect to 3-dimensional Lebesgue measure, and a singular
part D?y:

Dy = Vydz + D*y.

The singular part can be further decomposed as
Dy = (y* - y")mdH’|s, + Cy,

where v, is the measure theoretic normal to the set of jump points Sy, y*
denote the traces of y on either side of S,, and Cy is the Cantor part of
Dy. SBV(Q; R?) is now defined as consisting of those y € BV (Q; R®) whose
Cantor part Cy = 0. We can now replace the problem of minimising (4.1) by
that of minimising the associated functional

I(y) = /ﬂ W (Vy) dz + kH2(S,) (4.2)

over a suitable subset of SBV (Q; R3). There is now a considerable literature
on existence and regularity of minimisers for functionals of the form (4.2) (see,
for example, [5, 6, 24, 29]). However, from the point of view of applications to
fracture mechanics a missing ingredient seems to be a calculation of a general
variation for I about a given § in the direction of a nearby y having a possibly
very different set of jump points.

4.2 Cavitation

Cavitation is a common failure mechanism in polymers, such as rubber, char-
acterised by the formation of (roughly spherical) holes (see [36]). Fortunately
‘it is possible to express cavitation in Sobolev spaces with an unmodified en-
ergy functional

I(y):/ﬂW(Dy)dz. (4.3)
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Figure 5: Radial cavitation.

In the simplest situation of radial cavitation, a hole forms at the centre of a
ball whose outer boundary is radially displaced (see Fig. 5).

The corresponding deformation y is discontinuous, since it maps a solid
ball into one with a hole. For such a deformation to have finite energy (4.3)
W must have restricted growth. In fact, if the material is ‘strong’, namely

W(A)>CO+|Al"), AeM> (4.4)

for some v > 3, then it follows immediately from the Sobolev Embedding
Theorem that any deformation y with I(y) < oo is continuous. Thus cavita-
tion type singularities cannot occur in strong materials.

Let © be the open ball B = {z € R? : |z| < 1} and consider radial
deformations of the type

r(lz])
|=]

Such deformations y map spheres to spheres and displace points of B in the
direction of their position vectors with respect to the centre of B. We assume
that the material is isotropic. The question is now whether or not there exists
any radial minimiser whose corresponding r in (4.5) satisfies (0) > 0. After
some calculations it can be shown that the singular values of Dy are

r(|z])

v = T’(l.’L‘I), Vg = U3z = W

y(z) = . (4.5)

Therefore restricting to the class of radial functions I(y) = [z W(Dy)dz
takes the form

B(r)=4x [ ' Ra(r',r/R,r/R) dR.



Nonlinear elasticity 105

We can try to minimise E over the set of admissible functions
Ay ={re Wh(0,1): 7' > 0 ae., r(1) = A,7(0) > 0},

where the parameter ) represents the boundary displacement (one can for-
mulate the traction problem in a similar fashion).

Consider now the special free-energy function
B (v, v, v3) = V5 + v§ + v§ + h(v1vev3), 1 <a=<3, (4.6)

where h is smooth and satisfies

R" >0, lim L) = lim h(f) = .
d—00 6 =0+

Note that this free-energy function satisfies (H1) but not (H2) for the given
range of a.

It can be shown that for A less than a critical value A the trivial solution
r(R) = AR (i.e. y(z) = Az) is the only (global) minimiser of E. However if
A > A there is an exchange of stability and a nontrivial cavitating solution
) with 7,(0) > 0 becomes the global minimiser, the trivial solution becoming
unstable. The bifurcation diagram Fig. 6 shows this.

The above example has been studied for a wider range of W in [11] (for
different methods see [61, 63]). There it is shown that the minimisers r, satisfy
the Euler-Lagrange equations and hence provide singular weak solutions to
the 3D equations of nonlinear elastostatics. However it is not known in general
whether the radial deformations still remain minimisers when one considers
variations that are not radially symmetric, or whether ). gives the correct
critical boundary displacement when arbitrary nonradial deformations are
allowed. If the growth of W (A) is less than quadratic in A then it has been
shown by James & Spector [40] that for certain free-energy functions further
reduction of energy is possible by introducing cylindrical voids along radial
lines. For a recent review of cavitation in elastic materials see [39].

stable
l unstable
A

I ez

r(0)

Figure 6: Bifurcation of the radial minimiser r) from the trivial solution
n(R) = AR
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The phenomenon of cavitation is a striking illustration of the fact that
the function space chosen is part of the mathematical model. If we choose to
minimise in, say, W for p > 3 then the unique minimiser y of I subject
to ylap = Az is §(z) = Az (because W given through (4.6) is quasiconvex)
and cavitation is not predicted. For general formulations of this kind of
minimisation see Giaquinta, Modica & Soucek [38] and the simplification of
Miiller [47]. If we choose to minimise in the smaller spaces considered in
[38] (which has the advantage of a general 3D existence theory), the only
way to recover cavitation is to suppose that the body already possesses small
pre-existing holes. Although such holes do not seem to have been observed,
they were postulated in [36] as being the precursors of cavitation. Since
there are experiments [55, 37] in which cavitation appears at well-defined
and repeatable geometric locations (see [62] for a corresponding theory based
on our model above), in order to use the spaces in {38] we would need to
assume that the pre-existing holes permeate the body, leading to a reference
domain Q with very complicated geometrical structure. This makes these
spaces unattractive for modelling cavitation. Sivaloganathan [61] considered
the case when the reference domain contains a pre-existing hole of radius &,
with a zero traction condition on the inner boundary |z| = €, and showed
that the corresponding radial minimisers (which are smooth) converge to
as € — 0. This suggests a consistency between the theory in [38] and that
based on a straightforward minimisation of I. However, this has not been
proved in general, and the limiting case of a domain with infinitely many
holes would require a difficult process of homogenisation.

The existence of minimisers of I for W such as (4.6) and arbitrary (non-
radial) boundary conditions is an open question. However, Miiller & Spector
[49] have proved existence when a surface energy term is added to I(y) con-
sisting of a constant multiple of the area of dy(Q2) (a functional related to,
but different from, (4.1)).

It is worth contrasting the different effects of a rapid growth of W(A) with
A in the theory of cavitation and in that based on (4.1). As we have seen,
if W satisfies (4.4) for some v > 3 then cavitation is prevented. But for the
more realistic model (4.1) rapid growth of W is expected to promote fracture
for a body under tension, since the body can release a lot of elastic energy by
fracturing. By working in a Sobolev space we tacitly assume that the surface
energy is infinite, negating this effect. Of course cavitation can presumably
occur in the model based on (4.1), but then it has to compete energetically
with other types of fracture.



Nonlinear elasticity 107

5 Phase Transformations

5.1 A minimisation problem with nonattainment and
the formation of microstructure.

To motivate the ideas appearing in this section let us look at the following
minimisation problem for the scalar function u = u(zy,z;) defined on the
square £ = (0,1) x (0,1):

Min I(u) = /ﬂ (2, = 1)2 + 2, dzy dz, (5.1)

subject to u(z,0) = 0.

By constructing a suitable minimising sequence it can be shown that the
infimum of I is zero. Roughly speaking one should consider a sequence {u")}
such that the partial derivatives satisfy u(,{) = +1 and ug) = 0. However in
order for the boundary condition to be satisfied a ‘transition layer’ should
exist close to zo = 0 so that the function matches itself with u(z;,0) = 0.
Putting this in a more precise way consider

z16(z2) if0<z <3,
4(z1,Zs) =
(1 = a:l)¢(:c2) lf % _<_ I S 1,

where ¢(z3) = 7, if 0 < 7, < 1 and ¢(z3) =1 if z, > 1. Extending @ as a
one-periodic function of z; to R x (0,00) one can now define

w9 (21, 25) = ~@(jz1, j22)-

S

Then Dul)(zy,15) = (@g,,8s,)(jZ1,j72) is uniformly bounded and conse-
quently I(u")) — 0 as j — oo. However this infimum is not attained. If
I(u) = 0 for some u € W with u(z;,0) = 0 then u,, = 0 and hence, inte-
grating in the z, direction, u = 0. But this implies I(u) = 1, a contradiction.

5.2 Young measures

The above problem is a typical example where the infimum of a functional
over a class of admissible functions is not attained, and minimising sequences
develop a microstructure in which the gradient oscillates more and more finely.
The idea of generalised curves or Young measures was first introduced and
used by L.C. Young to tackle such problems (see his book {69]). In general
a Young measure (Vy)zeq is a family of probability measures that gives the
limiting distribution of values of a sequence of functions. The following is
one possible characterisation [13]. Let 2 C R™ be an open set. Suppose
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z0) : @ 5 R™ is a sequence of measurable functions. For given z, j and ¢
define 1/(’) to be the probability distribution of the values of z(J)(p) as p is
chosen umformly at random from the ball B(z; ). Then

= lim lim v%),

§—0 p—o0
with the limit to be understood in the sense of weak* convergence of proba-
bility measures. (In general the z(*) correspond to a subsequence of the 2(7).)
For recent surveys of Young measures see (7, 42, 67].

As an example, the reader can check that the Young measure corresponding
to the sequence of gradients u{), u{) of any minimising sequence u¥) for the
problem (5.1) is given by

i
Vp = 55(1,0) + 55(-1,0),

where 0(+1,0) denotes the Dirac mass at (£1,0).

5.3 Microstructure arising from a phase transforma-
tion

Now to see what happens in the case of elastic crystals let us look at the prob-
lem of a phase transformation in a single crystal of a material, such as the
binary alloy Indium-Thallium, where the high temperature phase (austenite)
has cubic symmetry and the low temperature phase (martensite) has tetrag-
onal symmetry. We suppose that 6. is the temperature at which the phase
transformation occurs, and take the reference configuration to be the cubic
phase at the temperature § = 6.. We use nonlinear elasticity with free-energy
function W = W (Dy, ) depending on the temperature. The phase transfor-
mation is described by an exchange of stability. Denoting by K(6) the set of
minimisers of W (-, ) in M3*® we assume that

K(6)= SO(@3) for 6 > 6.,
K(8) = Ui‘_ SO(3)U; for 6 < 6.,
K(8) = SO(3)UUL, SO@)U;,

where

Ul = dla’g (772a M, Th),
U2 = dla’g (771,7)2, Th),
Us = diag (m, m, ).
The lattice parameters n; in general will depend on temperature. Note that

these assumptions are consistent with the frame-indifference and cubic sym-
metry of W. We call the connected components of K(0) energy wells; thus,
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(a)

(b) O SO(3)U, Q S0(3)U;
Q s03)

Q SO(3)Us

Figure 7: A cubic-to-tetragonal phase transformation. (a) Austenite and the
three variants of martensite, (b) the corresponding energy wells SO(3) and
SOE)U v =",2,3

for example, at 6 = 6, there is one austenite energy well SO(3) and three
martensite energy wells SO(3)U; corresponding to the three possible variants
of martensite. These energy wells are represented schematically by circles in
Fig. 7.

By considering different rank-one connections between the different energy
wells as explained in Section 3 we can construct different global energy min-
imisers which are combinations of variants or phases. To illustrate this let
us suppose that 8 = 6,. Then it can be shown [14] that there is no rank-one
connection between two matrices on a single well, nor between a martensite
well and the austenite well (provided no 7; = 1, which we assume). However
to each matrix on a martensite well there correspond two distinct matrices
on each different martensite well. Once we have found such a rank-one con-
nection between martensite wells

B—A=a®n,

with A € SO(3)U;, B € SO(3)Uj,% # j, we can construct a corresponding
interface and even form a simple laminate consisting of the limit as j — oco of
a family of layers having normals n, alternating deformation gradients A, B
and alternating thicknesses \/j, (1 — A)/j (see Fig. 8).
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Figure 8: A simple laminate formed using the rank-one connection B — A =
a®n.

The Young measure corresponding to the sequence 2(9) = DyU) of defor-
mation gradients generating this microstructure in the limit j — oo is easily
verified to be

Vy = A0s + (1 = /\)63,
where 6,4 denotes the Dirac mass at A.

As another example we can consider a double laminate shown in Fig. 9
formed from four matrices A4, B, C, D on martensite wells with rank-one con-
nections

A—-B=a®n,
C—-D=b@m,
(B+upa®n)— (D+Xb®m)=c®l,

and having the Young measure
vz =0 (pda + (1 — p)dp) + (1 — 0)(Mc + (1 — A)dp).

Note that since, for example, rank (A — C) > 1 in general, transition regions
are required to interpolate between the single laminates, as in problem (5.1).
The volume of these layers tends to zero as j — oo and so the energy contri-
bution due to the deformation gradients not belonging to K(6.) vanishes in
the limit.
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Figure 9: A double laminate formed from four matrices on martensite wells,
showing the values of the deformation gradient DyU). The layers in which
Dy takes the values A, B, C, D have thicknesses J%, Ll?”ﬁ)., J%, 11—;,& respec-

tively. The shaded areas are transition regions whose thicknesses are O(;lf)

pA+(1-p)B

AC+(1- XD

Figure 10: Diagram showing the rank-one connections in the double laminate
shown in Fig. 9; each line represents a rank-one connection.
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AB +(1-))C

Figure 11: The austenite-martensite interface, and the corresponding rank-
one connections. The matrix A is on the austenite well, B and C on different
martensite wells. The corresponding Young measure is given by v, = d, if
z-m<a,and by v, =X+ (1 —A)dcifz-m > a.

It is sometimes more convenient to show the different rank-one connections
involved in a microstructure using a diagram such as Fig. 10 in which they
are indicated by straight lines.

In general different sorts of microstructure involving laminates can be anal-
ysed by solving the algebraic problem of finding matrices on the energy-wells
having the appropriate rank-one connections. Interesting examples are the
austenite-martensite interface, in which a single laminate of martensite is
connected along a planar interface to an austenite region (see Fig. 11 and
(14]), and the wedge [22].

Clearly an important question for the analysis of microstructures is to
classify the Young measures arising from sequences of gradients. Important
necessary conditions are the minors relations. In general a minor J = J(A) is
a subdeterminant of an m X n matrix A. For example, in the case m =n =3
there are 19 such minors in all, given by the elements of A, cof A and det A. If
J : M™™ — R is a minor and (V;);eq is the Young measure corresponding
to a sequence DyY) of gradients satisfying suitable bounds (e.g. uniformly
bounded in L*) then

J (/me" Adu,(A)) = /me" J(A) dvy(A) a.e. € Q.
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In particular for m=n=3

Dy(z)

Advy(A),

M3X

cof Dy(z) /M«xa cof A dv,(4),

Il

det Dy(z) = /Maxa det Adv,(A),

where y denotes the weak limit of /). The minors relations are not sufficient
for a parametrised measure (v;)zeq to be a Young measure of gradients (c.f.
[15, 23]). Necessary and sufficient conditions in terms of quasiconvexity have
been obtained by Kinderlehrer & Pedregal [41], but on account of our lack
of understanding of quasiconvexity these conditions are at present more of
theoretical interest than a practical tool.

5.4 The two-well problem

It is impossible to adequately survey here the very active field of the analysis
of crystal microstructure, and the reader should consult the cited references.
In this section we consider briefly one special problem in which the issue
of nonattainment of a minimum has been at least partially clarified. This
is the two-well problem arising, for example, in orthorhombic to monoclinic
transformations, in which K = K(6) has the form

K = SO(3)U; USO(3)U,

for distinct positive definite symmetric matrices U, U,. We suppose that the
minimum value of W (-, ), attained on K, is zero. The case when detU; =
det U, is discussed in [15], where it is shown that via a change of variables
one can represent the above set K in the form

K = SO(3)S* U S0(3)S-,

with S* = 14 fe3 ® €1, § > 0 and {ey, e, e3} an orthonormal basis for R3.
Consider the problem of minimising

I(y) = /n W (Dy, ) dz

subject to the linear boundary conditions
Ylaa = Fz,

where F' € M3*3. It is proved in [15] that the infimum of I is zero (i.e. there is
a zero energy microstructure) if and only if C = FTF € R, where R consists
of symmetric matrices of the form

Cu 0 Cis
0 1 0
Ciz 0 Cs3
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Cs3

CnCs =1
1 ————————— - -
1
L o= smemes s e ;

! 1
] 1
1 ]
i i
] 1
1 1+ 62 Cn

Figure 12: The set of strains C corresponding to zero-energy microstructures
in the two-well problem; (Ciy,C33) must belong to the shaded region and
C123 = 011033 = 1.

with (Cii1,Cs3) in the region shown in Fig. 12 defined by the inequalities
Cl]_ S 1+ 62, C33 S 1 and CuC33 Z 1, and with 033 = 011033 —1.

If C € R satisfies either C;; = 1+ 82, or Cs3 = 1 then F has the form
F=M)+(1-)B,

with A € SO(3)S*, B € SO(3)S™, A € [0,1], and the Young measure cor-
responding to the sequence DyY) for any minimising sequence y") is given
by

Ur = )\5,4 + (1 — A)(SB.

In particular, if A # 0,1 (i.e. if F ¢ K) then the Young measure is not a
Dirac mass and so the minimum is not attained. Recent work of Miiller and
Sverdk [50] suggests that, surprisingly, the minimum may be attained if C
takes other values in R, though by a very irregular deformation.
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