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Lubrication Approximations for Surface Tension Driven Interfaces: Some 
Open Problems 

This paper discusses some interesting open problems concerning the equations of motion for a lubrication approxi- 
mation of fluid interfaces driven by surface tension. A number of different physical examples are considered. 

Free surface flow in which surface tension plays a role in the dynamics of an interface is an extremely complex 
phenomenon which can produce a myriad of different dynamics and patterns. Typically one must simultaneously 
solve equations of motion for the fluid coupled with a dynamically evolving fluid/vapor or fluid/fluid interface on 
which surface tension plays an important role. Examples range from a drop of liquid spreading on a surface to a jet 
of fluid being ejected from a nozzle. Such problems have important industrial and engineering applications ranging 
from de-icing of airplane wings to coating of microchips and the design of inkjet printers. 

Solving the full system of equations is often an extremely difficult task both for rigorous analysis and for nu- 
merical computation. However, in many instances, the particular geometry of the problem allows for a simplification 
of the dynamics via a “lubrication approximation”. The end result is a more tractable mathematical formulation of 
the free boundary (often as a local PDE for some thickness associated with the fluid). 

Here we discuss a number of different physical problems and some interesting mathematical questions associ- 
ated with the equations resulting from a lubrication-type approximation of the dynamics. In each problem we address 
at least one of the following three topics: singularity formation (describing some kind of topological transition), weak 
solution theory, and pattern formation. 

1. Droplet breakup 

Consider a jet of liquid falling from a nozzle. This system is exhibits singularities (e.g. when a droplet breaks off) 
which are often accompanied by complex pattern formation involving the interaction between multiple droplets, 
the recoiling of fluid necks, etc. The full system can be studied by coupling the 3D NAVIER-STOKES equations to 
the free surface condition. This is a difficult set of equations to  understand even in the case of axisymmetry. To 
analyze the specific problem of the droplet pinch off, EGGERS and DUPONT [19] derived an approximate equation 
for an axisymmetric jet of fluid forced by gravity along the axis of the jet. Denoting the outer surface radius 
by h and expanding the pressure and velocities as a series in the radius coordinate r ,  they approximated the full 
NAVIER-STOKES/surface tension equations by the following coupled system: 

Here x denotes the position along the axis of the jet and v is a leading order fluid velocity depending only on x. The 
constants y, p,  and 7 denote respectively the surface tension, density of the fluid, and viscosity of the fluid. EGGERS 
[20] showed that close to singularity higher order terms become arbitrarily small so that the above equations are 
an exact representation of the asymptotic behavior of the full system. He went on to  show that this system has a 
universal self similar solution describing the breaking of the the jet. In [21] he analyzed the drop formation after 
breakup. Further work by BRENNER et. al. [12, 131 showed EGGERS’ similarity solution describing breakup to 
be unstable to small perturbations. They showed that this instability ultimately results in a cascade of necks seen 
in droplet breakoff experiments [31]. A somewhat related phenomenon occurs in the breakup of a long thin fluid 
filament in a viscous background fluid [33]. In low viscosity ratio systems, the break up mechanism is ‘self-repeating’ 
in that as a neck forms it tries to  pinch in two points forming yet more necks. The outcome is a self-similar like 
pattern of repeating satellite drops. 

All of the numerical evidence to  date indicates that finite time singularities (describing a droplet break up) 
occur in the system (1). However, no proof of this fact exists. Another interesting question concerns the consistency 
of the approximation. A conjecture due to  CONSTANTIN states that before breakup solutions to  (1) retain bounded 

lsee [19] for conjecture on equations with full curvature term 
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first derivative in h. This is is a necessary condition to  insure that the approximation remains valid up to the pinch 
off time. Such behavior has also been observed in numerical simulations of the droplet break up. 

2. The Hele Shaw cell 

A less violent, but equal complex system is the behavior of a thin neck in a HELE SHAW cell. Consider a body of 
liquid trapped between two glass plates (referred to as a HELE SHAW cell). When the plates are very close together, 
the problem can be treated as a two dimensional fluid/free boundary problem. Inside the fluid the velocity satisfies 
DARCY’S law w = - V p  and is incompressible V .  v = 0. On the boundary of the fluid, surface tension controls the 
dynamics, p = - F K  where c is the surface tension, and K is the local curvature of the interface. The fluid is then 
dynamically evolved by its velocity (recovered from DARCY’S law). Near circular patches of fluid are know to relax 
back to a circle [15] however little analysis has been done on the problem when the patch is far from equilibrium. 

Despite the apparent simplicity of the problem, there are many unanswered questions. For example, can finite 
time singularities occur, in which a connected region of fluid separates into two disconnected regions? This question 
has not been solved analytically, although there is numerical evidence for such behavior [l]. In particular, when the 
Auid tries to break, near the ‘pinch off point’ it exhibits a rather 0at ‘neck like’ structure. This motivated analysis 
[14, 161 which a lubrication approximation reduced the nonlocal2-D HELE SHAW problem into a 1-D local PDE for 
the thickness of the neck, h(s, t ) :  

ht + (hhzzz)z = 0. (2) 

Here z denotes position along the axis of the neck and t is time. In particular [16] considered special forcing boundary 
conditions and showed numerical evidence for a locally asymmetric finite time singularity in which the solution could 
be described by scaling and matched asymptotics. In [8] a second symmetric singularity was shown and in the work 
[2] a new third type of singularity is described along with the dynamical interactions of the three types in an unforced 
thin neck geometry. Related work described similar dynamics under the influence of gravity is described in [23, 241. 

As in the droplet break up equations (1) solutions to (2) also seem to preserve the validity of the approximation 
up to the break up time. In particular, singularities are always observed to occur with bounded second derivative in 
h. To respect the approximation, we require the solution to have at least a bounded first derivative as as singularity 
forms. However, to date the best we can prove is a bounded C1I2 HOLDER norm [5]. 

3. Thin films, moving contact lines, and fourth order degenerate diffusion equations 

Another physics problem which can be described by a fourth order PDE similar to (2) is that of a thin film on a 
solid surface. The subtlety in thin film dynamics is the modeling of the contact line, the triple juncture where the 
liquid/gas interface meets the solid boundary. 

In the 1970’s several studies of this problem [18, 281 made the following key observations: Given a wavier- 
Stokes fluid with a no slip boundary condition on the liquid/solid interface, the movement of a contact line necessarily 
produces an infinite energy dissipation in the bulk of the fluid. One can remove this singularity by enforcing a ‘slip’ 
condition on the liquid/solid interface. Other researchers have suggested including mesoscopic forces such as long 
range VAN DER WAALS interactions to describe ways to  dissipate energy at the contact line. 

A popular model for thin films is the weakening of the no-slip boundary condition on the liquid/solid interface 
by replacing it with a slip condition, usually of the form v(z) = X(h)v,. Here z is the direction perpendicular to the 
surface. The slip coefficient, A, may in general depend on the local film height. It is simplest to  assume power law 
dependence of X on h, X - hp-2. A lubrication approximation, involves depth averaging the fluid velocity in the z 
direction. By approximating the curvature by Ah and assuming the pressure gradient is due to surface tension, one 
obtains for the highly viscous case, (see GREENSPAN [25]) a fourth order degenerate diffusion equation 

hi + V . ((h3 + ,Bhp)VAh) = 0 (3) 

as an evolution equation for a film height h. Here the no-slip boundary condition gives p = 0 while the slip boundary 
condition introduces the additional term, PhP, in the diffusion coefficient. Since (3) is degenerate as h + 0 it is 
unclear what boundary conditions are required at  the edge of the support. GREENSPAN proposed the need for two 
boundary conditions at the edge of the drop (contact line) due to the order of the equation. The first boundary 
condition is simply h(zo(t), t )  = 0 where zo is the ‘contact line’. The second is a ‘constitutive law’ which determines 
the motion of zo as a function of the local properties of the solution at  the edge, e.g. the local ‘contact angle’. 
Several authors have studied this equation with such boundary conditions via numerical simulations [22, 261 and 
asymptotics [17, 271. 



375 

In the past few years, mathematicians have become interested in these lubrication equations and in particular 
the nature of the solution at  the edge of its support. The simplest model equation assumes a power law in the 
diffusion coefficient 

ht + V (1hl”VAh) = 0 (4) 

One obvious technical difficulty in understanding fourth order degenerate diffusion equations lies in the fact that 
there is no inherent maximum principle associated with the spatial operator, as in the case of the well-known ‘porous 
media equation’, the second order analogue of (4). This can pose problems when a physical solution to (4) demands 
that h(x, t )  remain nonnegative. It also naturally leads to  two related mathematics problems: (a) the well-posedness 
of the initial value problem with nonnegative initial data and (b) the existence of finite time singularities in which 
an initially positive solution will extinguish at a point. These topics have the corresponding physical applications 
(a) a self-consistent model for the dynamics of thin films and (b) an understanding of the dynamics of thin film 
rupture or in the case of the HELE SHAW cell thin neck rupture. BERNIS and FRIEDMAN [5] considered (4) in 
one space dimension on a bounded domain and showed that the equation possesses a weak maximum principle for 
sufficiently large values of n (n  2 4). This fact is proved by showing continuity of the solution from an a priori H’ 
bound and a priori boundedness of an ‘entropy’ which takes the form of an integral of a power of h. They proved 
several existence results for nonnegative weak solutions. The two recent papers [3, 101 proved sharper results for 
the existence theory on bounded domains in one space dimension. In particular they showed that for 0 < n < 3 a 
weak solution exists which has precisely the same regularity as a special ‘source type solution’ [6] for the equation. 
Moreover, [lo] showed that for 3/8 < n < 3, the weak solution satisfies the equation in a ‘sense of distributions’ with 
either two or three spatial derivatives on the test function. Both papers showed that as t + 00 the support of this 
particular weak solution increases to  fill the entire domain. In contrast, for n 2 4, any weak solution obtained by an 
approximation scheme has nonincreasing support [3]. If is interesting to note that n = 3 corresponds precisely to the 
case of the paradoxical no-slip boundary condition. The analysis to date strongly suggests that n = 3 is a critical 
exponent for the PDE (4) in 1D. In a recent announcement, BERNIS [4] shows that for 0 < n < 2, the weak solutions 
constructed in [lo, 31 have support with finite speed of propagation. This provides useful existence theory for the 
Cauchy problem on the line with compactly supported initial data. Numerical results [ll] show that this solution 
tends to the source type solution from [6] as t increases. An important feature of these “strong” [4] solutions for the 
full equation ( 3 )  is that they model the phenomenon of complete wetting without imposing a ‘constitutive law’ at 
the contact line. We note however that such solutions have a ‘zero contact angle’ which could be thought of as an 
extra boundary condition. 

Regarding finite time pinch off, the only proofs to date are for special situations with forcing boundary 
conditions (see e.g. [3]). For the HELE SHAW thin neck, (n  = 1) the first papers to  exhibit numerical evidence 
of both finite and infinite time singularities for a ‘pressure forced’ neck were [14, 161. More recent numerical work 
has been done on this problem for the unforced neck [2] and for the for the gravity driven neck[23, 241. The paper 
[8] is the most comprehensive account of numerical observations of finite time singularities in 1D for equation (4) 
for general n. Here the authors show that such singularities typically exhibit second type scaling. Another work 
analyzing the case of symmetric singularities in (4) and related equations is [7]. This paper reinforces the observation 
that second type scaling predominates in these singularities. 

There are numerous open problems including (in 1D) a proof of singularity formation for an unforced system, 
well-posedness of the initial value problem with nonnegative data, and convergence onto the source type solution for 
the CAUCHY problem on the line, In 2D, very little is known about these equations. Some related problems include 
models with VAN DER WAALS attractions (see [9] and references therein) the interaction of surfactants [29, 32, 341 
and the thin film and HELE SHAW problems with inertia (resp. [30, 161). We expect to see a lot of exciting work on 
all of these problems over the course of the next decade. 
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AREGBA-DRIOLLET, D . ;  NATALINI, R. 

Convergence of Relaxation Schemes for Conservation Laws 

We study a class of relaxing numerical schemes for conservation laws. Following the approach recently proposed b y  S. 
Jin and 2. Xin, we use a semilinear local reluutzon approximation, with a s t i f  lower order term, and we construct 
some numerical first and second order accurate algorithms, which are uniformly bounded in the LD” and BV norms 
with respect to the relaxation parameter. The relaxation limit is also investigated 

1. Introduction 

In this contribution we shall present a new class of numerical schemes, which are based on the local relaxation 
approximation of conservation laws. Consider the equation 

atu + &f(.) = 0 , (1) 

for ( x ,  t )  E IR x ( 0 , ~ ) .  Here f is a given (say C’) smooth function. 

We want to approximate this equation by a sequence of semilinear hyperbolic systems with a stiff relaxation term 
of the following type 

atu + aZv = o , 
a tv  + adu = -: (v - f (u ) )  , ( E  > 0) 

when E -+ 0 and for some a > 0 to  be fixed later. This system is supplemented by the following initial data: 

4 5 ,  0) = uo(x) ,  v(x,O) = f(.o) 

This kind of approximation was recently proposed in [9] in the general setting of the quasilinear systems of, 
possibly multidimensional, hyperbolic conservation laws. It possedes some very interesting features: finite speed of 
propagation, great generality (in particular it is possible to avoid the use of Riemann problems), strong physical 
motivations. In fact it is possible to trace back the origin of this approximation on one side from the investigations 
concerning hyperbolic conservation laws with relaxing source [15], [lo], [3], [4]. In these papers the authors considered 
some relaxing models arising in applications and derived some stability conditions for convergence (see also the 
references therein). 

On the other hand this approximation is strongly connected with the study of fluid-dynamical limits [2] and in 
particular for the discrete Boltzmann equations [14]. In fact the main idea here is to replace the physically underlying 
non-equilibrium Boltzmann kinetic, with an artificial “minimalist” model, which recover in the limit the same 
equilibrium hydrodynamic configuration. 

The analytical study of the stability and convergence to equilibrium of the solutions of 2 has been done in [ll] (see 
also [12]). However, here we investigate some numerical questions arising by this approximation. Recall that, from 
a numerical point of view, hyperbolic conservation laws with stiff (relaxing) source were extensively studied in [7], 
(81, [13]. The main emphasis in these essentially computational investigations was on numerical schemes which can 
work in the unresolved domain, i.e.: when the relaxation parameter E is small with respect with the time and space 
mes h-lengt h. 

Here we take advantage on the monotonicity properties of system 2, [ll], [12], t o  prove some rigorous stability and 
convergence results. Let us write 2 in its Riemann (diagonal) coordinates: 

where 

- w + z  
G ( w , z )  = - - 2 f(-%), (4) 



378 

and (we, z') are given by 
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we = -vc - h u e  , 2' = 2)' - f i u '  . (5) 

If'(u'(x,t))l < fi 7 ( 6 )  

The main argument used in this paper is the following: under the subcharacteristic conditions [15], [lo]: 

the system 3 is a quasimonotone weakly coupled system (see [6 ] ) .  Recall that the quasimonotonicity is a necessary 
and sufficient condition for a flow generated by a weakly coupled (diagonal) NxN system of semilinear hyperbolic 
equations to preserve the partial ordering in IRN. So it is possible to use comparison arguments to establish uniform 
bounds. 

Here we present first and second order numerical schemes preserving this property. This is done by considering 
a fractional-step scheme, where the homogeneous (linear) part is treated by some monotone or even higher order 
scheme (as the Goodman-LeVeque one) and then the source term is solved exactly. 

In both cases we are able to prove the uniform stability with respect to E of the schemes in the Loo, L1, BV norms 
and the convergence for fixed E .  Then we can prove that, for a fixed time step, the approximated solutions converge, 
as E -+ 0, to the numerical approximations given by a TVD, L"-stable discretization of the limit conservation law 
1. 

More details, complete statements, proofs and numerical tests can be found in 111. 

2. The Scheme 

For simplicity in this section we shall drop the superscript E in our notations. Let us consider the Cauchy problem 
for the diagonal system 3 with initial data 

d ( x , O )  = wo(x), z t ( x ,  0) = zo(x) . (7) 

Set 2 = (w, z )  and 20 = (WO, 20) .  For any given At, Ax we fix X = and construct the numerical approximation 
ZA on a strip lR x [O,T] for 3-7, which is equal to 2; on each interval ]zj-3,xj+3[ x [tn,tn+l[, where zj-+ = 
xj - $ Ax , xj = j Ax and, setting NAt = [TI - 1, tn = n At 

System 3 is splitted into a linear hyperbolic part and an ordinary differential system. For any given 2, Zn+k is an 
approximate solution at  time tn+l of the system 

, R. E (0,. . . , N } .  

dtw' + &,w' = 0 , 
atzc - &azz€ = 0 ,  

with initial condition at time t = t,: 
2 ( tn ,x )  = ZZ(2) . 

The approximation Zn+k is then obtained by discretizing each equation by two alternative ways. The first is a 
consistent monotone scheme written in the conservative form: 

where $:++ = ( ~ p ( w Y - ~ + ~ ,  . . . ,w;+~) ,  - $ ( z ; - ~ + ~ ,  . . . , z?+~) ) ,  and 'p, .J, are Lipschitz continuous fluxes. Generally 
we take the same scheme for each equation so that 'p = $. Of course such a scheme is only first order accurate. 

We also study the case of a second order Goodman-Leveque scheme [5]. Using standard notation we denote: 

where the minmod function is defined by minmod(a, b)  = $[sgn(a) + sgn(b)] min(la1, lbl). 
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Then the scheme may be written as: 

Note that the linear system is diagonal, so that the Riemann problem for a piecewise linear function can be solved 
exactly . The right-end side is treated in both cases by solving exactly on [tn,  tn+l] the problem: 

with the initial data a t  t = t,: 
. h + l  - 

w( tn )  = Wjn+1’2, C(tn) = z j  . 

If we denote SF(O0, (ua, (0)) the solution at  time t of 12 with ( ~ ( O O ) ,  ((6,)) = (WO,  Q), 2,”” is given by: 

zn+l := S;n+l(tnr z;+q . 

It is possible to solve 12 exactly, which gives: 

3. Uniform Bounds 

For the above schemes we are able to establish, thanks to  our special monotonicity properties, the uniform bounds 
for the approximating solutions. Let us set 

and 

T h e o r e m 1. There existe a positive constant ao, which depends only on the initial data, such that ij a 2 ao, 
for all n E (0, .  . . , N } ,  it holds 

Moreover 

Now, by coupling standard arguments with the particular properties of our schemes, we are able t o  give the following 
stability result in L1. 

T h e o r e  m 2. Let Zi, Zi be two numerical approximations given b y  one of our schemes with respect to the 
initial data 20 and 2, respectively, with l l % ~ l l ~  I l1201im. Then we have 

4. Convergence Results 

The above estimates allow us to  prove the convergence of our numerical scheme. For this we reintroduce superscript 
E in the notations. 
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T h e o r e m  3. Let E > 0,  20 E L1(IR)2 n Lo3(IR)2 n BV(R)2, a > ao. For any T > 0,  X = constant 
and At --+ 0,  2:) converges to the unique solution Z(') of 3-7 in J ~ ~ ( O , T ; L ~ ( I R ) ~ ) ,  Z(') E Co([0,T],L1(IR)2) n 
Lw(O,T; J ~ ~ ( I R ) ~ )  and: 

SUP IIZ(WllL1 I llzollL1; 
t E ( O , T )  

Next we are interested in the behaviour of the above numerical schemes as the relaxation parameter E tends to zero. 
A good criteria to  appreciate the quality of the numerical solution in the undersolved domain is that the relaxed 
scheme obtained by letting E -t 0 should be a stable and consistent discretization of the limit conservation law 1, 

P r o p o s i t i o n  4. Let A t  > 0,  20 E ~ 5 l ( I F t ) ~  nBV(lR)2 nLW(RJ2, T > 0, a > U O .  

[91. 

Then the approxzmating solution Zi converges in LO"(0, T ;  L~,,(IR)2) to a limit ZA which satisfies: 
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CHEN, G.-Q. 

Relaxation Limit for Conservation Laws 

W e  are concerned with the limit behavior of hyperbolic systems of conservation laws with st ig relaxation terms to the 
local systems of conservation laws as the relaxation time tends to zero. The connections of this limit problem with 
many important challenging problems in related areas are discussed. Some recent developments in this direction are 
reviewed and analyzed. 

1. In t roduc t ion  

There are two basic theories to  describe the nonequilibrium phenomena in mechanics: kinetic theory from microscopic 
level and continuum theory from macroscopic level. Since the pioneering work of Hilbert [16] and Chapman-Enskog 
(cf. [ 5 ] ) ,  there have been many activities in studying the kinetic limits from the kinetic nonequilibrium processes to 
the continuum (equilibrium or nonequilibrium) processes with the aid of the moment closure techniques from kinetic 
theory and the kinetic formulation techniques from continuum theory (cf. [1,3,4,20,21,26,27,29,40,41]). 

we are concerned with the relaxation limit of hyperbolic systems of conservation laws with stiff relaxation terms 
to the local systems, which models dynamic limit from the continuum and kinetic nonequilibrium processes to the 
equilibrium processes, as the relaxation time tends to zero. Typical examples for the limit include gas flow near 
thermo-equilibrium, viscoelasticity with vanishing memory, kinetic theory with small Knudsen number, and phase 
transition with small transition time. An important case is that the relaxation depends only on the local values of 
the basic dependent variables and can be modeled by the following hyperbolic system in the form: 

(1) 
1 

&U + V, . F ( U )  + - R ( U )  = 0, z E RD, 
E 

where U = U ( 5 , t )  E R”’ represents the density vector of basic physical variables. The relaxation term is endowed 
with an n x N constant matrix Q with rank n < N such that QR(U) = 0. There are two basic types of relaxation 
terms: (I) the manifold of local equilibria is uniquely determined by n independent conserved quantities u = QU: 
U = E(u); (11) the dimension of the manifold of local equilibria equals the number, N ,  of equations in (1). The local 
equilibrium limit turns out to  be highly singular because of shock and initial layers and to  involve many challenging 
problems in nonlinear analysis and applied sciences. Roughly speaking, the relaxation time measures how far 
the nonequilibrium states are away from the corresponding equilibrium states; understanding its limit behavior is 
equivalent to understanding the stability of the equilibrium states. It connects nonlinear integral partial differential 
equations with nonlinear partial differential equations. This limit also involves the singular limit problem from 
nonlinear strictly hyperbolic systems to  mixed hyperbolic-elliptic ones, even purely elliptic ones in some cases (see 
[S]). The basic issue for such a limit problem is the stability theory. In this article we focus on Type (I) relaxation 
terms in Sections 2-4. We remark Type (11) and related topics in Section 5. 

2. Stability of Zero Relaxation Limit 

In general, the zero relaxation limit is not stable even for the linear case: the characteristic speeds of the local system 
must be interlaced with the characteristic speeds of the relaxing system to ensure the stability of the limit. The 
same condition is true (see [28]) for the 2 x 2 quasilinear case to  ensure that the local relaxation approximation is 
dissipative. This condition is referred to  as the subcharacteristic condition by Liu 1281. This can be understood by 
improving upon the local relaxation approximation with the aid of the idea of Chapman-Enskog expansion for the 
kinetic theory. For N x N system (l), the use of the same spirit of Chapman-Enskog expansion leads to the following 
first order correction to the local relaxation approximation, which is the analogue of the compressible Navier-Stokes 
approximation in the kinetic theory: 

dtu + v x  . Q F ( & ( U ) )  = E v x  [D(U)V ,U]  , (2) 

where D ( u )  is nonlinear 4-tensor in R N x N  @ RDXD, which is very complicated. It is not generally clear that this 
first-order correction will be dissipative. It can be shown that this will be the case whenever the linear constant 
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coefficient problem obtained by linearizing the original problem about any absolute equilibrium E ( G )  is stable as 
E --t 0. However, this is a cumbersome criterion to  check. 

In Chen-Levermore-Liu [S] we introduced a simple alternative criterion, namely, the existence of a strictly convex 
entropy @ with corresponding entropy flux 9: For the case R(U) = 0, (@, 9) is consistent with the classical entropy- 
entropy flux (see Lax [25] ) ;  in order to  consistent with the relaxation terms, the entropy @ is required to be locally 
dissipated and to characterize completely the local equilibria 8 = I ( u )  in terms of @ and Q. This is a refinement 
of the notion of entropy introduced by Boltzmann into his kinetic theory to describe kinetic relaxation to fluid 
dynamics. His key observation was that his entropy characterizes the local equilibria of the kinetic equation, the 
celebrated H theorem (cf. [4]). We adopt the notion of entropy that shares all of above properties in the level of 
nonlinear hyperbolic systems of balance laws. In Chen-Levermore-Liu [S], we establish the following stability theory: 
The existence of strictly convex entropy @ implies the followings: (a) The local equilibrium system is hyperbolic with 
a strictly convex entropy pair (r$(u), $(u)) = (@, Q ) l ~ = , q ~ ) ;  (b) The characteristic speeds of the local system are 
interlaced with the characteristic speeds of the original system (1); (c) The first-order correction is locally dissipative 
with nonnegative diffusion D(u).  For the 2 x 2 case, the pure dissipativity D(u) > 0 with the coupling condition 
(see [28]) is equivalent to  the strict stability condition on the equilibrium curve. This leads to  the converse of 
(a)-(c) as follows: Let (4 ,  qb) be a strictly convex entropy pair for the local equilibrium equation. Assume that the 
subcharacteristic condition holds. Then there exists a strictly convex entropy pair (@, Q )  for the 2 x 2 system (1) 
over an open set containing the local equilibrium curve, along which it takes (+(u),qb(u)). For the converse, the 
strict stability criterion and the coupling condition imply that the local equilibrium curve is a noncharacteristic 
curve for the entropy equation, which is a second-order hyperbolic equation for which we pose the Cauchy data in 
the form 9 = $(u), &,@ = 0 along the local equilibrium curve. The classical local existence theory ensures that there 
is a solution @ of this Cauchy problem over an open domain containing the local equilibrium curve. Since the strict 
stability condition is satisfied along the local equilibrium curve, then it will also be satisfied in some open domain 
containing the local equilibria curve by continuity. In the stability theory, the convexity of entropy @ is essential. 
The most physical systems with stiff relaxation term are endowed with a convex entropy. In the context, we refer 
to Levermore [26], where such systems are systematically derived via the moment closures from kinetic theory. 

3. Convergence of Relaxat ion Limit 

This limit is the compressible Euler type one and the solutions of the relaxation systems tend to those of the local 
relaxation approximation, which are inviscid conservation laws. This limit is highly singular because of shock and 
initial layers. The main difficulty is that the solutions of the full systems are only the measurable functions with 
certain boundedness. The most basic class of the systems is the 2 x 2 one. Consider uniformly bounded solutions 
Ug = (uE,  w e )  E L" of the 2 x 2 systems satisfying the entropy inequality in the sense of distributions. Assume 
that the strict stability condition holds and the subcharacteristic speed is monotone almost everywhere for the local 
variable u E R. The stability theory ensures the existence of such a strictly convex entropy. Then it is proved in 
[7,8] that U" strongly converging to  (u, v) and the limit functions (u(z, t ) ,v(z,  t ) )  are on the equilibrium curve for 
almost all (2, t ) ,  t > 0, where u(z,  t )  is the entropy solution of the Cauchy problem for scalar conservation law with 
the Cauchy data w*-limug(z) in L". We remark: (a) Notice that the initial data may even be far from equilibrium. 
The convergence result indicates that the limit functions (u, v )  indeed come into local equilibrium as soon as t > 0. 
This shows that the limit is highly singular. In fact, this limit consists of two processes simultaneously: one is the 
initial layer limit, and the other is the shock layer limit. (b) The compactness of the zero relaxation limit indicates 
that the sequence UE is compact no matter how oscillatory the initial data are. Note that the relaxation systems are 
allowed to be linearly degenerate; the initial oscillations can propagate along the linearly degenerate fields for the 
homogeneous systems (cf. [S]). This fact shows that the relaxation mechanism coupling with the nonlinearity of the 
equilibrium equations can kill the initial oscillations, just as the nonlinearity for the homogeneous system can kill the 
initial oscillations. (c) The above discussions are based on the L" a priori estimate. In many physical systems, the 
estimate can be achieved. Such examples include the psystem and models in viscoelasticity, chromatography, and 
combustion (see [7,8,37,41,33,39,22,31]), which have natural invariant regions. For some special models, even uniform 
BV bound of relaxation solutions (uE ,vE)  can be achieved [39], which ensures the convergence of zero relaxation 
limit via the Helly principle. 

4. Convergence of Weakly Nonlinear Relaxation Limit 

The weakly nonlinear relaxation limit is the incompressible Navier-Stokes type one just as the limit from the Boltz- 
mann equations to the incompressible Navier-Stokes equations [l]. The main observation is that the linearization 
of the local relaxation approximation about an equilibrium gives a simple advection dynamics with the equilibrium 
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characteristic speed. This can be understood in a formal fashion (see [8]). If one applies the same asymptotic 
scaling to  the first correction to  the local equilibrium approximation, one again arrives at the weakly nonlinear 
approximation. This shows that the latter is a distinguished limit of the former and makes clear why it inherits the 
good features of the former. Its advantage is that the solutions of the Burgers equation are smooth even for the case 
that the initial data are not smooth. Thus the solutions remain globally consistent with all the assumptions that 
were used to  derive the weakly nonlinear approximation. In Chen-Levermore-Liu IS] , this approximation is justified 
by using the stability theory and the energy estimate techniques. Linearized version of the limit is well understood 
which relates the “random walk” in Brownian motion (cf. [12,35,24]). 

5 .  Relaxat ion Limit for the Sys tems  wi th  T y p e  (11) Relaxation Terms 

When the dimension of local equilibrium manifold is equal to the number of equations of the relaxation systems, the 
situation is different and our stability theory established in [8] can not be directly applied. Such systems arise from 
many physical areas including elastoplasticity and combustion. In [9] we established a similar stability theory and 
applied this theory to  study the limit behavior of the zero relaxation limit for such systems. A notion of admissible 
weak solutions for the rate-independent systems as the limit functions of the zero relaxation limit is formulated. 
More details can be found in [9]. 

R e m a r k  1. For the systems violating the strict stability criterion, the equilibrium speed may equal one of 
the frozen speeds. It is shown in Chen-Liu [7] for a model in phase transitions that no oscillation arises when the 
dissipation is present and goes to zero more slowly than the relaxation. I t  would be interesting to further investigate 
relaxation systems arising from various physical areas to understand how the feature of the faalure of the strictly 
stability criterion affects the limiting behavior of zero relaxation and dissipation limits. 

R e m a r k 2. The relaxation systems vi th  more than one local equilibrium manifold in the level of reaction- 
diffusion equations have been studied for the typical models (See [13,14,38] and references cited therein). I t  would 
be interesting to investigate the zero relaxation limit behavior of such relaxation systems in the level of reaction- 
convection equations, which are modeled b y  the hyperbolic conservation laws with stiff relaxation terms. 

R e  m a r k  3. For the systems with stiff relaxation terns  such that the corresponding dynamic systems &U + 
tR(U) = 0 are of limit circles, the situation is much more complicated. Such systems in the level of reaction- 
diffusion equations have been studied for some models (see [23,32] and references cited therein). One of interesting 
connections of such a limit with physics is the characterization of the Ginzburg-Landau vortices. Such a limit problem 
for stationaq Ginzburg-Landau equations has been systematically studied in Bethuel-Brezis-He‘lein [2]. It  would be 
interesting to study the zero relaxation limit behavior for the hyperbolic systems with such sta8 relaxation t e r n .  

R e  m a r k 4. i t  is natural to use the relaxation methods to construct shock capturing schemes to calculate the 
numerical solutions to the local systems. Some efforts have been made in this direction with the aid of the stability 
theoy of local relaxation limit (See [17,18,19,33,42]). Such ideas closely relate to those of the kinetic schemes. 
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NATALINI, R. 

Uniform Convergence to Equilibrium for Conservation Laws with Relaxation 

We study the solutions to the Cauchy problem for 2x 2 semilinear and quasilinear hyperbolic systems with a singular 
relaxation term. A special comparison principle is established, b y  assuming the subcharacteristic condition, which 
yields uniform bounds and compactness properties of the sequence of the solutions. Therefore we can prove the 
convergence to equilibrium of these solutions as the singular perturbation parameter tends to zero. 

1. Introduction 

In this talk we present some new results concerning the relaxation behaviour of the following system of hyperbolic 
conservation laws with a singular perturbation source 

a,u + a,v = 0 , { a tw + acT(u) = -; (w - f(u)) ( E  > 0) 

for (2, t )  E R x (0, m). Here ~ 7 ,  f are some given smooth functions such that ~'(u) 2 v (v > O), 

The sequence of solutions is expected to converge, as the relaxation parameter E tends to zero, to some solution of 
the equilibrium (or reduced) equation 

a,u + a,f(u) = 0 , w = f(u). (2) 

This model was proposed, in the semilinear case g(u) = (YU, in [8] for numerical purposes. It supplies a new 
and powerful framework for the approximation of equilibrium conservation laws, which possesses some important 
properties: simplicity and generality, finite speed of propagation, regularity of the approximating solutions. It was 
shown in (81 , by providing some very interesting numerical tests, that, for computational purposes, general systems 
of higher dimensions can be treated in the same way as the scalar onedimensional equation. The main advantage 
of the linear hyperbolic structure of the relaxing systems lies in fact in the possibility to avoid the resolution of the 
Riemann problems in the approximation of conservation laws. 

The relaxation limit for 2 x 2  systems of conservation laws was first analyzed by Liu [12], who justified some non 
linear stability criteria for diffusion waves, expansion waves and traveling waves. The main stability criterium (or 
subcharacteristic condition) can be (formally) derived by using the Chapman-Enskog expansion and reads as follows: 

This condition was first recognized by Whitham [19], and largely justified as long as the solutions of the equilibrium 
equation 2 are smooth see for example [16], [18] and references therein. Unfortunately, in the general case, these 
solutions may become discontinuous in a finite time. The rigorous justification of the relaxation approximation to 
equilibrium solutions containing shock waves was started in [2] and [3], where the authors considered some special 
models, including the system 1, by using the methods of compensated compactness [17], [5]. They proved that 
uniformly bounded sequences of perturbed solutions converge strongly to some weak equilibrium solutions as the 
relaxation parameter tends to  zero, when the subcharacteristic condition 3 is verified, for initial data close to the 
equilibrium. Observe that, for system 1, the uniform boundedness of relaxing solutions was recovered only by 
truncating the function f out of a bounded set. On the contrary one of the main results of this paper is to show 
that uniform estimates are just a consequence of the stability condition 3. 

Here we shall present some rigorous results on this problem in the semilinear case. Nevertheless, let us observe that 
the uniform boundedness of the solutions, with respect to the relaxation parameter E ,  can be recovered by using 
similar arguments also in the quasilinear case. First we show that there exists a constant a0 > 0, only depending on 
the L" norm of the initial data  and on the flux function f ,  such that for any a 2 (YO the solutions of the relaxing 
problems are uniformly bounded (independently on c). This follows by using some comparison tools developed in [7]. 
In fact it is possible to show that the stability condition 3 is actually equivalent to the quasimonotonicity condition 
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(see below), which yields the monotone properties of the problem. Observe also that, for this problem, it is not 
possible to apply the standard theory of the invariant regions of [4], usually employed to establish LcO estimates. 

Next we can show that the same stability condition implies also the compactness properties of the approximating 
sequence: uniform estimates on the L1 modulus of continuity in space and equicontinuity in time with values in L1. 
This yields the strong convergence to the equilibrium. 

Finally we investigate the entropy properties of the equilibrium limit [9], [lo]. The checking of these conditions is 
found to  be quite delicate for the presence of the singular perturbation term on the right-hand side. I t  turns out that 
in general some slight supplementary assumptions on the flux function f are needed to establish entropy inequalities 
for the limit function. 

Let us note that our approach shares some ideas with the kinetic approximations and the related fluid dynamical 
limits. In particular we found some analogies with the artificial kinetic approximations to conservation laws given 
in [6] ,  [15] and [ l l ] .  

FinaIIy let us point out that related first and second order numerical schemes, which incorporate the monotonicity 
properties of the approximation 1, are studied in [l]. More details and proofs about the results presented here can 
be found in [14]. 

2. Main Results 

Let us restrict to the following Cauchy problem 

with the initial conditions 

U ' ( Z , O )  = ui(.) , v'(z,O) = v;(.). 

Assume 

(HI) f is a locally Lipschitz continuous function (for simplicity let us assume f(0) = f'(0) = 0); 

(Hz) the functions (u6,vi) verify v$ = f(u6), for all E > 0, and are uniformly bounded in Lc0(IR)2 by 

Moreover the sequence ( u ~ , v ~ )  converges in L~o,(lFt)2 to some limit (Eo, f(Eo)) E Lc0(R)2, as E + O+. 

It is obviously also possible to deal with initial data not verifying the assumption (Hz), with a suitable treatement 
of the initial boundary layer. 

Finally let us denote, for any N > 0, 

B ( N )  := 2N + F(2N)  , 
and 

First we give our main global existence and boundedness result for the Cauchy problem 4-5. A similar result, but 
using very different arguments, can be found in [13]. 

T h e o r e m  1. Assume (HI) and (Hz). For any No > 0 and E > 0 ,  zf 

6 > M P o )  1 
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then there exists a unique globally bounded solution (u', v') to 4-5 in C([O, m); L~oc(R)2) and we have 

IbU' f ~ ~ c l l L ~ ( I R x ( o , u J ) )  5 & W o )  . ( 7 )  

l f ' tu ' (x , t ) ) l  < & (8) 

Moreover there holds the subcharacteristic inequalitg 

for ail E > 0 and for  almost every (2, t )  E R x (0,m). 

The key point in the above result is the monotonicity properties of the system under the subcharacteristic condition 
8. Let us recall that, if R is a convex subset of RN, a function G : R 4 RN is quasimonotone (non decreasing) 
if each component gt of G is non decreasing in uj for i # j. The quasimonotonicity is a necessary and sufficient 
condition for a flow generated by a weakly coupled (diagonal) systems of semilinear hyperbolic equations to preserve 
the partial ordering in Rn (see [7] and references therein for more details in the general quasilinear weakly coupled 
case). In particular consider the general N x N system 

&U + A&U = G(U) . (9) 

Here U is a vector-valued function and A is a NxN diagonal matrix. Let U and U be two weak solutions in 
(2, t )  E R x (0 ,T)  of the Cauchy problem for the initial data Uo and Uo respectively and let G be quasimonotone. 
If U o  5 oo for almost every x E R, then U 5 0 for almost every (x, t )  E R x (0, T).Now the main step in the proof 
of the above result is the fact that the right-hand side in 4 (in the Riemann coordinates) is quasimonotone if and 
only if the subcharacteristic condition 8 is verified. 

Next let us state some stability results for the solutions of 4-5. 

T h e  o r em 2. Under the assumptions of Theorem 1, let fi > M(No)  and e > 0. Let (u', v') and (ii',?) be 
the solutions of 4-5 for the initial data (u6,vg) and (66,fi;) respectively. Then, for any interval (a,b) C R and for 
every t 2 0 we have 

Again the key point in the proof is the condition 8. Moreover, as a consequence of the above results, it is possible to 
obtain some compactness properties of the sequence {(u', v')}: uniform estimates on the LiOc modulus of continuity 
in space and equicontinuity in time with values in L:,,, see [14] for more details and proofs. 

Also it turns out that, as E -+ O+, the sequence {(u')} converges towards the entropy solution w = w(z, t ) ,  in the 
sense of Kruzkov [9], of the scalar problem 

atw + a,j(w) = o , (10) 

for (z, t )  E R x (0, co), with the initial condition 

w(z10) = web) , (11) 

for x E R. More precisely we have the following statement. 

T h e  o r e m 3. Assume (HI), (H2) and 6 and let (u', v') be the global sohtion to problem 4-5 given by Theorem 
1. Then there exists a weak solution w to 10-11 and a subsequence, still denoted (u',v'), such that 

as E -+ O+ . 

uL - w in C((0, co); LtOC(R)) , 

Assume moreover that one of the following hypothesis holds true: 
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2. f E C2 and there is M > 0 such tha t  if 1.1 2 M ,  then If”(u)) > 0. 

Then, for every No > 0 there exists a0 > 0, with fi > &!(NO), such that, for any a 2 a0 the weak solution w of 
10-12, given b y  the first part of the statement, is actually an entropy solution. 
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BALL, J.M.; JAMES, R.D. 

Local minimizers and phase transformations 

We discuss a metastability problem arising in martensitic phase transformations, for which it can be proved that 
hysteresis OCCUTS as a consequence of the geometric incompatability between the parent and nucleating phases. This 
result does not follow from the existing general theory of local minimisers in the calculus of variations. 

1. A metastability problem arising in martensi t ic  phase transformations 

We consider the following apparently simple problem of the calculus of variations. Let R C R" be a bounded 
domain, and let 

I ( Y )  = / f ( D Y ( X ) )  ds 
R 

for mappings y : Q -- R". Here D y ( x )  = (*(x)) denotes the gradient of y = (yl, ..., ym) at x = ( X I ,  ...,x,), 

and f : M m X n  --+ R is continuous, where M m x n  denotes the space of r e d  m x n matrices. We suppose that f 
has two unequal energy wells; that  is, there exist distinct matrices A,  B which are strict local minimizers of f with 

For 1 5 p 5 co we consider the Lebesgue space LP = LP(R; R") of mappings y : R + IRm with norm 1) . I IL , , ,  

3 X j  

f ( B )  < f ( 4 .  

and the usual Sobolev space of such mappings W'lP = W1~p(R;Rm)  with norm 11 . I l ~ i . , ~ .  

Question 
Is V ( X )  := A x  a local minimizer of I in X, where X = W'+' or LP? 

That is, does there exist E > 0 such that I(y) 2 I ( $ )  if IIy - yllx < E? Note that we impose no boundary conditions; 
in particular, if 

If X = W1+! then the answer to the question is clearly yes, since if IIy - j j l l W ~ . -  is sufficiently small D y ( z )  is 
uniformly close to A, hence f ( D y ( x ) )  2 f (A)  a.e. in R ,  from which I(y) 2 I(y) follows by integration. However, 
if X = WlJ' with 1 5 p < 03, or if X = LP with 1 5 p 5 0;) the answer is not immediately obvious, since however 
small IIy - jjllx is there can be a (small) subset of R where D y ( x )  is close to  B,  and in this subset f ( D y ( x ) )  < f (A) .  

The above problem arises in the mathematical modelling of the bi-axial loading experiments of Chu & James 
[l, 9, 101 on single CuAlNi crystals. In this case m = n = 3, y(s) denotes the deformed position of the material 
point x E R of the crystal in its reference configuration, and f = f x ,  where 

is a local minimizer so is jj + c for any constant vector c. 

h(F) = dF) - T ( 4 .  F. (1) 

In (1) cp denotes the free-energy function of the crystal (at the temperature at which the experiments were con- 
ducted, this being less than the critical temperature at which CuAlNi undergoes a cubic to  orthorhombic phase 
transformation) and T(X) is a 3 x 3 matrix depending on a real loading parameter A. Thus 

I ( Y )  = 1 [Cp(DY(X)) - T(A) * W X ) l  dX1 
R 

the second term representing the potential energy of the loading device. 
For appropriate loading paths fx has local minimizers A(A), B(A) which respectively lie very close to two 

different components SO(3)U1 and SO(3)Uz of the set of matrices SO(3)Ui minimizing cp (different components 
S0(3 )U,  representing different variants of the martensite). At a critical value A, there is an exchange of stability, 
so that 
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In the experiments it is, however, observed that the homogeneous deformation 

@A(.) = A ( X b  

remains stable in some interval A, 5 X 5 A, + 6, S > 0, suggesting that j j x  is a local minimizer in this interval. As 
X increases further the specimen transforms to the new variant having gradient B(A). This metastability implies 
that the transformation between variants occurs with hysteresis. For details of this and the mathematical model see 
Ball, Chu & James [3, 41. 

2. The general problem of local minimizers in the calculus of variations 

What can general theory tell us about the problem described in §l? Suppose we are given the more general integral 

JR  

where i2 C IR” is a bounded domain with boundary dR and where we assume for simplicity that f is smooth. We 
suppose that the admissible mappings y : R - Rm are subjected to the boundary condition 

Ylan, = 9, (2) 

where g is a given mapping and where dR1 c dR. No boundary condition is imposed on dR2 = 8R\dR1. We ask 
the 

Question 
What are necessary, and what are sufficient, conditions for a given (sufficiently smooth) j j  to be a local minimizer 
of I subject to  (2) in X ,  where X = W’,P or LP? 

Clearly, we want the sufficient conditions to be as close to the necessary ones as possible. If m > l , n  > 1 this is a 
completely open question. Even for m = n = 1 there remain unresolved issues, especially if j j  is not smooth (even 
p f W1@ is outside standard theory). 

To illustrate the difficulties, consider the case of X = W’J’ with 1 5 p < 00. Here four necessary conditions 
for t j  E C1 to be a local minimizer in W1jP are known. They are the weak form, of the Euler-Lagrange equation 

for all smooth cp with cp Ian,= 0, the positivity of the second variation 

dL 
&(g + tcp) I t = o 2  0 

for the same cp, and the conditions of quasiconvezcity at Dy(z) for z E R (see [13, 2, 71) and quesiconvezity at the 
boundary for points z E dR2 (see [7]). It is not known whether these conditions (suitably strengthened) are sufficient 
for 3 to be a local minimizer in WlJ’. 

If m = 1 or n = 1 the quasiconvexity conditions turn into convexity conditions and with suitable strengthenings 
the above four conditions become sufficient. In the case m 2 1, n = 1 this is the classical fundamental suficiency 
theorem of the calculus of variations, usually proved via the field theory of the calculus of variations (see, for example, 
[S]). There is also the ‘indirect sufficiency proof’ of Hestenes [ll], recently made ‘direct’ in Ball & James [5]. The 
conclusion of the fundamental sufficiency theorem is in fact the stronger one that 3 is a local minimizer in Lm. The 
case m = 1, n 2 1 is discussed by Morrey I141 for the case when dR1 = do; the case of general mixed boundary 
conditions perhaps has not been treated explicitly in the literature but would seem not to  pose essential difficulties. 

The lack of a satisfactory answer for the case m > 1, n > 1 means that we cannot hope to apply general theory 
to the problem posed in 81. Even if appropriate strengthening of the above four necessary conditions into a set of 
sufficient conditions were achieved, it might in practice not be of much use due to our lack of understanding of how 
to verify the quasiconvexity conditions, a difficulty reinforced by the counterexample of SverB [15]. 

3. Incompatibility-induced local minimizers 

We return to the question posed in $1. A necessary condition (which in fact follows from quasiconvexity of f at  A)  
for t j  = Az + c to be a local minimizer in W1~P for 1 5 p < m or in LP for 1 5 p 5 03 is that there does not exist 
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C with rank(A - C) = 1 and f(C) < f(A).  In particular, rank(A - B )  > 1. To see this, suppose A - C = a QD N 
for nonzero vectors a E R", N E IRn, with f(C) < f(A). Introduce a thin layer with normal N in which Dy = C 
and outside which Dy = A .  This reduces the energy and y can be made arbitrarily close to jj by choosing the layer 
thickness sufficiently small. 

So suppose A and B are incompatible, i.e. rank(A - B )  > 1. Then we have the following 

T h e o r e m  1. Let rank(A - B )  > 1, and let $2 satisfy the cone condition. Suppose we have a family of 
integrands f (r, F )  depending on a real parameter r, defined and continuous for 1 r (5 TO,  F E M m x n ,  and satisfying 

f (0, A )  = f(0, B )  = 0, 

f(O,C)>O if C # A o r B  

together with the growth condition 

for  constants p > 1, co > 0 and c1. For a fixed S > 0 suficiently small (S = ;/A - BI will do) let F = A(r)  minimize 
f ( ~ ,  F )  subject to IF - A1 5 6. Then there exast E > 0,o > 0 such that if I r 15 E , C  E Rm and 

IIY - A(r)a: - CIIL '  I D  

then 

The intuition behind the theorem is that  in order to reduce the energy and stay close to j j7(a:) = A(T)z + c in L' we 
need to nucleate a small amount of the new phase represented by matrices near B. But B is incompatible with A(r) 
and so there must be a transition layer where Dy takes values far away from A, B,  and the increase of energy in this 
layer will exceed the reduction of energy due to the introduction of the new phase. For a related but weaker result 
see Kohn & Sternberg [12]. The proof of the theorem uses results on Young measures of gradients and a covering 
lemma. Some condition on the regularity of aR  is essential. A more general version of the theorem, in which the 
matrices A ,  B are replaced by Young measure disjoint sets, in which f can take infinite values, and in which the 
competing deformations can possess microstructure, can be found in [6] .  In fact the last two of these more general 
hypotheses are important for making clear the connection with the experiments of Chu & James (see [4]). 
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MICHEL CHIPOT AND DAVID KINDERLEHRER 

Analysis and Computation in Non-convex Well Problems 

We study minimization problems associated with non-convex energy densities with multiple potential wells, and, in 
particular, we investigate the question the numerical analysis of the minimizing sequences. 

1. Introduction 

Let us denote by cp an energy density 

'p : M"X" --t IR+ 

(Mmxn denotes the space of m x n matrices, m=n= 2 or 3 in the applications). We assume, for instance to describe 
some natural states of an ordered material, that 

'p( Wl)  = Jo(W2) = . . . = 'p( Wk) = 0 (2) 

i.e. 'p has some wells. For 52 a polyedral domain of IR" with boundary I', A E MmX" let us consider 

(Q) V i = 1, .  . . , rn, v ( z )  = Az on r}. W y y Q )  = {v = ( v  1 , . . . ,P)* : vi E W'@ 

It is well known (see [ll]) that 
r 

where IR( denotes the Lebesgue measure of R, Qp the quasiconvex envelope of cp. 

If one is interested in computing Q'p numerically one can consider a regular triangulation Th of 0 with simplices of 
diameters less then h. If I< is a simplex of Th we denote by Pl(I()  the space of polynomials of degree 1 on K and 
set 

v h = { u  = (d,. . . : Q ---+ R"', continuous, dIK E P ~ ( K )  v K E Th,  v i = 1,. . . ,m},  

V , ~ = ( Z I E V *  I V = A +  on r} 
(vIK denotes the restriction of v to K ) .  Then the discrete analogue of (3) is given by 

inf/n'p(Vv(z)) dz = 1QIQh'p(A). (4) 
"2 

So, one way to compute Q'p(A) would be to compute the right hand side of (4) since it can be shown (see [2]) that 
for every A 

lim Q h d A )  = @ ( A ) .  

We will not pursue this question here (cf. also [12]). A more delicate issue is to get estimates of Qhp(A) - &(A) 2 0 
in terms of the mesh size h .  Except in the scalar case, i.e. when rn = 1 (see [2]) very little is known. In order to 
attack the problem one has to consider first the case 

h-0 

A E Co( Wi) 

where Co(Wi) denotes the convex hull of the Wi's. Somehow, in this case, the study of 

inf J p(Vv(z)) dx 
w;-(n) n 

is of independent interest (see for instance [l], [6] for physical motivations). 
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2. Energy estimate 

The best result avalaible up to now in the direction mentionned above is the following (see [5]) 

T h e o r e m  1. Assume that (l), (2) hold and that cp is a Bore1 function bounded on bounded subset of Mmxn. 
Moreover, assume that 

the wells W; are pairwise rank one compatible, (5) 

then there exists a constant C s m h  that 

inf J, cp(Vv(x)) dx 5 C . h i .  
V € V i  

For a proof we refer the interested reader to [5]. To give some insight on the role of the assumption (5), let us 
just recall that due to  the Hadamard compatibility condition one can build piecewise f i n e  functions having their 
gradients on the wells Wi on some domain relatively large with respect to the mesh size of our grid (see for instance 
the next section for a similar construction). 

In the case where one drops the rank one compatibility condition, there is no general estimate. To see the difficulties 
involved let us consider the so called four-well problem. 

If 

denotes a generic element of M 2 x 2 ,  let us consider in the xll,x22-plane the wells 

w 1 = ( 0  1 0  2)  ' w2=(0 2 0  -1) ' w 3 = ( 0  -1 -2) 0 I w 4 = ( 0  -2  0 l ) .  

This arangement of "wells" has been first introduced by L. Tartar for separately convex functions and then found 
independently by R. James and R. Kohn. One sees immediately that they are rank-one incompatible i.e. 

R k ( W ;  - Wj) > 1 V i  # j .  

Let us denote by cp : M 2 x 2  lR+ a continuous function vanishing at these wells and such that 

cp(W) > 0 v w # wa. 
For fl c IR2 a bounded polygonal domain with boundary I?. Consider the problem 

First if one computes the above infimum one sees that it is 0 and it is not achieved. So, we can turn to  the study of 
the uniformly bounded minimizing sequences. We can show that they all share the following properties: 

-they all converge toward 0 uniformly in $2, 

4 -they all define the same Young measure = 6w, . 

The first point could be expressed by saying that the limit deformation in (7) is 0, the second that the microstructure 
associated with (7) is unique (see [S]). If now we consider the approximated problem 

inf J, cp(Vv(x)) dx 
"," 

we see that in order to  obtain estimates in term of h we need to construct a sequence V h  such that V h  + 0, V V h  uses 
at  the limit each of the wells with the same probability. This is not an easy task. Even a computer is reluctant to 



seek numerically the appropriate minimizing sequence (cf. [7]) and it is a challenging question to determine what 
kind of information it needs in order to find its way and not get stuck at  some local minima. To conclude this note 
we would like to  mimic this four-well problem by a simpler one having some of its features and present a simple way 
to build minimizing sequences. 

3. Constructing minimizing sequences 

Let us assume that R is a bounded polygonal domain of R2. Then let us show that 

which is in this case (6). Our functional 
cp('tl,€2) = (12 + ((22 - q2 

has two wells on M Z x 1  
WI = -w, = (0, I)? 

First, note that there is no loss of generality in assuming h < 1. Let i ih  be the function periodic of period 2h" in 
the y direction and defined by 

y for 0 5 y 5 h" 

-y+2ha for ha 5 y 5 2h" 
G h ( z , y )  = 

One has clearly 

Jn(ih): f ( ( c h ) ;  - 1)2 dcdy = 0. 

However, u h  $ V,h since the boundary conditions are not matched and also they are some t r i a n p s  where iih 
to be affine. In order to correct this, one introduces 

ils 

(9) u' - - u h  A dist(., r) 
where A denotes the minimum of two numbers, and did(., I?) the distance to  the boundary I' of R. Finally one sets 

U h  = the interpolate of el, (10) 

i.e. the unique function of V,h that agrees with iii at the nodes of the triangulation. It is easy to check that 

0 5 Uh, <;, f i h  5 ha. 

Moreover, 
V U h  = W1 or WZ 

(see (8)-(10)) except in a neighbourhood Nl of r where Uh could be equal to dist(., I?) and in a neighbourhood N Z  
of thickness 2h around the lines y = k.h", k E Z where interpolation takes place. If Irl denotes the measure of r ,  
i.e. its lengh, and I I the area of domains in IR2 one has by (9) 

IN11 L Clrlh". 

Moreover, 

where N is the number of horizontal lines y = k.hQ cutting the domain R. If D denotes the diameter of R one has 

IN21 5 2Nh 

( N  - 1)h" 5 D 

so that for h < 1, 

for some constant C so, for maybe an other constant C ,  

N 5 Ch-" 

i N z l 5  Ch'-". 
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Since the triangulation Th has been assumed to  be regular the gradient of Uh remains uniformly bounded as well as 
the one of ~i and o h .  so, for some constant c one has 

Now, Q A 1 - CY is minimum when cr = 1/2 which gives (6). 

Thus, in this case we have been able to construct a minimizing sequence that converges uniformly toward 0 and 
uses each of the wells W1, Wz with the same probability. Constructions of this type are the key point in order to 
understand more complex microstructures for instance in material science. Further advances in this direction is one 
of our goal for the future. 
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DESIMONE, A. 

Characterization of the macroscopic response of magnetostrictive materials 
via microstructural analysis 

This paper discusses recent progress on the prediction of magnetization and magnetostriction curves for magnetoelas- 
tic solids. Our approach hinges on the characterizataon of energetically optimal microscopic domain patterns based 
on the use of Young measures and H-measures. 

1. Introduct ion 

Magnetostrictive materials are solids which undergo reversible deformations when subjected to  the action of an 
applied magnetic field. The recent discovery of Terfenol-D, an alloy of terbium, iron, and dysprosium that exhibits 
magnetostrictive strains of the order of lov3 at room temperature [2] and has considerable potential as an actuator 
material [8], has fostered a renewal of interest in the subject of magnetoelasticity, from the point of view of both 
experiment and theory. 

The use of a microscope reveals that a specimen of magnetostrictive material is typically subdivided into fine regions 
in each of which the material is approximately uniformly magnetized and deformed (magneto-elastic domains). The 
application of an external field, which favors magnetization directions aligned with it, causes a rearrangement of 
the domain patterns, and macroscopic deformations result from the cooperative evolution of microscopic domains. 
The macroscopic response of magnetostrictive materials to applied magnetic fields and loads bears a deep imprint 
of these microscopic processes: a change of slope in a magnetostriction curve (Le., a plot of, say, the elongation 
of a magnetostrictive rod vs. the strength of the applied field) corresponds to the transition from one to another 
microstructure evolution mode. Since larger slopes imply that larger strains are achieved with the same field strength 
increment, predicting the location of the “knees” of the curves, and how they are affected by applied mechanical loads 
is of great interest for applications. Thus, appraising the behavior of fine domain patterns under given environmental 
conditions is a fundamental step in the modelling of magnetoelasticity. 

2. Formulation of the problem 

Within the framework of continuum theories, the most widely accepted mathematical model of the behavior of 
magnetostrictive solids is variational, and is known as Micromagnetics [l]. We restrict our attention to a simplified 
version of the theory (see [2], [6], and [3]) and we are intersted in minimizing a free-energy functional, whose 
summands enforce the following competing features of the experimentally observed behavior: 

1. the magnetization tends to be aligned with preferred crystallographic directions (easy axes); 

2. the magnetization tends to be aligned with the applied magnetic field h; 

3. configurations such that the energy stored in the induced magnetic field h, = -V(A-’(div(mXn))) (i.e., the 
magnetic self-field generated by the magnetized body) are preferred; 

4. stress-free configurations are preferred. 

Precisely, we are interested in minimizing over the space L2(R, S 2 )  x $(V + VT)(W’,2(fl,lR3)) the following energy 
functional 

Here, the unknown functions m (the magnetization: a unit vector field) and E (the linear strain, namely, the 
symmetric part of the gradient of the displacement vector field u E W’~2(!2,1R3): E(z) = !j(V + V T ) ( u ( x ) ) ,  with 
values on symmetric 3 x 3 matrices) describe the state of magnetization and distortion of the material at  each 
point of the “body” 0,  assumed of unit volume without loss of generality. We also assume h to be constant and, 
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for brevity, we restrict our attention to the case of no applied mechanical loads. Finally, the (symmetric, positive 
definite) fourth order elasticity tensor C and the functions cp and Eo contain the constitutive information peculiar 
to a given material. Both of these even, continuous functions are defined on the unit sphere S2. The former is 
non-negative, and its zeroes identify the easy axes; the latter takes values in the space of symmetric 3 x 3 matrices, 
and Eo(m) represents the stress-free deformation corresponding to the magnetization state m. In order to simplify 
the exposition of our results, we will also set C = PII, with P a positive constant, and D[ the identity. 

Following a suggestion of Tartar [lo], we minimize over E first, with m fixed. We are thus led to minimizing over 
L2(sZ, S2) the functional 
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where, for given m, Em denotes the unique minimizer of the last summand in (l), obtained as the solution of the 
associated Euler-Lagrange equation divE = dzvEo(m). (Note that the last summand in (1) is convex in E, and that 
Em(z) = Eo(m(z)) only if the matrix valued field Eo(m) satisfies the conditions of kinematic compatibility of linear 
elasticity). In particular, we are interested in characterizing the energetics of minimizing sequences of I [ .  This is 
expedient in either proving existence of minimizers using the direct methods of the Calculus of Variations or, when 
the infimum of 1; is not attained, to  guide the search for well-posed (relaxed) formulations of the given variational 
problem. 

Since an arbitrary sequence of magnetizations is bounded in L2,  from every sequence with bounded energy we can 
extract weakly converging subsequences, and we can pose the question of computing the corresponding limiting 
energy. We observe that, for a given sequence {mk}, the limit of the first summand in (2) can be thought of as 
the value on the function p of a continuous linear functional over Co(sZ, S2). Indeed, the given sequence generates 
a one-parameter family of probability measures (a Young measure) v,, z E R,  and the desired limit is obtained by 
testing v, against the function cp (see [7]). In view of their definition, Young measures can capture only some of the 
asymptotic features of the sequence {mk}, namely, the limiting distribution of the values taken by the sequence in a 
neighborhood of each point of a. In particular, since the weak limit of {mk} is the center of mass of v,, the limit of 
weakly continuous functionals of the magnetization, such as the second summand in (2), are trivially computed with 
the aid of Young measures. However, more information is needed to compute the limit of the last two summands 
in (2), since these contain the solutions h, and Em to systems of PDE's in which the given sequence appears on 
the right hand side. In this case, in fact, it is to be expected that the geometric arrangement of domain patterns 
should play a role while, as shown in the next section, this information is not recorded by Young measures. For 
each of the two terms at hand, a further measure, introduced in [9] with the name of H-measure, suffices. Focussing, 
e.g., on the energy stored in the induced magnetic field, we again have that the given sequence {mk} (or, more 
precisely, the sequence minus its weak limit) generates a measure. The desired limit is computed by testing the 
measure against the symbol of the pseudo-differential operator defining h, in terms of m (we recall that the symbol 
uL of the pseudo-differential operator L is defined by the identity (Lm)^(() = a~(t)m((), where the hat denotes 
Fourier transform, and that for L = VA-'div, C L ( < )  = f$$, see [ll]). Similarly, to compute the limit of the fourth 
summand in (2), the H-measure of {Eo(mk)} (minus its weak limit) can be exploited. 

Summarizing, for a sequence {mk} with finite energy, the calculation of the limit of Il(mk) amounts to computing 
three measures: the Young measure of {mk}, an H-measure associated with {mk}, and an H-measure associated with 
{Eo(mk)}. The problem of characterizing minimizing sequences and their asymptotic properties is then reduced 
to an abstract minimization problem over triples of measures. In principle, this approach would enable us to 
select energetically optimal domain patterns, and to  compute the average quantities needed for the prediction of 
macroscopic response curves, by using the minimal amount of information on the underlying microscopic picture. 
In practice, however, an outstanding problem needs to be solved in order to make this program feasible. Indeed, the 
set of all admissible triples of measures generated by the same sequence of magnetizations is unknown. In spite of 
the lack of a complete characterization of the set of compatible Young measures and H-measures, some encouraging 
partial results are available, demonstrating the possibility of predicting magnetization and magnetostriction curves 
with the methods described in this paper. In the next section we briefly discuss a simple example, with the aim of 
illustrating the abstract notions introduced above in a concrete setting. 

3. Simple laminates 

We restict our attention to a special class of sequences of magnetizations, that we call simple laminates, which are 
constructed as follows. Let f be the l-periodic function obtained as the periodic extension to  the whole real line of 
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a function taking the value one in the interval (0,O) and the value zero in the interval ( 8 , l ) .  For a given unit vector 
n, let x:(x) = x n f ( y )  and consider the sequence of magnetizations defined by 

mk=aX$+b( l -x t ) ,  ICEIN,  (3) 

where a and b are given unit vectors. For eack value of k, (3) represents a piecewise constant magnetization field, 
with values a and b taken on layers with interface normal n, with volume fractions 8 and 1 - 8, and width tending 
to zero as k tends to 00. 

The simplicity of the geometry of these layered domain patterns enables us to give a detailed physical interpretation of 
the quantities introduced in the previous section. First, we observe that the weak limit of (3) is m, = @a+( l-B)b, its 
Young measure is independent of x, and it is given by the convex combination of two Dirac masses v = 86,+ (1-8)6b. 
Moreover, since both mk and Eo(mk) depend on z only through x:, the associated H-measures are proportional to 
the H-measure of xf - 8, which captures the only microgeometric feature of the domain patterns of interest through 
the layering direction n. These observations should explain the following result, whose proof will be found in [5] :  

where A = Eo(a), B = Eo(b), d = (21 - n €3 n)(B - A)n, with I the identity, and finally 

where don  stands for i(d@n+n@d). As an interesting corollary of (4) we recover the following classical result. For 
d # 0, the layered domain pattern (3) can give rise to zero stored elastic energy, i.e., to a stress-free configuration, 
if and only if the Hadamard compatibility condition B - A = c 0 n holds for some vector c. 

As a first application of (4), we compute a trivial solution of the minimization problem for (2), which is valid for 
an arbitrary magnetoelastic body under no applied magnetic field (h = 0). We notice that I{ is non negative, and 
we construct a simple laminate {mk} such that l,f(mk) --t 0 (hence {mk} is a minimizing sequence for (2)) in the 
following fashion. Let a be a zero of cp, and set b = -a and 6 = $, so that m, = 0. Moreover, choose the layering 
direction n so that (b - a) . n = 0, and observe finally that B - A = Eo(-a) - Eo(a) = 0 since Eo is even. 

As a further application of (4) we extend to the magnetoelastic setting a result of [7], which establishes that for a 
uniaxial material (i.e., a material such that cp(m) = 0 + m = fe, with e a given unit vector), the infimum of lop 
is not attained. (Indeed in this case every minimizing sequences of I ,  generates the Young measure !$& + @-e, 

failing to converge strongly to a function in L2(R, S2), hence showing that energy minimization drives the system 
to fine domain patterns: this is experimentally observed for uniaxial materials under no applied magnetic field). To 
this extent, we simply observe that, for If(m) to vanish for some magnetization field m, it is necessary that all of 
its non-negative summands vanish. In particular, it is simultaneously required that m take only the values f e  and 
satisfy div(mxn) = 0, which is impossible [7]. 

Finally, we consider the case of a spherical specimen of uniaxial material under an arbitrary (constant) magnetic 
field. The solutions for the minimization problem for 1: (i.e., the functional obtained from (2) by setting p = 0) 
are computed in [3], and they consist of simple laminates for small field strengths, and of uniform states for strong 
enough applied fields. Obviously, uniform states give rise to kinematically compatible stress-free deformations, hence 
they provide also solutions for the case ,f3 # 0. The same is true, however, for the configurations consisting of simple 
laminates, as a consequence of the symmetry properties of the constitutive functions cp and Eo. Defining 

a 

P = {Q E O(3) : cp(Qm) = cp(m) and Eo(Qm) = QEo(m)QT for every m E S2} ( 5 )  

as the group of the material symmetries for the material at hand, we observe that for a uniaxial material with easy 
axis e, P is the group generated by -I and the proper rotations about e .  The simple laminates which minimize 1: 
are such that b = -k, with R a rotation of T about e, and a in the plane P generated by h and e .  Moreover, 
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they consist of layers with interface normal n = e l ,  where e l  is a unit vector in P orthogonal to e. Thus, a simple 
calculation based on (5) shows that 

(b - a) . n = (Ra + a) . n = 0 ,  

B - A = RART - A = a e @ e l  = c a n ,  

(6) 

and 

(7) 

with rr a scalar, hold simultaneously. We conclude that, for minimizing sequences, the energy contribution due to the 
H-measures vanishes (i.e., the energy of the “minimizers” is independent of the microgeometry), and that energeti- 
cally optimal domain patterns correspond to stress-free states. These results are enough to  compute magnetization 
and magnetostriction curves, as discussed in [4]. 

4. Discussion 

The examples discussed in the previous section suggest a natural question: is it always true that, for minimizing 
sequences,  the energy contribution due to the H-measures vanishes? 

Interestingly, the answer is positive (with no restrictions on the geometry of the specimen, or on the type of material, 
or on the applied field) in the case ,6 = 0 (see, e.g., 131). Even for p # 0, the same result holds true for a surpisingly 
large class of materials, a t  least for spherical specimens. The relevance of results of this nature is in that they allow 
to explicitely compute the relaxation of the given energy functional (i.e., in more physical terms, the effective energy 
of the system governing its macroscopic response), and to identify which are the relevant parameters (e.g., values 
and local volume fractions of the magnetization field, microgeometric parameters such as the normals to domain 
interfaces) needed to characterize energetically optimal configurations without resolving them in their finest details. 
In contrast with models based on the introduction of internal variables, within the approach discussed in this paper 
these effective energies, and the variables on which they depend, arise as properties of the solutions of a definite 
mathematical problem. 

The answer to the question posed above is however negative in general (in fact, even for simple laminates, the 
constraints posed on the microgeometry in order to satisfy simultaneously the two conditions (6) and (7) may be 
incompatible, see [ 5 ] ) ,  and no relaxation result seems yet available in this case. 
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JAMES, R.; KINDERLEHRER, D .  

Magnetoelast ic Interact ions 

To understand the role played b y  the complex microstructural arrangements in a giant magnetostrictive material, 
we developed a micromagnetic theory where equilibria are described b y  the oscillatory statistics of approximating 
or minimizing sequences of a variational principle. Predictions based on the theory may be used to seek optimal 
microstructures and to offer specific recommendation for improvement of actuator and sensor materials. 

1. In t roduc t ion  

Current interest in magnetostrictive materials owes to  the discovery of high magnetostriction TbFez by A. E. Clark 
in 1971 and the subsequent discovery by him that the pseudobinary alloy of Tb,Dyl-,Fez, x = 0.3, had both high 
magnetostriction and low anisotropy [4,5]. This material, called Terfenol-D, has a relative elongation of up to 2000 
parts per million and is called a giant magnetostrictive material. Terfenol-D condenses with a dendritic structure 
consisting of growth twins remaining fixed relative to the material under deformation and separating what appear to 
be domains of simpler lamellar structures. Understanding the nature of the magnetoelastic response requires identi- 
fying this microstructure and elucidating its role. The presence of several stable variants suggests that the material 
has a free energy with a multiple potential well structure, and thus is highly non convex. The spatially oscillatory 
fine structure indicates a competition between the free energy and other effects, leading to a certain frustration in 
the material. A classical description of configurations may not be available even in unloaded equilibrium. 

In the constitutive theory [9], the location of the potential wells has a prominent role while surface energies, 
magnetic domain wall energies, and similar effects axe neglected. This large body approximation is particularly 
appropriate owing to the highly mobile character of the lamellar structure, [6]. jFrom the viewpoint of analysis, 
information about equilibrium configurations arises from oscillatory statistics of approximating or minimizing se- 
quences of a variational principle, namely, the Young measures. 

.4n interesting feature revealed by the analysis is that two kinds of laminated microstructures may occur. In 
the first, coherence across the growth twin interface is achieved only in the fine phase limit, they are fine phase 
coherent, and thus in the material the laminates are separated by a transition layer, which, of course gives some 
energetic contribution. The second kind of laminate is exactly coherent and has no transition layer. With exchange 
energy present, it is reasonable to  think that exactly coherent laminates are preferred. 

For a review of the status of the simulation efforts, we refer to [12]. 

2. The energy of a magnetostrictive configuration 

The stored energy density W(F,m) for the "single crystal", a portion of the material that derives from a single 
lattice, depends on the deformation gradient F E iM,3 x 3 matrices and magnetization m E S2 and is subject to 
the conditions of frame indifference and material symmetry 

W ( Q F P , m Q * )  = W ( F , m ) , Q  E SO(3) and P E P .  

For us, 'P is the proper cubic group (of order 24.) In Terfenol-D, the onset of ferromagnetism is associated with a 
stretch of the high temperature cubic unit cell along a main diagonal parallel to the magnetization. Thus W achieves 
its minimum on the eight pairs (Vi, *mi), 

ui = (72 - 71)mi 8 mi, i = 1,2,3,4,  and 

1 1 1 
ml = - ( l , l , l ) , m ~ = - ( l , - l , - ~ ) , ~ ~ ~ ~ ( ~ ~ , ~ , ~ ~ ) , ~  fi fi fi 

and the potential wells C = U{(QU~,3zm,QT) : Q E SO(3)) they determine. Here we have relied on [3], [S]. 
The typical rod configuration consists of parallel growth twins. To describe these, we assume the rod is a 

composite for which we must introduce an inhomogeneous energy W ( F ,  m, x ) .  For example, we may view a lower 
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lamellar structure as arising from a 180” rotation R, about the ml axis of an upper lamellar structure. Assuming 
coordinates to have been arranged so that the two regimes are separated by x . ml = 0, we have that 
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Note that R, is not a symmetry operation although holding invariant the wells about (U1, f m l ) .  
The total energy of the configuration y = y(x), m = m(y(x))) occupying reference domain R is given, in mixed 

where the potential v of the magnetic field satisfies 

1 
detVy 

div,(-V,v + - m) = 0 in JR3 and Iml = 1 in y(R). 

We have a criterion to characterize minimum energy: 

inf E(y ,m)  = (min W)lRl. 

This minimum is not achieved, however, but offers a goal for Young measure minima, for example, with v = 
( ~ , ( A , p ) ) , ~ n  denoting the measure, supp v, C C and the average magnetization 

3. Equilibrium microstructures and the mechanism of magnetostriction 

The problem of determining the equilibrium microstructures is divided into two parts, finding the structure within 
the lamella and assembling this information to find the structure of the growth twinss. Given two wells with 
transformation strains and magnetizations (Ui, mi) and (Uj ,  mj) ,  there are two solutions (R*, a*, n*) of 

R*Uj = Ui(1 + U* 8 n*),Z,j = 1, . .A,  i # j ,  

corresponding to ”twins” and ”reciprocal twins”. The resulting twin planes are (100) and (110) planes, in agree- 
ment with DIC experiments [l]. There are corresponding magnetic substructures in each lamella with average 
magnetization 0. A typical Young measure is of the form 

1 1 

O I X ~ l , x . m 1 > 0  

and has average deformation and magnetization 

It is possible that X depends on x E R. Analogously, we find a Young measure u’ and average deformation 
and magnetization 

F’ = (1 - X’)PU,! + X’PR’U,! = PU,!(l + X’a’ 18 n’), f i  = 0 in x . ml < 0, P E SO(3) ,  

determined by the Ro-rotated well structure (U i ,mi ) ,  Uk = RoU&,,mi = m& in x - ml < 0. 
The composite structure is found by solving for P E SO(3) in F’ in 

F ’ - F = b @ m 1 ,  b E R 3 .  (*) 

Note that ml is a fixed direction. There are 144 possible combinations (Zj,k’l’). Applying conditions of 
kinematic compatibility, we find that only 12 combinations can be realized and they are the ones of the form 
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(zj,z’ j ’), either twins or reciprocal twins, and X = X’ on 5 ‘ml = 0. All of these have been observed, [1],[7]. The 
fine phase coherence condition determined by (*) implies that there is a transition layer across 2 . ml = 0 and a 
minimizing sequence (yk, mk) satisfies 

L ~ ( ~ y k , r n k , z ) c i z  = IRlrninW+o(-) .  1 
k 

The condition for exact coherence is that a .  ml = 0, where a is either of the two (referential) twinning shears 
of the four gradient structure, [ll]. This means that 

PU,’ = U, = bl 8 ml, and PR’U; - RUj = bz 18 ml (**I 
which is stronger than (*). This is satisfied for the combinations (23,2’3‘), (34,3‘4’), and (24,2’4‘), (twins only). For 
exact coherence, no transition layer is necessary and a minimizing sequence (y‘“, mk) may be chosen so that 

The mechanism of giant magnetostriction may now be explained by analogy with twinning in martensitic 
materials. When a magnetic field H is applied parallel to the (-211) direction, the magnetization vectors in the 
lamella rotate towards H .  The system decreases its energy by choosing the mechanical variant most agreeable to 
the magnetization. Thus the applied field induces an exchange of stability among elastic domains creating a much 
larger elongation than would be available by mere stretching of the material lattice. 

4. Optimal microstructures 

The issue which now arises is whether or not all the possible dendritic lamellar systems have the same magnetostric- 
tive properties. We may calculate the minimum and maximum macroscopic lengths in the’longitudinal [ 2111 rod 
direction. The maximum is achieved by the (12,1’2’), (23,2’3’), and (24,2‘4’) systems but the minimum only by 
the (12,1’2‘) system, which is fine phase coherent. This suggests that a compressive stress will provide a preference 
for the (12,1’2’) system. In addition, fine phase coherent structures prefer extremely planar interfaces, [lo]. As 
mentioned in the introduction, exactly coherent configurations are likely chosen by the unloaded material in equi- 
librium, however, by attempting to  grow the sample with as planar as possible growth twin boundary and applying 
a compressive stress along the [ 2111 axis, the special properties of the (12,1’2’) variant structure can be exploited. 
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MITCHELL LUSKIN 

Numerical analysis of a microstructure for a rotationally invariant, double 
well energy 

The laminated microsfructure observed in martensiiic crystals can be modeled b y  energy minimizing sequences of 
deformafions for a rotationally invariant (or frame-indiflerent), double well energy densify [l, 2, lo]. The deforma- 
tion gradients of energy minimizing sequences oscillafe between energy wells across layers (with width converging to  
zero) so f h a t  the eflective energy densify becomes f h e  relazed energy density [2, 121. We presenf error estimafes for 
f h e  minimization of the energy Sn q5(Vu(x)) dz where the energy density 4(A)  is a rotalionally invariant, double well 
energy density b y  a general class of approximation methods for the deformation in L 2 ,  fhe weak convergence of the 
deformation gradient, the convergence of fhe microstructure (or Young measure) of the deformafion gradient, and 
the convergence of nonlinear integrals of the deformation gradient 

1. The Laminated Microstructure 

We denote the reference domain for the crystal by the polygonal domain s1 C IR3, and we consider deformations 
v : f-2 - LR3 and corresponding deformation gradients V u ( x )  : St -+ IR3x3 where IR3x3 denotes the space of 3 x 3 
matrices. To model the microstructure in a martensitic crystal, we consider an energy density q5 : -+ IR that 
is a continuous, nonnegative function which attains its minimum value only on the rotationally invariant set 

U f S 0 ( 3 ) F t  u SO(3)F-  

for energy minimizing deformation gradients F+ E IR3x3 and F -  E IR3x3, where SO(3) denotes the space of proper 
rotations. Since F+ and F -  represent symmetry-related states [l, 21, we assume that they satisfy the condition 

det Ft = det F -  > 0 

and the Hadamard condition that there exist a,  n E IR3 with a ,  n # 0 such that 

Ft = F - + a @ n  (1) 

where a @ n E IR3x3 is the tensor product of a and n defined by ( a  8 n)ij = a,nj. The Hadamard condition (1) 
allows the existence of a continuous deformation with planar interfaces with normal n separating layers in which the 
deformation gradient alternates between F+ or F -  . 

We shall assume that 4 grows quadratically away from the energy wells, so for v > 0 we have that 

$ ( A )  2 ~ ( I A  - T ( A ) I ~ ~  VA E 1 ~ 3 x 3 ,  

4 ( A )  = 0 if and only if A E U ,  

where ?r : IR3x3 + U is a Bore1 measureable projection onto the energy wells defined by 

[ ( A  - . (A)([ = min (IA - BI( 
B €24 

with matrix norm for A E I R ~ ~ ~  

The projection T exists since U is compact, although the projection is not uniquely defined a t  A E IR3x3 where the 
minimum above is attained at more than one B E U. 

We can construct a simple laminate by the continuous deformation 

wa(.) = F - x  + [l='n x (I) ds] a 

for 6 > 0 where x ( s )  : IR -+ IR is a characteristic function with period 1 such that for 0 < A+ < 1 

x ( s )  = 1 for 0 5 s 5 A t  and x ( s )  = 0 for A+ < s < 1. 
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Now 
x . n  

Vwg(x) = F -  + x (7) a @ n,  x E R ,  

so 

V w a ( x )  E U or equivalently 4(Vwa(x)) = 0 for x E R. 

We have for F = X+F+ + A- F -  where A- = 1 - A+ that  

I w ~ ( x )  - F x ~  5 Cd, V X  E R.  

So, boundary conditions that are compatible for an energy minimizing simple laminate are given by [2, 131 

V x  E BR. v ( x )  = [A+F+ + A - F - ]  x = F x  

We present results for the approximation of the problem 

inf { E ( v )  : ‘u E W’@(R; IR3) n C‘(S2; IR3)} 

where the bulk energy of the crystal is defined by 

€(?I) = 

and where the subspace of continuous functions, CF(R; IR3), is defined by 

CF(R; IR3) = { v ( x )  E C(S2; IR3) : v ( x )  = F x  for x E an} . 

(3 )  

It has been proven by Ball and James [2] that the microstructure (or Young measure) for minimizing sequences for 
the problem (2) with energy density (3) is unique. 

The problem (2) with energy density (3) is the most basic and widely used test problem for the computation 
of microstructure [7, 91. We have given an analysis for the approximation of this problem in [13], and the results are 
summarized in the following section. A two-dimensional, rotationally invariant, double well model with bulk energy 

(4) 

for 1 < q < 00 was analyzed in [5, 111. However, the term I . ( . )  - Fxlq in the integrand of (4) is not part of the 
physical elastic energy density, but has been added as a “penalty term” for mathematical convenience to force the 
convergence of v ( x )  - F x  in Lq(R; IR’) for energy minimizing sequences of deformations. The results proved in [13] 
and described here do not utilize a term Iv(z) - Fz19 in the energy density, but rather show that the convergence 
of the microstructure depends only on minimizing the elastic energy (3 ) .  

Our analysis is based on the theory for the numerical analysis of microstructure that we developed and applied 
to  one-dimensional problems in [6,8]. We have also used this theory to analyze the three-dimensional microstructure 
in micromagnetics [14]. Extensions to  some multi-dimensional problems with point wells (so the energy density is 
not rotationally invariant) have been given in [3, 41. 

2. The Approximation of Microstructure 

Our first theorem demonstrates that the directional derivatives orthogonal to n (called “twin planes” in the physical 
theory) of sequences of energy minimizing deformations converge strongly. Thus, the oscillations in the deformation 
gradient are essentially one-dimensional. We give the proofs of this result and of the following results in [13]. 

Theorem 1 .  For all  ’u E W’*”(R; IR3) f l  CF(R; IR3) and all  w E IR3 such that w . n = 0 ,  we have 

The next theorem follows from Theorem 1 and the PoincarC inequality. An important consequence of Theorem 
2 is that it is not necessary to  include the “penalty term” I . ( . )  - Fz(’ in the energy density to  be able to conclude 
that u ( x )  - F x  in L’(i-2; IR3) for energy minimizing sequences. 
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Theorem 2 .  For all v E WI'@(R; IR3) n CF(R; IR3) we have the e s f i m a t e  

Iv(z) - FzI2 dz 5 C E ( U ) ' / ~ .  

The following theorem shows that deformation gradients of energy minimizing sequences converge weakly to 
F. 

Theorem 3 .  For any open set w C R with  smooth boundary aw,  we have that 

f o r  all v E W'nm(R; IR3) n CF(R; IR3) such that E(v)  5 1. 

The next theorem shows that the deformation gradients of energy minimizing sequences converge to the set 
{Ft, F - }  . We utilize the operators R : IR3x3 -+ SO(3) and II : IR3x3 + { F + ,  F-} which are uniquely defined by 
the relation 

*(A)  = R(A)~(A), V A  E 1 ~ 3 x 3 .  

Theorem 4 .  For all v E W'*w(R; IR3) n CF(R; IR3) such fhal  & ( v )  5 1 we have 

JIVv(z) - n(V~(z) )11~ d t  5 CZ(v)'12 

To study the approximation of microstructure, we define for p > 0 and v E W'n"(R; IR3) n CF(R; IR3) the 
sets 

w* P = wf(v)  = { z  E w : n(Vu(z)) = F A  and IlII(Vv(z)) - Vv(z)ll < p }  

We can then use the above theorems to prove the following estimate which describes the convergence of the mi- 
crostructure (or Young measure) of the deformation gradients of energy-minimizing sequences. 

Theorem 5. W e  hove for  all  u E W'lm(R; 1R3) n CF(Q; IR3) such ihat Z(v) 1 : 

meas(wf ( v ) )  

meas(w)  
- A *  5 C&(V)"8 

We next show that nonlinear integrals of the deformation gradient can be estimated in terms of the bulk 
energy. 

Theorem 6. For any measurable function f : R x IR3x3 .-i IR, we have the bound: 

3. Estimates for Finite Element Approximations 

The results in 2 can be applied to any approximation method which gives a deformation with small energy. We let 

MC c CF(Q : IR3) n WliW(R; IR3), for 0 < h < ho, 

be a family of finite element spaces defined on quasi-regular meshes with maximal diameter h.  For a class of families 
of finite element methods which includes all of the classical finite element methods we have that [5, 131 

Each of the preceding theorems implies a corresponding lemma for finite element approximations Uh E M r  which 
satisfy the bound (5). We give here the corresponding lemmas for Theorems 1, 2, 5, and 6. 
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Lemma 1. 

Lemma 2. 

Lemma 3. 

Lemma 4. 

For Uh E M f  which minimizes the energy &(v) in M f  and all w E IR3 such that w n = 0 

If the deformation uh(x) minimizes the energy & ( v )  in M f ,  then 

For any deformation uh(x) which minimizes the energy & ( v )  in M f ,  we have that 

If uh(x) minimizes the energy &(v) in M f ,  then for any measurable function f : !2 x IR3x3 - IR l/n f(2, Vuh(2)) - [A+f(x, F+) + A-f(z, F - ) ]  dz 
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COLLI, P. 

Error estimates for nonlinear Stefan problems obtained as asymptotic limits 
of a Penrose-Fife model 

In  this note I review some results achieved from a collaboration with Jiirgen Sprekels and concerning the asymptotic 
behaviour of initial-boundary value problems for the Penrose-Fife phase-field model as the coeficients of the difleer- 
ential terms for the order parameter tend to zero. I n  the limit procedure one gets either standard or relaxed Stefan 
problems, still with heat flux proportional to the gradient of the inverse absolute ternpera.ture. After focusing on the 
problems relaxed in time and recalling the convergence results, we add a small new contribution b y  proving an error 
estimate. 

1. In t roduc t ion  

In a recent issue [9] Penrose and Fife proposed a model for diffusive phase transitions with non-conserved order 
parameter which, contrary to previous phase field models [lo], has the advantage to be thermodynamically consistent. 
Moreover, their approach allows to describe non-isothermal phase changes (see also [l]) and to take the heat flux as 
a function of the gradient of the inverse absolute temperature (what it is quite usual in thermodynamics) instead of 
the gradient of temperature (think of the Fourier law). 

The Cauchy problem for corresponding sets of equations and boundary conditions has been studied by several 
authors (see [4-8,11-121 and references therein) under different conditions. In particular, here we are interested to 
the following system 

(1) 
a 
a t  
-(cOiJ + X(x)) + kA = g in Q := R x (O,T), 

6 X t  - EAX + P(x) 3 a'(x) - - 
a 1  k- - = y  - - -  , & = o  in c : = ~ ~ ( o , T ) ,  
an ( d )  (.S'p i) an (3) 

for the absolute temperature 6 : Q -+ R and the phase variable x : Q -+ [0,1] (for instance, volume density of one 
of the phases), where R C IR3 denotes a bounded domain with smooth boundary r, T > 0 is some final time, co 
and k represent positive physical constants as well as the small quantities 6 and E (intended to approach 0 in the 
asymptotic analysis of [2,3,11]). The known right hand side g : Q -+ JR. gives account of the heat supply in the energy 
balance equation (l), while y : C -+ IR and 2py : C + IR are positive data involved in the first boundary condition of 
(3) ,  the outer heat flux being thus proportional to the difference of inverse absolute temperatures between exterior 
and interior of the body. Finally, the functions X and u are smooth, with the further assumption for X to  be convex, 
and /3 denotes the maximal monotone graph 

( - c o , O ]  if x=O 

{ [ O , + c o )  if r = 1 
P(x) = (0) if O < x < l  , 

subdifferential of the indicator function of the interval [O, 1). 
By supplying (1-3) with the initial conditions 

1 J ( . , O ) = d 0 6 ~ ,  x ( . , 0 ) = x o s E  in (4) 

and admitting linear expressions for u and A, the paper [3] deals with the behaviour of the resulting problem first as 
E \ 0 and 6 is fixed, then as 6 \ 0 and E is fixed, and finally as both E and 6 (without any order relation between 
the two parameters) go t o  zero. Clearly, in each of the three cases the initial values 6 0 b a  and XO& are supposed to 
converge, in a suitable sense, to the respective initial values for the limit problems, the requirements on these last 
data being stronger for the relaxed problems (where one of 6, E remains positive) than for the pure Stefan problem 
(where 6 = E = 0). 

More precisely, the asymptotic investigation of [3] is based on the following outline. Letting 9 ,  y, 6r be 
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sufficiently smooth, for any 6 > 0, E > 0 the initial-boundary value problem (1-4) possesses one and only one 
variational solution (this statement comes as a consequence of the work developed in [S-81). The next step of the 
procedure is the derivation of global estimates independent of 6 and E .  Such a priori bounds are those enabling us 
to pass to the limit in (1-4), by compactness and monotonicity arguments. Hence, we find that all the weak star 
limits of subsequences of solutions must solve (in a weak sense) the corresponding limit Stefan problem. By showing 
the uniqueness property for the limit problems, we can so conclude for the convergence of the whole sequences of 
solutions. 

In this paper we concentrate on the case in which 6 > 0 is fixed and E goes to 0, allowing nonlinearities for rs 
and A, and exploit additional regularity properties of the solutions inferred within the analysis of [2]. Other remarks 
on this class of asymptotic processes have been pointed out by Shirohzu, Sato, and Kenmochi in Ill]. However, 
we follow the approach of [2] and in the next section we collect the convergence and the existence and uniqueness 
results stated there. The concluding section is devoted to estimate the difference between the Penrose-Fife and 
Stefan solutions with respect to E .  

2. Convergences 

Keeping 6 constant, for any E E (0,1] we deal with the problem (1-4), where henceforth the initial data 906,, XO& 
are simply and properly denoted by 6oE, xoE, and look at  its asymptotic behaviour as E \ 0. For our convenience, 
we make use of the auxiliary variable u = 1/6, representing the inverse temperature. Setting also uy := l/&, note 
that the variational equality 

can be easily obtained from multiplication of (1) by the test function w and formal integration by parts with the 
help of (3). Actually, ( 5 )  gives a weak formulation of the equation (1) coupled with the boundary condition in (3). 

It is worth now providing precise hypotheses. We require that A, D E C2([0,1]), X is convex, g and its time 
derivative (in the sense of distributions) gt both lie in Lw(Q) ,  as well as 7 ,  l / y ,  6r, ur and ~ t , ( 6 r ) ~  all are in 
L w ( C ) .  Concerning the sequences (60,) and {xoe} ,  we assume that 60, E H1(R)nLw(R), XO, E H2(R), &XO, = 0 
a.e. in I?, 

0 < a 5 60, 5 b and 0 5 xoE 5 1 a.e. in R,  (6) 
Il~o€IIHl(n) + IlXo€IIHl(n) I c, 11.90, - dOllL2(Q) + l lxoe  - xoIILz(n) < - CE'i2 (7) 

for any E E (0,1], where a, b, C stand for uniform constants and 60, xo are functions in W ( R )  representing the 
initial values for the limit problem. Let us remark that, if one starts from prescribing 80, xo E H1(R) obeying (6 ) ,  it 
is not difficult to construct sequences (60,) and {xo,} in the same conditions as above. For instance, we can choose 
80, = $0 and let xoS be the solution of the elliptic problem 

s, X O E W  +is, vxoc vv = J,xow v ?J E v 
(further details can be found in [2]). However, neglecting (7) for the moment, the remaining assumptions en- 
able us to conclude that (see [S-81) for any E € (0, I] there exists one and only one triple (19~) u,, x,), with 
6, E H1(O, T ;  L2(R)) rl L"(0, T ;  H1(R)) rl LW(Q), uE E H'(0, T ;  L2(fl)) rl L2(0, T ;  H2(R)) n Lm(Q), and xE E 
H1(O,T;H1(R)) n Lw(0,T;H2(R)), satisfying the equality ( 5 )  (obviously in the place of (8, x, u)), u, = 1/8, a.e. 
in Q, %xE = 0 a.e. in C, d 

8( - ,0 )= .9oE,  x(.,O)=xo, a.e. in R, (9) 

that is, the pair (d,, xE) yields the unique solution to the initial-boundary value problem (1-3), (9). 

estimates for 6,, uE,  x E ,  while the latter is related to the limit procedure for the corresponding sequences. 

P r o p o s i t i o n  1. A constant C1 can be determined in order that for any  E E (0,1] there holds 

Using also the first bound in (7), the following two statements are proved in [2]. The former contains the basic 
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P r o p o s i t i o n  2. There exist 6 E W1@(O,T; (H1(n))') n L"(0 ,T ;L2(R) ) ,  u E H1(0 ,T ;L2(R) )  n 
Lm(O,T; H'(R)) n L"(Q), and x E W1@(O,T; L2(R)) n L"(0,T; H1(n)) n Lm(Q) such that 

29, -+ 29 strongly in Co([O,T]; (H1(R))'), u, ---t u and X, 4 x  
strongly in c O ( [ O , T ] ;  L ~ ( Q ) )  n L ~ ( o , T ;  H ~ / ~ ( Q ) )  as E \ o 

and the triple (29,u,x) uniquely solves the relaxed Stefan problem specified b y  (5), u = 1/19 a.e. in Q ,  

6xt + P(x) 3 a'(x) - X'(x)u a.e. in Q, (12) 

29(. ,0)=60, x(.,O)=xo a.e. in R. (13) 

We point out that uniqueness can be deduced by arguing as in the subsequent analysis of the differences 19, - 19, 
uE - u, and xE - x. 

3. Error estimate 

Let d,, u,, X, and 29, u, x be the above defined solutions and let 0, := 6, - 6, U, := u, - u, X ,  := X, - x. We also 
set XoE := xoE - xo and Eo, := co(80, - 60) + X(XO,) - X(XO), observing that qI90, + X(x0,) and cot90 + X(x0) play 
as initial internal energies. Then we can establish and show the main result of this note. 

T h e  o r e m 3. There is a constant Cz such that 

1Io6 lIcO([o,~];(Hl(n))') + IlucllL2(Q) + IIX&llcO([O,T];Lz(n)) < - c2 E l l 2  v E E (0,1]. (14) 

Proof. Integrate ( 5 )  from 0 to t E [O,T] and subtract it from the corresponding equality for 6,, uE, x,. With 
the help of (9), (13), and of the Lipschitz continuity of X we deduce that 

where C3 = co/C;. Noting that 

because of (7), by applying the elementary Young inequality in the right hand side of (15) it is straightforward to 
find a constant C4 such that 

Next, consider the two inclusions (8) and (12), take the difference, and multiply by X,.  The monotonicity of the 
graph and the smoothness of a entail 

a.e. in Q. As X is convex and u, > 0, it turns out that 
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a.e. in Q. Therefore, on account of (17), from (18) we can recover the inequality 

S d  2 E 2  2 (73 2 
- - Il&(.,t)llLz(n) I T  l lAXE(*,t)l lLZ(n) + 4 I I~€(* l%(n) 2 at 

+ (1 + I I~ " I l Lm(0 , l )  + II~'lI;"(o,l) G') IlXd ' ,t)lI;z(n) for a.e. t E (0 ,T) .  

Remark that E~ IIAxE1l$(Q) 5 C?E because of (10). Hence, adding (19) to  (17), integrating 
to t, and making use of (7) we obtain 

(19) 

by parts with respect 

with C5 = C4 + 1 + 
l / y  2 c for some constant c > 0. Indeed, this procedure leads to the  estimate 

+ \ ~ A ' ~ \ ~ m ( o , l ~  (7,'. Now it suffices to apply the Gronwall lemma and recall that  

(where CS depends only on c3, k, c, 6, l l ~ t / ~ l l L ~ ( x ~ ,  Cs, Cq, C, C1, and T )  and  (14) is then a consequence of (21) 
and (16), via comparison of the terms in (15). 
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COLLI, P.; SPREKELS, J .  

Remarks on the existence for the one-dimensional Fr6mond model of shape 
memory alloys 

In this paper we outline a rigorous proof of the existence of solutions to one-dimensional initial-boundary value 
problems for the general and complete version of the Fre‘mond thermo-mechanical model applying to shape memory 
alloys. 

1. In t roduc t ion  

This note is concerned with the following system of partial differential equations 

holding in Q = ( 0 , l )  x (0, T ) ,  where T > 0 is some final time, z and t denote space and time variables, respectively, 
and at = d / d t ,  8, = d/ax. Such a system comes out from the derivation of a macroscopic model proposed by 
Frkmond [10,11] to describe the thermo-mechanical phase transitions in shape memory materials. The equation (1) 
reflects the universal balance law of energy, 6 standing for the absolute temperature, while (2) yields the equilibrium 
equation for the longitudinal displacement u. The relationship (3) governes the evolution of the phase proportions 
X I ,  x 2  (related to the volumetric fractions of austenite and martensites phases) and it complies with the second 
principle of thermodynamics. As the Frkmond model assumes a non differentiable free energy (weighted sum of 
smooth free energies associated with the individual phases and of the mixture free energy t91~), in (3) we find the 
maximal monotone graph ~ I K ,  representing exactly the subdifferential of the indicator function IK of the plane 
triangle 

K: := { ( X l , X 2 )  E IR2 : 1x21 I x1 5 1 )  

(convex set containing the admissible phase proportions), that is, I ~ ( x l  , x2) = 0 if (XI , XZ) E K, = +cc otherwise. A 
more detailed presentation of (1-3), extending to the multidimensional case as well, is provided in [6,7] to which we 
refer for the physical meaning of the positive constants CO, h, L ,  v, w ,  k, 1, and P. Let us just point out here that 
the data F, G are proportional to  the distributed heat source and body force, respectively, and that the function cy 
(giving account of the thermal expansion) is non negative, non increasing, and vanishing above a critical temperature 
(the so-called Curie point) 6, > 6*. 

Initial and boundary value problems have been investigated for various simplified versions of the field equations, 
in one or three dimensions of space (see [2,13,9], addressed to  the one-dimensional case, and [6,1,12,3,7,4,5] quoted 
in chronological order), obtaining existence and, in some framework, also uniqueness and continuous dependence. 
Simplifications regard the removal of (part of) the nonlinearities from the energy balance equation (1) (actually, 
in the right hand side of (1) there are three highly nonlinear terms, namely (6a’(6) - ~ ( S ) ) U , & X ~ ,  6a’(8)x:!dtuZ, 
6a”(t9)~2u,6~, including the time derivative of phase variable or strain or temperature) and the quasi-stationary 
form (in which the inertial term utt is neglected) for the momentum balance equation (2). On the other hand, some 
effort has been done to  treat the situation where v = 0, thus avoiding the regularizing fourth-order term in (2) 
(the use of a second gradient theory, to account for mechanical actions exerted on surfaces, is rather disputed by 
physicists). In addition, a possible line of future intriguing research could be the study of (1-3) with the coefficient 
k reduced to  0, so that no dissipation or phase relaxation enters into the dynamics of phase transition (compare 
with the standard multiphase Stefan problem). 

However, concerning the general set of equations, in the paper [S] we have proved that, under weak and 
reasonable assumptions on the data, any sufficiently smooth solution has the property the absolute temperature 
component 6 attains non negative values almost everywhere. This positivity result, independent of the particular 
form of the momentum balance equation, plays a crucial role in the argumentation of the present paper, to show 
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the existence of solutions to  (1-3) satisfying the following boundary and initial conditions 

ZAMM * Z. angew. Math. Mech. 76 (1996) s2 

for t E (0 ,T)  and x E (0 ,  l ) ,  where ho, hl are positive heat exchange coefficients, the functions fo, fi give the outside 
temperature distributions, and 8O, uo, too, xy, x; denote the initial data. 

In fact, our contribution is devoted to sketch the proof of the next statement. For the sake of brevity, in the 
notation of Sobolev spaces like L2(0, 1 )  or H1(O, 1)  we omit the indication of the interval (0 , l ) .  Besides, let ( .  , . )  
represent both the scalar product in L2 and the duality pairing between H-l  and H i .  

T h e o r e m  1. Assume that do E H1, 8' 2 0 in [0,1], uo, (u0),%, wo E H i ,  xy, xi E A", (x!,xi) E K 
a.e. in ( O , l ) ,  fo ,  f l  E W1il(O,T), fo 1 0 and f1 2 0 in [O,T], F E L2 (0 ,T;L2)  f L2(Q) ,  F 2 0 a.e. in Q ,  
G E W1>l (0,T; L2)  , a E C2(lR), a'(() = 0 if E 5 0 and [ 2 8,, and that the constant c, = IJa"llLm(IR) is small 
enough (this last requirement is nothing but a compatibility condition among some data, as it will become clear in 
the sequel). Then the problem (1-7) has at least one solution (8, u, X I ,  x 2 )  with 

8 E H1 (0 ,T;  L2)  n Co ([O,T]; H ' )  n L2 (0 ,T;  H 2 )  , 
u E w2yo0 (0 ,  T ;  H - ~ )  n c1 ( [ o , ~ ] ;  h2) n w1vm ( 0 , ~ ;  H A )  n c0 ( [ o , T ] ; H ~ )  n L~ ( 0 , ~ ;  H ~ )  , 
x1,x2 E H1 (0 ,T;L2)  n Lm(Q), 

8 2 0 

( ~ 1 ~ x 2 )  E K a.e. in Q ,  

a.e. in Q ,  

fulfilling (1) and (3) a.e. in Q ,  (2) in the sense of L2 (0 ,T;H-l)  , (4-5) a.e. in (O,T), and (6-7) a.e. in (0,l). 

This theorem is inferred by using a sort of elliptic regularization, deriving uniform bounds for the approx- 
imating solutions, and finally passing to the limit with the help of compactness techniques. We notice that an 
independent proof is proposed in [14]. 

2. A priori estimates 

First thing, we prefer to deduce the formal a priori estimates allowing us, basically, to get the existence result. 
Letting the comments on approximation and limit procedure for the last section, we start by recalling that an 
alternative expression for (1) is 

(8) (co - 8a''(8)x2uz) @t - h8,, = F + L&xl + (ga'(6) - a(6))uzdtx2 + 8a'(6)x2uZt 

Moreover, a weak formulation of (2), which accounts for the boundary conditions in (5), reads 

a.e. in Q. 

(utt,w) + v(u,z,vzz) + (wuz + a(8)x2,vz) = (G, w) V w E H i  n H 2 ,  a.e. in (O,T), (9) 

and the inclusion (3) can be equivalently rewritten as the pointwise variational inequality 

2 

j=1 
(Xl(Zc,t)> X 2 ( 2 >  t ) )  E K, c WtXj)(., t ) ( X j h  t )  - rJ + W W )  - 8*)(Xl(., t )  - 71) 

+(48>%>(Z ,  t > ( X 2 ( X ,  t )  - 7 2 )  I 0 v (71 ,72 )  E Ic, (10) 

to be satisfied for a.e. (a , t )  E Q. By using essentially ( l o ) ,  the special form of the convex K, the fact that a is 
constant on negative values, the sign hypotheses on F, fo, f1, and do, one obtains 8 1 0  a.e. in Q (see [8] for the 
details). 

The second step consists in an estimate already performed in [15] (for a different shape memory model) and 
involving just the energy and momentum balance equations. Indeed, we integrate ( 1 )  over (0 , l )  x (0, t ) ,  taking 
advantage of (4) and ( 6 ) ,  and choose w = ut in (9), integrating then from 0 to  t E [O,T]. Summing the two identities, 
the terms containing a(8)~2u,t cancel each other out. Also, owing to the properties of a and the boundedness of 
K, we have that JiJi at (Lx1 - (a(8) - .9a'(8))~2~,) 5 2L + 28," c, (llus(. , t)llLz + l ~ ~ 9 , u ~ ~ ~ ~ ~ )  . Hence, in view of 
the positivity of 6, by the elementary Young inequality one can easily find two constants C1, CZ, depending only on 
CO, ~ ~ ~ o ~ ~ L ~  7 llFllL1(Q) ,ho, hi, IlfollLl(0,T) llfiIIL1(O,T) , L,  6 ~ ,  w ,  v, IldzuoIIH1 , and IIGJILl(0,T;L2) , such that 

llfl(-,t)llLl + Ilut(.,t)11;2 + ll%(*,t)ll;l I c1 +c2c,2 V t  E [O,TI. (11) 
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Since H' is continuously embedded into L" (here the space dimension 1 is crucial), (11) ensures that ~~u,~~L-+Q) < - 
C3 + C4 ca for some constants C3, C4 related to C1, C2. Now, the assumption of smallness for ca can be made 
precise: in order that the coefficient of 19t in (8) (such coefficient represents the specific heat which ought to) be 
positive eveywhere, it is demanded that CS := co - 6, ca (C3 + C4 ca) > 0. 

The subsequent estimate gives further information about the regularity of 6 and u as well as it deals with the 
phase variables X I ,  x 2  too. Multiply formally (8) by 6t, (2) by -u,,t (or take w = -u,,t in (9)), and (3) both by the 
vector of components &XI,  dtxz and by the scaling constant (to be specified later) C > 0. Adding and integrating 
by parts in space and time, on account of (4-7) and of the previous bounds it is not difficult to verify that (see [5] 
for analogous calculations) 

for a.e. t E (O,T), where Ce, C7, CS depend on the data (T included) and c6 depends also on C. By applying the 
Young inequality in the right hand side of (12), we can control the integrals of in a way that the sum of them 
be less than (C5/2) s,"Jt l & l 2 .  Then we choose C sufficiently large so that the terms containing Idtx112, l d t ~ 2 1 ~  are 
dominated by the corresponding ones in the left hand side. Finally, exploiting an extended version of the Gronwall 
lemma we come to the conclusion that 

for all t E (0, TI, CS being a constant with the most of dependences, according to the framework of Theorem 1. 

3. Approximation 

Letting E > 0, we substitute (2) with the regularized equation 

a,, (u + EU,,,, - EU,,) - a, ( - ~ ~ x Z z  + wux + 49)x2)  = G (14) 

and we prescribe the initial datum w8 instead of wo (while uo remains unchanged), where w; E H i  n H4 solves the 
variational equality (w:, w) + E (a,,w:, w,,) + E (&wz, w,) = (wo, w) for any w E H i  n H2. Thanks to the property 
wo E H i ,  it turns out that the quantity llwsllLl + f i  Ild,lwz11L2 + E I181,,w~IIL2 is bounded independently of E ,  

and that w: +. wo strongly in L" as E \ 0. 
Consider now the problem (l), (14), (3-7) in which wo is replaced by wl. For simplicity we denote this 

approximating problem by (PE) .  First one shows a local existence and uniqueness result for (PE) .  Namely, by 
applying the Contraction Mapping Principle we can find a value T E (O,T] (possibly depending on E )  such that, 
for E sufficiently small, there exists one and only one solution of ( P E )  in the time interval [O,T]. Our fixed point 
argument works as follows. Take a pair (0,Xz) with 0, 2 2  E L2 (0 ,7;L2)  and 1x21 5 1 almost everywhere (see the 
definition of Ic). Put 0 (in place of 6) and &(in place of x 2 )  in (14). Hence the initial-boundary value problem in 
(14), (5-6) admits a unique solution u E W2im ( 0 , T ; H 3 )  . Moreover, multiplying (14) by ut, integrating by parts in 
(0 , l )  x (0, t )  ( t  5 T ) ,  and observing that 

2 2 

(Clo independent of E and T ) ,  one infers that (cf. (11)) 

,t)lliz -k E I b z t ( .  ,t)1&i -k \I&(. t)I&i 5 c1 -k cz Cg t/ t E [(),TI, (15) 

provided E and T ~ / E  are small enough. Therefore, JJu,JJL~((o,l)x(o,T)) < - C3 + C4 ca (the constants are the same as in 
Section 2) and also l l~,t)lL..((o,l)x(o,~)) is bounded, by a constant proportional to E - ~ / ~  (but this is not so important). 
Next, use the already found u, and uZt in the system coupling (1) and (3). Here you can prove the well-posedness of 
the corresponding initial-boundary value problem arguing as in [9], determining thus the solution (6, X I ,  x 2 )  and, in 
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particular, a new pair (19, x~). At this point, by means of suitable contracting estimates (similar to  those developed 
in [g]), setting other restrictions on E and T if necessary, we arrange for the mapping (0, X2) H (19, x2) to be a 
contraction. 

Then we can proceed exactly as in the previous section, starting from the positivity of 8 (we stress again that 
the result of [8] does not rely on the form of the momentum balance equation) and ending with an estimate like (13), 
where & IIutJ\L?e(0,t;X3) has to be added in the left hand side and where the respective constant Cg is independent of 
T and E .  Thus the solution (19,, u,, x ~ ~ )  of the problem ( P E )  actually exists in the whole interval [0, TI. From com- 
parisons in (8), (4) and in (14) we recover bounds also for ) \ 1 9 , ) 1 ~ 2 ( ~ , ~ ; ~ ~ )  and ))uE + &azz (BIZuE - U E ) ~ I W ~ . ~ ( O , T ; H - I ) .  

Consequently, we are able to pass to  the limit as E \ 0 by weak and weak star compactness and to show that any 
limit (29,u,xI,x2) of subsequences of ( ? J E , u E , ~ 1 E , ~ 2 E )  must yield one of the solutions defined by Theorem 1. In 
fact (see [5] for similar arguments), compact injections along with direct verifications allow us to  deduce strong 
convergences for (subsequences of) 6,, &ue, X I , ,  xza helping to take the limit in the nonlinearities. Moreover, since 
at, (u, + E~,,,,u~ - ~ & , u ~ )  weakly star converges to  some 77 in Loo (0, T; H - l )  and ( E ~ , , ~ ~ U ~  - &dZzu,) + 0 in 
W1@ (0 ,T ;H- l )  , it turns out that  77 = utt and (9) holds. 

R e  m a r k  2. In regard of experimental situations, it would be more interesting to treat the problem (1-7) with 
non-zero Dirichlet boundary conditions for u, assuming for instance a prescribed displacement u( 1, t )  = g ( t )  on one 
end. In this case it suffices t o  let g E W3>l(O,T) and use the new unknown G(x, t )  = u(x, t )  -zg(t) ,  (z, t )  E Q,  instead 
of u, with obvious modifications in (1-3). What it seems more difficult to handle is a Neumann boundary condition 
for the conormal derivative, e.g. (-vu,,, + wu, + a(29)x2) (1, t )  = gn( t )  (where gn would represent an external 
traction), as it was instead done in [9] and [5], for instance. Thus, the study of (1-7) with other boundary conditions 
for u remains an open question as well as the extension of the above existence result to  the three-dimensional case. 
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NISHIURA, Y. ;  OHNISHI, I. 

Non-local Effects in Phase Separation Dynamics 

W e  consider two non-local effects in phase separation dynamics. One is  a non-local self-stress effect for a binary 
substitutional solid solution and the other is  a non-local constraint arising in block copolymers. The origins of the 
above two non-localities are different, namely, f o r  the first case, it comes f r o m  the fact that the characteristic t ime 
for  stress change is much smaller than that for atomic di fusion ([8]). O n  the other hand, for  the second case, 
the binding between two different monomers causes a spacial non-local connectivity ([ll], [3], [9]). The coarsening 
process is usually very slow without stress effects, however it is acceralated drastically by adding the stress effect. 
The non-local effect for copolymer case makes a sharp contrast with the stress case, namely, the spacial connectivity 
stops the coarsening process at mesoscopic level and ve y fine micro-structures are formed spontaneously. 

1. Rapid coarsening by non-local self-stress effects 

The following model was presented by [8] and was studied numerically 

1 1 d U  

at ax2 2 2 
1 
2 

- = o  d M  
dX 

- f o r - - < x < - ,  a2 M - - - 

at x = f-, 

where 
1 

2 a2u 
A4 := (u2 - l ) ~  + Q ( U  - T i )  - E - - 1 2 4  3x2 

1 

a is a (positive) stress parameter, and ;ii (0 < ;li < 1) is the average concentration t := S_I'? u dx. The associated 
Lyapunov functional is given by 

2 

Q s 

2 
- 1)2  + - u 2 } d s  - 6 a { [ i  xu dx}2. 

Apparently (1) is reduced to  the Cahn-Hilliard equation when a = 0, which is known to have very slow motion at 
the late stage of coarsening process. 

T h e o r e m  1. ([lo]) F E @  has a unique non-constant monotone global minimizer in Ill(-;, 3) with the 
constraint sjl u dx = c for small Q and E and for  < E ( - d m ,  d m ) .  I n  the coarsening process 
toward the global minimizer, the largest (real) eigenvalue at any layered stationary solution of ( I ) ,  which is not 
symmetric at x = 0 ,  is  at least of order Q E .  

This implies that the layer motion is NOT very slow even when a = O(E),  which is consistent with the numerics in 
[4]. One of the key ingredients to show Theorem 1 is the next comparison result for spectra between the linearized 
problem of (1) and that of the following auxiliary second order equation of conservative type: 

2 

aZU 1 1 
xudx)s for - - < x < -, a U  

at ax2 2 2 
= E - - (u2 - l )u  - a(u - T i )  + (u2 - 1). d x  + (12a - 

dU 
- = o  ax 

1 
at  x = f-. 2 (3) 
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The corresponding linearized eigenvalue problems at a stationary solution TJ to  (1) and (3) ( note that the set of 
stationary solutions of (1) coincides with that of (3) ) are the following, respectively, 

d 2 L  1 1 
2 A$ = -- for - -  

1 dL  - = o  
dX 2 

d X 2  2 < I C < - - ,  

at z = f-, 

1 
- = 0 at x = f-, dX 2 

where 

f(u) stands for the nonlinear term u - u3, and 

ad - = o  
dX 

1 
at x =  &- 

2 ‘  

(4) 

(5) 

Note that the average of $ and 4 are equal to 0. The n-th eigenvalues of (4) and ( 5 )  are denoted by A, and pn, 
respectively. It can be shown that both and {pn}z=o tend to infinity. Moreover the following spectral 
comparison result holds; 

L e  m m a 2. For any n = 0 , 1 , 2 , 3 , . . . - - . -  , 

pn 5 0 implies that A, 5 x2pn, 

p, 2 0 implies that A, 2 x2pn, 

and, especially, A, = 0 if and only if pn = 0. 

It should be remarked that stability and instability properties of (1) can be determined by those of (3). This is 
sharper than the similar result in [2], however the second order equation (3) becomes more difficult due to non-local 
term. 

2. Micro-phase separation and scaling law for diblock copolymers 

The following model was proposed by [ll], [3] and [9] to describe the phase separation dynamics for diblock copoly- 
mers. 

where f(u) := u - u3, (-AN)-’ is the inverse of the Laplacian with zero flux boundary condition ( defined on 
the space orthogonal to constant functions ), E is a positive constant related to interfacial thickness, and D is a 
positive constant inversely propotional to the square of total length of polymer chain. Note that the non-local term 
represents the connection of two different monomers, and iiij determines the ratio of those composition. It was 
confirmed experimentally and numerically that coarsening stops at certain stage and the solution of (6) settles down 
to a very fine steady state ( see [3], [5], [6] and [7] ), and the morphology of final state chages according to the 
composition ratio Eii. One of the most important problems is that how the domain size of the final state depends 
on E and cr. 
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T h e  o r e  m 3. ([9]) T h e  characterist ic d o m a i n  size of s ta t ionary  patterns of (6) is proportinal to (i);. 
The above scaling law can be derived in order for ( 6 )  to  have a well-defined singular limiting equations independent 
of parameters E and ~7 by using the method of [l]. See [9] for more details of the above result and the free boundary 
problem which determines the morphology of steady states. 
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