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1. Introduction

OVER the last 20 years a large literature has developed concerning
evolution equations which for certain initial data possess solutions that do
not exist for all time. The bulk of this literature relates to problems
arising from partial differential equations. To establish nonexistence it is
customary to argue by contradiction. One supposes that for given UQ and t0

a solution u(t) with u(ro)= u0 exists for all times t^t0; typically u takes
values in some Banach space X and we will assume that this is the case. A
function p : X —» R is then constructed, and by use of differential ine-
qualities it is shown that lim p(u(()) = 0° for some tle(t0, °°). This usually

t-»fi

leads immediately to a contradiction. It follows that if u : [t0, fmM) -* X is
a maximally defined solution satisfying u(ro)= u0 then tmmx<co.

The above argument, which possesses several variants, while it is quite
correct as a proof both of nonexistence and of the fact that tmnx^t1, does
not by itself establish that nonexistence occurs by 'blow-up', that is

lim P(H(0) = » , (1.1)
t—t^

since it may happen that fmu< fi- This observation puts into question the
claims in a number of papers (see the references in Sections 3 and 4) that
solutions of certain partial differential equations blow up in finite time.
The examination of the validity of these claims is the purpose of this
paper.

That some care is necessary in the interpretation of formal blow-up
arguments is illustrated by an example of a backward nonlinear heat
equation with Dirichlet boundary conditions discussed in Section 2. For
this example an argument of the type described in the first paragraph
coirectly proves nonexistence, but

lim p(u(0)

exists and is finite.
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The methods used in this paper to establish finite time blow-up of
solutions in certain cases are based on continuation theorems for ordinary
differential equations in Banach space. Several such theorems in a variety
of contexts are given in [2], [7], [9], [10], [21], [26]. The simplest type of
continuation theorem says that if fmM<00 then

lira Pl(u(0) = °°, (1.2)

where px : X -*• R is some function (typically a norm). One may thus
combine a nonexistence argument of the type described in the first
paragraph with a continuation theorem to prove blow-up in the sense of
(1.2). In most examples (1.2) turns out to be a weaker assertion than (1.1)
(for instance, p may be an L2-norm and px the norm in some Sobolev
space). One is thus led to ask whether in fact (1.1) holds, or at least some
stronger property than (1.2). In other words, does the formal blow-up
argument give the right answer? This question is investigated in Section 3
for the parabolic problem

u|1 '"1u, x e f l , (1.3)

and in Section 4 for the hyperbolic problem

utt = bu + \u\y-1u, x e f l , (1.4)

« lan=0 .

In (1.3) and (1.4) y> 1 is a constant and fl is a bounded open subset of
R". For certain initial data blow-up is established of solutions to both

these problems in various norms depending on the value of y.
For general information and references on nonexistence theorems

proved by blow-up methods the reader is referred to Payne [19] and
Straughan [23].

Notations. The norms in the spaces Lp(Cl), Wlp(d) are denoted by
II II p> II II UP respectively. C denotes a generic constant.

2. An example of nonexistence without blow-up

Before giving the example we describe some preliminaries needed both
in this section and in Section 3.

Let X be a real Banach space and let A be the generator of a
holomorphic semigroup T(t) of bounded linear operators on X. Suppose
that (|T(0||^M for some constant M>0 and all te R+, and that A"1 is a
bounded linear operator defined on all of X. Under these hypotheses the
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fractional powers ( -A)° can be defined for 0*Sa<l (cf Henry [7], Pazy
[20]) and ( - A ) a is a closed linear operator with domain D((- A)a)= Xa

dense in X. Xa is a Banach space under the norm ||"||<a) = |l(~ A)"^ . Let
/ : Xa —* X be locally Lipschitz, i.e. for each bounded subset U of Xa

there exists a constant Cv with

for all u, v e U. Consider the equation

ii = Au + /(u). (2.1)

DEFINITION. A solution of (2.1) on an interval [0, tt) is a function
ueC([0, f1);Xa)nC1((0, t^X) such that u(t)eD(A) and satisfies (2.1)
for each te(Q, tj.
The following proposition holds (cf Henry [7], Pazy [20]):

PROPOSITION 2.1. Let UQ&XC There exists f t>0 and a unique solution u
of (2.1) on [0, tj wifh u(0) = u0.

Example. Let fts K" be a bounded open set with boundary aft. Let
<f> e L2 (ft). Consider the initial boundary value problem for u = u(x, t),

u, = Au-| u2dxlu, xefl,t>0, (2.2)

u = 0, xedft, t>0 , (2.3)

u(x,O) = <£(*), xeft. (2.4)

Let X=L2(ft), D(A) = {ueWj'2(n):Ai)eL2(fl)} ) A = A. It is well
known that A satisfies the hypotheses listed above. Define / : X —* X by
f(v)= — \\v\fcv. f is locally Lipschitz, so that by Proposition 2.1 a unique
solution u exists on some interval [0, f,)> *i>0. Multiplying (2.2) by u,
and integrating over ft we see that u is bounded in WQ2 (ft) for large t, so
that u is defined for all te R+ (see Theorem 3.1 below). We write

Consider the backward problem corresponding to (2.2)-(2.4) with ini-
tial data (/»eX, namely

{ jt>2dx}0, xeft, f>0, (2.5)

xedft, f>0, (2.6)

xeft. (2.7)
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By a solution of (2.5)-(2.7) on an interval [0, T,], T, >0, we mean a
function v e C([0, T,]; X), u(0) = i)>, such that u(0 =' U(T, - r) is a solution
of (2.2)-(2.3) on [0, T,). Suppose now that 4>eX\D(A). let u be the
solution of (2.2H2.4), and let <p =u(l) . Clearly v(t)= u(\-t) is a
solution of (2.5M27) on [0,1]. Furthermore t; cannot be extended to a
solution on any larger interval [0 ,^ ] , T!>1, since otherwise by the
smoothing properties of the forward equation <f> would belong to D(A),
which is not the case. Let p() = |||£. Clearly

lim

exists and equals ||<£|£. Nevertheless one may give an alternative proof of
nonexistence of global solutions to (2.5)-(2.7) by means of a 'blo>v-up'
argument. Suppose t/r/ 0 in L2 (O) and assume that a solution v(t) of
(2.5H2.7) exists and is denned for "11 reR+. Let F(r)=' p(u(0).

Then

Hence

1
F-1(0)-2f'

so that

lim p(u(r)) = °°,

t—F-'(O)/2

which is a contradiction.

Remark. A similar phenomenon occurs for the backward problem

where y > l is such that the corresponding forward problem is well
behaved (see Section 3).

3. Parabolic equations
We use the following continuation theorem:



REMARKS ON BLOW-UP AND NONEXISTENCE THEOREMS 477

THEOREM 3.1 Let the hypotheses of Proposition 2.1 hold. Then u may be
extended to a maximal interval of existence [0, tmmx). If fm,x<°° then

f-T)-"||/(H(T))||dT = « , (3.1)
0

and

lim ||u(0|L = °°. (3-2)

Proof. The existence of a maximally defined solution follows in the
usual way from Zorn's lemma. Let fmM<°°. For each fe[O, fm5I) u
satisfies the integral equation

u(t) = T(0«o+JT(l-s)/(u(s))ds. (3.3)
u

Following Henry [7] we first show that

If (3.4) does not hold then ||u(f)||(a)« C for all 16 [0, t ^ . If a < /3 < 1 then
from (3.3) and the estimate | |(- A)PT(r)||=e Cr p , t>0 , it follows that

I

\\u(t)\\w « C r p ||uo|| + C f (t - s)"p ds • sup ||/(H(T))|| ,
J TS[0, t^J
0

so that ||u(f)Ho) is bounded as <-*rmux. For 0=ST<«( m a i l

1

u(r) = TO - T)u(r) + 1 T(r - s)/(u(s)) ds. (3.5)
T

Using the estimate ||(-A)"~P (T(f)-J)||=£ Ctp~a, t >0, we obtain

Thus lim u(t) exists in Xa, contradicting the maximality of tmtx.
(-«•<«„

Now suppose that (3.2) does not hold. By (3.4) there exist numbers r>0 ,
d > 0, with d arbitrarily large, and sequences rn -* tmMX, t» -*• !„,„ as
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n->oo with rn<tn<rn+l such that ||u(Tn)||(a) = r, ||u(O||(a) = r + d and
\\"(t)\\M^r + d for te[rn, i j . Thus, using (3.5),

so that for large enough d, tn-rn^k>0, contradicting fm
Finally, if (3.1) were false, then by (3.3) we would have ||u(f)||(a, =s C for
<e[0, tmj, contradicting (3.2).

Remarks. An alternative proof of (3.2) is to show that one can get local
existence to (3.3) on a time interval independent of UQ in any bounded
subset of Xa. The proof given above has the advantage that it extends
immediately to cases when solutions for given initial data are not unique.
The result (3.2) is a consequence of work of Kielhofer [9], who omits the
proof that (3.4) implies (3.2).

We use Theorem 3.1 to prove blow-up results for the initial boundary
value problem

u, = Au + |u|'"-1u, xeft, (3.6)

u | a n = 0, u(x, 0) = uo(x),

where ft is a bounded open subset of R" with smooth boundary dft,
uoe Wk2 (ft), and y> 1 is a constant. This problem has been studied by
Kaplan [8], Fujita [3], [4] and Levine [13], [17], but the results in these
papers concerning blow-up are open to the objections made in the
introduction.

Define the energy functional E : W1-2 (ft)nLT+1(ft) - • R by

( 3-7 )

THEOREM 3.2. // n = 1 or 2 let y> 1 be arbitrary. If n ? 3 let
n /n -2 . Let u0eWj l2(fl). Then there exists a unique solution u to (3.6)
defined on a maximal interval of existence [0, fmM) and satisfying u e
C&0, rmax); Wl* (ft)), u e Cl((0, tmM); L2(ft)), u(t)e Wl* (ft) D W2-2 (ft)
for all te(O,tmax). If £(uo)«0 and UQ^O (such UQ exist since -y>l)
then rmax<<» and

lim

Proof. Let X=L2(ft), and define A=A, D{A) = W^2(ft) n W^f t ) .
Then Xm = W^f t ) . Let /(u) = |u|"1"1u. By the Sobolev imbedding
theorems and our hypotheses on y it follows that / : X1/2 -* X and is
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locally Lipschitz. By Proposition 2.1 and Theorem 3.1 there exists a
maximally defined solution u. The energy inequality

(3.8)

follows by multiplying (3.6) by u,. Let F(t) = I u2 dx. Then using (3.7),

n
(3.8) we obtain

(3.9)

where k =2(y-l)/(y+l). If BK)=£0 it follows that
where ki = km(ft)('l'~1)/2 and m denotes n-dimensional Lebesgue measure.
Therefore

for fe[0, t m j , so that if

By Theorem 3.1 and the PoincarS inequality,

lim I | Vu |2(

n

The result follows from (3.8).

Note that the formal blow-up argument used (rigorously) in the proof
suggests that the stronger result

lim f |u|2( (3.10)

holds. The next theorem establishes (3.10) under stronger conditions on
-y. It would be interesting to know if these conditions are essential or
represent a deficiency of the method.
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THEOREM 3.3. Let K-y<mm(3,1 + 4/n) if n=s4, Ky^nJn-2 if
n>4. Let UQ e Wi>2(ft), u0 5* 0, JE(uo) =£ 0. Then the solution u whose exis-
tence is proved in Theorem 3.2 satisfies (3.10).

Proof. Choose a and p with max(l,2(y + l)l(y2 + l))<p<2l(y-l),
(y-l)n/4<a<l. Let X = Lp(il), A = A,D(A)= Wj-P(ft)n W2-"^) and
let /(u) = |u|Y-1u. We have that H/Mllp^NUMlT1. where l/q =
l / p - ( y - l ) / 2 . Since Uq>Up-2a/n it follows (cf Henry [7]) that Xa <=
L" with continuous injection. Suppose that ||u(l)||2^C for te[0, fmax).
From (3.3) we obtain

+ C, I (r-T)- | |M(0| | ( O ) dr.

Applying a version of Gronwall's lemma (cf [7]) we find that ||u(0ll<c.) is
bounded as *-»*„,„. Since l/(y + l)> l/p-2aln, this implies also that
||u(r)||T+1 b bounded, which contradicts Theorem 3.2. The result follows
since ||u(f)||2 is increasing.

Remark Another way to obtain (3.10) is to estimate |u|'l'+1dx df

o n
by (3.1), and then use (3.9). However this seems to work for n « 4 only if

4. Hyperbolic equations

As an example of blow-up of solutions for a hyperbolic partial differential
equation we treat the problem

un = Au + |u|T"1u, xeil, (4.1)

"1*1 = 0, u(x,0)=Ho(x), H,(X,0)=H1(X),

where ft is a bounded open subset of R" with smooth boundary 3ft, and
where y > 1 is a constant. This problem has been considered by Glassey
[6], Levine [14]-[17] and Tsutsumi [25], but the arguments in these
papers establish nonexistence, rather than blow-up, of solutions.

We use the following local existence and continuation theorem. For the
existence part of the proof see Segal [22], Reed [21], von Wahl [26]. The
assertions (4.3) and (4.4) are proved in a similar way to the analogous
statements in Theorem 3.1 (see also Ball [2] Theorem 5.9). The assertion
(4.4) is a special case of von Wahl [26].
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THEOREM 4.1. Let X be a real Banach space. Let A be the generator of a
strongly continuous semigroup T(f) of bounded linear operators on X. Let
f : X -* X be locally Lipschitz, i.e. for each bounded subset U of X there
exists a constant Cv such that

for all u, veU. Let <f>eX. Then there exists a unique maximally defined
solution u £ C([0, fmax); X), tmBX>0, of the integral equation

«(») = T(t)<f> + jT(t- s ) / ( « ( s ) ) ds , t e [0 , r m M ) . (4.2)

o

Furthermore if tmax < °° then

||/(u(s))H ds = oo, (4.3)

o

and

lim ||u(0|| = ». (4.4)

Remark. It is proved in Ball [1] that solutions of (4.2) are weak
solutions in a natural sense of the equation

u = Au + f(u). (4.5)

Let X=Wlo2{tl)xL2(n). Let A = (? ^ with D{A) =

W22^)). It is well knocu that A generates a
strongly continuous group T{t) of bounded linear operators on X. Let

/ ( I = (i i - i )• W e w r i t e ( 4 1 ) i n t h e f o r m

W \ \ u \ y l u /

By the imbedding theorems the conditions

y > l arbitrary if n= 1,2; l<y^-^—ifn^3 (4.7)
n — 2

imply that / : X —* X and is locally Lipschitz. Let </> = ( ° eX. It is easily
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verified using [1] that a solution u of (4.2) satisfies for any tpe
the equation

^(uo t / / ) + (Vu,V(/r)-(|u|1 '-1u,^) = 0 (4.8)

almost everywhere on its interval of existence. In (4.8) (,) denotes the
inner product in L2(fl). Clearly w(-,0) = UQ, u,(-, 0) = «,. One can also
show (cf Reed [21], Ball [2]) that any solution u of (4.2) satisfies the
energy equation

l), (4.9)

where E : X —* R is defined by

n

THEOREM 4.2. Let y satisfy (4.7). Then there exists a unique maximally

defined solution ( " ) e C([0, u J ; X), tm M>0, of (4.2). If £ 0= f

E("o(0, «i('))«0, or if Eo = 0 and (u0, u1)>0, then tmmx«* and

lim | |M(0IU+ 1= Hm [||Vu(0||2+||u,(0||ll1/2 = co. (4.10)
1—

Proof. The existence of u follows directly from Theorem 4.1. To
complete the proof it suffices by Theorem 4.1 (cf (4.4)) and (4.9) to show
that fmM<°°. Let F(r)= ||u(0||i Then F=2(u, ut) and

F=2 f [|u,|2-|V«|2 + l«lT+1]d*
n

(This formal calculation is easily justified.) Substi tut ing for | V u | 2 d x

n
from (4.9) we obtain

i-y~X) f | u | T + 1 dx-4£ 0 >kF<^ 1 ) / 2 -4E O )
7+1 J

(4.11)

where Jc>0 is a constant. Suppose tmax = °°. If Eo<0 then by (4.11)
F(f)> 0 eventually, so that we may without loss of generality suppose that
(u0, u1)>0. Since F(f)=sO it follows that F(t) and F(t) are nondecreasing
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non-negative functions of t. Hence

where c 3s 0 is a constant, so that

d F

F(0)

for all re[0, r^^J. But as F(0)>0 the integral is bounded above by a
constant. This is a contradiction.

Remark. Similar results for the case Eo > 0, with extra restrictions on
u0, uu could probably be established by adapting arguments in Knops,
Levine & Payne [11], Straughan [24].

As in the example in Section 3, the conclusion (4.10) is weaker than
that suggested by the nonexistence argument based on (4.12), namely

lim ||u(0||2 = «. (4.13)

I have not been able to find conditions under which (4.13) holds, but the
next theorem gives conditions under which the derivative of ||u(/)||5 blows
up.

THEOREM 4.3. Let y satisfy

4
1 + -

n

K-ys£
n - 2

Let Uo, u, satisfy Eo<0, or Eo = 0 and (u0, I O X ) . Then

lim (u, !!,)(*) = oo. (4.14)

The proof requires a lemma.

4
LEMMA 4.4 / / n « 3 and 2<-y=sl + -then

n
| | | | 2 v P l l | i ; ) l | V u | | ' ^ - 1 > (4.15)

for all u e Wl*(Cl), where p = 0(y, il,n) is a constant.

Proof. We use a special case of an interpolation inequality due to Gagliardo
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[5] and Nirenberg [18]; a detailed proof of this special case can be found
in Ladyzenskaja, Solonnikov & Ural'ceva [12]. Let m > 1 be an integer.
Then for all u e Wj-m(n),

NL,^«ll"irm||Vu||:, (4.16)

where

)(
ql \n m r)

where 8 = 8 (q, r, m, n) is a constant, and where q and r satisfy

(i) if n = 1, l « r < ° ° ,
(ii) if n = m > l , l

(m) if n>m, either l ^ r ^ q ^ or 1=£
n mn — m n — m

Set r=y+l, a = 2/y(y-l). If n = 1 and 2<y=s3 set m = l, then q =
•y(-)'-l)/(->'-2)3=2'y3:-y + l, so that (4.15) follows from (4.16). Otherwise
let m = 2; then q = y(y-l)/(y-l-2ln)^2y, q<°oif n = 2, q^2nJ(n-2)
if n = 3, so that (4.15) again follows from (4.16).

Proo/ of Theorem 4.3. Since (mM<°°, it follows from Theorem 4.1 (cf
(4.3)) that

J ||u(t)||jYdr = oo. (4.17)

o

Also, from (4.9) and the fact that Eo^0,

^j -M0lG:} . (4-18)

If n and y satisfy the conditions of Lemma 4.4 then it follows from (4.18)
that

Otherwise-y« 2, y^nJ(n-2) if ns=4, and thus the Poincar6 inequality

holds. Hence by (4.18)
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Therefore by (4.17) we have in all cases

j f \u\y+ldxdt = °o.
o n

The result follows from (4.11).
Remark. One can prove stronger results for the 'averaged' version of

(4.1)

where y > l is arbitrary. The corresponding energy function is 2 ll"il!l +
2 IÎ UIH ~ ̂ ir Il«ll2+1- The same proof as in Theorem 4.2 then shows that when

lim ||u(0||2 = °°-
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