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Synopsis
The asymptotic behaviour of solutions to the Becker-Déring cluster equations is determined without
the decay assumptions on the initial data made in [3].

1. Introduction

The process of cluster formation has attracted considerable interest in many areas
of pure and applied science [1,4,5,7]. In a recent paper [3], the mathematical
theory of one of the models in this area was discussed, namely the Becker—
Déring equations. If ¢,(1)=0, r=1,2,..., denotes the expected number of
r-particle clusters per unit volume at time ¢, then the Becker-Doring equations
are

6 =J,_4(c)-1(c), rz2

1= ~1(0)~ 3, 10), -
where ¢ =(c,), J,(c) =a,c,c, — b,1¢,4, and a,, b,,, are positive constants. The
density of a solution of (1.1) is given by p =¥, rc.(f) and it is a conserved
quantity.

One of the main results in [3] concerns the asymptotic behaviour of solutions of
(1.1) for rapidly decaying initial data. It is proved that there is a critical density p,
such that if 0 = p = p, there is a unique equilibrium solution with density p, while
if p > p, there is no equilibrium with density p. If the initial density of a solution
is denoted by p,, then if py = p, the solution converges strongly in an appropriate
sequence space X to ¢, while if p,> p, the solution converges weak* to ¢”. In
the latter case the excess density p, — p, corresponds to the formation of larger
and larger clusters as ¢ increases, i.e. condensation. In this paper we introduce a
technique which allows us to remove the restriction on the initial data. Since the
ideas may be of use for other classes of equations we first present the method in
an informal way in the hope that this reveals the motivation.

Let T(t), t=0, be a semigroup on a metric space E and suppose that ¥ is a
continuous Lyapunov function for the flow T'(¢). If ¢ € E and the positive orbit

0 (¢) d=e‘U,§0 T(t)¢ is relatively compact in E then (cf. [6]) the invariance of the
w-limit set w(qb}dg{w eE:T(t,)p— ¢ for some sequence f,— =} and the
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continuity of ¥ can frequently be exploited to determine w(¢). However, the
relative compactness of 0(¢) is often very difficult to prove and can be false.
For example, our results will show that in the natural space £E =X * the positive
orbit of a solution to (1.1) is relatively compact if and only if the initial density p,
satisfies py = p;.

One way out of this impasse is to find another topology on E for which T'(¢)
retains the necessary continuity properties, ¥ is still continuous and 0*(¢) is
relatively compact, and hence to obtain results on the behaviour of T(¢f)¢ as
t— o with respect to the new topology. This gives extra information which we
could try to exploit to obtain relative compactness of appropriate orbits in the
original metric. For example, this goal might be achieved by restricting the initial
data to some Y < E. This was the method used in [3], the decay assumptions on
the initial data allowing the construction of a supersolution which implies the
relative compactness of orbits with p, = p,. Roughly speaking, the observation
that enables us now to remove the restriction on the initial data is that, with
respect to the new variables

52 e, (1.2)
a supersolution can be constructed regardless of how slowly the initial data x,(0)
tends to zero as n— . More precisely, we show first in Theorem 2 that there is a
family of positive sequences A = (4,) satisfying A, — 0 as n— « such that for any
solution of (1.1) with initial density p, < p;,

sup A 'x,(0) < implies Sup sup A, (2) <o (1.3)

Then, by means of a simple construction in Lemmas 3 and 4, we show that the
sets ¥, = {ce X":sup A, 'x, <} cover X*. Thus, given any solution with p, < p,

we can find a corresponding supersolution guaranteeing relative compactness of
the positive orbit.

The main result on asymptotic behaviour is given in Theorem 5. This theorem
is in fact proved under hypotheses which are shown in [3] to guarantee the
existence of solutions with arbitrary initial data in X, but which are not known
to imply uniqueness. Even though our hypotheses may not, therefore, imply that
(1.1) generates a semigroup on X *, they do imply that it generates a ‘“‘generalised
flow” [3, Theorem 3.4, 3.5] and the strategy outlined above is unaffected. Further
hypotheses guaranteeing uniqueness, and that (1.1) generates a semigroup, are
given in [3, Theorems 3.6-3.8].

2. Preliminaries (see [3])

We first introduce some notation. Let

X={y=):lIyl<=}, lyl=2>rlyl

r=1

and let X*={yeX: each y,=0}. We shall also use another notion of
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convergence in X. We say that a sequence {y’} of elements of X converges
weak* to y € X (symbolically y/ = y) if (i) sup {|[y’|l:j=1,2,...} <= and (ii)
yi—y, as j—>x, foreachr=1,2,.... We can express the weak* convergence as
convergence in a metric space. For p >0, let B, = {(y,) e X: ||yl = p}, d(y, 2) =

=11y, —zI|. Then (B,, d) is a metric space. Clearly convergence in (B,, d) is
equivalent to weak* convergence and (B,, d) is compact.

We shall make use of the following hypotheses concerning the coefficients in
the Becker-Doring equations:

HypotHesis 1. a, >0, b, >0 for all r.

Hypotsesss 2. Let Q,=1 and Q,,, = (a,/b,41)Q,, r=1. Then lim Q;" =z;"
exists with 0 <z, <co, e

Hypotsesis 3. a, =0(r/Inr), b,=0(r/Inr).
HypotHesis 4. If 0=z < z,, then a,z = b, for r sufficiently large.

The density of a solution of (1.1) is given by X7, rc,(f) and it is a conserved
quantity. Thus we look for equilibrium solutions c?=(cP) with p= L7 rct.
From (1.1), J(c?)=0 for all r so that ¢/ =Q,(cf)’, where Q, is defined in
Hypothesis 2. In order to identify cf, let F(z) = L;-,7Q,z". By Hypothesis 2 this
series has a finite radius of convergence z,. Let p, =sup {F(z): 0=z =z}. Then
if 0= p =p, and p <=, there is exactly one equilibrium given by ¢, = 0.(z(p)),
where z(p) is the unique root of F(z)=p. If p,<p <, then there is no
equilibrium state with density p.

Let V(c)= X7, ¢[In(c,/Q,)—1]. Then V is a Lyapunov function for (1.1);
that is, it is nonincreasing along solutions. For 0 = p = p, <= the equilibrium c” is
the unique minimiser of V on the set X, ={ceX™: llcll = p}. Furthermore,
every minimising sequence ¢/ of V on X, converges to c” strongly in X. If
p,<p <o and ¢ is a minimising sequence of V on X, then ¢/ converges weak*
to ¢” in X but not strongly in X. (This variational structure occurs in other
applications; see [2].) The aim of this paper is to show that if c(¢) is a solution of
(1.1) with density p, then it is minimising for V on X as t—, so that in
particular if 0=p,=p,<x, then c(f)—>c” strongly in X while for po>p,,
c(f)*c” in X. The starting point for the analysis is the following result [3,
Theorem 5.5]:

THEOREM 1. Let Hypotheses 1-3 hold. Let c(t) be a solution of (1.1) on [0, =)
and let po=Yr_,rc,(0). Then c(t)c? as t—= for some p with 0=p=
min (pﬁ’ ps)

Thus to prove the desired result on asymptotic behaviour we have to show that
if po> p, then p = p,, while if py = p, then p = p, and the convergence is strong.

Suppose that p, < p,. By Theorem 1, ¢,(t)— z(p) as t— = for some p < p, with
F(z(p)) = p. Since z(p) < z(p,) = z,, there exist T >0 and z <z such that

a)<z, t=T. (2.1)

This global bound on ¢,(¢) is the key to proving the desired compactness results.
Using (2.1), we proved in [3] that if A,— 0 very rapidly, then E5_; A;'c,(0) <o
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implies that sug Ye1 A7 'c,(t) < . Compactness then followed from the estimate
=
x,(t) = >, rc,(t) = constant >, rA,. (2.2)

Since this method is only useful if the series on the right-hand side of (2.2) is
convergent, we work directly with the variable x,,(¢).

3. Results
The first result allows us to control A, 'x,(¢) for certain sequences (4,).

THEOREM 2. Assume Hypothesis 1 holds and that a, = O(r). Let 0< z <« and
suppose that a,z=b, for all r=ry=2. Let (A,) be a positive nonincreasing
sequence such that

A - lr+l == lur(lr—-l - A.,)G _]Z)‘(b,., (3 1)

for all r Zr,, where
u, = ﬁ [1 - za,/rb,]". (3.2)

Let coe X* and let ¢ be a solution of (1.1) on [0, ©), with c(0)=c, satisfying
¢,(t) <z for all t=0. Suppose, further, that c is the only solution of (1.1) with
initial data c,. Then

H() =max (sup_A;'x,(0), A5'p)
n=Zrp+1

is nonincreasing on [0, ®), where p = ¥7_, rc,.

Proof. Notice that if the solution ¢ with initial data c, is unique, then so is that
with initial data c(7) for any 7 = 0. Hence it suffices to prove that if H(0) < and
T >0, then given any &£ >0,

H()=H©0)+¢ forall te[0, T). (3.3)

Because of technical problems with the infinite dimensional system (1.1), we
first prove a modified form of (3.3) for a finite dimensional approximation to
(1.1). For m =3 define c¢§{™ by ¢ =c,, if 1=r=m, or ¢ =0if r >m, and let
¢™: [0, T]— X" be the unique solution of

M =7 _1(c™)=J(c"™), 2=r=m-1

m=1
ér==N(c™) = 3 I(c™), =T, (™), (3.4)

r=1

Since c{™—> ¢, strongly in X as m— , by the uniqueness hypothesis and the
proof of [3, Theorem 3.4], ¢ — ¢ in C([0, T]; X). In particular, there exists m,
such that ¢{™(t) <z for all re[0, T] and m Zm,. Fix m Zm, and set y,(f) =
Lrare™(t), g()= nglrlngl Ay,  H™(¢)=max (g(t), A;'p(c™)), where
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p(c™) = y,(f) = constant. We first prove that, given any & >0,
H™@)=H™0)+¢ forall te[0, T] (3.5)

Suppose (3.5) is false. Since H™ is continuous, there exists a least s € [0, T] such
that H™(s) = K, := H™(0) + &. Since H™(0) Z 4;,'p(c"™), we have that g(s) =
K.. Thus A5'yn(s) = K, for some minimal N with mZN =r,+ 1 and

;"f-\l’l—lyN—l(s) < Ka: ;L;’}I-lyN+1(S) = Ke: .).’N(S) =0. (36)
From the definition of yy and (3.4)

=2 J(c™) + NIy_y(c™) = J,.(c"™)

r=N

= > J,(c™) + Nly_,(c"™)

r=N

= 3 (a,¢™ = b,)c™ +anc{™cl + N(ay-1cfcfiy — byel™).
r=N+1

By using ¢{™ < z and a,z =b, for r Zr, we thus have that
yn=anzc$ + N(an_,12c§ — bucli?)

N-1 N
on [0, T]. Hence, using Nby Zayz and (3.6),
. K_Nb ay_1Z _
02 5(s) < SN[ (1, — 2 22— iy = )|
N-1 by
=0.

This contradiction proves (3.5). Since H"(0) = H(0), it follows that
A re™()=HO) + €

for all t€ [0, T], n=r,+ 1 and m = m,. Letting m—  and taking the supremum
over n =ry+ 1 gives the result. O

Let v, >0 for r Zr, and define

S={A=(A):AZAZ0forallr, A, — 4,1 Zv,(A,-,—4,) forall r =1y}

Lemma 3. S is closed under (i) addition, (ii) multiplication by a constant M =0
and (iii) taking infima.

Proof. (i) and (ii) are obvious. To prove (iii), suppose that 4, = inf A{*), and

that
A =)@ =, for all r, «, @7

A@ 2@ =y (ALY, — A, forall @, rZr. (3.8)
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From (3.7) we have A’ = 1,,,=0 and hence A, =4,,, =0.
Writing (3.8) in the form

1+ v)ADOZ ALY + v, A, for r=r,
we have
A+v)ADZ A+ VA, for r=r,
and hence
A+v)A 24+ vA_,, for r=n,

as required. O
LemMMA 4. Suppose that there exists some positive sequence (n,) € S satisfying
lim n, =0. Let (0,) be any nonnegative sequence with lim o, =0. Then there exists

r—sox

a strictly positive sequence A € S such that 4, Z o, for all r and lim 4, =0.

Proof. Let 6,Z0,, 6,>0, lim &, =0. Consider the set ¥ of sequences A1 €S

satisfying A, = &, for all r. The set & is nonempty since A, = K belongs to & for K
sufficiently large. Define A, =infA,. Then A e S by Lemma 2 and A, =6, for all r.

AeS
Suppose for contradiction that 4,40 as r— . Then there exists £ >0 such that
A,=¢ for all r. Let m be such that 3, =<¢/2 for all r=m and consider the
sequence u =¢/2+ Bn,. By Lemma 3, u® e S for all B=0. Clearly, if B is
sufficiently large we have u{® =5, for all »=0. But then 4, =u® <e¢ for r
sufficiently large, a contradiction. [J

TueoreM S. Let Hypotheses 1-4 hold. Suppose that co€ X and that c is the
only solution of (1.1) on [0, ®) with initial data c,. Let po= X;-, rc,(0). Then
(i) if 0= po=p,, c(t)— c? strongly in X as t— =~ and

lim V(c(t)) = V(c™),
(ii) if po> ps, c(t)=c as t— =, and

lim V(c(r)) = V(c*) + (po = p;) In 2.

Proof. We show that if c(f)-*~c” as t— = for some p <p,, then c(t)—c”
strongly, so that by density conservation p = p,. The assertions in the theorem
for po < p, and p, > p, then follow immediately from Theorem 1. If po = p,, then
we deduce that p = p, and the strong convergence follows from the fact that if a
sequence y’=y in X and ||y”||— ||y|| then y;—y in X (cf. [3, Lemma 3.3]).
The statements concerning lim V (c(f)) follow from the fact that Hypothesis 2

implies the sequential weak* continuity on X* of ¥(c) = V(c)—Inz X7, re,(cf.
[3, Proposition 4.5]).
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Without loss of generality we can suppose that ¢,(f) <z for some z <z and all
t=0. Let r, be such that a,z =b, for r =r,. Let 0,= ¥, rc,, so that 0,—0 as
n—«, For r2r, let v, = u,a,_,z/b, where y, is given by (3.2) and define

where
y,=1 for 0=r<r, and y,=a’;—1z(l—za,lrb,)“y,_1 for rZr,.
Now for r=r,,
. - O 21— Y2,

(r=1y,- T 0
and so
r’ 0,z
(ro—1) Qro—lzrn_l ’
Since Y-, Q,z] is convergent for z <z, <z, it follows easily that y € X and

hence n,— 0 as r— . By construction 7 €S. Let A be the sequence given in
Lemma 4. On applying Theorem 2, we deduce that

-
r]f,,=

z rc,(l‘) é xn max (1? A'r;lpl])r
for all n=1 and ¢=0. Hence {c(f)} is relatively compact in X and hence
c(t)— c”* strongly in X as t— = as required.

Remark. Theorem 5 strengthens [3, Theorem 5.6], where, in addition to
Hypotheses 1-3, it was assumed that

M=Zb,,,-az, b —az=0 (3.9)

for all r sufficiently large, where M is a constant, and that the decay hypothesis
Lr-1¢,(0)/Q,z; <= holds. We take this opportunity of pointing out, however,
that the proof of [3, Theorem 5.6] works only in the case p, <, since the relative
compactness of 0*(c) in X* requires the estimate ¢,(f)=k, for all r21, =0,
where Y, rk, <. In the case p, =~ the proof given in [3] works, replacing z,
by z <z, in both the hypotheses (3.9) and the proof.
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