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The analysis of macrotwins in NiAl martensite
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Abstract. We present a theoretical study of macrotwins arising in cubic to tetragonal martensitic
transformations. The results help to explain some features of such macrotwins observed in Nigs Als.

1. INTRODUCTION

In their high resolution electron microscopy studies of bulk and splat-cooled NigsAlss polycrystals,
Boullay & Schryvers [6] made detailed observations of macrotwin interfaces separating different
martensitic plates. This alloy undergoes a cubic (bcc B2 phase) to tetragonal (bct) martensitic
transformation. Fig. 1 shows two macrotwin interfaces separating plates involving the same two
martensitic variants but with different families of microtwins, the microtwin planes in adjacent plates
being nearly orthogonal.

These macrotwin interfaces are of ‘crossing type’, as opposed to ‘step type’ interfaces that are
also observed (see [14, 7, 15, 6] for a description). The step type interfaces seem to occur more
frequently in splat-cooled samples, which have a small grain size of the order of 1um. Our discussion
applies most directly to crossing type macrotwins in bulk-cooled samples, whose typical grain size
is large (of the order of Imm) compared to that of the macrotwins. In fact we treat the sample
as if it were a single crystal, ignoring constraints arising from neighbouring grains. In terms of the
calculations made, this'is justified provided the microstructures have close to zero energy (the zero
of energy being taken to be that of a pure variant of martensite or of undistorted austenite, these
energies being equal at the transformation temperature 9.).

The formation of martensitic microstructure is a dynamic process that should properly be mod-
elled by appropriate dynamical equations. However, it is not clear exactly what equations should
be used, and the prediction of martensitic morphology on the basis of any such equations seems to

Propose an explanation of why other types of macrotwins were not observed. We restrict attention
throughout to macrotwins involving only two tetragonal variants. ‘

2. NONLINEAR ELASTICITY MODEL

According to this model (see Ball & James (1], [2] and for corresponding linearized models 8], [9],
(10], [12], [13], [5]) the total free-energy of a single crystal at temperature 6 is given in terms of
the free-energy density ¢ = (A, 6) by Io(y) = [ ¢(Vy(z),8) dz, where y(2) = (1(2), ga(), ys(2))
denotes the deformed position of the material point of the crystal that has position z = (z,, 7, 13)
in the region occupied by the crystal in a reference configuration, which we take to be undistorted
austenite at the transformation temperature 4., and where Vy(z) denotes the deformation gradient,
namely the 3 x 3 matrix (Oy:/dz;).
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Figure 1: Low magnification image of crossing-type macrotwins. The insert shows details of the crossing
at twice the magnification. Bands of different grey levels correspond to different variants Uy and U;

We may assume that ming ¢(A4,6.) = 0. For a cubic-to-tetragonal transformation, the set
K(6.) = {A: p(A,8.) = 0} of minimizing gradients is assumed to have the form K(6.) = SO(3) U
U2, SO(3)U;, where Uy = diag (ns,m1,m), Us = diag (m, ns,m), Us = diag (1, 71,7) are the trans-
formation strains of the three martensitic variants, and n; > 0,73 > 0 the deformation parameters.

We can identify zero-energy microstructures with sequences of deformations ¥ with Ip_ (y%)) — 0
as j — 00, or with the Young measures (v;)xen corresponding to the deformation gradients V) of
such sequences. However, for the purposes of this paper we just need the compatibility conditions
that are satisfied by twins and martensitic plates. As is well known, twins correspond to rank-one
connections A — B = a ® n between two of the martensitic energy wells SO(3)U;, A and B being
the deformation gradients on opposite sides of the twin plane, which has normal n. Taking without
loss of generality twins involving the first two variants and B = Uj, the two possible twins with

A € S0(3)U; are given by a = ﬁ%(—m,nm,o), n= \/Li(l,n, 0), where k = %1.

A martensitic plate with twins A, B in the volume fraction A to 1 — X has corresponding macro-
scopic deformation gradient F = AA + (1 — A)B. In order for such a plate to be compatible with
undistorted austenite across the habit plane {z - m = k} the equation AMA+ (1 - A\)B=1+8Q®m
must hold for some vector b. The solutions A € SO(3)U;, B € SO3)U;, A € {0, 1], b, m are given by
the formulae of the crystallographic theory of martensite [16]; for details see [1]. Taking i = 1,5 = 2
we have that A = QU;, B = Q(U; + a ® n) with @ € SO(3), that A = X* or 1 — \*, where

» _1(1_  [23-1)(n}-D(ni+n3)
xe= b (1 AR 1 1) and that

3=

m = (x4 v7), 3xx(vr = 8),1), b= (x5 + v7), SxCR(vr =), ), )

where v = 1for A = M, v = —1for A\ = 1—) Hered = [+ 72 —2)(1 -2z, 7 =

((2nin3 =2 —n3)(L —m}) )2, ¢ = (1= n?)/(1+ns), B = ms(n? —1)/(1+7s), X = %1. These solutions
exist provided the inequalities n? + 72 < 2 if gy > 1, 9y 2+ 1032 < 2if ; < 1 hold. In the calculations
below we assume the experimentally measured values 7; = .93, 73 = 1.15.

3. INCOMPATIBILITY OF MARTENSITIC PLATES

Consider two martensitic plates I and II comprising only the variants U; and U, and having distinct
macroscopic gradients 1+5b; ® m; and 1+ by ® my with corresponding choices of parameters 1, x1, 1
and K, X2,V Tespectively. By relabelling axes we can suppose that s, = x; = v; = 1 so that in
particular Plate I corresponds to twinning on [110]p, planes with volume fraction A*. We examine
whether there is a rotation @ that brings Plate II into compatibility with Plate I across an interface
with some normal V. Thus we have to solve the equation

145 m =Q(1+b,®my) +c®N (2)
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Table 1: Rotations Q; and Q that bring Plate II into compatibility with Plate I (k1 =x1=v=1) and
the corresponding macrotwin normals N; and N,. The direction of rotation is that of a right-handed screw

in the direction of the given axis. For the case xy = vg = 1,x2 = —1 see the text.

Parameter Values (o) (2D

Ko X2 Vg Axis Angle N Axis Angle Ny

-1 1 1 (.70,0,-.71) 1.64° (0,1,0) (.75,0,.66) 1.75° (1,0,0)
-1 -1 1 -(0,.99,.16) 7.99° (1,0,0) (0,.99,-.14) 7.99° (0,1,0)
-1 1 -1 (65,.48,-.59) | 6.76° (-59,-.81,0) (.68,.50,.54) | 6.91° (-.81,-.59,0)
-1 -1 -1 | (-48,65,59) | 6.76° | (-81,-59,0) | (-.50,.68-.54) | 6.91° | (.59,-.81,0)

1 .1 -1, | (-.54,54,64) | 587° |~ #(1,1,0) (-.57,.57,-.59) | 6.08° Z5(1,-1,0)
1 -1 -1 ' (.60,.60,-.52) | 7.37° -ﬁ(l,-l,O) (.62,.62,.47) | 7.47° %(1,1,0)

for Q € SO(3) and ¢, N € R® with |N| = 1. Note that (2) is equivalent to the equation

F=Q(1+¢®N), (3)

where F = (1+b, @m;))(1 45, ® me) ! e=QTcand N = (1 + b2 ® my)"TN. The calculation of ‘

Bhattacharya [4] shows that it is not possible to solve (2) with Q = 1, that is distinct undistorted
plates are always incompatible. This strongly suggests that the macrotwins are not ZEero-energy
microstructures, but undergo distortions near the macrotwin interface to achieve compatibility there,
with consequential nonzero stresses. In seeking solutions to (2) we take the view that the plates rotate
as the macrotwin interface is approached and that in the vicinity of the interface reach the rotation
necessary to make them compatible at near to zero energy. Note, however, that the distortion of the
plates cannot be a pure rotation without stretching, on account of the theorem (see Reshetnyak [11])
that a deformation whose gradient is a rotation everywhere is a constant rotation.

In the case xo = —1,k3 = 15 = 1, we have that F, and hence FQ™!, is a rotation, from which it
follows that the only solution to (2)is ¢ = 0,Q = F, @ being a rotation about the axis (.15, .99, 0)
of 8.00°. In each of the other cases it can be proved that there are exactly two rotations Q; and Q,
which solve (2) for corresponding pairs of vectors ¢1, V1 and ¢y, V. The axes and angles of rotation
and the corresponding normals are given in Table 1, the normals in the first two and last two lines
being exact results.

4. COMPARISON WITH EXPERIMENTS

Boullay & Schryvers only observed the case K9 = —1,v; = 1 corresponding to opposite families of
microtwins having equal volume fractions \*. Planar macrotwin interfaces were found to have normals
(100) 5, and (010)p; as given in Table 1, with the angles between the microtwin planes in each plate
being greater than 90° for (100)p, macrotwins, and less than 90° for (010)g, macrotwins, as also
predicted by the calculations. The calculated value \* = .35 agrees with that observed. Furthermore,
the microtwin planes are seen to bend slightly in the vicinity of the macrotwin interface. Away from
the interface (at distances measured along the microtwin planes of the order of 500nm) measurement
of the angles between the microtwin traces in each plate correlate with the hypothesis that the plates
are undistorted there. These angles decrease slightly as the macrotwin interface is approached,
consistent with the rotations in Table 1. In the vicinity of the macrotwin plane, high resolution
images resolve the atoms and show that the atomic columns on either side of the macrotwin are very
nearly parallel, as predicted by the compatibility calculations. In addition, the sense and magnitudes
of the rotations of the variants as the macrotwin is approached are consistent with these calculation:
(see [3, 6] for details).

The angles of rotation in Table 1 give an indication of the degree of incompatibility of the plates
and thus of the stored-energy of the macrotwin. The considerably larger angles for all paramete
values but kg = —1,x, = 1,1, = 1 suggest that this case is preferred on grounds of lower energy
and that pairs of plates corresponding to the other cases may find different, energetically preferred
ways to coalesce. It might be expected, however, that the formation of a macrotwin is aided if th
common line of the two habit planes lies in the macrotwin plane; this is the case for the macrotwin
with normal N; but not for those with normal Ny,
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Figure 2: Two plates making contact across both (100) g3 and (010) g3 at either ends of a curved macrotwin
interface.

In the cases kg = —1, x2 = £1,1, = 1 the rotations Q; and Q; are quite close to each other, with
the angle of rotation of Q;Q; being 2.33°. In one case (see Fig. 2) two plates were observed to
make contact across both (100)p; and (010) g, at either ends of a curved macrotwin interface, with
a corresponding small splaying of the microtwin planes. In fact it is to be expected that the overall
stress and strain fields will change as one moves parallel to a macrotwin due to the incompatibility of
the plates in the far field, and perhaps this is responsible for the curving of the macrotwin interface.
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