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We consider the problem of minimizing integral functionals of the form 
I(u) = jp F(x, ““‘u(x)) dx, where II c IR’, u: $2 -+ iR4 and V% denotes the set of 
all partial derivatives of u with orders c/c. ‘The method is based on a charac- 
terization of null Lagrangians L(V”u) depending only on derivatives of order k. 
Applications to elasticity and other theories of mechanics are given. 

1. INTRODUCTION 

In this paper we study minimization problems for integral functionals of 
the form 

I(u) = 1 F(x, V~“44(x)) dx, 
JR 

where 0 c R* is a bounded open set, u: R --* W, and Vtklu denotes the set of 
all partial derivatives nf of u of ail orders 11) < k. The admissible functions u 
are required to satisfy suitable boundary conditions or other constraints. It is 
well known that if I is sequentially weakly lower semicontinuous in the 
Sobolev space wk,“(.Q), 1 < a < co, and if F satisfies certain growth 
conditions, then the direct method of the calculus,of variations can be used 
to prove the existence of a minimizer for I. The lower semicontinuity of 
integrals of the form (1.1) has been studied by Morrey [28,29] in the case 
k = 1, and by Meyers [27] for arbitrary k. These authors showed that if F is 
continuous then a necessary and sufficient condition for I to be sequentially 
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1.s.c. with respect to weak* convergence in W”,“(Q) is that F be 
quasiconvex, that is, 

I 
F(x,, dk-ll, c + Vk$(X)) dx > m(D) F(XO) cfk- ‘1, c) (1.2) 

D 

for every fixed x,, E R, Cam-“, c, all bounded open subsets D c W and all 
4 E C?(Q). (In (1.2) we have used the notation F(x, VLk1z4) = F(x, VCk-‘]~, 
Vku), where Vku denotes the set of all partial derivatives of u of order k. See 
Section 3 for an alternative definition of quasiconvexity.) Under additional 
growth conditions on F they proved that quasiconvexity is sufficient for 
sequential weak lower semicontinuity of I in w”“(n), where 1 < p < co. 
Quasiconvexity of F does not imply that F(x, cCkml’, .) is convex, except in 
the special cases p = 1, k arbitrary and k = q = 1. Despite the importance of 
these results, they cannot be said to solve the general problem of lower 
semicontinuity, since the quasiconvexity condition (1.2) is only marginally 
more transparent than lower semicontinuity itself. Furthermore, the growth 
conditions imposed in order to prove weak semicontinuity in w”*“(n) 
compare unfavourably with those known to be sufficient in the case when 
F(x, cfk- ‘I. .) is convex. In this paper we make some contributions to the 
general problem, though we do not solve it. 

Following work of one of the authors [3] on nonlinear elasticity, we base 
our attack on the simpler problem of characterizing those functions L(Vku) 
that are sequentially weakly continuous from W”~“(0) to g’(G). In 
Theorem 3.4 we give several necessary and sufficient conditions for L to 
have this property. In particular, L is sequentially weakly continuous (for 
large enough p) if and only if L is a null Lagrangian, i.e., the 
Euler-Lagrange equations 

\‘ 
IIFk 

( - 0)‘s (Vku) = 0, i = l,..., q, 
I 

are satisfied identically for all u. In the case k = 1 this result was proved in 
(41. Also, in the case k = 1, L(Vu) is a null Lagrangian if and only if L is an 
afflne combination of the minors of Vu of all orders p, 1 < r < min(p, q). 
This follows from the results of Landers [25], Ericksen [ 191, Edelen 
[ 14, 151, Rund [38,39] and de Franchis [13], who consider more general 
Lagrangians L(x, u, Vu). (The trivial example L = uu, shows that there are 
null Lagrangians which are not of the form L(Vu).) The characterization of 
the null Lagrangians L(Vku) for k > 1 is substantially more difficult than for 
k = 1; we show (Theorem 4.1) that L(Vku) is null if and only if L is an 
afflne combination of Jacobians of the form 

a(up’ )...) up) 
i?(Xkl,..., Xk,) ’ (1.3) 
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where 1 < ki < p, 1 < Vi < q, 1 Ii] = k - 1, and r > 1. Thus, surprisingly, there 
are no new sequentially weakly continuous functions L(V%) over and above 
those obtained by applying the result for k = 1 to the map x+ Vkelu(x). The 
main tool in the proof of Theorem 4.1 is a transform similar to one 
introduced by Gel’fand and Dikii [21] in their study of the algebraic 
properties of differential equations. This enables us, using ideas of compen- 
sated compactness due to Murat [31-331 and Tartar [41,42], to reduce the 
above theorem to a question about the properties of (ordinary) polynomials. 
This can be answered using some powerful techniques of algebraic geometry. 

Following [3] we say that an integrand G(Vku) is polyconuex if there 
exists a convex function @ such that 

G(V”u) = @(J(Vku)) for all Vku, 

where J(Vku) denotes the set of all the Jacobians (1.3). We give 
(Theorem 5.2) necessary and sufficient conditions for G to be polyconvex, 
and prove (Theorem 5.3) that if G is polyconvex then G is quasiconvex. 
Polyconvexity is equivalent in the case k = 1 to a sufficient condition for 
quasiconvexity introduced by Morrey [28,29]. Our main existence theorem 
(Theorem 5.5) establishes the existence of minimizers for Z(U) in various 
classes of admissible functions, the principal hypotheses being that 
F(x, c’k- 11, .) is polyconvex and that F satisfies a coercivity condition. The 
proof of this theorem is a simple consequence of our sequential weak 
continuity results and of a lower semicontinuity result for convex integrands 
due essentially to Eisen [ 161. This lower semicontinuity result does not 
assume coercivity, and thus enables us to make our coercivity hypothesis on 
F rather than on the associated convex function of the Jacobians, as was 
done in [3-51. Although quasiconvexity does not imply polyconvexity, at the 
present time the polyconvex functions form the only general class of 
quasiconvex functions known, so that the restriction to polyconvex 
integrands may not be serious. For these integrands our results substantially 
improve those of Morrey and Meyers. 

It is known (cf. Theorem 3.3) that if G(Vka) is quasiconvex then G 
satisfies the Legendre-Hadamard condition, which, if G is C*, takes the form 

9 
7 

i,;, 
7 a'G(H) i 

,*, =i, =k aH; r3H$ a dblbJ ’ ” 
a E Rq, b E W. (1.4) 

(For the notation see Section 2.) In the case k = 1 it is a still unsolved 
problem of Morrey [29] to decide whether the converse is true. We give a 
simple example (Example 3.5) to show that this is not the case for k > 1. 
That (1.4) is a necessary condition for lower semicontinuity is a special case 
of a result from the theory of compensated compactness (Murat 131-331, 



138 BALL,CURRIE,ANDOLVER 

Tartar. [41,42]). Some of the connections between that theory and the 
problems considered in this paper are discussed at the end of Section 3. 
(Compensated compactness has beautiful applications to other aspects of the 
theory of nonlinear partial differential equations.) 

In Section 6 we apply our results to establish the existence of energy 
minimizing deformations in conservative problems of nonlinear elasticity. 
The cases of classical hyperelasticity, Cosserat continua, and materials of 
grade N are considered. The assumption of polyconvexity can in each case 
be interpreted as a constitutive hypothesis on the stored-energy function of 
the material. 

2. NOTATION 

Let R be a bounded open subset of W. If U: R + Rq we write u(x) = 
(u’(x),..., uq(x)), x = (xl,..., x”). If I = (il ,..., i,), J = (j, ,..., jP) are multi- 
indices wewriteIfJ=(i,fj,,...,i,fj,),l~l=i,+...+i,!,I!=i,!...i~!, 
(:)=Z!/J!(Z--J)!, Z<J if i,<jj, for r= l,...,p, ~j=ai,~...@u’), 
a, = a/ad, x,&z (x1)” . . . (,p)‘P, and (-D)’ = (-a,)ll . . . (-a,)ip. 
Occasionally we will write 4,j for aj~. 

Let X = X(p, q, k) denote the q x (“’ :- ’ )-dimensional space of real 
matrices V= (I$, 1 < i < q, ]I] = k, and let Y = Y(p, q, k) denote the 
q x (“: k )-dimensional space of real matrices V = (Vi), 1 < i < q, 111 < k. Let 
Vku = (uf), 1 & i < q, ]1] = k, and Vtklu = (uj), 1 < i < q, ]I] < k, so that for 
each x E R we have Vku(x) E X, Vtkl~(x) E Y. 

The space of r-times continuously differentiable functions U: J2 -+ Rq (resp. 
U: 6+ Rq) is denoted C(Q) (resp. C’(@). The subspace of C(Q) consisting 
of infinitely differentiable functions with compact support in R is denoted 
C~(G!). If q = 1 we write C:(a) = g(G). Lebesgue measure in iRp is 
denoted by m or dx. If 1 <s < co then L’(Q) is the Banach space of 
(equivalence classes of) Lebesgue measurable real-valued functions u on B 
with norm 

Ilulls= (1 luol’dx)“‘. 1 <s < m, 
n 

= m,yp I +>I, .Y=oO. 

W,‘(a) denotes the Banach space consisting of functions U: Q -+ Rq all of 
whose distributional derivatives U: with III < r belong to L”(R). The norm in 
W*s(f2) is given by 
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If 1 < s < 03 then b$3”(J2) is the closure of C?(n) in Wry”. Weak and 
weak* convergence are written - and A., respectively. Weak* convergence 
in v,“(n) is defined by u(“) A u in Wr*m(J2) if and only if of A of in 
La(Q) for 1 < i < q, III< r. v-m(J2) is the closure of C?(n) in B’r~a‘(Q) 
with respect to weak* convergence. g’(a) denotes the space of real-valued 
distributions on a. A sequence of functions u(“) EL’(O) converges to 
u E L’(Q) in g’(a) if and only if J”* Y(“)# dx + In ~4 dx for all 4 E g(0). 

3. NULL LAGRANGIANS, QUASICONVEXITY, 
AND SEQUENTIAL WEAK CONTINUITY 

Let p, q and k be fixed positive integers, and let Y = Y(p, q, k) be defined 
as in Section 2. A continuous function L: Y + R is a null Lagrangian if 

j. L(Vtkl(u + 4)(x)) dx = j L(V%(X)) dx (3.1) 
R n 

for every bounded open set 52 c Rp and for all u E C?(b), 4 E C?(n). By 
making a suitable change of variables it is easily shown that if (3.1) holds 
for B IQ, and for all i, $ then it holds for all Q, 24, 4. Since 

1, L(V’kl(u + t@)(x)) dx 
R 

it follows that if L E C’(Y) then L is a null Lagrangian if and only if 

+ 4)(x)> #f(x) dx, 

(3.2) 

for all 24 E Ck(b), $ E C?(Q); i.e., if and only if the Euler-Lagrange 
equations 

1 (-D)‘$=O: i = l,..., q, 
Irl<k I 

are identically satisfied in the sense of distributions for all u E Ck(@. 
We now show that any C’ null Lagrangian is a divergence. Other results 

to this effect have appeared in the literature (e.g., Lawruk and Tulczyjew 
[ 26 1, Gel’fand and Dikii [21]) but they are not so precise. 
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THEOREM 3.1. Let L E C’(Y) be a null Lagrangian. Then 

L(V’Q) = L(0) - 9 \’ \’ 
i=l IIEk 0<7<1 0 

; (-D)J(uj-,K;(V’k’u)) (3.3) 

in the sense of distributions for all u E C”(Q), where 

K#7’klu) 2zf I : 2 (tVtklU) dt. 
I 

ProoJ If u is smooth and 4 E g(Q), then by (3.2) 

4 7 ,g, ,,&k 
I 
* $ (tv[k1m4)I dx = 0. 

I 

By approximation, (3.4) holds if u E C”(a). By Leibniz’s formula, 

(4% = x (J LIh. 
J<I 

Also 

L(V’klu) = L(0) + i 1 I’ u; $ (tVlklU) dt. 
i=l IlICk 0 I 

(3.4) 

(3.5) 

(3.6) 

Combining (3.4) (3.5) and (3.6) we obtain (3.3). [ 

Recall that a function f: IRp -+ (R’ is called almost periodic (a.p.) if it is the 
uniform limit of finite trigonometrical polynomials z=, ajeitJ’x. It follows 
from the definition that iff is a.p. and if A c W’ is a bounded open set, then 
the mean value 

f W> dx 

exists and is independent of A. A continuous real-valued function of an a.p. 
function is a.p. The range S(f) of values of an a.p. function f is compact. 

DEFINITION. Let U c X be open. A function G: U + R is quasiconvex if 

M[G(Vkv)] > G(M[Vkv]) 

for any v E Ck(W) such that Vkv is a.p. and 9(Vkv) c U. 
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THEOREM 3.2. Let F: I2 x Y-+ IR be continuous. A necessary and 
sufficient condition for 

Z(u) fZf I, F(x, V’%(X)) dx 

to be sequentially weak* lower semicontinuous on w”,“(n) (i.e., ~(“1 A u in 
W”+“(O) implies Z(u) < lim,,,, Z(u’“‘)) is that F(x,, c’~-‘], .) be quasiconvex 
on X for each fixed x,, E 0, c[~-‘] E Y(p, q, k - 1). 

Remarks. Let Q = np=, (a,, bi) be an open cell in R”. If G: X-1 R is 
quasiconvex, then clearly 

1 s m(Q) Q 
G(Vku(x)) dx > G Vko(x) dx 

whenever u E C”(Q) and Vku is periodic with respect to Q, i.e., there exists a 
continuous functionf(x), periodic with respect to Q, such that Vkv = f in Q. 
(Indeed (3.7) holds for certain other open simplices; e.g., regular hexagons in 
I?*.) In particular, let D c W’ be a bounded open set and choose Q 1 D. Let 
c = (cf) E X and d E C?(D). Define 

d(x) = ,,Sk ; cfd + f(x). 

Since Vkv is periodic, it follows from (3.7) that 

j G(c + V”#(x)) dx > j G(c) dx = m(D) G(c). (3.8) 
D D 

That (3.8) holds for fixed c and any 4 E C?(D) is the definition of quasicon- 
vexity used by Meyers [27], generalizing that of Morrey [28] for the case 
k = 1. Meyers showed that a necessary and sufficient condition for Z to be 
sequentially weak* lower semicontinuous on w”*“(O) is that F(x,, cIk-‘l, .) 
be quasiconvex in the sense of (3.8) for each fixed x,, and ctk-‘1. It follows 
from Theorem 3.2 that the two definitions are equivalent. 

Proof of Theorem 3.2. By Meyers’ result and the above remarks, we have 
only to show that quasiconvexity of F(x,, ctk-il, .) is necessary for lower 
semicontinuity, and this only for the case of an integrand G depending only 
on Vku. (Here we use the sufficiency result of Meyers [27, Theorem 21, but a 
direct argument can be given, in the spirit of [27, Theorem 1, Lemma I], to 
show that lower semicontinuity of Z implies lower semicontinuity of 
.(‘* F(x,, c’~-I’, Vku (x)) dx for each fixed x0, ctk-il.) 
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Let ZJ E Ck(RP) be such that Vkv is almost periodic. Define 
v(“)(x) = n-“U(U). By Taylor’s theorem ]] v(“)]]~,~ is uniformly bounded. 
Hence a subsequence v(“) A g in W”,“(Q), and clearly V”g = M[V’v] a.e. 
Similarly, G(Vk~“‘) A M[G(Vkv)] in Lm(Q). By the lower semicontinuity 
we deduce that 

as required. 1 

M[G(Vkv)] 2 G(M[V%]) 

Remark. There is an obvious modification of Theorem 3.2 for the case 
when F is defined on a suitable subset of R x Y. 

We next define a (nonconvex) cone rl = Il(p, q, k) c X by 

‘4 = {a Ok b: a E w, b E W}, 

where a Ok b denotes the element of X with components (a Ok 6); = a’b,. 

DEFINITIONS. A function G: lJ-+ R is n-convex if 

G(tH + (1 - t)t-I) < tG(H) + (1 - t) G(g), (3.9) 

whenever t E [0, I], H--HE/I and the line segment I(H, H) dzf {sH + 
(1 -s)H:sE [0, l]}cU. G is strictly /i-convex if strict inequality holds in 
(3.9) when t E (0, l), 0 # H - fi E /i and I(H, a) c U. Note that if G is Cz 
then G is A-convex if and only if the Legendre-Hadamard condition 

holds for all HE X. 

Theorem 3.3. Let G: U- IR be continuous and quasiconvex. Then G is 
A-convex. 

ProoJ: The result is true if G is smooth (Meyers [27, Theorem 71.) If G 
is continuous and p a mollifier on X, the mollified functions p, * G are 
smooth and quasiconvex on a slightly smaller domain than U, and hence are 
A-convex here. Letting E + 0 we deduce that G is A-convex. I 

We now come to the main result of this section, which gives a number of 
necessary and sufficient conditions for a function L(Vku), depending only on 
kth order derivatives of u, to be a null Lagrangian. 
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THEOREM 3.4. Let L: X + R be continuous. The following conditions are 
equivalent: 

(i) L is a null Lagrangian 

(ii) In L(c + V”#(x)) dx=jo L(c) dx=m(a) L(c) for all 4 E C?(Q), 
for all constant c E X, and for every bounded open subset fi c Rp. 

(iii) M[L(V%)] = L(M(Vkv])f or any v E Ck(lRp) such that Vkv is a.p. 
(iv) L is a polynomial, and for any integer r > 2, the rth order total 

dtflerential D’L satisfies 

D’L(H)[a’ Ok b’,..., a’ Ok b’] = 0, a’ E lR9, b’ E Rp, HE X, 

whenever the vectors 6’ ,..., b’ are linearly dependent in Rp. 

(v) L is C’ and 

\‘ 
Ill=k 

(-0)~ 3 (V”u) = 0, i = l,..., q 
I 

in the sense of distributions for all u E Ck(a). 

(vi) The map u -+ L(Vku(.)) is sequentially weak* continuous from 
W”,“(Q) to L”O(R). (That is, u@) Au in wk~w(0) implies 
L(Vku’“‘) A L(Vku) in L”O(Q).) 

(vii) L is a polynomial (of degree s, say) and the map u I+ L(Vku(.)) 
is sequentially weakly continuous from Wk*‘(Q) -+ g’(s)). (That is u(“’ - u 
in Wk~‘(J2) implies L(Vku’“‘)+ L(Vku) in &S’(Q).) 

Proof Setting ui = Cl,, =k (l/L!) c$’ in (3.1) shows that (i) implies (ii). 
It is easily proved that (vi) holds if and only if the functionals 
kl, 0(x) L(Vku(x)) dx, 8 continuous, are sequentially weak* lower semicon- 
tinuous on w”,“(G). Hence, by Theorem 3.2 and the subsequent remark, 
conditions (ii), (iii) and (vi) are equivalent. Furthermore, (ii) implies that L 
is A-affine (i.e., equality holds in (3.9)). It is easily shown that the 
orthogonal complement in X of Span A is zero, so that Span/i =X and 
hence L is a polynomial of degree s < dim X. Let 4, w E C?(Q), E > 0. Then 
by (ii>. 

-$ L(EV~@+ Vky)dx],=,= + \‘ 1 
1% ,,ek 

?k (Vkv) 4; dx = 0. 
R au; 

Choosing v/ = I#“) with I#“) -+ u in Ck(supp #), we obtain (v). We have 
already shown that (v) implies (i). That (vii) implies (vi) is obvious. 

Suppose (v) holds. We establish (vii). We have already proved that L is a 
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polynomial of degree s, say. Let u(“) - u in l@*‘(0). We prove by induction 
on s that L(V%‘“‘) -+ L(V%) in g’(Q). If s = 1 then L is affme and so the 
result is trivial. Suppose the result is true for s - 1 and that L is 
homogeneous of degrees. It follows from (ii) that aL/&j is a null 
Lagrangian of degree s - 1 for any i, I. Since (aL/&f)(Vku’“‘) is bounded on 
L”(Q), where I/s + I/s’ = 1, it follows by the induction hypothesis that 

$ (VkU’“‘) - !L- (V”u) & in L”‘(G). 
I I 

(3.10) 

We now apply Theorem 3.1. Note first that by approximation (3.3) holds for 
any u E Wk7”(Q). Also 

Kj(VW’) = f $ (Vku’“‘). 
I 

Without loss of generality we may assume that XJ is smooth. Thus, by the 
compactness of the imbedding w”*“(n) + w”-‘9”(Q), 

up; + uf-, in LS(R) (3.11) 

for any 0 < .Z < I. Combining (3.10) and (3.11) we obtain 

u:“‘jzqVku’“‘) - u;~,K;(Vku) in L’(a). 

Thus 

(-~)“u)yqVku(“) + (--D)Juj-,zqVkU) in G’(n), 

and so by (3.3) 

L(VW) -+ L(Vu) in g’(0) 

as required. Hence (vii) holds. 
Let (iii) hold. We prove (iv) using an argument of Tartar [42]. If r = 2 the 

result follows simply from Theorem 3.3. Suppose the result is true for r - 1; 
we prove it holds for r. If rank{b’,..., b’} < r - 1 then (b’,..., br-‘} are 
linearly dependent, so that 

II-‘L(H)[a’ &bl,..., a’-’ Ok b’-‘] = 0. (3.12) 

Differentiating (3.12) in the direction a’ Ok b’ we obtain 

D’L(H)[ u1 Ok b’,..., d Ok b’] = 0. (3.13) 
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Suppose that rank{b’,..., b’} = r - 1. Without loss of generality we may 
suppose that 

b’=b’ $ . . . +b’-1. 

Let 

w(X) = q7 tjd sin(d . x), 
,z* 

where the tj are real parameters. Then 

v!yX) = f CT tjd Ok d 
IF, 

and so M[V”w] = 0. By (iii) 

M[L(H t Vkw)] = L(M[H + ““w]) = L(H). (3.14) 

The left-hand side of (3.14) is a polynomial in the tj. Equating the coefficient 
of t, .” t, to zero, we obtain 

MpL(H)[a’ Ok b’,..., ur Ok b’] ;;(!A”)... ~$f.x)]=O. 

Since 

M 
[ 
;&I. x) . . . ;p. x)] f0, 

this gives (3.13). 
To complete the proof of Theorem 3.4 we prove that (iv) implies (ii). It 

suffices to show that if L satisfies (iv) and r > 2 then 

5 D’L(c)[Vk#,..., Vk#] dx = 0 (3.15) 
n 

for all constant c E X, 4 E C?(a); for if (3.15) holds then (ii) follows by 
integration. Let 

8L(c) 
a~:, . . . act 

=Aj::::;;. 

Following Murat [33], we use Plancherel’s identity to compute the left-hand 
side of (3.15). Defining the Fourier transform 4 of 4 by 
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we thus have 

where the integrations are to be performed in the order shown. Since 
~~(~‘) = (-27#t:, @I(<‘) etc., and <‘,...,r-‘, r’ - z:: &jj are linearly 
dependent, it follows from (iv) that the integrand is zero. Hence (ii) 
holds. I 

Remarks 1. Because the characterization of null Lagrangians as afline 
combinations of kth order Jacobians (see Section 4) is not straightforward, 
we have chosen to give proofs of the various equivalences in Theorem 3.4 
that are independent of it. Some of these proofs are new even for the case 
k = 1 (cf. [4, Theorem 3.11). 

2. In the case k = 1 it is shown in [4, Theorem 3.11 that conditions (i), 
(ii), (v)-(vii) are equivalent also to the condition that L be A-affme, that is, 

4 

,,; , 
7 8*L(H) i 

,,, =;, =k aH; c?H; a dbr bJ = ” 
a E IFiq, b E IRp, (3.16) 

holds for all HE X. For general k this is false, as is shown by the following 
example. Of course, by (iv), (3.16) is a necessary condition for L to be a null 
Lagrangian, for all k, and it is sufficient if L is quadratic. 

EXAMPLE 3.5. Let p = k = 2, q = 3, let (x, y) correspond to (x’, x2), and 
let 

L(V%) = 2 
j,k,l= 1 

where cjk, denotes the alternating symbol. It is easily verified that L is A- 
affme but not a null Lagrangian. Since L is an odd function it follows also 
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that L is not quasiconvex. Hence the converse of Theorem 3.3 is false for 
general k. It is an unsolved problem of Morrey [29, p. 1221 to decide if A- 
convexity implies quasiconvexity when k = 1. 

To complete this section we exhibit the connection between the work of 
Murat [31-331 and Tartar [41,42] and Theorem 3.4. These authors have 
considered in particular the following question. Let R c Rp be open, let aijk 
be real constants, and let s > 1, v > 1 be given. For what continuous 
functions F:RN+ R do the conditions 

(n) 0, ,.-*, up - u, )..., v, in L’(Q), 

for i = l,..., M, 

imply that 

F(VJ”‘)...) Yfi”)) --) F(v, )...) UJ 

in the sense of distributions? 
Let 7 = {(A, r): 3, E R”, CE Rp, zj,k aijkAjjrk = 0 for i = l,..., M}, 7’ = 

{(J,r)E~:r#o}, and A = {A E I?“‘: (A, c) E To for some r} = Proj IRN To. 
Then (Tartar [42, Theorem 181) a necessary condition for F to be weakly 
continuous in the above sense is that for any r > 2 

D’F(v)[A’,..., Ar] = 0 for all u E RN, 

if (A’, c) E Y” with rank (<I,..., c) < r. This condition is sufficient 
(Murat [33]) for suitable s, v provided F: (LS(f2))N+ L&,(R) and 

dim(A E lRN: (A, [) E Y”} is independent of <. (3.17) 

In our case, the functions uj are the ui, 1 < i < p, (I) = k. We know that 

au: [ auij 
d----L=() 
ax/ ad 

for all i, j, 1 and IJI = k - 1, where u:,, = arz& or equivalently, J, 1 denotes 
the multi-index (j, ,..., j, + l,..., j,). The cone Y corresponding to the 
differential relations (3.18) is 

7. = (HE X: there exists b E Rp such that H:,,bj - H~,jb, = 0 

if 1 < i < q, 1 Q j, I < p and IJI = k - 1 }. 

If HE Y then the vector with Ith component H;., is parallel to b, and so 
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Hi,, = Hj*‘b, for suitable constants H;*‘. Clearly Hi,\b, = Hk,‘,bj if 
1 K I= k - 2, so that Hi+\ = Hiibj. It follows by induction that 

T = {(a Ok b, b): a E R9, b E Rp}. 

Hence /i is as previously defined, and condition (iv) of Theorem 3.4 
corresponds exactly to those mentioned above. Note also that 

dim{1 E RN: (A, b) E To} = q 

is independent of b. 
Now suppose that u (“)f E L’(Q) satisfy (3.18), but that we do not know 

that ufn)f z a: . . . @ui for functions ui, where Z = (i, ,..., i,). Suppose further 
that 

u(“)f -I uf in L’(a), 1 Zl = k. 

We claim that for any open ball B with Bc Q there exist functions u(“), 
v E Wk3’(B) such that 

@) 2 0 in wk.“(B), 

and 

u(n)i , = of, U: = uf , whenever III = k. 

To prove this, let p be a mollifier, and consider the mollified functions 
u(n)i deT t r--PE*u (‘If. These satisfy (3.18) in B and are smooth. Since B is 
simply connected, it follows by induction that there exist smooth functions 
~1”): B + R9 such that w, I (‘ji = u?‘: for all i, IZI < k. Given n, E there exists a 
polynomial 41”’ of degree less than k such that 

I 
VI.‘- 11,;) dx = 

I 
VU-ll#n) dx. 

c 
B B 

Let uy) = wr) - 4:). The inequality 

I IVck-'lz Is dx < C 
B 

Vfk-']z dx 1’ +I, IVkzI'dx) (3.19) 

holds for all z E F@“(B); this can be proved using the argument in Morrey 
[29, p. 821 and the fact that if the right-hand side of (3.19) is zero then so is 
z. Applying (3.19) to vy) we see that I[u~)/~~,~ is bounded for each n, 
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independently of E. Standard arguments imply that a subsequence uis’ - Y(“) 
in I@‘(B) as ej+ 0, that V’@) = (zP)j), and that 

I BIV1*-l’u(“)/sdx<C( IVkt+“)IS&. 
B 

The right-hand side of (3.20) is bounded independently of n. Since 
J-, VU- lly(d & = 0, it follows easily that u(“) 2 v in Wk.‘(B) and vf = of 
whenever 111 = k, as claimed. 

It follows from the above that L(Vku) is sequentially weakly continuous 
from wk~“(G!) + Q’(0) if and only if L(uf) is weakly continuous in the sense 
of Murat and Tartar (for functions satisfying (3.18)). The sufficiency result 
of Murat, which does not assume (3.18) and of course applies to many other 
situations of interest, does not give as sharp a result as Theorem 3.4 (vii) 
since, for example, when L is a polynomial of degree 3 it implies only that 
L(Vku) is sequentially weakly continuous from Wk7”(.Q) t W(0). 

4. A CHARACTERIZATION OF NULL LAGRANGIANS 

This section continues the investigation of null Lagrangians begun in 
Section 3, with the goal being an explicit characterization of all null 
Lagrangians L: X-t R depending exclusively on kth order derivatives. By 
Theorem 3.4 these Lagrangians are precisely those which define sequentially 
weakly continuous maps from I@*“(0) to W(0). It will be shown that L is 
null if and only if it is an affine combination of null Lagrangians of a 
particularly simple form, the Jacobian determinants, which we now define. 
Let K = (k i ,..., k,), 1 ( ki <p, and let a = (v 1, I * 1 ,...; v,, I,), where 1 < vl < q 
and /Ii1 = k - 1. Then the corresponding kth order Jacobian determinant 
J’; : X+ IR is given by the formula 

J;(Vku) = 
a(f.4;’ )...) up) 

r = det 
au;: 

cY(Xkl,..., Xk,) c-1 axkl * (4.1) 

The main theorem to be proved in this section is then as follows: 

THEOREM 4.1. Let L E C(X). Then L is a null Lagrangian if and only if 
L is an afine combination of kth order Jacobian determinants, i.e., 

for suitable constants C;. 

S80/41/2-2 
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We first dispose of the easy result that each Jacobian determinant is a null 
Lagrangian. The formula 

W~...~ v> = G (-l)s+, 8 
3(x’,..., xm> ,y 2 ( 

#’ w’Y-9 0”) 
a(x’,..., 3 )...) xrn) 1 (4.2) 

is well known (cf. Morrey [29, Lemma4.4.61). In (4.2) the notation 2’ 
indicates that the term xs is omitted. Substitution of the appropriate 
derivatives of the ui for the t and possible relabelling of the x’ shows that 
each Jacobian determinant is a divergence and, hence, by Theorem 3.4 
(condition (ii)), a null Lagrangian. 

To prove the converse we first fix some notation. Let .P’= .Y(p, q, k) 
denote the space of all Lagrangians L: X-+ R which are homogeneous 
polynomials of degree r. By Theorem 3.4 every null Lagrangian is a 
polynomial, and clearly we can look at each homogeneous piece of a null 
Lagrangian separately, so that it suffices to prove the theorem for L E 49’. 
Let W denote the space of all r-linear functions 

Q: X--t I?. 
rfactors 

Each L E Yp’ gives rise to a function in W via polarization, or, equivalently, 
as the rth order total differential D’L(H), where H is an arbitrary point in X. 
Equality of mixed partial derivatives implies that WL(H) is actually in the 
subspace W0 of symmetric r-linear functions. Conversely, given a 
symmetric function Q E WO, Euler’s identity for homogeneous polynomials 
shows that there is a unique L E Pr with Q = D’L(H), namely 
L(H) = (l/r!) Q(H,..., H) for H E X. 

Next let Zrqk denote the space of all functions 

P: (W x W) x ..* x (Wx lRP)+ I?, 
.- 

rfactors 

which are linear on each of the factors Rq and are homogeneous polynomials 
of degree k on each of the factors R p. Given Q E W, there is an induced 
function P = v(Q) E Z’3k defined by 

P(a’, 6’ ;...; a’, 6’) = Q(u’ Ok b’,..., ur Ok 6’). 

Since Q is r-linear and Span A =X it follows that y: W + Z’*k is a linear 
isomorphism. Similarly if Zl,,k denotes the space of symmetric P’s in Zrsk, 
then y: W, -+ Z:” restricts to a linear isomorphism. 

We are now in a position to describe the transform of a homogeneous 
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Lagrangian. If L E Y’, then its transform is the polynomial function 
R(L) E Z:& defined by 

where HEX is arbitrary. This transform was introduced in the case q = 1 
by Gel’fand and Dikii [2 11, and for q > 1 is closely related to a 
generalization of Gel’fand and Dikii’s transform used by Shakiban in her 
thesis [40,35] to study the Euler operator and conservation laws using 
algebraic techniques. In direct analogy with the Fourier transform of 
classical analysis, this transform converts differential operations into 
algebraic operations, which can be studied by known techniques. The 
preceding constructions immediately imply the following fundamental 
theorem: 

THEQREM 4.2. The transform F gives a linear isomorphism between 9’ 
and Z;k. 

It will be of use to give an explicit formula for the transform of a 
Lagrangian. If rc is a permutation of the integers {l,..., r) there is an induced 
map 71: Zrqk + ZrVk given by 

%‘(a’, b’;...; ar, 6’) = p(an(l), bn(‘);...; ancr), bn@)). 

The “symmetrizing” map is o = (l/r!) C Y?, the sum being over all 
permutations 71 of {l,..., r}. Note that Zgvk = im u. Note also that c 0 u = o; 
i.e., u is a projection. 

LEMMA 4.3. The action of the transform on a monomial is given by 

(4.3) 

The proof .is an easy computation. Using this formula, we can readily 
compute some transforms. 

EXAMPLE 4.4. Consider the second order Jacobian 

Here p = 3, q = 1, so ai E R, b’= (bl, b:, bi) E R3, i = 1,2, where (X, Y9 Z) 
corresponds to (xi, x2, x3). Then 
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ST(J) = O(a’(b~)*a*b;b~ - a%: 6: a%: b;) 
= ~(a’(b:)*u*b:b: + a%: by@;)* - u’b;b;u*b:b; - u’b:b:u*b:b:) 
= $2’u*(b: b; - b;b;)(b: b: - b: b;). 

(The last factorization, as we will shortly see, is not accidental.) 
The next step is to describe the transform of an arbitrary Jacobian deter- 

minant. Let u1 ,..., a’ E Rq, b’ ,..., b’ E FV’. Given a multi-index K = (k, ,..., k,), 
1 < kj < p, let B, denote the r x r matrix with (i, j)th entry bl. Similarly, 
given a collection of indices and multi-indices as in (4. l), let (A @ B), 
denote the r x r matrix with (i, j)th entry uLjbij. 

LEMMA 4.5. Zf J; is the Jacobian determinant defined by (4.1), then its 
transform is 

R(Jg) = i det(B,) det((A 0 B),). (4.4) 

Proof: We use the notation ~f,~ = a,(uf). Then 

the sum being over all permutations p of {l,..., r}. Using formula (4.3) for the 
transform yields 

Separating the sums over p’ and n completes the proof. 1 

The next step in the proof is to use condition (iv) of Theorem 3.4, namely, 
that a continuous null Lagrangian satisfies for any r > 2 the identity 

D’L(H)[u’ Ok bl,..., ur Ok b’] = 0 

wherever the vectors b’ ,..., b’ are linearly dependent. In particular, when L is 
also a homogeneous polynomial of degree r, then 

2-(L)@‘, b’ ;...; ur, b’) = 0 (*I 

wherever b’ ,..., b’ are linearly dependent. If r > p then clearly X(L) = 0. 
Suppose r < p. Then b’,..., b’ are linearly dependent if and only if 
det(B,) = 0 for all multi-indices K. Since we are working with polynomials, 
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we can invoke Hilbert’s Nullstellensatz on the vanishing of polynomials. See 
Jacobsen [24, p. 2.541 for a’proof of this celebrated theorem. 

THEOREM 4.6. Suppose p(x’ ,...,x”‘) =p(x) is a polynomial such that 
p(x) = 0 for all complex x satisfying q,(x) = 0, . . . , qk(x) = 0 for certain other 
polynomials qj. Then there is a positive integer v such that [p(x)]” = 
r1(x) q,(x) + ..a + rk(x) qk(x) for suitable polynomials r, ,..., rk. 

(To utilize this theorem, we must of course check that (*) actually holds 
for all complex linearly dependent vectors bl,..., b’, but this is easily inferred 
from the real case by inspection of the coefficients of the resulting 
polynomial.) 

This is almost what we want, except for the appearance of the integer v. 
Clearly, if the ideal generated by the polynomials q, ,..., qk is prime, meaning 
that if p.p’=?,q, + .+- ty”kqk, then either p=r,q,t.+. trkqk or 
F= r;q, f *** t Fkqk, then v can be taken as 1 in the theorem. For the case 
of determinantal polynomials it is known that this ideal is prime. 

THEOREM 4.7. The ideal generated by all polynomials det(B,) 
corresponding to all multi-indices K is prime (over Cc). 

(The appearance of extra variables ai does not affect the statement of this 
theorem.). 

Proofs of Theorem 4.7 can be found in Northcott [34, Proposition 2, 
p. 1971 for the case in question and Mount [30] for the more general case of 
arbitrary sized minors of a rectangular matrix.’ Theorems 4.6 and 4.7 then 
imply 

LEMMA 4.8. If L is a homogeneous polynomial null Lagrangian, then 
there exist polynomials P, E Z’,k- 1 corresponding to multi-indices K such 
that 

X(L) = c PK det(B,). 

We now utilize the symmetry properties of the transform F(L) to 
determine the general form of the P, in (4.5). If 71 is any permutation of 
{L..., r} then Z(det(B,)) = sgn(n) det(B,). Therefore, applying the 
symmetrizing map (I to (4.5) yields 

’ We would like to thank M. F. Atiyah for leading us to these references. 
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where 

Pi. = $ s sgn(n) ?(P,). 
. ‘I 

Note that for any permutation z, 

7i(P;O = sgn(rr) PK. 

Theorem 4.1 now follows from Theorem 4.2, Lemma 4.5, Lemma 4.8 and the 
following easy lemma. 

LEMMA 4.9. Suppose PE Zrek-’ and Z(P) = sgn(;rr)P for all 
permutations n of {l,..., r}. Then 

P = s C, det((A 0 B),) 
n 

for some constants C,. 

Proof: Suppose 

P(a’, b’ ;... ; a’, b’) = C c,(a 0 b), , 
(I 

where, for a = (v,, I, ;... ; v,, Z,), 

(a 0 b), = aL,b:, -.a a:,$,. 

Applying 7i to P shows that 

c, = SgnW c,(,) y 

where n(a) = (v,(r), In(r) ; . . . ; u,(~), I,&. Therefore 

P = -$x c, C w(x)@ 0 bLc,, 
a a 

= $ c c, det((A 0 B),). 1 
(I 

EXAMPLES 4.10. Using Theorem 4.1, we now write down the null 
Lagrangians L(Vku) for various values of p, q and k. 

(a) p= 1: 

L(V%) = cg + 2 c,a%‘, 
i=l 

i.e., L is atfine. 
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(b) k= 1; 

L(Vu) = affine combination of minors of Vu. 

This is the case treated in [3-51, Reshetnyak (36,371. 
(c) k=2,p=2, q= 1, 

w,x, uxy, &J = co + Cl ux, + czuxy + c3 u,, + c4(w$, - 4J’ 

(d) k=2,p=2, q=2; then (cf. [5]) 

L(V’u) = co + x c$,uf,,, + i dj#j, 
j=l 

where 

41 = 41$2* - (42)* 42 = 41$22 - (~T**)*~ 

43 = 4,422 - 42 42 44 = 4224l - 42427 

45 = 4&Z - ~:,*~f,, 9, = 42422 - 4*42* 

Note that the #j are linearly independent. 

In general, there are nontrivial linear relations between the Jacobians Jz of 
a given degree r. In the case k = 2, q = 1, these relations can be deduced 
from the basis theorem for quadratic p-relations (Hodge and Pedoe [45, 
p. 3 151) and Lemma 4.5. Writing u1 for u,~, let (j, ,..., j, ] k, ,..., k,) = (J 1 K) 
denote the Jacobian of degree r 

quj )...) uj ) 
qxkl,..., xkq * 

There are {(T ) [ (: ) + 1 ] different such Jacobians, since interchanging two ji)s 
just changes the sign, and also (J ] K) = (K ] J>. The result in Hodge and 
Pedoe says that all the relations between these Jacobians can be obtained 
from those of the form 

( j , ,..., jr- 1, k, ( k,, k, ,..., k,) 

f (j, ,..., .irbl, k, I k,, k2,..., k,) e.. 

f (.i ,..., jr-, , 1 k, 1 k,, k, ,..., k,- 1) = 0 

(with appropriate f signs). For example, 

a 9 u*) a(% 9 u3) a(4 3 u4) = o 
f3(x3, x4) - qx*, x4) + 8(x’, x3) * (4.6) 



156 BALL,ClJRRIE,AND OLVER 

The problem of determining the number n, = n,(k, p, q) of linearly 
independent Jacobians Jg(V“n) of degree r for general k, p, q seems to be dif- 
ficult. 

The maximum degree of a nonzero Jacobian JG(V’$) is R = R(k, p, q), 
whereR=min(p,q)ifk=l,andR=pifk>l.If l<r<R,choose 

J’(Vku) = (J’J(Vku),..., J’*NqVkU)) 

to be a fixed N,-tuple of Jacobians of degree r with the property that any 
Jacobian J’; of degree r is a linear combination of the JrY’(Vku). The Jr*‘(Vkn) 
can, of course, be chosen to be linearly independent, so that N, = n,, but we 
do not insist that this has been done. (But see Lemma 5.1 below.) Note that 
J1(Vku) just consists of the elements of of Vku. 

We now refine slightly the statements in Theorem 3.4 concerning the 
sequential weak continuity of the J;. 

THEOREM 4.11. Let 2<r<R, and let ai> 1 satisfy 
a,>(r- l)p/(p+ l), (I/a,)+(l/a,)< 1 for 1 <i<r- 1. Let ucn)-u in 
Wk3a1(0), and let Ji(Vku’“‘) be bounded in (L”fO))Nifor 2 ,< i < r - 1. Then 
Ji(Vk@‘) + Ji(Vku) in (g’(12))Nifor 1 < i < r. 

Proof. We use the method of [3, Theorem 6.2; 4, Theorem 3.41 to prove 
by induction that the following statement (P,) holds for 1 < m < r. Let 
S = (u E WkTel(Q): J’(Vkv) E (L”i(fl))“i, 2 < i < r - 1). 

Statement (P,). If u E S and a = (vi, I, ;...; v,, I,), K = (k, ,..., k,) are 
multi-indices with 1 < ki < p, 1 < vi ,< q, [Ii1 = k - 1, then the identities 

2 (-l)s+‘j..$(), 
X=1 

J;(Vku) = c (-l)‘+’ & (v;; wS), 
S=l 

(4.7) 

where 

w 

s def qq,..., zp) 

= a(xk’ )...) fkS )...) xkm) 

hold in the sense of distributions, and 

Jm(Vku’“‘) -+ Jm(Vku) in (@‘(O))“m. (4.9) 

Note first that (4.7) (4.8) hold if u is smooth (cf. (4.2)). In the case 
m = 1, the (m - 1)th order Jacobians in (4.7), (4.8) are taken equal to 1 by 
definition; thus (PI) clearly holds. Suppose (P,,-,) holds. Let u E S, and let 
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uu) be a sequence of smooth functions on B with u(j) + v in wk@l(Q). 
Without loss of generality we may suppose that the boundary of R is 
smooth. Thus II(~);;+ u;; strongly in L”(R), where l/y = l/a, - l/p if 
a, < p, y > 1 arbitrary if a, > p. Since l/y + (m - 2)/a, < 1, it follows from 
(I’,- 1) and (4.8) that 

qdj’yy.., dj’yq r3(Xk’ ,...) X^ks )...) xkm) + ws 
in P(Q). Thus (4.7) holds. To prove (4.8), let p be a mollifier and let 
w(j)’ =pllj * ws be the mollified functions. Let # E g(0). For large enough j, 

if x E supp(#). Therefore 

= (4.10) 

Since w(j)‘+ ws in Lam-‘(Q) and l/a, + l/a,-, < 1, passing to the limit in 
(4.10) gives (43). Finally, by (P,- ,) we have that 

a@ (n’vz ,2 ,***, Uowrl 1 qu;;,..., zp) 
a(xkl )..., ik” )...) 2) - a(xkl )...) ZkJ )...) xkm) in (Lnm-l(Q))Nm-l. 

Since u(“);; -+ u;; in L”‘(Q), it follows from (4.8) that (4.9) holds. This 
completes the induction. I 

5. POLYCONVEXITY, LOWER SEMICONTINUITY, AND EXISTENCE THEOREMS 

Let Jr,..., JR be defined as in Section 4, and let 1 < r < R. Then 
J”’ = (J’ ,..., Jr) can be regarded as a map from X to R”’ x . . . x RNr = R”; 
where (T, = CT=, Ni. As before, let U c X be open. 

LEMMA 5.1. J”] consists of linearly independent Jacobian8 if and only if 
the convex hull Co J[“(U) of J”‘(U) is open. 

ProoJ Obviously if the Jacobians in J”’ are linearly dependent then 
J”‘(U) is contained in a proper subspace of RN, and so Co J”‘(U) is not 
open. 
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Let jr’ consist of linearly independent Jacobians .!g. We claim that for 
any HE U and any E > 0 such that the open ball B,(H) with centre H and 
radius E lies in U, there exists 6 > 0 such that Co J”‘(B,(H)) 13 B&“](H)). 
If not, there exists a nonzero 8 E IRUr such that (Jtr’(fi) -J”](H), El) 2 0 for 
all l? E B,(H). Set fi = H + t[, where [E X and t is a real parameter. For 
small enough I we have 

Hence 

\“’ ; (D’J”‘(H)([ ,..., 0, 0) > 0. 
,T’ . 

Therefore 

(D’J”‘(H)(c), 0) = 0 for all <E X. 

(D2J”1(L 43 0) > 0 for all [E X. 

Let [ = a’ Ok b’ + u2 ,ak b*. By Theorems 3.4(iv), 4.1 we obtain 

(D2J’r1(H)(a’ Ok b’, a* Ok b2), 6) = 0, 

and hence, using the fact that Span II =X, 

(D2J’r1(H)(C, 0 6’) = 0 for all [ E X. 

Proceeding inductively, we deduce that for i = l,..., R, 

(D’J”](H)(&..., 0, e) = 0 for all c E X. 

It follows that 

(J”‘(q), e> = 0 for all rj E X, 

contradicting the linear independence of the Jg. This proves the claim. 
Let 4 = Cy! l I,J[“(H,) E Co J”](U), where A, > 0, Cj’!!, iii = 1, Hi E U. 

Then there exist di > 0 such that the open set CT! i diB,,(J”t(Hi)) is 
contained in Co J”‘(U). Hence Co J”](v) is open. m 

Remark. Lemma 5.1 complements [3, Theorem 4.31 in the case k = 1. 
(In [3, p. 3581 it is erroneously stated that jr’(U) is open, but this does not 
affect the subsequent analysis.) 

DEFINITIONS. Let 1 < r <R. A function G: U-+ F? is r-polyconvex if 
there exists a convex function @: Co J”](U) -+ F? such that 
G(H) = @(J”‘(H)) for all HE U. G is polyconvex if it is R-polyconvex. 

Note that if G is r-polyconvex then it is polyconvex. 
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THEOREM 5.2. Let G: U-t R. The following conditions are equivalent: 

(i) G is r-polyconvex. 

(ii) For each HE U there exists A(H) E W such that 

G(H) > G(H) + (J”‘(fi) I- J”‘(H), A(H)) (5.1) 

for all I7 E U. 

(iii) (a) There exist constants a E R, b E RDr such that 

G(H) > a + (frl(H), b) for all HE U, (5.2) 

and 

(b) ifHi, Cyzn=lAiHiE U, li>O, Cy!lni= 1, and 

then 

(5.3) 

Proof: Let (i) hold. If Jr” consists of linearly independent Jacobians, 
then by Lemma 5.1 Co J”](U) is open. Since @J is convex, for each HE U 
there exists A(H) E W such that 

G(i;i) = @(.I”‘(@) > @(J”‘(H)) + (J”‘(n) -j’](H), A(H)) 

= G(H) + (J”‘(ii) - J”‘(H) 3 A(H)) 7 

so that (ii) holds. If J[‘] = (f, LJ?, where 1 consists of linearly independent 
Jacobians, L is linear, and where we have rearranged the Jacobians in Jt’] if 
necessary, define 6(q) = @(q, Lq). Then d is convex on Co @) and we 
obtain (ii) as before. 

Let (ii) hold. Fixing H in (5.1) gives (iii)(a). If Hi, Li satisfy the 
hypotheses of (iii)(b) then 

G(H,) > G(H) + (J”](Hi) -J”‘(H), A(H)). 

Multiplying by Ai, summing, and setting H: Cy!“=l &Hi gives (5.3). 
Let (iii) hold. Following Busemann, Ewald and Shephard [9], define @ on 

Co J”‘(U) by 

@(q)=inf 2 &G(H,), 
i= 1 
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where the infimum is taken over all Hi E U, Ai > 0, Cy=, Ai = 1, satisfying 
?I= Cy! I Ai?“]( By (iii)(a), @p(v) > a + (II, b), so that @: Coy”‘(U) -+ R. 
It is not hard to show that @ is convex. By choosing m = 1 it follows that 

G(H) > W”‘(W) for all HE U. 

On the other hand, J”‘(H) = CT=, A,J”‘(H,) implies in particular that 
H = CT=, AiHi, so that by (iii)(b) 

G(H) < @(J”‘(H)) for all HE U. 

Hence (iii) implies (i). I 

Remarks. 1. One can define the notion of polyconvexity with respect to 
an arbitrary set of Jacobians in the obvious way, and a modified version of 
Theorem 5.2 holds. 

2. Note that (iii)(a) is always satisfied if G is bounded below. When 
checking r-polyconvexity, only values of m < xi=, ni + 1 need be 
considered; this is a consequence of Caratheodory’s theorem (cf. [9]). 

THEOREM 5.3. Let G: U+ I? be polyconvex. Then G is quasiconvex. 

Proof: Write J = $‘I. Let u E Ck(Rp) be such that Vkv is a.p. and 
S(Vkv) c U. By Theorems 3.4, 4.1, 

M[J(Vkv)] = J(M[Vku]). 

By Jensen’s inequality, and the fact that any real-valued convex function is 
continuous, 

M[ G(Vkv)] = M[ @(J(Vkv))] 

1 
= lim - 

n-m m(A) I 
@(J(Vkv(nx))) dx 

A 

J(V”v(nx)) dx 

= @(A~[@v)]) = @(J(M[Vkv])) = G(A4[Vkv]). I 

Remark. The converse of Theorem 5.3 is false if k = 1 (cf. Morrey [28, 
p. 26; 3, p. 3611). 

Our main existence result, Theorem 5.5 below, is based on our weak 
continuity results and the following lower semicontinuity theorem. We use 
the notation R = R U {+a,}. 
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THEOREM 5.4. Let @: Q X (IF? X R”) + R satisfy the following 
properties : 

(i) @(., z, v): 51 --f R is measurable for every (z, v) E IRS x I?“, 

(ii) @(x, ., .): [Rs x IR” + R is continuous for almost all x E a, 

(iii) @(x, z, .): I? + R is convex for almost all x E Q and all z E R”. 

Let z(“‘, z:W -+ R be measurable functions such that z(“‘+ z almost 
everywhere (a.e.) and let v(“’ - v in (L ‘(Q)r as n + co. Suppose further 
that there exists o GL’(Q) such that 

@(x, Z(%), v’“‘(x)> > qQ>, 

for all n and almost all x E Q. Then 

@(XT z(x), v(x)> > 4(x> 

I 
@(x, z(x), v(x)) dx < !~IJ 

i 
@(x, Z@)(X), v’“‘(x)) du. (5.4) 

R *- R 

This theorem is essentially the same as that proved by Eisen [ 161, with the 
difference that we allow @ to take the value +a~. Related results have been 
given by Berkovitz [8], Cesari [ 10, 111 and Ekeland and TCmam [ 17, 
p. 2261. Although the proof is just a simple modification of Eisen’s, we 
include it for the convenience of the reader. 

Proof of Theorem 5.4. By considering @ - 4 we can suppose that 
@(x, z(“)(x), v’“‘(x)) > 0 and @(x, z(x), v(x)) > 0 almost everywhere. Clearly 
it suffices also to prove (5.4) for the case when 

lim 
1 

@(x, z(“)(x), v’“‘(x)) dx = a < co. 
n-co * 

We first claim that 

h(“)(x) %f @(x, z(‘)(x), v’“‘(x)) - @(x, z(x), v’“‘(x)) 

converges to zero in measure. Choose fixed representatives for z(“), z, v(“) 
and v. If our claim were false then there would exist E > 0, 6 > 0, and subse- 
quences z(~), v(‘) such that m(M,) > 6 for all ,u, where 

M, Ef {x E 0: ) @(x, z(‘)(x), vyx>> - qx, z(x), v’“‘(x))l > E, 
z(“)(x) + z(x) and @(x,.,.) is continuous}. 

Since v(“) -+ v in (L’(Q))“, and by (5.5), there exists K > 0 such that 

I 1 v(“)(x)I dx < K, 
I 

@(x, z(“)(x), V(~)(X)) dx < K 
n R 
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for all ,u, and thus m(N,) < 6/2, where 

N, Sf x E i-2: (lp’(x)( > 
i 

$ or @(x, z(‘)(x), P(x)) > y 
I 

. 

Let III; = M,,\N,. Thus m(M:) > 6/2 for all ,u. This implies, by the selection 
lemma of Eisen, that for a further subsequence M sf fi,, AIL is nonempty. If 
x E M then 

/ qx, zyx), tP’(x>) - @(x5 z(x), u’qx>>l > E, zyx) + z(x), 

and @(x, ., .) is continuous. Choosing a convergent subsequence &“ gives 
the contradiction. 

Extracting a subsequence from A(“), we may suppose that h(“) -+ 0 a.e. in 
R. By Mazur’s theorem, there exist convex combinations a”’ = C,“j ,$I(~), 
where only finitely many Ai are nonzero for each j, such that u(j)(x) --) v(x) 
a.e. in R as j --$ co. Since @(x, z(x), .) is convex, 

@(x, z(x), a”‘(x)) + F l;‘,h’“‘(x) < f rij, @(x, Z(“)(X), u’“‘(x)) (5.6) 
j i 

for almost all x E R and large enough j. Taking the l&rj, of (5.6), 
integrating over a, and applying Fatou’s lemma, we obtain (5.4). 1 

We now consider the problem of minimizing the functional 

Z(u) = 1 F(x, V’%(x)) dx 
‘R 

over a suitable class of admissible functions U. Roughly speaking, our 
hypotheses will be that F(x, ctk-“, .) is r-polyconvex for fixed x, crk- ‘I, and 
satisfies suitable growth conditions. 

We suppose, then, that F: 0 X Y-t R satisfies for some r, 1 < r <R, 

(Hl) there exists a function @: Q x pk-‘l X R”r+ R, where pk-” = 
Y( p, q, k - l), such that 

F(x, clk--ll, H) = 4p(x, cik-‘I, J”‘(H)) 

for almost all x E Q and all ctk-” E pk-ll, H E X. 

(5.8) 

(HZ) Qt.3 C’k-“,J):.+ A is measurable for every (c’~-“,J) E 
ylk- 11 x ~0; 
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(H3) @(x, ., a): Ylk-” x Rur+ A is continuous for almost all x E Q, 
(H4) @(x, c+“, a): Rur-+ rfi is convex for almost all x E s1 and for 

all &‘I E ylk-‘I, 

(H5) F(x, ctk-‘], H) > 4(x) + .C,(C;Z; I J’(H)/*’ + 41 J’(H)I)) 

for almost all x E R and for all (c ‘k-‘1 H) E Y, where Q E L’(Q), C, > 0 is 
constant, the exponents ai> 1 &atisfy a, > (r - l)p/(p + 1.) and 
l/a, + l/a, < 1 for 1 < i < r - 1, and where y/: F?’ -+ R is a convex function 
satisfying !P(t)/t -+ co as t + co. 

(Note that (Hl)-(H4) imply that F-(x, ?“, e): (J”])-‘E(x, c’~-“)+ R is 
r-polyconvex for almost all x E Q and all ?-‘I E Y1k-ll, where E(x, elk- ‘I) 
is the (possibly empty) convex open set on which @(x, c’~-‘], .) is finite, and 
that F(x, c ‘k-‘1 H) = + a3 if H & (PI)-’ E(x, c’~-“).) 

We suppose’ that Q is connected and that the boundary X’ of 0 is 
strongly Lipschitz; this implies that c?R forms a measure space with respect 
to (p - 1)-dimensional Hausdorff measure ,u, We require the admissible 
functions u to satisfy nonlinear boundary conditions on XX Let M be a 
positive integer, and let H: XJ x Ylk-” --t R”’ satisfy 

(Cl) H(.,c ‘k-‘J): ?X2 -+ R” is p-measurable for every c[~-” E Y’k-ll, 
(C2) H(x, .): Yfk-‘] -+ RM is continuous for p-almost all x E ;)a, 
(C3) There exist measurable subsets cXS’~ of Z’ with .D(aQi) > 0, 

1 < i < q, and a constant K > 0, such that if H(x, I?~-‘~) = 0 for some 
x E aQn. and c’~-” = (4) E YLk-“, then lcbl <K. I 

We define the set M’ of admissible functions by 

& = {u E II@,‘( I(U) < co and 
H(x, V’k-‘l~(~)) = 0 p-almost everywhere in afin). 

In the definition the derivatives V ‘k-‘l~ are understood in the sense of trace. 
We assume that ~6’ is nonempty. 

THEOREM 5.5. Under the above hypotheses I attains its minimum on s’. 

Proof. Let u(“’ be a minimizing sequence for I in M’. By (H5) 

j [ rg JJi(Vkdn)(x))I~ + Y(IS(Vku’.‘(x))[)] dx < c (5.9) R i=l 

for all n, where here and below C denotes a generic constant. In particular, 

IIV kU(“) /Ia, Q c. (5.10) 
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The Poincare inequality (compare (3.19)) 

and (C3) thus imply that 

By (5.9), (5.12) and standard results on Sobolev spaces, there exists a subse- 
quence ~6” such that as ,u + co, 

UC@’ - u, in w”*“l(Q), 

f(vkuW)) - pi, in(L”i(12))Ni, 2<i<r-1, 

J’(Vku’u’) - .I’, in (L ‘(J2))“r, 
vlk-~JUW + v[k-IIU, almost everywhere in R and X4. 

By Theorem 4.11, 

Ji, = Ji(VkU,), 2<i<r, 

and so 

J”yVkU’q - .P(Vku,) in (Z. ‘(.R))“r. 

Since 

Z(u”‘) = J @(x, v’k- W”‘(x), JyVw’(X))) dx, 
R 

we may apply Theorem 5.4 to deduce that 

Z(u,) < !irJ Z(zP’) = &l$Z(u). 
u-rm 

BY (C2), H(x, V tk-‘]~,(x)) = 0 p-almost everywhere in 30, and thus 
U, E M’ and Z(u,) = infUEdZ(u) as required. 1 

We illustrate some features of Theorem 5.5 by means of a simple example. 

EXAMPLE 5.6. Let k=2, p=2, q= 1. Let RcR* have strongly 
Lipschitz boundary an, and define 

Z(u) = j [ (1 + u*)(Au)~ + (u,,uYY - u:,,)*“‘] dx dy, 
n 
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where m > 2 is an integer. Let S? = {u E IY’*‘(~):Z(u) < co and 
u Ian = f a.e. in an}, wheref is a sufficiently smooth function. Then Z attains 
its minimum at some zi E &‘. This follows from Theorem 5.5 if we set 

@(a; 0, w, 2; 6) = (1 + aZ)(u + z)4 + P, 

and let r= 2, a, = 4, Y(l) = t2m. The coercivity condition (H5) follows from 
the estimate 

where 6 = u,, u,, - &. This example clearly shows the advantage of 
making the coercivity assumption on F rather than on cP, as was done in 
[3-51. The results of Meyers [27] imply that Z(u) is sequentially weakly 
lower semicontinuous on Wan”“, b t u are insufficient to establish the 
existence of C since it is not clear that a minimizing sequence for Z exists 
which is bounded in W234m(0). Note also that in the case m = 2 one can 
compute (d/dt) Z(zi + t$) JIzO for 4 E 8(Q) using Holder’s inequality and the 
dominated convergence theorem, but that for m > 2 this method fails, so that 
it is not obvious that k satisfies the Euler-Lagrange equation in the sense of 
distributions. 

We now briefly mention some ways in which Theorem 5.5 may be 
extended. 

1. Addition of Surface Integrals 

Let ~90 be sufficiently smooth, let I > k, and define 

i(u) = ( F(x, Vt%(x)) dx + 
1 

G(x, VI’- %(x), J’““(Vj u(x))) dp, 
R a0 

where Jt”l(Vfu(x)) denotes a complete set of Jacobians of Zth-order 
tangential (surface) derivatives of u, up to and including those of order m. If 
G(x, c[‘- “, a) is convex, and if G satisfies suitable continuity and growth 
conditions, then 1 attains its minimum subject to appropriate boundary 
conditions on 80. Further integrals over lower-dimensional manifolds can 
also be added and the existence of minimizers established using our methods. 
The details of these results are left to the reader. 

2. Weakened Growth Conditions 

For certain integrands F satisfying coercivity conditions which are not of 
polynomial type, a version of Theorem 5.5 can be proved in which the role 



166 BALL, CURRIE, AND OLVER 

of the spaces Z,r(a) is played by Orlicz spaces LA(G), where A denotes a 
suitable convex function, For the case of nonlinear elasticity, this was carried 
out in [ 31. The main step is to extend the sequential weak continuity results 
for the JS; to Orlicz-Sobolev spaces, using the imbedding theorems for these 
spaces. 

Another way to weaken the growth conditions on F is to define Jg(Vku) 
using its expression as a divergence (cf. (4.8)). We denote this distribution by 
G(V”u); it is defined inductively as follows. Let 01= (v,, I, ;...; v,, I,), 
K = (k, ,..., k,). If r = 1, then .&V”u) %f ui;,k,. If the Jacobians J of order 
r - 1 have been defined, then 

where a’ = (v,, I, ;...; vr, Z,), K(s) = (k, ,..., L, ,..., k,), provided that each 
product u;;~$,,(V”u) E Z&(Q). It is easily proved that $(Vku) if 
u E W’“*‘(LJ). Since Wk.*(Q) c w”-‘,‘(n), where l/iii = l/m - l/p, it is 
clear that J;(Vku) is well defined if u E w”*“(Q) and each .&,(Vku) E 
L’(Q), where l/S + l/m - l/p < 1. Since u E I@*“(Q) implies 
f&(Vku) E Lmic’-‘)(s2), it follows that J”,(V”u) is defined if m > rp/(p + 1). 
However, if Y > m > rp/(p + 1) and u E I@“‘(Q) it can happen .&Vku) f 
JS;(V”u); an example is given in [3]. The arguments used to prove 
Theorems 4.11, 5.5 show that 

I”(u) = I @(x, v Ik- “u(x), ?‘l’(V”u(x))) dx 
R 

attains its minimum on 2, where Jr), 2 are defined in the obvious way, 
provided @ satisfies (H2)-(H4), and provided the estimate 

qx 3 c[k-“,P’) > $(x) + co( ri I.q”-i + Y((IsI))) i=l 
holds, where 4, C,, Y are as in (H5), but where the Gi need satisfy only 

-&$+‘< 1, l<i<r. 
ai 

Unfortunately, it is known whether J’E(Vku) = Jg(Vku) a.e. if the former is a 
function, so that the meaning of the result is not clear. 

Certain J’; possess “better” identities than (4.8) which enable them to be 
defined as distributions under correspondingly weaker conditions on u. For 
example, ifp=2, q= 1, 

%x u,, - 4, = (4 UJXY - <t&x - (W,, (5.13) 
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has meaning as a distribution if u E W’**(R)! This distribution is sequen- 
tially weakly continuous from W*~“(.C?) + g’(0) for any s > 1. Each such 
identity can be used to weaken the growth conditions further, in the way 
described above. A complete solution to the problem of determining all those 
null Lagrangians possessing better identities can be found in [46]. 

3. Constraints 

A wide variety of constrained minimization problems can be handled by 
our methods. Of particular interest are pointwise constraints on the 
derivatives Vku. Suppose, for example, that L is a given null Lagrangian of 
order <r. Let 19 be a given measurable function, and let the hypotheses of 
Theorem 5.5 hold, with the exception that the inequality in (H5) is required 
to be satisfied only for x, c lk-‘] H such that L(H) = e(x). Then I attains its , 
minimum on 

s3f = (u E W”*‘(Ll): I(u) < co, H(x, V’k-‘l~(~)) = 0 p-a.e., 

L(Vk(i+))) = B(x) a.e.}, 

provided that J/ is nonempty. This follows using the sequential weak 
continuity of L. Arbitrary continuous constraints on lower order derivatives 
of u can be treated using compactness. 

By Theorems 3.3 and 5.3, the hypotheses of Theorem 5.5 imply that 
F(x, dk-ll, *) is /i-convex on the set (Jt’l))‘E(x, ctk-‘I). The stronger 
condition that F(x, ctk- ‘I, .) be strictly /l-convex has a connection with 
regularity of weak solutions to the Euler-Lagrange equations for I that we 
now describe. We first give a geometrical interpretation of elements of/i. 

LEMMA 5.1. Let ,a E Rp be nonzero, let a E IT?, and let K denote the 
hyperplane {x: (x, ,a) = a}. A function u E Ck-‘(lRP) exists satisfying 

Vku(x) = G if (x,lu> > a, 

=H if (x, lu) < a, 

where G, HE X, if and only if 

G-H=;lBkp (5.14) 

for some J E FT. 

Proof: Without loss of generality we take P to be a unit vector in the x1- 
direction and a = 0. If u exists with the properties stated then 
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ui = ,K;k & G&I?+ P’(x) if x’>O, 

= ,zzk AHkx” + P’(x) if x1 < 0, 

where Pi is a polynomial of degree k - 1. Therefore Gk = Hk unless 
K = (k, 0 ,..., 0), so that 

G-H=AiBke, 

as required. The converse is obvious. I 

Remark. The jump condition (5.14) still holds if 72 is replaced by a 
smooth surface with normal ,U at some point x,,, and if u is Ck-’ in a 
neighborhood of x,, with Vku continuous on either side of the surface and 
tending to limits G, H at x,,. 

For simplicity we consider a C’ integrand F: X+ R, so that 

Z(u) = 
I 

F(Vku(x)) dx. 
R 

The corresponding Euler-Lagrange equations are 

i 
n g (V”u(x)) 4,(x) dx = 0 for all 4 E g(0). (5.15) 

I 

It is easily shown that if R intersects n then a function u as in Lemma 5.7 
satisfies (5.15) if and only if 

(5.16) 

By multiplying (5.16) by IE’ it follows that if F is strictly A-convex then 
there are no nontrivial weak solutions u of the above type. Conversely, if 
every such weak solution is trivial and if, for example, F attains a local 
minimum at some H, E X, then the method of [6] shows that F is strictly A- 
convex. 

6. APPLICATIONS TO THEORIES OF ELASTIC MATERIALS 

Consider a material body which in a reference configuration occupies the 
bounded connected open set 53 c R3. We assume that X2 is strongly 
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Lipschitz. In a deformed configuration the particle with position vector 
x E Q moves to the point with position vector U(X) E R3. We are interested 
in those orientation-preserving deformations u that are invertible, so that 
interpenetration of matter does not occur. To ensure invertibility of u it 
would in general be necessary to consider self-contact effects, so that we 
content ourselves with the less stringent local invertibility condition 

det Vu(x) > 0 a.e. in Q. (6.1) 

The connection between (6.1) and global invertibility has been studied in the 
case of pure displacement boundary conditions in [7]. 

We begin by considering the classical case when the material is 
hyperelastic, so that there exists a stored-energy function W(x, VU). We 
consider a mixed displacement pure traction equilibrium boundary-value 
problem in which the external body force possesses a potential ~(x, u). We 
are required to minimize the total energy functional 

Z(u) $“I [ W(x, Vu(x)) + v(x, u(x))] dx 
n 

subject to the boundary condition 

4x> = g(x) for almost all x E aQ,, 

where g is a given measurable function and where %Q, c %2 with 
,n(LM?,) > 0. Let M 3x3 denote the space of real 3 X 3 matrices, and let 
M3X3={HEM3X3:detH>0}. Weassumethat l%‘~RXMy~+il?andthat + 

(Al) there exists a function @: 0 x R l9 --f R such that for almost all 
XEJ-2 

@(x, H, adj H, det H) = W(x, H) ifdetH>O, 

=+a3 otherwise. 

(A2) @(.,J): R + Ifi is measurable for every JE IR19, @(x, s): IR19+ w 
is convex and continuous for almost all x E R, 

(A3) W(x, H) > 4(x) + C,(l HI”’ + 1 adj HI”’ + Y(det H)) 

for almost all x E R and all HE My 3, where 4 E L’(B), C, > 0 is constant, 
a, > 2, a2 > a,/(a, + l), and where Y: (0, co)-+ R is a convex function 
satisfying Y(t)/t 4 co as t + co, 

(A4) Y:J2XW3--)R+ is measurable in x for all u E R3, and 
continuous in 2~ for almost all x E R. 

Note that by (Al), (A2), for almost all x E a 

W(x, H) -+ 0~) as det H+ Of. 
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Let .d = (U E W’*‘(Q): det Vu(x) > 0 a.e., Z(U) < co, U(X) = g(x) for 
almost all x E an,}. Applying Theorem 5.5 we immediately obtain 

THEOREM 6.1. Let J/ be nonempty. Then Z attains its minimum on LE9. 

This theorem is a slight variant of results in [3,4]; the reader is referred to 
these papers for existence theorems under different boundary conditions and 
for other refinements, including the case of incompressible elasticity. 

We next give a version of Theorem 6.1 whose hypotheses are slightly 
easier to verify. Let E = M3’ 3 x M3 ’ 3 X (0, oo). We introduce hypotheses 

(Al)’ there exists a function #: R x E -+ R such that for almost all 
XEl2 

@(x, H, adj H, det H) = W(x, H) if det H > 0. 

(A2)’ @(.,J): Q + R is measurable for every .ZE E, @(x, -): E --f R is 
convex for almost all x E a. 

THEOREM 6.2. Let (Al)‘, (A2)‘, (A3) and (A4) hold, and suppose 
further that the function Y in (A3) satisfies Y(t) --) a~ as t + O+. Let d be 
nonempty. Then Z attains its minimum on &. 

Proof: Let u(‘) be the minimizing subsequence constructed in the proof 
of Theorem 5.5. In particular we have det VU(‘)- det Vu in L’(J?). We 
claim that det Vu(x) > 0 a.e. If not then det Vu(x) > 0 for x E U, m(U) > 0. 
Since det VU(“) > 0 a.e. it follows that for a further subsequence 
det Vu(‘)(x)+ 0 a.e. on U. By (A3) and Fatou’s lemma, 
J* W(x, Vu(“‘(x)) dx -+ co, a contradiction. The result now follows by 
observing that in the proofs of Theorems 5.4, 5.5 the continuity of 
@(x, H,A, 8) is needed only for 6 > 0, and this follows by convexity. 1 

We now consider more general models of elastic behaviour in which 
couple-stresses occur; as a general reference see Toupin [43]. These models 
are relevant for certain materials with microstructure (e.g., liquid crystals), 
and have been discussed in connection with crack problems (e.g., Atkinson 
and Leppington [2]) and with surface effects in crystals (cf. Toupin and 
Gazis [44]). We begin by discussing the case of a Cosserat continuum, for 
which the stored-energy function W(x, d; Vu, Vd) depends additionally on a 
vector d = (d, ,..., dN) E R3“’ and its gradient. The directors di E R3 model the 
microstructure of the material. Frame-indifference imposes restrictions on the 
dependence of W on Vu, d and Vd, but these restrictions will not concern us 
here. The total energy function is 

Z(u, d) = 
1 

[ W(x, d(x), Vu(x), Vd(x)) + ~4x9 u(x), d(x))1 a% 
0 



NULL LAGRANGIANS 171 

where the body force potential can now depend on d. We seek a minimum 
for Z subject to the boundary conditions 

4x> = g(x) for almost all x E XJ 1, 

d(x) = h(x) for almost all x E aR,, 

where g, h are given and ~(30,) > 0, i = 1,2. Obviously, more complicated 
boundary conditions can be treated. Theorem 5.5 applies with k = 1, p = 3, 
q=3(N+l),andr=3.W 1 e eave it to the reader to write down the detailed 
hypotheses for this example: note that the polyconvexity hypothesis (H4) 
says that W(x, d, ., .) can be written as a convex function of the minors of 
the 3(N + 1) x 3 matrix V(i). The existence of a minimizer for Z subject to 
pointwise constraints on these minors can also be established (cf. the 
remarks after Theorem 5.5). 

The equilibrium equations for liquid crystals (cf. Ericksen [ 181) are a 
special case of those for a Cosserat continuum, but the hypotheses above 
cannot hold due to the special form of W. We can still apply Theorem 5.5, 
however, if we formulate the minimization problem in spatial coordinates as 
is customary in liquid’crystal theory. The functional to be minimized is then 

Z(d) = j- [ VW), Vd(x)) + w(x, d(x))] dx, 
D 

where J2 is a spatial region ocupied by the fluid, d E R3 is a vector 
describing the shape and orientation of the liquid crystal molecules, W is the 
free energy, and w is the body force potential. We have assumed that the 
fluid has constant density. It is usually assumed also that d is a unit vector, 
so that 

Id( = 1 a.e. in 9. (6.2) 

With or without this constraint, Theorem 5.5 and its subsequent remarks 
apply (with similar hypotheses to the case of classical hyperelasticity) and 
establish the existence of minimizers for Z under various boundary 
conditions. For remarks on equilibrium solutions of ‘infinite energy’ in liquid 
crystal theory see Dafermos [ 121. 

We now turn to the case of “elastic materials of grade N.” Here the 
functional to be minimized is 

Z(u) = J [ W(x, Vu(x),..., V%(x)) + ~(x, u(x), Vu(x),..., VN-‘U(X))] dx, 
R 

where W is the stored energy function and v/ the potential of the body forces, 
couples etc. In this case the full strength of Theorem 5.5 is used (with k = N, 
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p = q = 3, 1 < r < 3), the conclusion being the existence of minimizers for I 
under a wide variety of nonlinear boundary condition on V’+“U. (For an 
idea of the kinds of boundary condition that might be interesting see Toupin 
[43] and Antman [ 1, p. 6751.) Note that there is no convexity assumption on 
the behaviour of W with respect to the derivatives V’u with 1 <j < N- 1. 
Thus materials of grade N > 1 provide a useful regularization for classical 
hyperelastic materials which do not satisfy the Legendre-Hadamard 
condition (e.g., elastic crystals, see Ericksen [20]); by adding to W(x, Vu(x)) 
a suitable polyconvex term EE(V~U(X)), E > 0 small, and choosing N as large 
as we wish, we obtain the existence of minimizers of, the desired smoothness 
for a nearby material of grade N. Note also that if N = 2 the hypotheses of 
Theorem 5.5 are consistent with W blowing up both as det Vu(x) and as 
various curvatures tend to limiting values, since, for example, the Gaussian 
curvature of a surface parallel to the (x1, x2)-plane in the reference 
configuration depends on V*u only through the second order Jacobians 
a(uf, , g2)/a(x’, x2) and these Jacobians appear linearly. 

Surface energy terms can be added to Z(U) in all the cases discused above, 
and the existence of minimizers proved as explained in the remarks after 
Theorem 5.5. For the relevant continuum mechanics and other remarks see 
Gurtin and Murdoch [22, 231. With an appropriate identification of variables 
Theorem 5.5 can also be applied to various nonlinear rod and shell theories. 
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