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A study is made of a class of singular solutions to the equations of nonlinear elasto-
statics in which a spherical cavity forms at the centre of a ball of isotropic material
placed in tension by means of given surface tractions or displacements. The existence
of such solutions depends on the growth properties of the stored-energy function W
for large strains and is consistent with strong ellipticity of W.
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Under appropriate hypotheses it is shown that a singular solution bifurcates from
a trivial (homogeneous) solution at a critical value of the surface traction or dis-
placement, at which the trivial solution becomes unstable. For incompressible
materials both the singular solution and the critical surface traction are given
explicitly, and the stability of all solutions with respect to radial motion is deter-
mined. For compressible materials the existence of singular solutions is proved for
a class of strongly elliptic materials by means of the direct method of the calculus
of variations, an important step in the analysis being to show that the only radial
equilibrium solutions without cavities are homogeneous.

Work of Gent & Lindley (1958) shows that the critical surface tractions obtained
agree with those observed in the internal rupture of rubber.

1. INTRODUCTION

In this paper we investigate a class of singular solutions to the equations of nonlinear elasticity
in which a hole forms in the interior of an elastic body in a state of tension. In view of the
terminology commonly used in the special case of an elastic fluid it is natural to refer to this
phenomenon of hole formation as cavitation.

Consider a homogeneous elastic body having stored-energy function W with respect to a
reference configuration in which the body occupies the open subset 2 of R*. (Here n is the
space dimension, and we shall usually suppose that » > 1. By considering the case of general
n we are able both to treat the cases » = 2 and » = 3 simultaneously, and to see explicitly
how n enters various formulae.) In a typical deformation in which the particle at X e Q is
displaced to ¥(X) € R the total stored energy is given by

E@:meumx (1.1)

The equilibrium equations of nonlinear elasticity with zero body force are the Euler-Lagrange

equations for (1.1), namely
LN L0 0) B e
We say that x(- ) is a weak equilibrium solution if (1.2) holds in the sense of distributions (for the
precise definition see §4); this is a way of stating the principle of virtual work, and under
quite general conditions (cf. Antman & Osborn 1979) it is equivalent to requiring that the
resultant force on almost every sub-body vanishes.

In general a weak equilibrium solution may possess singularities, even if W is smooth. A
central problem in nonlinear elasticity is to understand how various hypotheses on W affect
the existence and nature of possible singularities of weak equilibrium solutions. For example,
one possible singularity is that in which the deformation gradient Vx jumps across a smooth
(n—1)-dimensional surface, x being smooth elsewhere. It was shown in Ball (1980) that every
weak equilibrium solution of this type is C* (i.e. the jump in Vx across the surface is zero) if
and only if W is strictly rank 1 convex. Strict rank 1 convexity is defined in §3; for present
purposes it suffices to say that it is almost equivalent to the strong ellipticity condition

W (F)
OF}0F}
for all Fe M%?*™ and all non-zero a, b € R*, where M%*" denotes the set of real n x n matrices
with positive determinant. For elastic crystals symmetry considerations show that W cannot

atbyaiby > 0 (1.3)
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be strongly elliptic, and indeed in the phenomenon of twinning we observe singular solutions
of the type described (for discussions of this see Ericksen (1977), Nadai (1950)).

The type of singularity that concerns us in connection with cavitation is that in which x is
discontinuous at a point. Whether or not such a singularity can occur depends on the rate of
growth of W(F) for large |F|. For example, let us agree to call an elastic material strong if

W(F) > C(|Flp+1) forall FeMmx™, (1.4)

for some p > n. Then any x with E(x) < oo belongs to the Sobolev space Wt?(2; R*)1 and
by the Sobolev imbedding theorem is continuous, so that no type of fracture can occur.
(Implications of (1.4) for invertibility of x(-) are discussed in Ball (19814).) A condition
slightly weaker than (1.4) is that

W(F)/|F|* > as |F| - oo, (1.5)

It was shown in Ball (19775, 1978) that (1.5) admits of the interpretation that it fails if and
only if an infinitesimal z-cube of material may be homogeneously deformed with finite stored
energy so as to have unit diameter. To find cavitation solutions of finite energy, then, we should
look in the class of stored-energy functions for which (1.5) fails.

The solutions with cavities that we construct correspond to radial deformations of a ball of
homogeneous isotropic material under prescribed radial displacements or surface forces. For
Q = {XeRr:|X| < 1}, n > 1, these deformations have the form

r(R)

x(X) = 13

X, (1.6)
where R = |X|. Since the material is isotropic W (F) can be expressed as a symmetric function
b(vy, ..., v,) of the eigenvalues v; of (FTF)}. For an incompressible material the only kinematic-
ally admissible deformations of the form (1.6) are given by

™ = Rr 4 A4, (1.7)

where 4 > 0 is the cavity radius, and we may ask if x(- ) given by (1.6) is then a weak equili-
brium solution (for an incompressible material (1.2) must be modified to take account of the
arbitrary hydrostatic pressure). For a compressible material r has to satisfy (cf. theorem 4.2)
the radial equilibrium equation

d(R"1®,)/dR = (n—1) R*2,, (1.8)
where @; = 0D(r'(R),r(R)/R, ...,7(R)/R)/%,, and the problem is essentially to prove the
existence of solutions to this equation such that r(0) > 0.

We now describe the principal results and implications of our analysis, starting with the

incompressible case. We show (theorem 4.3) that if 4 > 0 then (1.7) generates a weak equili-
brium solution if and only if

-1 dd(v)
(»—1)2 do

where &(v) = (v, v, ...,v). We then show (§5.1) that (1.9) can hold for strongly elliptic
stored-energy functions, and that then the deformation may or may not have finite energy.

€ L'(d,00) for & > 1, (1.9)

1 Provided Vx(X) in (1.1) is interpreted in the sense of distributions, other interpretations might be relevant
for a complete description of fracture.
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In particular, strong ellipticity does not imply the regularity of weak equilibrium solutions. A complete
analysis is given (§5.2) of the radial dead-load traction problem in which the radial component
P of the Piola—Kirchhoff stress at R = 1 is specified. It is found that when (1.9) holds (1.7)
generates a weak solution of the dead-load traction problem for any A > 0, and that to make
the problem determinate it is necessary to specify in addition the value of the Cauchy stress
T(0) = limp .4, T(R) on the cavity surface. With the choice 7°(0) = 0 (the natural boundary
condition for the variational problem) the solutions with cavities (4 > 0) bifurcate from the
trivial solution 4 = 0 at a critical value P, of P given by

© 1 dd(v
P, = L vn_l—a()—ldv. (1.10)

If the Baker-Ericksen inequalities holdt then the bifurcation at P = P, is locally to the right.
Similar conclusions are reached for the Cauchy traction problem in which the radial component
P of the Cauchy stress at R = 1 is specified. The value of P, is the same, but if the Baker-
Ericksen inequalities hold then the bifurcation is (globally) to the left. For both traction
problems we determine (§5.4) the stability of the various equilibrium solutions with respect to
radial motions satisfying the equations of nonlinear elastodynamics. This part of our analysis
generalizes the classical theory of Lord Rayleigh (1917) for collapse of a bubble in an elastic
fluid, and is our closest approach to the theory of cavitation in fluids. We study the initiation
of cavitation, cavity collapse and rebounds; in particular we show that when P > P, the
initial value problem for 7(R, ¢) in which 7(R, 0) = R, #(R, 0) = 0 has two distinct solutions
with the same energy, namely the trivial solution 7(R, t) = R and a solution corresponding
to formation of a cavity from zero initial radius. The results are illustrated by specific examples,
including that of a neo-Hookean material for which P,; is evaluated and for which the bifur-
cation diagrams and dynamic phase portraits are given.

The analysis of cavitation for compressible materials is more difficult, since it involves studying
the ordinary differential equation (1.8), which is singular as R -~ 0+. We begin in §6 by
giving various theorems guaranteeing that the only solutions of (1.8) with (0) = 0 are trivial;
i.e. they have the form r(R) = AR for some A > 0. The hypotheses of these theorems are
satisfied by many strongly elliptic stored-energy functions of practical interest, but we show by
means of an example (having infinite energy) that strong ellipticity is not by itself sufficient for
all solutions without holes to be trivial. The methods of §6 use a variety of devices from the
theory of ordinary differential equations and the calculus of variations.

In §7 we study cavitation for a class of stored-energy functions of the form

Doy, ..., v,) = é $(0;) +h(v,0g...0,), (1.11)

where ¢ and % are convex functions satisfying suitable growth conditions. We consider first the
displacement boundary value problem in which (1) = A > 0 is specified. We show using
the direct method of the calculus of variations that a minimizer of £ in the class of radial
deformations exists for this problem (theorem 7.1), that is satisfies (1.8) for R > 0, and that if
7(0) > 0 then the natural boundary condition 7°(0) = 0 holds (theorem 7.3). We then show
(theorem 17.7) that for A sufficiently large any minimizer satisfies r(0) > 0, but (theorem 7.8)
that if A corresponds to a compression then 7(R) = AR is the unique minimizer. Similar results

1 These inequalities are proved in proposition 3.1 to be a consequence of strict rank 1 convexity.
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(theorems 7.2-7.8) hold for the dead-load traction problem. In §7.5 the bifurcation of equili-
brium solutions with cavities from the trivial solution is analysed under additional hypotheses
on ¢. For the displacement boundary value problem an equation for the bifurcation point Aer
is derived, and it is shown (theorem 7.9) that for A > A there is a unique radial minimizer
7, of E with 7,(0) > 0 and that r, is the only non-trivial radial equilibrium solution. An
explicit formula is given relating r, and 7, for A > 4 > A,. The trivial solution r = AR is
stable (for the definition see §7.5) if A < A, and unstable if A > A, while if A > A, then
7, is stable. For the dead-load and Cauchy traction problems similar but less complete infor-
mation is obtained ; ifr = Ris a natural state of the material and the Baker-Ericksen inequalities
hold then the critical dead load P.; exceeds the critical Cauchy traction P*. The results are
applied in §7.6 to the special case when ¢(v) = puv? (a compressible version of the neo-Hookean
material) and when z > 3 the values of A, P,, and P* are given in a more explicit form.
The results of §5 for the neo-Hookean material are obtained in the limit of zero compressibility.
For n = 2 an equilibrium solution with r(0) > 0 having infinite energy is constructed; by
proposition 7.11 such a solution necessarily satisfies 7°(0) = — oo,

For an incompressible material the formula (1.10) for P,, was first obtained in a somewhat
different form and in a different context by Bishop ¢t al. (1945). They conducted experiments
on the indentation of copper by a cylindrical punch with a conical head, and observed that the
load on the punch rose to a maximum as penetration increased. They gave arguments suggesting
that the maximum punch load for a ductile material could be estimated in terms of the pressures
that, when applied to the surface of a small cylindrical or spherical hole, will expand the hole
indefinitely. They calculated these pressures under the assumption that the material was elasto-
plastic, and incompressible in the plastic region. When the yield strength of the material is
set equal to zero these pressures turn out to be the same as P, for n = 2, 3 respectively.

The formula (1.10) was also obtained for two special materials in a beautiful paper by
Gent & Lindley (1958). Following earlier experimental work of Yerzley (1939), Gent &
Lindley conducted experiments on internal rupture in rubber in which thin vulcanized rubber
cylinders were bonded to plane metal end-pieces and placed in tension. Internal flaws appeared
at a well defined, and comparatively small, tensile load. Gent & Lindley observed that for
thin cylinders the stress in the centre of the test-piece is given approximately by a negative
hydrostatic pressure equal to the applied tensile stress. They proposed a simple prescription
for calculating the critical tensile stress P,. Suppose that the test-piece initially contains an
extremely small spherical cavity, ‘sufficiently small for the region around it to be treated as
an infinitely thick spherical shell’. Assuming the cavity surface to be stress-free, calculate the
dead-load traction P, at infinity needed to expand the cavity indefinitely. It turns out that
P, = P,;; the reason for this is explained in §8. Further experiments along these lines are
described and analysed by Lindsey (1967).

The equilibrium solutions with cavities described in this paper can be viewed as providing
examples of irregular weak solutions to strongly elliptic systems. After work of De Giorgi
(1968) on linear elliptic systems with bounded measurable coefficients, Giusti & Miranda
(1968) and Maz’ya (1968) were the first to exhibit discontinuous solutions to strongly elliptic
systems. Since then many other examples of irregular solutions have been given; good sum-
maries of the literature are given by Giaquinta (1981) and Hildebrandt (1980). These examples
do not apply directly to nonlinear elasticity, however, since they all assume that the integrand
in (1.1) is convex in Vx, a condition well known to be physically unacceptable for compressible
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materials (a summary of the reasons and references are given in Ball (19774)); furthermore,
they usually assume that the integrand depends explicitly on x (an exception is the example of
Necas (1977), but in this case the dimensions are inappropriate for elasticity). Nevertheless,
these examples partly motivated this paper on account of their resemblance to hole formation.
An attempt to relate De Giorgi’s counterexample to linear elasticity has been made by Podio
Guidugli (1977).

The analysis of this paper depends crucially on the behaviour of W (F) for arbitrarily large
|F|; it would seem that any continuum theory of mechanics that attempts to model cavitation
must make hypotheses on the material behaviour for arbitrarily large values of the deformation
gradient. On the other hand, measurements designed to determine W are customarily made in
statics prior to fracture, often in deformations supposed in gdvance to be homogeneous, when
values of |F| outside a finite range are not observed. Thus it is difficult to obtain evidence for
what we should assume about W(F) for large |F|. One should be cautious not to conclude too
hastily that a material fails to be elastic outside the range of F observed in homogeneous static
deformations, since the fact that a particular F is not observed may be due to an instability
(such as cavitation!). In view of these uncertainties it is reassuring that a formula such as
(1.10) is insensitive to changes in W(F) for large F, provided it is assumed, say, that
|dd(v)/dv| < C(|v|*+1), where C > 0 and « < n—1. In this connection Gent & Lindley
noted that two different models of rubber used by them gave rise to similar values of Per.

Preliminary announcements of some of the results of this paper were made in Ball (1980,
1981a-c).

2. NOTATION

In this paper we work in n-dimensional real Euclidean space R®, n > 1. The interesting
cases for applications are n = 1, 2 and 3. Let M™*» denote the set of real n x n matrices, and
write M"*" = {Fe Mmxn: det F > 0}. We denote by SO(n) the special orthogonal group on
R™.

We make extensive use of standard results concerning Sobolev spaces (cf. Adams 1975). If
E c Rrisopen,m > 1,1 < p < oo, we denote by L?(E; R™) the Banach space of (equivalence
classes of) mappings u: E - R™ such that |u|,, < oo, where

([ uxpax]™, 1<p <o,

ess sup |u(X)|, p = .
XeE

lullp =

The corresponding Sobolev space W?(E; R™) is the Banach space consisting of those
u € L»(E; R™) such that |«|, , < o, where

def
1,0 = [4llp+1Vellps

|

and where the gradient Vu:E — R*™ is understood in the sense of distributions. We write
I?»(E) = L?(E; R), WL?(E) = WLp(E;R). If re{0,1,...} U {00} then C"(E; R™) denotes
the space of r-times continuously differentiable functions on E with values in R™. We define
Cr(E; R™) to be the space of functions u € C"(E; R™) which are restrictions of functions in
C7(R*; R™), and Cg(E; R™) to be the space of functions « € C*(E; R™) with compact support
contained in E. We write C"(E; R) = C"(E) etc.
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We denote by o7 r-dimensional (Hausdorff) measure. We write $7~! for the unit sphere

{X e R*:|X| = 1}. We use the notation R = RU {+00}. We denote by C, C; generic constants
whose values may vary from line to line.

3. STORED-ENERGY FUNCTIONS AND ISOTROPY

We are concerned with a homogeneous elastic body having stored-energy function W: M?*" — R.
The function W is defined with respect to a fixed reference configuration in which the body
occupies the bounded open subset £ < R”. The significance of W is that the total elastic
energy stored in a deformation x:2 — R is given by

E(x) = f W(VH(X)dX. (3.1)
Frame-indifference requires that
W(QF) = W(F) forall Fe M?*" Q e SO(n). (3.2)
We say that W is isotropic if in addition
W(F) = W(FQ) forall Fe M?*" @ eSO(n). (3.3)

It is well known (see Truesdell & Noll 1965, pp. 28, 317) that W is isotropic if and only if
there exists a symmetric function
D:RY, >R, Ry, ={c=(¢,..,¢,) ER":¢; >0 for 1 <7< n},

such that W(F) = &(vy,...,v,) forall FeM}*", (3.4)

where vy, ..., v, denote the singular values (or principal stretches) of F' (i.e. the eigenvalues of

(FTF)}). It is known (Ball 1982) that W e C"(M?%*™) if and only if @ € C*(R?,),r = 0, 1, 2 or 0.

We write @ ; = 0®/dv,, etc.

The stored-energy function W is said to be rank 1 convex if and only if the inequality

W(F+(1-t)G) < tW(F)+(1-t) W(G) (3.5)

holds for all ¢e (0, 1) and all F, G e M%?*" such that F—G = a ® b # 0 for some a, b € R",
and strictly rank 1 convex if strict inequality holds in (3.5). If W e C?(M%}*™) then W isrank 1
convex if and only if the Legendre—-Hadamard condition holds, i.e.

RWF) . .

W a bad’bﬂ > 0 (3.6)
for all Fe M?*™ and all a, b € R™. If W e C3(M%}*") is strongly elliptic, i.e.

CW(F) . .

W a baafbﬂ >0 (37)

for all F e M}*" and all non-zero a, b € R®, then W is strictly rank 1 convex, but the converse
is false.

ProrosiTiON 3.1. Let W e CY(M%*™) be strictly rank 1 convex and isotropic. Then (a) (the tension—
extension property) @ ; = D ;(vy, ..., v,) is a strictly increasing function of v; for fixed vy, ..., v; 4,
Vgi1 - U3 () (the Baker-Ericksen inequalities) if i # j and v, # v; then

(P, —v;9D,;)/(v;—v;) > 0. (3.8)
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Proof. If W is strictly rank 1 convex then dW (F+ta ® b)/dt is a strictly increasing function
of ¢t whenever a ® b # 0. Set F = diag (vy, ...,7,), @ = b = ¢;, where ¢, = (8;;)}; is the ith
basis vector. Then W(F+ta ® b) = P(vq, ..o, ¥4, v+, V541, -+ o5 ¥,) S0 that (a) holds.

To prove (b) we assume without loss of generality that i = 1, j = 2. It is easily seen that
for fixed vs, ..., v, the function W(G) = ®(A,, Ay, vy, ..., v,), where A;, A, denote the singular
values of G, is a strictly rank 1 convex function belonging to C*(M?3%*?). Hence we may and
shall also assume that n = 2. For given #; > 0, 4, > 0, 4, # u,, let

w0
| F(t)-—[t uzJ, t>0.
2 2
T _ Ui+ tuy
Then FT({)F(t) = [ - ug]’
and so the singular values v,(¢), v,(¢) of F(¢) satisfy
v1(8)va(t) = wyuy, 03(8) +03(8) = wi+uf+ 22 (3.9)

Hence AW (F(t))/dt = D 10,(t) + D 4 05(2)

= t[v,(8) D,1—,(8) D]/ [v}(2) — v3(2)].
Since by hypothesis dW (F(¢))/dt is strictly increasing it follows that
[02(8) B 1~ 0a() B 1 /[03(6) —B()] > O for ¢ 0.
But given any v; > 0, v, > 0, v, # v,, we can find u;, u, and ¢ > 0 such that (3.9) holds.

Hence (1,D,1=0,D )/ (v,—v5) > 0
as required.

Note that in proposition 3.1 we do not assume that W e C*(M}*™), nor that W is strongly
elliptic. Note also that the same proof establishes that if W is rank 1 convex then each @ ; is
non-decreasing and the weakened Baker—Ericksen inequalities

0D, —v;D ;) (v;—vy) =0, ©+#7], v;%# vy (3.10)
hold. For a proof that strong ellipticity implies (3.8) see Hayes (1969). For » = 2 necessary
and sufficient conditions for W to be strongly elliptic, in terms of @, have been given by Knowles

& Sternberg (1978) (see also Aubert & Tahraoui 1980, Hill 1979).
The Piola—Kirchhoff stress tensor T (F) is defined for W e CY(M%*™) by

Ty(F) = oW (F)/0OF.
If W e CYM*") is isotropic and if F = diag (vy, ..., v,,), v; > 0, then

TR(F) = diag (D4, ..., D ,),
where @ ; = D ; (vy, ..., Uy).

The Cauchy stress tensor T(F) is related to Ty(F) through the formula
T(F) = (detF)-' Ty (F)FT.
We now consider incompressible elasticity, in which the deformation x is subjected to the point-

wise constraint det Vx(X) = 1.

In accordance with this constraint we consider a homogeneous incompressible material with

stored-energy function W:M7*"™ — R, where M{“"‘d=ef {Fe Mrn:det F = 1}, Any such W

may be extended to the whole of M}*™; for example, we can set

WF) & W((det F)-/nF), Fe ML*™, (3.11)
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and then W e Cr(Mp*") if and only if We Cr(M1*™). We therefore assume from now on that
W:M$*" -~ R. We say that W is_frame-indifferent if

W(QF) = W(F) forall FeM*", @QeSO(n), (3.12)
and zsotropic if in addition
W(F) = W(FQ) forall FeMy*", @QeSO(n). (3.13)

It is well known that W is isotropic if and only if there exists a symmetric function

D: K-> R, K o fc = (cyy .0y 6n) ERYL;  €165...¢, = 1}

such that W(F) = vy, ...,v,) forall Fe Mp*". (3.14)

0 Un

We may and shall also assume that @ is defined on the whole of R% , in such a way that (3.14)

holds for all F e M%*" (for example, W defined by (3.11) is isotropic in the sense of (3.3).)
We say that W is rank 1 convex if (3.5) holds for all ¢ € (0, 1) and all F, G € M{*" such that

F—G =a® b # 0 for some a, b € R*. The fact that the function H > det H is rank 1 affine

(i.e. +det H are rank 1 convex) implies that any such a, b satisfy {(adj G)T,a ® b) = 0,

where (4, B) i (ATB) and adj G is the transposed matrix of cofactors of G, and that

tF+(1—1)Ge MyP*™for te (0, 1). Strict rank 1 convexity is defined analogously. If W e C2(M%}*")
then W is rank 1 convex if and only if the Legendre-Hadamard condition holds in the form

*W(F)
OF; 0F}
for all Fe M}*™ and all a, b € R” such that {(adj F)T,a ® b) = 0. If W € C3(M%}*") is strongly
elliptic, i.e. (3.7) holds for all F € M{**" and all non-zero a, b € R*such that {(adj F)T,a ® b) = 0,
then W is strictly rank 1 convex, but the converse is false. The tension-extension property is
not meaningful for incompressible materials, but the same proof as in proposition 3.1 shows
that for an incompressible isotropic material the Baker—Ericksen inequalities (resp. (3.10))
hold if W e C*(M*™) is strictly rank 1 convex (resp. rank 1 convex). Note that the Baker-
Ericksen inequalities take the same form for any extension of @ to RY} ,, since v;P,—v,D; is a
surface derivative on K™.
In incompressible elasticity the Piola—Kirchhoff extra stress tensor TH(F) is defined for W e C!

(M) by TX(F) = OW(F)/oF, Fe Mpx»,

a'b,aiby > 0 (3.15)

The corresponding Cauchy extra stress tensor is given by
T*(F) = T§(F)FT, Fe My*".
The Cauchy stress tensor 7 is then given by
T = —pl+ T*(F), (3.16)
where p is an arbitrary hydrostatic pressure, and the Piola-Kirchhoff stress tensor Ty by
Ty = —pF-T+ T{(F). (3.17)

The pressure p in (3.16), (3.17) depends on the choice of the extension of W to M}*", but the
form of (3.16), (3.17) is independent of the extension; to see the latter note that since

d(det F)/oF = (adj F)T,

41 Vol. 306. A
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the expression (OW(F)/0F, G), Fe M}*",

depends only on surface derivatives of W on M} *"™ whenever

((adj F)'f, Gy = o.

Now write b= q+ aa?‘/’ F >
so that T = —¢1 +TR(F),
where TR(F) o E)W 1 E)F’ F> F-T,

But for any H € Mnxn,

(TulF), Hy = %2—’ H-LFn, myF),

Since <(adj P, H—-:«l (F-r, HY F> _0, FeMmn

YA'R(F ) depends only on surface derivatives.

4, RADIAL DEFORMATIONS AND WEAK SOLUTIONS
det

Let B,

form

{XeR:|X| < p}, BE B,. We consider radial deformations x:B - R* of the

*(X) = (R)

X, R=|X| (4.1)
Clearly |r(R)| = |x(X)|. We sometimes abbreviate (4.1) by writing R - r(R).

LemMA 4.1, Letn > 1. Let 1 < p < o0 and let x be given by (4.1). Then x € WL?(B; R*) if and
only if r(+) is absolutely continuous on (0, 1) and

f 1Rn—1[|r'(ze)]p+ r(—g)-lp]dR < . (4.2)
0
In this case the weak derivatives of x(- ) are given by

Vi(X) = ’(R) 1+X ® X[Rr (R)-r(R)], ae. XeB. (4.3)

Proof. Let x € WL2(B; R"). Since |r(R)| = |x(X)|,
f: Rr1r(R)|PdR = CJB %(X)[PdX < oo,
and so r € L).(0, 1). Extend x by zero outside B. Let p(X) be a symmetric mollifier, i.e.
pX) = p(R), peC(Y), | p(X)dX = 1,p > 0, suppp < B,
and define p,(X) = e"p(X/e). Then x, & P * x is smooth and

xe(X)=fR (X—2) IIZZIDZdZ
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is parallel to X, so that

xs(X) = rs‘(lf) Xa X # 0,

for some function r, € C*(0, 1). Then

Vi) = 4R, X O X

[Rre(R) —r(R)], (4.4)

and hence

195,8) V()P = {ii(R) —ry(R) 12+ (n 1) [ BN AE (4.5)

Let 0 < R, < R, < 1. Since x, > x in W-?(Bp \Bp ; R"),

R, - 2\p/2

lim R"—l{[r;(R)—*r;(R)]2+(n—1) [M] },, dR = 0
€,8—0J R,

and hence 7, is a Cauchy sequence in W'?(R,, R,). Hence r, > r in W¥P(R,, R,) and 7 is

absolutely continuous. Also

f R”—l{[r(R)]2+( _1) [’(R)]} dR = C Vx(X)|PdX,

Br,\Bm,
from which (4.2) follows. Passing to the limit in (4.4) we obtain (4.3).
Conversely, let r(+) be absolutely continuous on (0, 1) and satisfy (4.2). Then clearly
x € L?(B; R*). Let p be a mollifier on R, let p,(¢) = ¢~'p(¢/€), extend r by zero outside (0, 1),
and define 7, = p, * 1, x,(X) = [r.(R)/R] X. By (4.5) we see that Vx,is a Cauchy sequence in
L?(Bg \Bg,; R*") and hence that x, - x in W' ?(Bg \Bg ; R*). Furthermore

f V2(X)[PdX < oo.
B

To prove that x € W?(B; R*) we must also check that the x¢ , are the weak derivatives of x
in B. To this end let / be a smooth function satisfying #(R) = 1 for R > 1, A(R) = OforR < }
Let ¢ € C?(B) and define ¢ (X) = A(R/e) $(X). Clearly yr, € C¥(B\B,,) and thus

f xiwe,adX = —f xi,awedX) (4'6)
B B
where £, denotes 0f/0X*. But

[ %@ trax] -

Be ' €
< C1+e) feR"—llr(R)ldR
0
Ot +e) [ R=2ir(B)|dR,
0
which tends to zero as ¢ - 0. Similarly

lim
e—0

[ #utp-vaax = o

Thus by (4.6) I xg ,dX = —f xt L pdX
B B

as required.



568 J. M. BALL

If » = 1, any radial deformation ¥ € W' ?(B) is continuous, so that 7(0) = 0. For n > 1,
however, lemma 4.1 guarantees the existence of radial deformations x € W ?(B; R*) with
7(0) > 0. We now examine under what conditions radial deformations (in particular those
with 7(0) > 0) can be weak solutions of the equilibrium equations of nonlinear elasticity.
Because we are not interested here in deformations corresponding to eversiont or in which
there is interpenetration of matter we shall only consider radial deformations with 7(R) > 0
for all Re [0, 1].

We consider a homogeneous isotropic elastic body occupying B in a reference configuration,
and with corresponding stored-energy function W e C'(M"*™). We suppose that there are no
applied body forces. We say that a deformation x € WL1(B; R*) is a weak equilibrium solution
if det Va(X) > O a.e. X € B, 0W(Vx(+))/0F € L}(B; R"*), and

f w ¢t ,dX =0 forall ¢eCy(B; R (4.7)
B d xi,a ,0 0 ’ . .
Our definition is that appropriate for a displacement boundary value problem; the necessary
modifications for traction boundary conditions are discussed in §7.

THEOREM 4.2. Let n > 1. Let x€ WH1(B; R™), x(X) = [r(R)/R] X, be a radial deformation.
Then x is a weak equilibrium solution if and only if r'(R) > 0 a.e. R € (0, 1), R*1®,(R), R*1®,(R) €
L1(0, 1) and

R, (R) = (n—1) pr"—%bg(p) dp +const., a.e. Re(0,1), (4.8)
where O (R) = B,4(0y(R), ..., 1a(R))
and n(R) =1'(R), v;(R) =7(R)/R for j=2,..,n

Proof. Let § = {XeR*:} < |X| < 3}. There is a one:one correspondence between func-
tions ¢ € C*(B\{0}; R") and functions ¥ € C*((0, 1) x§; R*) given by the formulae

Y(R, Y) = $(RY/|Y]), (4.9)
$(X) = ¢ (|X], X/ X])s (4.10)
and we have that %Y’f; = %% Y“+R}-g%‘ (8] -Y7Y,), (4.11)

where R = |X|, Y = X/|X|.
By lemma 4.1, or by formally setting ¢ = x in (4.11), we have that

%, = r(R) YiYa+f%9 (8- YiT,).

Let Q = Q(Y) € SO(n) with Q¢; = Y, ¢, = (1,0, ..., 0). Then

Q diag (1(R), .-, (R)) @7 = @ty ® (1@ + 717 Qey @ Q"
= Va.
In particular det Vx(X) = #'(r/R)"1, and since r > 0 it follows that det Vx(X) > Oa.e. Xe B
if and only if #'(R) > O a.e. R € (0, 1), and in this case, by the isotropy of W,

OW (Vx)
oxt ,

= (Q diag (P,(R), ..., B,(R)) @)} = P, Y'Y, +Dy(8; - Y'Y,).

1 The eversion of thick spherical shells has been studied by Antman (1979).
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Therefore ¢ _ oyt oyt
E)x" 4= BT g S

Let x be a weak equilibrium solution. Choose y(R, Y) = A(R) Y with e CZ(0, 1). By (4.12),

h%e)]dR —o.

(84— Y7Y,). (4.12)

f : Rt [dilh’(R) +(n—1)0,

A standard argument now shows that R"~'®, is absolutely continuous and that (4.8) holds.
Clearly 0W/0x¢ , € L*(B) implies that R*~1®,, R"~2®, ¢ L1(0, 1).

Conversely, suppose that R*-1®,, R*~1®, € L1(0, 1) and that (4.8) holds. Let ¢ € C®(B; R)
and define t/f by (4.9). By (4.12)

oyt 61// .
= n—1 @ [0/ J ; n—1
6 3 ¢ dX = lln(;lf i lfs R [ Y, = iR +R 2 5Y7 (83— Yﬂ@)]de]f Y

— lim [ fsn_, :Rn*zdi [a;ﬁ (8= YIY,) — (n—1) Y, ]dean-lY

€0 oYi
—f 10, (¢) pi(eY) Y, do#n—1 Y] . (4.13)
Sﬂ—l
Let ke Cy(0, 1), @ € C*(R™; R*). Applying (4.11) to ¢ = h(R) 6(Y) we obtain
[ 9¢° - ; (R) oGt 4 "
0= adeX fsﬂ_)j R [ (R)OUY) Y, + E)YJ( YY)]de.%’ 1y

f j [6Y9 (3~ Y"Yi)—(n—1)0"Y,]d9fn~lm(k)m—2dze.
Sn—

Since 4 is arbitrary,
fs,,_. [ay: (8= 1T, >—<n—1>0"Yi]d9f"*lY = 0. (4.14)

By (4.8), d[R"®,(R)]/dR = R [P, + (n—1) D,].
Since R*~1@,, R*-1@, are integrable,
lim R"®,(R) = 0.

R-0+
Thus by (4.13) (4.14),

e—0

= 0.

axz W 4 .dX = —lim ey (e) fs,._. [@ Y, + ¢ 4(0) Ykn+o(1)]d%n—ly

We now consider an incompressible homogeneous isotropic elastic material with stored-energy
function W e C1(M?%*") relative to B. Since for a radial deformation

det Vx = r»-1y'/R-1 = 1,
the only possible such deformations are given by
™ = Rr 4k,
where £ is a constant. As for a compressible material we shall assume that r > 0, so that

k = A" for some A > 0. Thus r(R) = (Rm+An)in, (4.15)

and 7(0) = 4. If » > 1 then lemma 4.1 shows that the corresponding radial deformation x
belongs to W% ?(B; R*) whenever 1 < p < n.
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The equilibrium equations for our incompressible elastic body under zero body forces are
the Euler-Lagrange equations for the functional

| 93(20) ~p(2) [det Va(X) - 11}ax,

where the pressure p(X) is a Lagrange multiplier corresponding to the constraint of incompressi-
bility. By definition, then, a deformation x € W%1(B; R*) is a weak equilibrium solution with
corresponding measurable pressure function p(X) if det Vx = 1 a.e. in B,

W(Vx(X))/%" - p(X) (adj Vx(X))F € L'(B; R™),

and fB {aaxzi —p(X) (adj Vx)';‘} ¢t ,dX =0 forall ¢eCy(B;R").
The modifications to this definition that are necessary for traction boundary conditions are
discussed in §5. Notice that the radial deformation (4.15) with 4 = 0 is a weak equilibrium
solution for any W and for any constant pressure p, since in this case x = X. For 4 > 0 we
have the following result.

Notation. We write ®(v) for the value taken by @(v,, ..., v,) when v, = =" and v, = ..
=, = 0.

THEOREM 4.3. Let n > 1. The radial deformation (4.15) with A > 0 is a weak equilibrium solution
if and only if

(vn—;)z dgv) € L1(8,00) for & > 1.
In this case p(X) = p(R) = (R/r)" 1Dy (R) — T(R),

where T'(R) is the radial component of the Cauchy stress, given for R > 0 by

(14+4mrn 1
T(R) = _1 do dv + const. (4.16)
[1+4(4/R)P P PN — 1 d

Proof. We first show that p(X) is unique up to a constant. If p,(X), p,(X) are two possible
pressures and ¢(X) = p,(X) —p,(X) then
j q(X) (adj Vx)i ¢t ,dX = 0 forall ¢ eCy(B; R").
B

Let C = By, 4nmun\B4. Then x(+) is a C* measure-preserving diffeomorphism of B\{0} onto C.
Hence

f 1X(0) LD ae = 0 forall ¢ eCr(C; R,
which implies that ¢ is constant.

Suppose x(X) = [r(R)/R] X, r given by (4.15) with 4 > 0, is a weak equilibrium solution
with corresponding pressure p(X). By the same argument as in theorem 4.2,

0= [ Jor{lmmren (B) 7@ 0o |2.-p0r (3) ] P drasnry

forall heCy(0,1),
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and hence

[i = {[o-sm) (3) | v+ -1 [0 gy (7)] X ar = 0
forall AheCy(0,1),
where H(R) = Wl(s—n—l—) fsn_‘ H(RY)do#™17.

Define T(R) = —p(R) + (R/r)"1D,(R).
Then r»-1T'(R) is absolutely continuous for 0 < R < 1 and

a‘_ik_ [T (R)] = (n—1) Rn~2 [.1; T(R) + D, — (_I;)” 051] a.e. Re (0, 1).

Hence T is absolutely continuous for 0 < R < 1 and

dT  (n—1) (R\*? R\
a7 () [2-G) o)
Integrating between 1 and R, and setting r/R = v, we obtain (4.16). The hypothesis that
oW/oxt ,—p(X) (adj Vx(X))? € L1(B) implies that
. R\ R
m1T(R), R |®,— 7) (Dl—i——r— T(R)| € LY(0, 1),

and hence Rr—1 [@2— (172)" @1] e L1(0, 1). (4.17)

Setting v = r/R we see that (4.17) holds if and only if

1 dd(v)
(m—1)2 dv

e L'(8,0) for & > 1.

By the uniqueness of pressures it therefore suffices to show that if (4.16) and (4.17) hold then
x is a weak solution with pressure f(R). We make use of the following simple lemma (see for
example Hardy ef al. 1952, p. 169).

LemMa 4.4, If fe Ll(O,’l) and F(R) = fR [f(s)/s]ds +const., then F € L}(0, 1).
1

Proof. r IF(R)|dR < C+f1f;LJifﬁ)—l dsdR
=c—ef1'l§f)-|ds+fl|f(s)|ds

< C+f1 L£(5)]ds
for any € € (0, 1). :
Applying the lemma with F = T, f = (n—1) (R/r)*1[®,— (R/r)"D,], we see that if (4.16),
(4.17) hold then T e L(0, 1). Hence

PIT(R), Rv-1 [@2 - (f:i)" o, + % T(R)] e 11(0, 1)

and so OW/0xt , — p(X) (adj Vx(X))§ € L1(B).
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Proceeding as for compressible materials, we have that for ¢ € C¥(B; R"), ¥(R, Y) =
$(RY/|Y]),

f 5 [a‘afm‘/' —p(X) (adj Vx)%] ¢t dX

[

113[ 2 —H(R)Y (R)"‘2] g;ﬁ’]( g_ya‘yi)}de,;fn-ly

- lim U ,._,LR” 2[ F(R) ( )"_2] [gij( 1Y) — (n—1) Y7, ]dkdxn—ly

=0
- f o 7O T(e) g(eX) Yyd = Y}

=—lim |  r(e)" T(e) $i(e¥) ¥,d#m1Y.
e—>0 J 8§71

But adﬁ [RT(R)] = T(R) + (n—1) (?)n_l [q;z_(f:i)" ¢1],

and hence limy_,o, RT(R) exists. Since T e L}(0, 1), RT(R) - 0 as R - 0+. Therefore x is
a weak solution.

5. CAVITATION IN ISOTROPIC INCOMPRESSIBLE ELASTICITY
5.1. Weak equilibrium solutions, stored energy, and stress

Let n > 1. We adopt the assumptions and notation of §4 for an incompressible material,
and assume in addition that W is bounded below. By theorem 4.3, the radial deformation
with 7(R) = (Rr+A4")Y» A > 0, is a weak equilibrium solution if and only if

vn—l

L df)”) e L}(8,0) for &> 1, (5.1)

or, equivalently, setting v = r/R, if and only if
r*1ReHQ (R) € L1(0, 1), (5.2)
where @(R) = Lot D(r'(R), 7(R)/R, ...), D'(R) = dD(R)/dR. Also, if T(R) is defined by (4.16),

T(0) e limp_ 4, T(R) exists if and only if

© 1 dd(v) , e a 1 dd(v)
fa m—1 do dv —"al_,wf,gv”—l Tdv dv (5.3)
exists for § > 1, or, equivalently, if and only if
1
lim | R"®'(R)dR (5.4)

>0+ J 7

exists. The total stored energy of the deformation is

E4) = v f R-10(R) AR = w, " f o

- B(v) do, (5.5)
(@ pamm (07— 1)2

where v, = #7-1(S»-1), We define £(0) = (w,/n)P(1,1, ..., 1).
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Example 5.1. Let (vy, ..., v,) = u(Tt_,v7—n), where 4 > 0, o € R. Then R (R + Ar)V/n,
4 > 0, is a weak equilibrium solution if and only if

—1-2/(n—1) < a < n+1. (5.6)
The total stored energy E(4) is finite if and only if 7°(0) exists and is finite, and if and only if
—1-1/(n—1) < a < n. (5.7)

The inequalities (5.6), (5.7) follow simply from (5.1)—(5.5). Note that (5.7) is stronger than
(5.6).

From example 5.1 we can immediately draw the following important conclusions:

(1) there exist weak equilibrium solutions having infinite stored energy;

(i) strong ellipticity does not imply the regularity of weak equilibrium solutions.
Conclusion (ii) follows from the fact that if « > 1 then

WE) = (% vt-1)
i=1
213 62W(F) YAl nXN
satisfies W G;G; > 0 for all non-zero G e M3}*", (5.8)
and is thus strongly elliptic. The proof of (5.8) is a little tedious (see, for example, Ball 1982)
except in the special case @ = 2, when W(F) = u[tr(FTF) —n].
Let 4 > 0. For general W we have the following implications.

ProrposrTION 5.1.
(a) Suppose T(0) exists. Then T(0) is finite if and only if E(A) < oo, and then

© © n—1
-L v"l—l d—%”—)dwnﬁ (v—g—_l—)é@(v)dv - 55—1_—1 B8, 3, ...) (5.9)
Sor any & > 1.

(b) If the weakened Baker—Ericksen inequalities hold then T (R) is a non-decreasing function of R.
In particular T'(0) exists, so that part (a) applies. If the Baker—Ericksen inequalities hold then T (R) is
strictly increasing.

Proof.

(a) For any 7 > 0 we have that
1 1
f R"®'(R) dR+nJ R*1@(R)dR = &(1) — PD(71). (5.10)

Suppose 7(0) exists. If 7°(0) is finite then since by assumption @ is bounded below f: R*1®(R)dR
is bounded above, and hence E(4) < co. Conversely, if £(A4) < oo then lim,_,,, 77®(7) exists,
and so lim, o, 7"®@(7) = 0. Hence 7°(0) is finite. Passing to the limit 7 - 0+ in (5.10) and
setting v = r/R we obtain (5.9).

() By (4.16) we have that

1
TR) = A*”f PP’ (p)dp + const.
R

Since @'(R) = _(n;rl) (y'Q)I_}% ¢2) (,'_%) ’

the result follows immediately.
Remark. The connection between the Baker-Ericksen inequalities and monotonicity of 7°(-)
has been observed by Knowles (1962).
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5.2. The dead-load traction problem

We now consider the case when dead-load tractions are prescribed on 0B, that is
Tp(X)X = P(X), Xedsr 1, (5.11)

where P:57~1 - R~ is given. We say that x € W 1(B; R®) is a weak solution to the traction boundary
value problem with corresponding measurable pressure p(X) if det Vx = 1 a.e. in B,

a—Wé%X)) —p(X) (adj Vx(X))$ € L\(B; R™),
and fB [aax”z _p(X) (adj Vx)%] ¢i,adX—fsn_‘P(X) BX)dA1X = o, (5.12)
for all ¢ € C(B; R), these equations being the Euler-Lagrange equations for the functional
f (W (Vx(X)) ~p(X) [det Va(X) ~ 11}dX— | _ P(X) #(X)d#"1X.

We suppose that the prescribed traction P(X) is radial, so that
P(X) = PX, Xe$", (5.13)
where P € R.
It is easily verified that the identity deformation 7(R) = R is a weak solution to the traction
problem for any isotropic W with corresponding (constant) pressure

p(X) =@ (1,1,...,1) = P.

We call this deformation the trivial solution.
A similar proof to that of theorem 4.3 shows that the radial deformation

Ris (Rh4An)Un, 4 > 0,. (5.14)

is a weak solution to the traction problem if and only if it is a weak equilibrium solution with
corresponding pressure

p(X) = p(R) = (R/r)*1Dy(R) - T(R),
P J‘(l +Amm 1 dé

where TR) = Ty amyeomt

——— — dv. 5.15

(1+(a/Rypm 0™ —1 dv (5.15)
Thus whenever (5.14) is a weak equilibrium solution it is also a weak solution to the traction problem for
any P. So, for the traction problem, not only is strong ellipticity not a sufficient condition for
regularity, but also there are in general infinitely many discontinuous weak solutions corres-
ponding to a given P. The reason for this at first sight strange result is that the definition of a
weak solution imposes no traction boundary condition on the cavity surface r = 4, so that
physically the problem is underdetermined. To eliminate this indeterminacy we seek solutions
for which 7°(0) has a given finite constant value. For reasons discussed shortly and in §8 we
shall in fact require that 7(0) = o. (5.16)

(The case T(0) = k # 0 can be treated similarly.) So that it is possible to satisfy this condition
we assume from now on that

J‘w 1 dd(v) | aer J‘“ 1 dd(v) dv

= lim | ——
s m—1 dv dv aiff.} s —1 dv
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exists and is finite for § > 1. By proposition 5.1 this implies that £(A4) < oo for any 4 > 0.
By (5.15) the possible values of 4 such that (5.16) is satisfied are the roots of the equation

P - f(4), (5.17)
def ~1)/n ® # d@(v) \
where FA) L (1 + 4y fawwnv”—l o2 do. (5.18)

The formula (5.17) can also be obtained in the following elementary, though perhaps not
completely rigorous, way (see Ball 1981 ¢). The total energy for the deformation R (R™ + An)1/»,
4 > 0, is given by

det

I(4) = f Wdx-| PX-x(X)d#n1X
B g

= E(A) — Pw, (1 + An)t/n, (5.19)

(Note that we have not included a term corresponding to the potential energy of the forces
acting on the cavity surface for 4 > 0, since these forces are assumed to vanish by (5.16).)
Thus

© 1 dé(®v P
) = o4 [f(l—f—A")‘l" v —1 dg ar- (1 +A”)("—1)/”] ’
where we have used (5.5) and (5.9). Setting I'(4) (B—A4) > 0for all B > 0 for equilibrium gives
the two possibilities: (i) 4 = 0, or (ii) A > 0 is a root of (5.17). This calculation also proves
(rigorously) that (5.16) holds for any non-trivial minimizer of 7, so that 7°(0) = 0 is a natural
boundary condition.
The onset of fracture (i.e. the bifurcation from the trivial solution) is governed by the beha-
viour of f(A4) as 4 - 0+. We suppose that

def f‘” 1 dd@) dv

P, = lim
er 0—1+ s v—1 dv

(5.20)

(5.21)

exists and is finite. This happens whenever, for example, @(v) is twice differentiable at v = 1
(and, in particular, if @ e C2(R%,)), since then the fact that d®/dv|,-, = 0 implies that

I 1 dd() _1d*¢
”_I,III:L -1 dv  nde?|,,’
e © 1 dd(v)
in this case P, = fl 1 dy dv. (5.22)

If the Baker—Ericksen inequalities hold then P,. > 0, and since by (5.18) f(4) > 0 there
are no roots of (5.17) when P < 0. In other words, no cavity will form if the applied traction is
compressive.

Even when the Baker-Ericksen inequalities hold there may be several roots of (5.17) for a
given P > 0; however, the following result shows that the bifurcation at P = P, is locally to
the right (i.e. supercritical).

ProrosITION 5.2. Let B(v) be twice differentiable at v = 1. Then f'(0) = 0, and if

L @
n(n—1) deo? |,

then f'(A) > O (resp. f'(A4) < 0) for sufficiently small A > 0.

P+ >0 (resp. < 0) (5.23)
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Remark. Since
2 ) 1-n, _
d2o i 1 do(v) lim n(n—1) 1P, — D,

— 5.24
de? |,y  eo14v—1 dv 14 vI-n—y ( )

3

the Baker—Ericksen inequalities imply that d2@/dv?|,_, > 0, so that f'(4) > 0for 0 < 4 < e.
Also, (5.24) shows that if @ € C?(R% ) then (5.23) can be written in the form

Po+®,(1,.., 1)+D5(1,..,1) =D 15(1,...,1) > 0 (resp. < 0). (5.25)

Proof of proposition 5.2. That f'(0) = 0 follows immediately from (5.18). To prove the
second part, let 8 = (1 +A4")@~D/n and use (5.18) to show that

lim =% = P, +_1___fif§ .
014+ dO T a(n—1) do?,,
Let P > 0. If 4, > 0is a root of (5.17), that is
P = f(4,), (5.26)
then from (5.20) I'(4,) = ﬂéﬁ;f’(flo),
(14 A4F)m—1/n

so that 4, is a local minimum (resp. local maximum) of 1 if f'(4,) > 0 (resp. f'(4,) < 0).

cavity radius, 4

R,
applied dead load, P

Ficure 1. Dead-load traction problem: a typical bifurcation diagram for a material satisfying the

Baker—Ericksen inequalities. S, stable; U, unstable.

To see when the trivial solution 4 = 0 is a local minimum for I note first that by (5.5),
(5.9), and (5.15)—(5.17),

" f(4) 4 nyan n
o E) = p L e 0t o, (1 i, ), (5.21)
for all 4 > 0. Hence lim E(A4) = E(0). (5.28)
40+

By (5.20),if P < P, (resp. P > P,.), I'(4) is positive (resp. negative) for sufficiently small
A > 0, and thus by (5.19), (5.28), the trivial solution is a local minimum (resp. local maximum)
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of I. It follows also from (5.20) that if P = P,. and f'(4) > 0 (resp. f'(4) < 0) for sufficiently
small 4 > 0, then the trivial solution is a local minimum (resp. local maximum).

We say that a weak solution of the traction problem is stable if the corresponding 4 is a local
minimum for /, and that it is unstable otherwise. This terminology has a precise dynamic mean-
ing which is discussed in §5.4.

We summarize the results of this subsection corresponding to the case when the Baker-
Ericksen inequalities hold in figure 1.

5.3. The Cauchy traction problem

We modify the analysis of the preceding subsection to treat the case when the Cauchy stress,
rather than the Piola-KirchhofT stress, is prescribed on 0B. The boundary condition on 9B is
now

T(X)X = PX, XeSv1, (5.29)

where P € R is given. The definition in general of a weak solution to this problem introduces
complications that are not relevant in the context of radial solutions. We therefore make a
simpler, but somewhat ad hoc, definition, namely that x € WL1(B; R") is a weak solution to the
Cauchy traction boundary value problem if it is a weak equilibrium solution such that for any
Xes§nt
T(X) = esslim T(Y)

. . Y—X, YeB
exists and satisfies (5.29).

As before, 7(R) = R is a weak solution to the Cauchy traction problem for any isotropic W.
Also R+ (R*+ Ar)Y/» 4 > 0, is a weak solution if and only if (5.1) holds, and then

p(X) = p(R) = (R/r)"1®y(R) — T(R),

(L4+4mrm )
f L _do,, (5.30)
[

where T(R) = P+ —_—
(®) 1+/Rpm o™ —1 dv

is the radial component of the Cauchy stress. To render the problem determinate we again

require that
T(0) = 0, (5.31)

and so that it is possible to satisfy this condition we assume that

fw 1 9-d?—(i)dv

s 0"—1 dv

exists and is finite for & > 1.
The non-trivial weak solutions satisfying (5.31) correspond to positive roots of the equation

P = g(A)> (5'32)

det [ 1 d@(v)
where g(4) = f(l+A")”" 1 d dv. (5.33)

For radial deformations R - (R*+ A")Y» A > 0, we can define a total energy functional

) det f wax-L j y)dotn-1y,
at(S”—‘)

where n(y) is the unit outward normal to x($"-1) at y. But n(y) = y/|y|, and so

J(4) = E(4) - (Pw,/n) (1 +A4v). (5.34)
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Thus @ 1 d@(v)

- dv—P], (5.35)

J(4) = , Ar1 [ f

A+amimv™—1

which is zero if and only if 4 = 0 or (5.32) holds.

We again suppose that P,, = g(0) given by (5.21) exists and is finite. If the Baker-Ericksen
inequalities hold then P,, > 0 and there are no roots of (5.32) when P < 0.

From (5.33) we see that lim,_,, g(4) = 0 and that

_A41 4

"A) = o o . 5.36
g( ) (1+An)(n—-1)/n dv el 4P/ ( 3 )
~
g
= U
S
Z
B
g
s s U
E,

applied dead load, P

Ficure 2. Cauchy traction problem: a typical bifurcation diagram for a material satisfying the
Baker-Ericksen inequalities. S, stable; U, unstable.

Thus, provided @(v) is twice differentiable at v = 1, g’(0) = 0. Also g’(4) < Oforall 4 > 0
if the Baker—Ericksen inequalities hold. Similar calculations to those in §5.2 show that if
Ay > 01is a root of (5.32) then 4, is a local minimum (resp. local maximum) of J if g'(4,) > 0
(resp. g'(4,) < 0), and that the trivial solution 4 = 0is a local minimum (resp. local maximum)
if P < P, (resp. P > P,;). The dynamical significance of these statements is discussed in the
next subsection.

For a material satisfying the Baker—Ericksen inequalities we thus have the bifurcation dia-
gram sketched in figure 2.

5.4. Stability with respect to radial motions

We examine the Lyapunov stability of the trivial and non-trivial weak solutions discussed
in the preceding subsections within the class of radial motions satisfying the equations of non-
linear elastodynamics. The points at issue are similar to those arising in the work of Calderer
(19814, b) on the inflation under a maintained internal pressure of a thick spherical shell,
except that in our work the internal radius of the shell is zero.

We consider radial motions R + (R, ) of the form

= Rt A(f)m, (5.37)

where A(t) > 0 is the cavity radius at time £
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The total kinetic energy is given by

K@) = 3 [ pul#(X, Olax,

where py (assumed to be constant and strictly positive) is the density in the reference configura-
tion. Since # = (#/R) X it follows that |%]|? = A%»~DA42/r2»~D and so for a radial motion

K(2) = Jo,h(A@®)) A1), (5.38)
prA” [1— ! ] if n>2

where Rd) = {n-2 1 (1+4=)=2m ’ (5.39)
1ppA%In (1+4-2) if n=2

Consider first the dead-load traction problem. The equation of motion, in terms of 4, can be
most rapidly obtained by applying Hamilton’s principle to the functional

f " (K-I)dt
0
where 1 is given by (5.19). Using (5.18), (5.19) we thus obtain the equation
d ; ; 4r1
g [ A)4] = 4 (4) 4%+ a5 g P =/ (4], (5.40)

when (5.16) holds in the presence of a cavity and f'e C([0, o0)).

We say that (5.37) is a weak solution of the equation of motion (5.40) on the interval [0, 7),
7 > 0,if A is absolutely continuous on [0, 7) (so that, in particular, 4(¢) exists for a.e. ¢ € [0, 7)),
h(A) 4 is absolutely continuous on [0, 7), and (5.40) holds for a.e. ¢ € [0, 7). An analysis similar
to that of theorem 4.3 would show that a weak solution of (5.40) generates through (5.37) a
weak solution of the n-dimensional equations of nonlinear elastodynamics, but we do not
attempt to render this statement precise here.

The Cauchy problem for (5.40) consists of finding a weak solution 4 on some interval [0, 7),
7 > 0, such that

4(0)
lim An-1(t)A(t) = b

t—0+

a, (5.41)
; (5.42)

where ¢ > 0 and b are given. These initial conditions correspond to specifying x(X, 0) and
%#(X, 0) for all X e B\{0}, where x(X, ¢t) = [r(¢)/R]X and r(¢) is given by (5.37). Of course,
when a > 0, (5.42) is equivalent to lim;_,q, A(t) = batn. If a = 0, and we impose the further
requirement that lim,_,,, K(¢) < oo, then it follows easily from (5.39) that lim,_,,, A1 HA®R) =
0, so that we must take b = 0.

If a > 0, b are given, standard theory for ordinary differential equations implies that there
is a unique weak solution 4 to the Cauchy problem defined on a sufficiently small interval
[0, 7), and that 4 € C?([0, 7)) ; to see this note that, when 4 > 0, A is smooth and positive and
fis CL. This weak solution can be extended to a maximal interval [0, 7*), 0 < 7% < o0, such
that 4 € C%([0, 7)) and A(t) > 0 for te [0, 7*), and 4 is unique. Furthermore, the energy
equation )

$h(4) A2+ 1(A) Jw, = E, (5.43)

holds for ¢ € [0, 7*), where E, o th(a) b2+ 1(a)/w,.
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If P = f(4,), 4y > 0, the linearization of (5.40) about 4, is

" — Ay ,
h(dy) ii = (TIWL F(4y) . (5.44)

Thus 4, is a stable (resp. unstable) rest point if f'(4,) > 0 (resp. f'(4,) < 0), in consonance
with the terminology introduced in §5.2.

We now study the Cauchy problem when a = 4 = 0. One solution is clearly 4 = 0. We
seek others satisfying A(t) > 0 for sufficiently small ¢ > 0; such solutions must satisfy, for
sufficiently small ¢ > 0, the energy equation

Yh(A) A2 = —%[H—{%+¢((l 4 Amya=nn_ (1 4 gm)Vn, )] +P(1+AnVn B, (5.45)

where F, is a constant, and where we have used (5.27). Thus

A am, (5.46)

n

. 1
Ph(A)d2 = B+ P——®(1,1,...) + (P=Py)

where lim, o, ¥(0)/o = 0. Let k = E;+P—(1/n)®P(1,1,...). Suppose first that P < F,,.
Then (5.46) takes the form 322 = k—cy[1 +0(3)], (5.47)

}

K (A)A

N

y=4r

Ficure 3. The phase portrait near the trivial solution for P < F,.

where y = A", z = k¥(4)4, lim,_,, 6(y) = 0, and ¢ > 0. Using (5.47) we may study the
behaviour of (5.40) in the (y, z)-plane. By noting that

€ hﬁ}(yl/n) y(1~n)/n
o k—cy[1+0(m)] Y

is convergent for sufficiently small ¢ > 0, it is easily shown that for sufficiently small £ > 0
there is a unique solution 4 of (5.40) such that 4 € C2(0, 7(k)), lim,_.. (y(2), z(£)) = (0, (2k)}),
limy_.q- (y(2), 2(8) = (0, —(20)}), A(t) > 0 for 0 < ¢ < 7(k), and (y(37(k)), 2(37(K))) =
(k/c+vy(k), 0), y(k)/k - 0 as k - 0+. Thus the phase portrait for small (y, z) is as sketched
in figure 3. Each of these solutions is a weak solution of (5.40) on [0, 7(k)), since #'(4) > 0
for small 4 > 0, and lim,_,y, k(4)4 = 0. Furthermore, lim,_q, A"~1(t) A(f) = 0, so that each
is a solution to the Cauchy problem with a = & = 0. Thus solutions to the Cauchy problem are not

unique. Further, since for each of the above non-trivial solutions lim, o, K(t) = 0,k > 0,

(5.48)
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. energy need not be conserved for a weak solution. If, however, we impose the entropy condition (compare
Lax 1957) that Yh(4) 42+ I(4) 0, be nonincreasing in 1, (5.49)

then the only admissible solution to the Cauchy problem with a = b = 0 is the trivial solution,
and then figure 3 shows that the trivial solution is stable. Each of the foregoing non-trivial
solutions 4 = A(t; k) can be continued as a weak solution for all ¢ > 7(k) in infinitely many
ways without violating the entropy condition. For example, we can set

A(t) =0 forall ¢ > 7(k), ' (6.50)
A(t—7(k), k) for (k) <t < 27(k)
or A1) = {
for t > 27(k)
* A(t—7(k), k) for (k) < t < 7(k)+7(3k)
A(t) = A(t—71(k) — 7(}k), k) for 7(k)+7(3k) < t < 7(k) + 7(3k) + 7(}k)
0 for t > 7(k) +7(3k) + (k).

e
7

z= A4

RN

Ficure 4. The phase portrait near the trivial solution for P > P,.

However, the only extension that conserves energy is given (up to alteration on a set of measure
zero) by
A(t) = A(t—m7(k), k) for mr(k) <t < (m+1)7(k), m=1,2,.... (5.51)
We call this the perfect rebound solution. (For the rebound of cavities in fluids see the photographs
of Benjamin & Ellis (1966); (see also Batchelor 1967, plate 17 and pp. 481ff); our analysis
ignores among other things the interesting effects of cavity contents (see Cole 1948).) The
extension (5.50) is the one that loses energy fastest (compare Dafermos 1973). For these solu-
tions the arbitrary hydrostatic pressure p(R, t) becomes infinite as ¢ - 7(k) — for each R € (0, 1).

IfP > P, then (5.46) takes the form (5.47) but with ¢ < 0. A similar analysis to the preceding
shows that the local phase portrait in the (y, z)-plane has the form sketched in figure 4.

As for P < F,; we have non-uniqueness of solutions to the Cauchy problem witha = 4 =
but for P > P,, there is a solution A(t) defined for sufficiently small £ > 0 such that 4(¢) > 0

for ¢ > 0 but tll.?l (y(2), z(t))' = (0, 0).

42 Vol. 306, A
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Since this solution has the same energy as the trivial solution, namely zero, there is no admissi-
bility criterion based on energy considerations that will reject one of the solutions, and hence
there is genuine non-uniqueness of solutions to the Cauchy problem. In particular the #rivial solution
A = 01is unstable. This instability cannot be detected by formal linearization of the n-dimensional equations
about the trivial solution.

We next consider the Cauchy traction problem. The equation of motion is now

d {1 — 14 {2 n—1 __i@_)___.._
S Th(4) 4] = 3h(4) do+ 4 [P— T An)m_l),n]. (5.52)
The corresponding energy equation for solutions 4(¢) > 0 is
: 1 A) 4 - P
3h(4) A2 = - [(—l—-ijf—(zl_"))(?mz_'-q)((l + Am)A-min (1 4 Ar)ln )] +- (1+4") + E;, (5.53)

where E) is a constant. The same analysis as for the dead-load problem can be carried out,
and we conclude that (i) if P = f(4,), 4, > 0, then 4, is a stable (resp. unstable) rest point
if f'(4,) > 0 (resp. f'(4y) < 0), and (ii) the local phase portraits near the trivial solution
A = 0 have the forms shown in figures 3 and 4, and the same inferences as in the dead-load
problem can be drawn concerning the stability and instability of 4 = 0.

5.5. Examples

In general, explicit computation of f(4), g(4), or P, = f(0) for a given stored-energy
function @ is not possible. However, if

D(vyy ..y v,) = ,u(é]l v%‘—-n), (5.54)
where (cf. (5.7)) —1-1/(n—1) < a < n, (6.55)

explicit formulae may be obtained.
First, setting s = v~™", we obtain from (5.22)

0 1)“"‘1(1 — v—mx)

P, = (n—l),uacfl 1 dv
_ 1 — g
= (_”___!)_ﬁf‘f s—aln (_1___';) ds, (5.56)
n 0 1-—s
and hence (see Copson 1935, p. 229),
P = EZ gt ba o)~y -afn), (557)

n

where ¥/(z) 3 d[In I'(z)]/dz and I'(-) denotes the gamma function.
If « = 0, so that @ = const. (the conditions for an incompressible perfect fluid) then
g(4) = f(4) = 0, P, = 0. If o is an integer, 0 < & < n, then by (5.33)

_ (n—1) pa (1+A")‘1S—a/n(1 —5%)
e e e

_(n=1)pa i J‘(1+A")~‘J7’—a/n—1ds
n i=1Jo

3 (n—-l),ua @ (1 +An)—:i+a/n
n ic1 j—o/n,

, (5.58)
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and hence (n—1)po & (1— Ar)=i+1+a-1/n
4) = . , 5.59
S4) BT ja)n (5.59)
p, = zlme 5 1 (5.60)

n jSyj—afn

If « = —1 (the only negative integer satisfying (5.55)) then

g(4) = (n—1) p(1 +An)~1n, (5.61)
Sf4) = (n—1) p(1 + 4n)n=2/n, (5.62)
and P, = (n—1)p. (5.63)

If @ is a linear combination of terms of the form (5.54) then f(4), g(4) and P,, can be obtained
by linearity.

cavity radius, 4

Y

Re=5p
applied dead load, P

Ficure 5. Bifurcation diagram for a neo-Hookean material in the dead-load traction problem.
S, stable; U, unstable.

For a neo-Hookean material we take o = 2 and # > 0 in (5.54). Suppose » = 3. Then from
(5.58), (5.59), (5.60), we obtain

g(4) = p(1+443)-4(5+443), (5.64)
f(A) = p(1+4%)-8(5+4483), (5.65)
and P,. = 5pu. (5.66)

Taking, for example, the dead-load traction problem we have the bifurcation diagram sketched
in figure 5. Note that for each P > P, there is precisely one non-trivial equilibrium solution
Ay(P). The corresponding phase portraits are sketched in figure 6.

6. RADIAL SOLUTIONS WITHOUT HOLES IN ISOTROPIC
COMPRESSIBLE ELASTICITY

6.1. The radial equilibrium equation

In this section we adopt the assumptions and notations of §4 for compressible materials.
We suppose from now on that n > 1. By theorem 4.2, if R 7(R) is a weak equilibrium
solution then R"-1@®,(R) is essentially absolutely continuous for R € (0, 1] and

d[R*1®;(R)]/dR = (n—1) R*2®,(R), a.e. Re(0,1), (6.1)
where, as before, @;(R) et D ,(r'(R), 7(R)/R, ...).

42-2
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We now suppose that @(vy, ..., v,) is a strictly convex function of each v; (the tension-
extension property; see proposition 3.1) and that

lim @ ;(vy, vy, ..., v,) = —00, lim D (v, v, ..., 0,) = 00, (6.2)

v,—>0 V>0

whenever v, > 0 is fixed. Then

ProrosiTION 6.1. If R r(R) is a weak equilibrium solution then r € C1((0, 1]), r'(R) > 0 for
all R € (0, 1], and equality holds in (6.1) for all R € (0, 1].

N

A

X
y
v
o

i P=F,

Ficure 6. The phase portraits for a neo-Hookean material in the dead-load traction problem.

Proof. For any R > 0 and any o € R there is a unique v, > 0 such that @ ,(», 7(R) /R, ...) = o.
Hence after possible alteration of 7'(- ) on a set of measure zero we can suppose that @;(R) is
continuous and 7'(R) > 0 for all Re (0,1]. We must show that R; > Re (0, 1] implies
r'(R;) - r’'(R). Without loss of generality we may suppose that 7'(R;) - € [0, co]. If € (0, o0)
then /

. (R , r(R
lim @,(R) = cb,l(z,LR—), ) = Ql(r (R),—(R—), )
so that [ = r'(R) by the tension-extension property. Suppose for contradiction that / = 0, co.
By passing to the limit using the continuity of @ ,(v,, ..., 7,), the tension—extension property,
and the fact that @,(R;) - @,(R), we see that the inequality
, r(R;) ) ( vpy TRy ) : r(R;)
@, (r (B)-e "G ) < 27 (R, TR, ) < (D,l(r (R)+e, g2, ..

holds for large enough j, where € € (0, 7'(R)) is fixed. By the tension—extension property we
deduce that |r'(R;) —7'(R)| < e, which is impossible.

Remark. A similar argument is given by Tonelli (1921, vol. 11, p. 362).

If @ € C*(R?%.,), and if we strengthen the tension—-extension property by requiring that

Dyy(vyy .o vy) >0 forall (v, ...,0,) eRY, (6.3)

(this is a consequence of the strong-ellipticity condition (3.7)), then a standard argument
shows that r € C2((0, 1]) and that we can carry out the differentiation in (6.1) to obtain

R®,,r" = (n—1)[Py—D,— (r'—1/R) D], 0 < R < 1. (6.4)
If, further, @ € C*(R% ) for some m > 2, then r € C™((0, 1]).
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6.2. Lyapunov functions

The radial equilibrium equation (6.1) is invariant under the transformations (7, R)
(er, ¢R), ¢ > 0; equivalently, if 7(R) is a solution then so is ¢~r(cR). This suggests the change

of variables v=1/R R=c (6.5)
The resulting autonomous equation is
d®,/ds = (n—1) (P~ P,), —o0 <5 < 0, (6.6)

where @; = @ ;(i(s) +v(s), v(s), ...), ¢ = 1, 2 and 9(s) o do(s)/ds.
We seek functions of R, 7, 7’ that are increasing for solutions of (6.1); such functions corres-
pond to Lyapunov functions for (6.6). Firstly we consider the radial component of the Cauchy

stress, given (see §3) by det

T(R) = (R/r)*'®(R). (6.7)
From (6.1), ‘-i—glg—) =—(n—1) R:;_l (r’dil—% ¢2). (6.8)

Comparing this with (3.8) and (3.10) we deduce immediately the following result, which
applies in particular to any weak equilibrium solution if the hypotheses of proposition 6.1
hold, and which gives conditions under which 7°(+) is monotone on any interval where
r' # r/R.

ProrosiTiON 6.2. Let r € C1((0, 1]) be a solution of (6.1) with r'(R) > O for all R € (0, 1]. If the
weakened Baker—Ericksen inequalities hold then T(-) € C'((0, 1]) and

dT(R) [, r(R
—a%—) [r (R) ——(—R—z] <0 forall Re(0,1], (6.9)
while if the Baker—Ericksen inequalities hold then
dT(R) 7(R)

—ar ["(R)"T] <0
whenever R € (0, 1] and r'(R) # r(R)/R.

We next consider the radial component of the inverse Cauchy stress (the termino’ogy is ex-

plained later) defined by dof
T(R) = O(R)—1'(R) Dy(R), (6.10)
def

where @(R) = ®(r'(R), 7(R)/R, ...). If r € C3((0, 1]) then we obtain, using (6.1) and (6.8),

d7T'(R) r(R)]* dT(R)
T ——[R] T (6.11)
We record for future reference the related equation

o (r-T)o|| = nrr100 6.12
dR f '—R 1 - n . ( . )
We remark that (6.12) is the specialization to radial solutions of the n-dimensional conservation

law (cf. Green 1973) 2 oW . .
X" [X“W—W,—a- (Xﬂx’,ﬂ——xf)] = nW. (6.13)

From proposition 6.2 we immediately obtain the next result.
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ProrosiTioN 6.3. Let r € C%((0, 1]) be a solution of (6.1) with r'(R) > 0 for all Re (0, 1]. If the
weakened Baker—Ericksen inequalities hold then T(-) € C1((0, 1]) and

dT(R) [, r(R
—-a% [T (R)"—("RT)] =0 jbrall RG(O, 1],
while if the Baker—Ericksen inequalities hold then

dT(R) [, 7(R)
—dR [’ <R)*T] >0,
whenever R € (0, 1] and ' (R) # r(R)/R.
The definition of 7T7(-) is motivated by the following considerations (see Shield 1967, Ball

19775, 19814). For a homogeneous elastic body the total stored energy in a sufficiently regular
invertible deformation x(-) is given by (cf. (3.1))

E(x) = fﬂ W(Vx(X))dX

- f VX () d,
x(82

where W(F ) L det F W(F-1). If the material is isotropic we may correspondingly define

By, .. 0,) = 0y ... 0, DT, ..., vRY), (6.14)
so that W(F) = &(v,(F), ...,v,(F)) for all Fe M%*", where the v;(F) denote the singular

values of F. It is thus natural to call ”
T(F) < (det F)- 9%@ FT

the inverse Cauchy stress. When F = diag (vy, ..., 9,), v; > 0,
T(F) = (1/vy ... v,) diag (1,B 4, ..., v, D ;)
= diag (D —v71D,, ..., D—-v;1D ),

where the arguments of @, @ ; are v7%, ..., v;1. Thus (6.10) corresponds to the case v, = R'(r),
v; = R(r)/rforj > 1.

It is frequently illuminating to ask whether a constitutive inequality is invariant under the

A

involution W W. Examples of such invariant constitutive inequalities are rank 1 convexity
(see Ball 1977756) and the Baker-Ericksen inequalities (this is easily verified).

6.3. When are solutions without holes trivial?

We consider the problem of finding a weak equilibrium solution R + 7(R) satisfying 7(1) = A,
where A > 0 is given, and such that 7(0) = 0 (so that there is no hole). One possible solution,
for any @, is 7(R) = AR; we call this the #rivial solution. In this section we consider various
hypotheses on @ that guarantee that the trivial solution is the only equilibrium solution without
a hole. Our first method is based on the following result.

PRrOPOSITION 6.4. Let @ € C3(R%,) and suppose that (6.3) holds. Let r € C1((0, 1]) be a solution of
(6.1) with r'(R) > 0 for all R € (0, 1], and suppose that for some Ry € (0, 1]

r(Ry) /Ry = 7' (Ry) = 2,
Then r(R) = AgR for all R e (0, 1].
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Proof. Equation (6.4) has the form
" =f(R 1, 1"),
where f is C! for positive arguments. Standard results on ordinary differential equations

therefore imply that the solution of (6.4) with initial data r(R,) = A¢Ry, r'(R,) = A, is unique.
Hence r(R) = AR for all R € (0, 1].

THEOREM 6.5. Let & € C3(R%.,), let (6.3) and the weakened Baker—Ericksen inequalities hold, and
suppose that

(i) either lim Zalnle.nt) (6.15)
©1, 0—20+ Vg
US>
or \ iimo-'_ [D(vy, vgy « vy ¥5) =0, D 1 (vg, Vg, +vy V)] = 0O (6.16)
and that
(i) either lim 210utsentd) _ o (6.17)
G vz
n<vg
or \ ljm [D(vy, v, «.vy ¥5) =0, D 1 (03, Vg, .+, ¥5)] = —00. (6.18)
15 Va—> 0
" <ts

Let reCY((0,1]) be a solution of (6.1) with r'(R) > O for all Re (0, 1] and suppose that
7(0) € limp_,, 7(R) = 0. Then r(R) = AR, R € [0, 1], for some A > 0.

Proof. Suppose that r(R)/R is not constant. By proposition 6.4, r'—r/R is either strictly
positive or strictly negative in (0, 1]. Hence r/R is either strictly increasing or strictly decreasing
in (0, 1], and thus r(R) /R — l € [0, c0] as R - 0 +. Since r(0) = 0, it follows easily from Rolle’s
theorem that r'(R;) — [ for some sequence R; - 0+-.

Suppose 0 < ! < co. By proposition 6.2, T(R) is monotone, and therefore

0.1 .. 1)

ln—l

lim T(R) = lim T(R,;) =
R—0+ o

(6.19)

We claim that limg_,,, '(R) = I. If not, the continuity of 7(-) and the existence of the R,
would imply the existence of a further sequence §; - 0+ such that r'(S;) >/, # ], > 0.
By (6.19), '

D, 1.0 =d,01...,1),

which is impossible since @;; > 0. Thus r € C}([0, 1]) and '(0) = I. From (6.4) we now deduce
that
lim 22ur”

Res0t f'—T/R = —(ﬂ—1)¢'11(l, l: ceey l)’

and hence 7" has the opposite sign to ' —r/R for small R > 0, which is impossible. (The case
0 < ! < o could also have been eliminated by studying the phase portrait of (6.6) near the
line of rest points ¥ = 0, v > 0 arbitrary.)

Suppose I = 0. Then ' > r/R for Re (0, 1], and so by proposition 6.2, d7(R)/dR < 0.
But if (6.15) holds, T(R;) - — oo, which is impossible. A similar contradiction is obtained if
(6.16) holds, by using the fact that, by proposition 6.3, d7(R)/dR > 0.

The possibility / = oo is eliminated similarly.

Our second method is more elementary. It has the advantages of assuming less in the way
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of differentiability of @ and nothing about the behaviour of @ for small and large principal
stretches, but the disadvantage of assuming that the constitutive inequality

(D:=D,;)/(v;=v)+D; 2 0 forall (vy,...,v,)eR:, (6.20)
holds whenever v; # v;, where @ ; = @ (v}, ..., v,) etc. While it has no direct physical signi-
ficance known to the author, nor apparently any obvious relation to other inequalities con-

sidered in the literature, (6.20) is satisfied for many stored-energy functions of interest. For
example, it is satisfied if n = 3 and

D(vy, vy, ¥3) = G(vy) + P (ve) + P (vs) + ¥ (v102) + Y (va05) + Y (v3v,) + A (v, 0, 05)

where @, ¥, h are C? and convex. It is also easily verified that (6.20) is invariant under the
involution @ > & (cf. (6.14)).

THEOREM 6.6, Let @ € C2(R%,), and let (6.3) and (6.20) hold. If r € C1((0, 1]) is a solution of

(6.1) with r'(R) > O for all R € (0, 1] and r(0) = 0, then r(R) = AR, R € [0, 1], for some A > 0.
Proof. Let A = 7(1), O(R) o r(R)—AR. Then 6(0) = (1) = 0. Suppose 6(R,) > 0 for-

some R, € (0, 1). Let R, be the largest value of R at which @ attains its maximum. Then
r'(Ry) = A < r(Ry)/Ry, and r"(R;) < 0. If 7"(R) > O for R € [Ry, R, +€), € > 0, then O(R) >
6(R,) on this interval, contradicting the maximality of R,. Hence there exists R; € (R,, 1)
such that r'(R;) < r(Rs)/R; and r"(R;) < 0. But by (6.8), (6.20) the left-hand side of (6.4)
is negative at R = Ry, while the right-hand side is non-negative. A similar contradiction is
obtained if @ takes negative values. Hence @ = 0 as required.

Before describing our third method we introduce some notation. Let v = (v, ..., v,) € R%,.
For 1 <j<n write o®eR® for the vector having components Vg, ¥y, ... Uy, Where

1 <14 <iy<...<1i;<n arranged in some definite order. We consider the following
property of @:R%, - R.

(P) There exists a convex function G:R¥;! = IR(EL x RE, x... x Rfﬂ - R, symmetric with
respect to permutations of the components of each of the R, such that

D(vy, .oy vy) = G0, ..., o) forall veR?,. (6.21)
For n = 3, (6.21) becomes
D(vy, vy, V5) = G(vy, g, V33 U1y, Vgly, Ug¥y; V30,03).
We say that @ satisfies (P+) if (P) holds with G strictly convex.
For a radial deformation R+ r(R) the total stored energy is given by

En f R"-ldi( (), LX) ) ) dR. (6.22)

We shall consider only stored-energy functions @ that are bounded below, and without loss
of generality assume in fact that @ > 0.

ProrositioN 6.7. Let @ satisfy property (P), and let r € C1((0, 1]) be a radial deformation with
"(R) > 0forall Re (0,1], (1) = A > 0, and 7(0) = limg_,, 7(R) = 0. Then
E(r) > E(AR).

If @ satisfies (P+) then E(r) > E(AR)
unless 1(R) = AR.
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Proof. Let u, v € R%, be given. By the convexity of G,
G(vY, ..., v™) > G(u®,...,u")+ i (4,(u, ..., u"), o —yd) (6.23)
i=1

for certain 4,(u®, ..., u®) e R%, with equality if and only if u = v when (P+) holds. Now
let Re (0,1], u = (A, A, ...,A) and v = (r'(R), r(R)/R, ..., r(R)/R). By (6.23) and the sym-
metry of G there exist real numbers B,;(A) such that

(3
G(o®, ..., o) > G(u®, ..., u™) + 3 B,(A) 3 (o8 —ufh), (6.24)
i=1 =1

where v, 4 denote the components of v, u® respectively.

But
T G e[ () ) -0
-1 C) (r/Rn~1 — MRwY',

Multiplying (6.24) by R*-! and integrating, we obtain that E(r) > E(AR) as required, with
strict inequality if (P+) holds and r(R) #£ AR.
If W is polyconvex (i.e. there exists a convex function G such that

W(F) = G(J(F)) forall Fe Mx,

where J(F) is the vector whose components are all the minors of F of all orders 7, 1 < 7 < =
(see Ball 19774, b)) then clearly & satisfies (P). Similarly, strict polyconvexity (i.e. G strictly

convex) implies (P+). If W is polyconvex then W is quasiconvex (see Morrey 1952, Ball 19774, b,
Ball et al. 1981), i.e.

f WE+VEX)dX > f _ WU)dX = meas (D) W(F), (6.25)

for all F e M7*™, all bounded domains D < R®, and all {e W} =(D; R") with F+ V{(X) e M3*"
a.e. XeD. When F = A1, the conclusion of proposition 6.7 is (6.25) specialized to radial
deformations, with the exception that the proposition assumes less regularity on {. If W is
(strictly) polyconvex then W is (strictly) rank 1 convex; the reader should bear this and the
results of §3 in mind when comparing the hypotheses of theorem 6.5 and the next theorem.

THEOREM 6.8. Let @ € CL(R%,) satisfy (P) and the tension—extension property.
Suppose that

lim inf [Q(vl, 1)2, soey 02) - (vl - vz) ¢’ l(vl, 02, .o o,' vz)] ? 0 (6.26)
iy |
ana' tkat lim inf [¢(vla Ugy ooy ”2) — (1)1 ';nvz) ¢.l(vl, Ugy oo ey ”2)] > 0. (6.27)
v, V>0 2

7, <V;

Let reCY((0,1]) be a solution of (6.1) with r'(R) > O for all Re (0, 1] and r(0) = 0. Then
7(R) = AR, R € [0, 1], for some A > 0.

Remarks. (1) It is easily shown that (6.26), (6.27) are implied by hypotheses (i), (ii) of
theorem 6.5 respectively. (2) If G is C* then property (P) implies that each @, is non-decreasing,
and (P*) implies the tension-extension property.
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LemMA 6.9, Let @ € CY(R%,) with each D ; non-decreasing. Let r € C((0, 1]) satisfy (6.1) with
r'(R) > 0 for all R € (0, 1]. Then (6.12) holds for all R € (0, 1].
Proof. Let

G(R) det ¢(R) —r'(R) ¢1(R) _ (n_ 1) fer,(p) ¢1(P) "E)’(p)/p] ¢2(P) dp.

It suffices to show that 6’(R) = 0 for all R € (0, 1]. We note that
O(R+k) —O(R) = [qs (r'(R+h), e, ) ( r(R), &) '(R) )
_[F'(R+E) -1 (R)] s ( (), &) ®) )]

+¢(r’(R+h),r(R—+k) ) ('(R h),'(R) )

R+h’
—P(R+H) [¢’1(r'(R+h),r-(1}§T+:—)-,...)— ((R),’(R) )]

R+hyt -
Y L GE OV LGP
R p
The first bracket being non-negative, we obtain from (6.1) that

i 1 ORER) ~O(R)
Ihi—0+ |A]

2 0.

Swapping R+h and R, and repeating the same argument, we obtain

lim sup SR +H) —0(R)

<0
B0+ [A] ’

which proves the lemma.
Proof of theorem 6.8. The function
HR) ¥ R — (v ~1/R) ]
is non-decreasing by (6.12) and our assumption that @ > 0. Hence A(R) - ky € [ —00, 0) as
R - 0+. We show that /&, > 0. First suppose that r(R;)/R;, - co for some sequence R;, > 0+.
Define
0,(R) = r(R) —Rr(R,)/R,. (6.28)
Then 6,(0) = 6,(R;) = 0, and so there exists S, € (0, R,) which maximizes 6, in [0, R,].
Clearly 7'(S;) = r(R,)/R;, < 7(S;)/S,- Applying (6.27) with v, = 7'(S;), v, = 7(S})/Si, We see
that lim inf;_, ., (S;)/[7(S;)]* > 0, and hence 4, > 0.
Next suppose that / = lim infg_,,, 7(R)/R # oo, and that r(R,)/R; — I for some sequence
R;, > 0+. With 6, as in (6.28), there exists S, € (0, R,) which minimizes 6, in [0, R,]. Then
'(S ) f(R,_) r%glr) -1
2
If | = 0, then by (6.26) lim inf,_, A(S)) /Sk = 0, and hence h, > 0. If [ > 0, then clearly
h(S,) = 0 = k.
Now suppose that R, € (0, 1] with 7'(R,) # r(R,)/R,. Integrating (6.12), which holds by
lemma 6.9, we obtain

r(Ry)

f R-10(R)dR < R ‘@(R,) [r (Ry) - ]d& Rl)}
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By the tension—extension property

o (e, B2, ) ~[rr) 18] @, (im0, BEL, ) < o (L, 50D, ),

so that J' " pr19(R) dR < f  pr-1gp (lw—l),i@ﬁ, ) dR.
0 0 Ry’ R,

Making the change of variables (r, R) +— (r/R,, R/R,) we obtain a contradiction to proposition
6.7.

Thus r'(R) = r(R)/R for all R € (0, 1], giving the result.

We mention the following open problem. Consider the displacement boundary value problem
for a homogeneous isotropic material under zero body force consisting of the equilibrium
equations 3 (aw

W )=0, XEB,

oxt ,
and boundary condition
#(X) = AX, XedSrL

Under what conditions on @ is the only sufficiently regular (not necessarily radial) solution
the trivial one x(X) = AX?

We now give an example showing that strong ellipticity is not a sufficient condition for every
weak solution with r(0) = 0 to be trivial, and that the growth hypotheses in theorem 6.8 are
essential. For simplicity we let n = 2, though analogous examples exist for allz > 1. If n = 2,
the stored-energy function of an isotropic material can be written in the form

W(F) = ®(vy, v5) = g(1, 9), (6.29)
where 9 = v;+v,, 6 = v,0,.

LemMA 6.10. Let g € C3(RY,) satisfy g, > 0 and
&n 3’18] > 0.
Eys  8ss

Then W given by (6.29) is strongly elliptic.

Proof. This follows from a computation with the use, for example, of Knowles & Sternberg
(1978). For a related result, showing that the hypotheses imply that W is polyconvex (see
earlier), the reader is referred to Ball (19774, theorem 5.2).

COROLLARY 6.11. Let g(7, 8) = 92/8% with b > 0, a > b+ 1. Then W is strongly elliptic.
With g as in the corollary we seek a solution of (6.1) of the form

r(R) = R*, o > 0. © (6.30)
It is easily verified that this is a solution of (6.1) if either & = 1 or
a¢ 26, 206+1)], o =bla—2(b+1)]/[(a—2b)(a—b-1)]. (6.31)

If a, b, a satisfy (6.31) then (6.30) may or may not be a weak equilibrium solution, since for
this we need also that R®,(R), RD,(R) € L}(0, 1) (cf. theorem 4.2). Examples of values of a, b,
giving rise to weak equilibrium solutions are a = 5, b = 1, and & = §. It is easily verified that
the cases when b+1 < a < 2b do not give rise to weak solutions. The total stored energy
corresponding to (6.30), (6.31) is proportional to f: Rite-D@-2dR, Since

24+ (a—1)(a—2b) =—(a—2b—-2)(a—2b-1)/(a—b—-1)
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this energy is always infinite. (We have not been able to resolve the question of whether strong
ellipticity implies that all solutions of (6.1) with 7(0) = 0 and having finite energy are trivial.)
The existence of these non-trivial weak solutions is not attributable to the singularity in @
~as vy, v, > 0+, since for them 7', 7/R - o0 as R > 0 +.

6.4. Trivial solutions for traction boundary conditions

We seek solutions 7(R) to the radial equilibrium equation (6.1) satisfying 7(0) = 0 and a
traction boundary condition at R = 1. Since we have shown in the last subsection that under
quite general conditions related to strong ellipticity all such solutions are trivial, we consider
only trivial deformations '

r(R) = AR, Re[0,1]. (6.32)

In the dead-load traction problem we thus require that
Dy(1) = Dy(A A, ...,A) =P, (6.33)
where P is the prescribed outward radial dead load on B. In the Cauchy traction problem the
boundary condition is T(1) = @44, A, ..., A)/An- = P, (6.34)

where P is the prescribed outward radial Cauchy stress on B.

Even if @ is strongly elliptic and strictly polyconvex, neither of the functions @ ,(A, A, ..., A),
@ ,(A, A, ..., A) /A" need be increasing functions of A. (This is easily seen by consideration of
the example ®(v,, ...,v,) = pXi 0§ +h(vy ... v,), where g > 0,a > 1 and #” > 0.) Hence
for a given P there may exist several roots A of (6.33), (6.84), and thus several trivial solutions.
(It is even possible for (6.33) or (6.34) to be satisfied for an interval of values of A.) This is true
in particular when P = 0, when the corresponding deformations x = AX are natural states of the
material.

The condition that @ ,(A, A, ..., A)/A*~! be a strictly increasing function is known as the
pressure—compression inequality (see Truesdell & Noll 1965), but we do not assume that it holds,
or that @ ,(A, 4, ..., A) is increasing. This does not mean that we countenance the possibility
that in an actual experiment an increase (resp. decrease) in P might produce a decrease
(resp. increase) in volume, since the trivial solutions corresponding to A on decreasing parts
of the curves @ ,(4, A, ..., A), D,(A, A, ..., A)/A*1 are unstable for the dead-load and Cauchy
traction problems respectively, in the sense that they are not local minima for the corres-
ponding energy functionals. (These functionals are given for trivial deformations (6.32) by

J(A) E (@, /n) [B(A, A, ..., A) —nPA] (6.35)
for the dead-load traction problem, and by

def
Jo(A) = (w,/n) [DP(A, A, ..., A) — PA"] (6.36)
for the Cauchy traction problem.) Thus ‘snap-through’ to a value of A on an increasing part
of the curve is to be expected} together with related hysteretic effects similar to those studied
by Ericksen (1975) for one-dimensional elasticity with a non-monotone stress—strain law; this

presupposes, of course, that radial symmetry is preserved (see the remarks in §8) and that
cavitation does not occur.

1 Behaviour of this type was observed by Bridgman (1948) in his experiments on material response at high
pressure (see also Bell 1973, p. 495).
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7. CAVITATION IN COMPRESSIBLE ELASTICITY
7.1. A special class of stored-energy functions

Our aim is to study the existence of weak equilibrium solutions with cavities in isotropic
compressible elasticity. To this end we consider the class of stored-energy functions W(F) =
d(vy, ..., v,) having the form (n > 1)

By, ...y 0,) = é‘,l $(v)) + h(vyy ... 0,). (7.1)

In our analysis we shall make use of some or all of the following assumptions on the functions
¢ and h appearing in (7.1):

(A1) h:(0,00) - R is C* and strictly convex;

(A2) lim A(6) = lim"¥) _ o

80+ 8—>c0 ) ’
(A 3) ¢:(0, 00) - [0, o0) is C* and convex;
(A 4) lim ¢(v) = co;

V>0

(A ) there exists , > 0 such that if |c—1| < &, then

|¢"(o0)] < K¢(v)/v

for all » > 0 and some constant K > 0;

(A 6) $(v) = Kyov forall v > 0,
where K; >0 and vy > 1;
(A7) $(v) < Ky(1+v*+v#) forall v > 0,

where K, > 0,0 <a <n,0<f<14+1/(n—1).
Example 7.1 (see Ogden 19724, b). Let

M n N n
D(vy, .05 0) = X /4,-(21 v‘;‘i—n)+ > vj(z v;/’j—n) + h(v,05...0,),
i=1

where A satisfies (A 1) and (A 2), M > > 1,pu; > 0for1 <j< M,v; >0forl <j< N,
Ay zay=...zay=21,06, 20 =...2 0y = 0 Bysetting

M N
B0) = X mpi+ 3 vy
=1

and altering % by a suitable constant, it is easily verified that @ has the form (7.1) and that
(A 1)-(A 5) hold. Assumption (A 6) holds provided &, > 1 and (A 7) holds provided a, < n
and f;, < 1+1/(n—1).

Note that (A 1), (A 3) imply that the tension—extension property and property (P) hold
and, when ¢, /& are C2, that (6.20) holds. Assumptions (A 1)-(A 3) imply (6.2). If v¢’(v) is
a strictly increasing function of v then the Baker-Ericksen inequalities hold. Examples of
strongly elliptic stored-energy functions having the form (7.1) can be obtained by setting
fr=...=fx =0, > 1,in example 7.1 (cf. (5.8)). Of course, (A 6) and (A 7) are consistent
only if & > y. Also, (A 6) implies (A 4).
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7.2. Existence of energy-minimizing radial deformations

We consider first the radial displacement boundary value problem. We seek to minimize the
total stored energy

Er) f Rn—l«p( (R),’(R) ) dR (7.2)

(cf. (6.22)) among radial deformations R+ r(R) such that 7(0) > 0, r(R) is increasing, and
r(1) = A, where A > 0is a given constant.

THEOREM 7.1. Suppose that (A 1)—(A 4) hold, and let

oy & fre W10, 1):7(0) > 0,7 (R) > Oa.e., r(1) = Aand E(r) < o}

Then E attains an absolute minimum on ).

Proof. We make the change of variables « = r®, p = R™ and use the notation # = du/dp.
Note that & = r»~1y'/R*»! = det Vx(X). Clearly, minimizing E on &/, is equivalent to minimiz-
ing the functional

I % [ flp,u, i) dp (1.3)
on the set
B Y fue W10, 1):4(0) > 0,u(1) = A, 4(p) > 0 a.e. and J(u) < oo},
where Fosu, p) = D((p/u)=mp,(ufp)/m, ... (7.4)
By (7.1) Slosus p) = ((p/u)*=2mp) + (n—~1) ((u/p)¥'™) +h(p). (7.5)

We extend the definition of f to (0, 1) x R x R by setting

flpu,p) =+c0 if u<0 or p<O

Then for each p € (0, 1), f(p, .,.) is a continuous function from R x R to R; this follows from
(7.5) and (A 1)—(A 4). Our minimization problem is now equivalent to minimizing J on the set

def

€ = {uec W10, 1):u(l) = A, J(u) < oo}.

Let #) be a minimizing sequence for J in . By (7.5),

1
f h(]@™(p)|)dp < const.,
0

so that by (A 2) and the de la Vallée Poussin criterion there exists a subsequence #® of u®
such that #® — u, in W11(0, 1). Since f(p, u, -) is convex we may apply a standard type of
lower semi-continuity theorem (see, for example, Ball e al. 1981, theorem 5.4 or the references

therein) to conclude that
J(ue) < lim inf J(u®).
p—>0
Since #®(1) = A - u,(1), u, € € and is the desired minimizer.
We now consider the radial dead-load traction problem in which the boundary condition

is (cf. (5.11), (5.13))
Tp(X)X = PX, XeSr, (7.6)
and P is a given constant.



CAVITATION IN NONLINEAR ELASTICITY 595

Corresponding to (7.6) we seek to minimize

Ep() o, [ f: R0 (r’(R), f%—), ) dR—Pr(l)] (7.7)
>

among radial deformations R — r(R) such that 7(0)

THEOREM 7.2. Suppose that (A 1)—(A 3), (A 6) hold, and let

0 and r(R) is increasing.

e {re W11(0,1):7(0) > 0,7 (R) > 0a.e., and Ep(r) < oo}.

Then Ep attains an absolute minimum on SZp.
Proof. Making the same change of variables as in the proof of theorem 7.1, we note that for
any admissible # we have

Jy(w) = J(w) — 0, Pu(1)n

o{ [ L= 1) Ku/pyr'n-+ a)]dp— Pu(1) )
0

\%

A\

on [ {n=1) Ku(0) 1+ 38(0) + 2} dp — Pu(1) +.C)
= w, {-12- f " h(2) dp + C,u(0) 7/ + [u(1) — Pu(1)/] — [u(0) — Pu(0)V] —Pu(O)l/”+C}
0
onlg [, B dp+3Cu(0p 4, )

\%

where C; > 0, and where we have used (A 2) and (A 6). Hence from any minimizing sequence
u™ for J; we can extract a subsequence #® such that # — » in W*1(0, 1). The remainder of
the proof is the same as for theorem 7.1.
In the Cauchy traction problem the boundary condition is (cf. (5.29))
T(X) = PX, XelS, (7.8)
where P is a given constant.
Corresponding to (7.8) we may seek to minimize

Ep(r) o, U: Rn-1® (r’(R), f%—), ) dR—-;ZIj r(l)”] (7.9)

among radial deformations R + r(R) such that 7(0) > 0 and r(R) is increasing. However, if
¢ satisfies (A 7) and P > 0 then Ep is not bounded below, as may be seen by setting u = a+p,
u = 1" p = R*in (7.9) and letting a — co. If ¢ satisfies (A 6) with y > n, £p is bounded below
(and attains its minimum) as can be proved similarly to theorem 7.2; however, this hypothesis
implies that the deformation x corresponding to any r with Ep(r) < oo belongs to W7(B; R")
and is thus continuous, so that 7(0) = 0. Thus minimizing £, is not generally of interest for
the static study of cavitation in the Cauchy traction problem.

7.3. The Euler-Lagrange equation

In this subsection we show in particular that the minimizers whose existence are guaranteed
by theorems 7.1, 7.2 satisfy the radial equilibrium equation (cf. (6.1))

d[R*1®,(R)]/dR = (n—1) R"20,(R) (7.10)
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and the relevant boundary conditions. This is not completely straightforward owing to the
constraint 7'(R) > 0 a.e.; this difficulty was first encountered and analysed in one-dimensional
elasticity problems by Antman (1970, 1976) (see also Antman & Brezis 1978). We begin with
the displacement boundary value problem.

THEOREM 7.3. Suppose that (A 1)—(A 5) hold, and let v be any minimizer of E on ). Then
reC'((0,1]),r'(R) > 0forall R € (0, 1], R*1®,(R) € C*((0, 1]) and (7.10) holds for all R € (0, 1].
If r(0) > O then R"2®,(R) € L'(0, 1) and

lim 7(R) = 0,

R0+
where T(R) is the radial component of the Cauchy stress (cf. (6.7)).

Progf. We first show that r satisfies (7.10) for R > 0 using a technique in Ball (19815);
this part of the argument does not make direct use of the convexity of @ with respect to 7.
For k = 1,2,... let S, o {pe (1/k, 1):1/k < 4(p) < k}, where u is the corresponding mini-
mizer of J on # (cf. (7.3)). Let y;, denote the characteristic function of §;, and let v € L®(0, 1)
be such that f St vdp = 0. For ¢ sufficiently small define

w(p) = u(p) +¢ [ xulnyo(r)dr. (7.11)

Note that #.(p) = ua(p) if p < 1/k or a(p) ¢ [1/k, k], and that #,(0) = »(0). Thus for any
p € (0, 1) we have by the mean value theorem that

‘f (P, us(p), t.(P)) —f(p, u(p), w(p))| _ |B((p/uc)'~"mu,) — B((p/u)**/me)

€ €

+l¢((ﬁ/u)l“" ") — ((p/u)'~1ma)

€

<

B(ue/0)") = $((u/p)) |,

€

< ‘ b((p/ue)*"""a,) — ((p/u)' "/ 4

€

h(ig) —h(u)

+(n—1) p

+C

_ I¢<(u/ual-l/"(p/u)l—l/nue) =)

) (7.12)

At points p where p < 1/k or a(p) € [1/£, k] the right-hand side of (7.12) is bounded by a
constant independent of €. At points p > 1/k where i(p) ¢ [1/k, k] we have #,(p) = u(p) and
the right-hand side of (7.12) equals

()=~ 1

¢'(g:(p) (p/u)*="4) [ ¢ ] (p/u)t=2mi

where for |e| sufficiently small |g,(p) —1| < &y. By (A 5) this expression is bounded by

Cl((p/u)*=2ma) +1],
which is an integrable function of p since J(u) < co. From (7.12) we deduce that, for |e]
sufficiently small, 4, € # (defined after (7.3)) and that by the dominated convergence theorem
J(u,) is differentiable with respect to €. Since J(x,) is minimized at ¢ = 0 we deduce that

=[] A [ atryotn) ar st xutoroto)| e = o

1

+C,

d
HE ‘](ue)

=0
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Using (A 5) as above we see that f, € L(1/k, 1), and hence integrating by parts we obtain

[ (o= 2)sora0 = 0. (7.13)

Since (7.13) holds for all v € L®(0, 1) with fSkvdp = 0, and since f, is bounded in §;, we
deduce that

p
o[l fu=a acrpes,

where ¢, is a constant. Since meas ((0, 1)\U#-; S;;) = 0 it follows that all the ¢, are equal and
fp—*fpfu = const. a.e.pe (0, 1). (7.14)
1

In particular Solps uy &) = ¢'((p/u)=V7a) (pfu)r=Y"n+ k' (i)

is uniformly bounded in every interval (¢, 1) where € > 0. By (A 1)—(A 4) this implies that
for each ¢ > 0 there is a number m(¢) > 0 such that

m(e)~* < u(p) < m(e) forall pe (e 1).

Hence r e Wt%(e, 1) and the usual argument applied directly to E, (r) shows that
R
R*'®(R) = (n—1) f p" 2Dy (p)dp +const., a.e. Re (0, 1). (7.15)
1

By proposition 6.1, reC'((0, 1]), '(R) > 0 for all Re (0,1], R*'®,(R) € C*((0, 1]) and
(7.10) holds for all R e (0, 1].

Suppose 7(0) > 0. Then «(0) > 0. Thus (A 5) implies that £, € L1(0, 1).

Let w e C*(0, 1) satisfy w(p) = 1 for p € (0, }), w(p) = 0 for p € (%, 1). Define

u(p) = u(p) +ew(p).

. d 1 .
Then &J(us) T fo (fuw +fpw)dp
=— lim f, = 0,
p—0+

where we have used (7.14). Since

. Jo = (R/1)"10y(R)
this proves that
iy

lim T(R) = lim [(f})m &' (r') + I (R—n;)] = 0. (7.16)

R—0+ R—0+

Rv2®, = Rn—2 [(n —-1)¢’ (%) +7 (}%)n_zh’ (%)]

n—1

Finally, by (7.16),

(=1 74 (7) -9,
where g is bounded, and hence by (A 5) R*2@,(R) € L'(0, 1).

= g(R)r%' +R

CoroLLARY 7.4. Suppose that (A 1)—(A 5) hold, and let r be any minimizer of E on &, such that
7(0) > 0. Then x(X) = [r(R)/R] X is a weak equilibrium solution.

Proof. By (A 3), (A4), f;R”—lr’ (R) dR < oo, and so x € Wt1(B; R*) by lemma 4.1. The result
follows from theorems 4.2 and 7.3.

43 Vol. 306. A
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For the dead-load traction problem we have

THEOREM 7.5. Suppose that (A 1)—(A 6) hold, and let r be any minimizer of Ep on SZp. Then
reCY(0,1]), r'(R) > 0 for all R € (0, 1], R*1®,(R) € C*((0, 1]), (7.10) holds for all R € (0, 1],
and lim @,(R) = P. (7.17)

R—1-
Ifr(0) > 0 then R"2®,(R) € L}(0, 1) and limy_,,, T(R) = 0.

Proof. Since we can regard 7 as a minimizer for £ subject to fixed displacement boundary
conditions the conclusions of theorem 7.3 hold, and it therefore suffices to prove (7.17). But
this follows by considering variations of the form

us(p) = u(p) +ew(p),
where w € C*(0, 1) satisfies w(p) = 0 for p e (0, %), w(p) = 1 for pe (3, 1).
In the dead-load traction problem one can show that a minimizer 7 of Ep in &/ with
7(0) > 0 generates a weak equilibrium solution x(X) = [r(R)/R] X to the n-dimensional equations,
in the sense that x € Wt(B; R*), det Vx(X) > 0 a.e. X € B, OW(Vx(-))/0F € L}(B; R*) and

—aZ.-V—WadX—Pf XyX)d#1X =0 (7.18)
B Gx”a ’ Sn—1
for all ¢ e C»(B; R*). This follows by suitably modifying the proof of theorem 4.2.

7.4. Cavitation and energy minimizers

Our aim is to show that for A or P large enough the energy minimizers r(R) satisfy (0) > 0.
The first step is to observe that (A 1)-(A 4) imply that the growth conditions (6.26), (6.27)
hold. Hence theorem 6.8 implies that 7(R) = r(1) R whenever r(0) = 0. (We could equally
well have used theorem 6.6 here, but to have done so would have meant making the extra
hypotheses that ¢, 2 be C? with either ¢” > 0 or 2" > 0.) Thus to show that r(0) > 0 it
suffices to produce an admissible deformation with less energy than any given admissible
trivial deformation; this is the content of the following result.

ProrosiTiON 7.6. Let (A 1)—(A 3), (A7) hold. Then

(a) for any A > O sufficiently large
inf E(7) < E(AR);
ress
(b) for any P > O sufficiently large '
inf Ep(7) < inf Ep(uR).
n>0

reol p

Proof.
(a) For fixed €, 0 < ¢ < 1, define 7,(R) = A[(1 —€) R*+¢]" Then
E(r)—E(AR) = o, fol Rn-1 [qb(r;, ;—;, L) =B A, ...)]dR
- o, flwg(z) [BA(L—6) 27, Az, ...) —B(A, A, ...)]dz,
where g(z) & ezn=1/(z"— 1 +¢)2 Thus, by (A 3), (A7),
E(r,) —E(AR) € v, fjg(z) [Ko(n+A%(1 —€)* 220  (n— 1) A% 2% + AF(1 — ) =F zA—D)

+ (n—1) AAzF) + h(A*(1 —€)) — h(A")]dz
< G+ GoA% + CyAF + (w, /n) [A(A(1 —€)) —h(A")]
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since g(z) ~ €271~ as z > o0. But by (A 1),
h(A) = h(A*(1—¢€)) + A%k’ (A%(1 —¢€)),
and so E(r) —EQAR) < C,+Cyd® +CyA~F — (1, /n) Areh’ (An(1 —€)).
Letting A - o0, we see that since & < n, lim,_,,, #'(8) = oo,
E(r,) < E(AR) for A sufficiently large,

as required.
(6) Defining r, as above, we have that

Ep(r) —Ep(uR) < Cy+CyA%+ CoA~* + (w,/n) [(A*(1 —€)) — h(p")] + 0, P(p = A).

Fix M sufficiently large for #'(AM"(1 —¢)) > 0, and set A = g+ M. Then

Ep(r) —Ep(rR) < Ci+Cy(n+M)*+Cy M~

= (@n/n) [ — (n+ M)* (1= )]’ (1 + M)" (1 —€)) —0, PM
< G—w, PM.
Hence for sufficiently large P,
Ep(r) < inf Ep(uR)
>0
as required.
The discussion preceding proposition 7.6 thus gives

THEOREM 7.7.
(@) Let (A 1)—(A ), (A7) hold. Then for sufficiently large A > 0 any minimizer r of E on £, satisfies
r(0) > 0.
(6) Let (A 1)~(A 7) hold. Then for sufficiently large P > O any minimizer r of Ep on Sfp satisfies
r(0) > 0. '

There now follow conditions guaranteeing that compressive boundary data do not give rise
to cavitation.

THEOREM 7.8. Let (A 1)-(A 6) hold, and suppose further that ¢, h € C3(0, c©), that ¢" > 0 or
k" > 0, and that v’ (v) is non-decreasing for all v > 0. Then
(@) if X < X, where Xisarootof D 4(R, A, ...) = O (sothatx = AXisanatural state), thenr(R) = AR
is the unique minimizer of E on &4, ; ‘
(8) if P < 0, then each minimizer r of Ep on p has the form r(R) = AR, where & 4(A, A, ...) = P.

Proof. Suppose r is a solution of (7.10) with 7(0) > 0 and limy_,, 7(R) = 0. By proposition
6.4, r'—7r/R does not vanish in (0, 1). Since limg o, 7/R = oo this implies that v’ < r/R
throughout (0, 1). Since v¢’(v) is non-decreasing the weakened Baker-Ericksen inequalities
hold, and so by proposition 6.2 7'(R) is a non-decreasing function of R. In particular, 7(R) > 0
for all R € [0, 1].

If r minimizes Ep on &p, therefore, we have @,(1) > 0, which is impossible by (7.17) if
P < 0. This proves (b).

Suppose r minimizes £ on &/ and that A < A, where &,(A, 4, ...) = 0. Then limg,,,
r/R = o0, limg_,, r/R = A, so that r(R;)/R, = A for some R, € (0, 1).

Thus :

0= 1/ 19, %,...) > (1/)"10,(r'(Ry), X, ...) = T(R) > 0,

which is a contradiction.

43-2
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7.5. Cavitation: the onset of fracture

In this subsection we study the bifurcation of equilibrium solutions with cavities from the
trivial solution as A or P increases. In particular we seek to determine the bifurcation points
Aer and Py, Our approach is to rewrite the equilibrium equation as a first-order differential
equation for 7(w), the radial component of the Cauchy stress, as a function of the inverse

w = R /r of the circumferential strain, and to solve this equation with initial condition 7°(0) = 0.

We suppose throughout this subsection that (A 1)—(A 7) hold, that ¢, & € C?, that lim sup,_,,.,
¢"(v) < oo (so that in particular (A 7) holds with # = 0), that v¢’(v) is strictly increasing, and
that 2" > 0. These hypotheses imply in particular that the relation (cf. (6.7))

T = uw 1@ ((r', w1, ...) (7.19)
can be solved for 7’ to yield r = 0(T, w), (7.20)

where :R x (0, c0) - (0, c0) is C2. We can thus rewrite (6.8) in the form

g% = —(n—1) -‘i’frf [6(T, w)® 4 (0(T, w), w, ...) ~w=1® ,(6( T, w), w7, ...)]
=—(n—1) ﬂ? [0(T, w) ¢ (0(T, w)) —w=¢' (w)]. (7.21)
Since g—’l‘é = —% [0(T, w) —w-1], (7.22)
we can combine (7.21), (7.22) to obtain
d7T
3w = G(T,w), (7.23)
where
_ gy g2 |0 0) $°(0(T, w)) —wig"(w )] w 1
e, [ O[T, w) —w? | it omw £ w (7.24)
(n—1) w=2[¢’ (w=1) + w1¢" (w-1)] if O(T,w) = w.

(We shall shortly see that the values of G when 6(7, w) = w1 are not relevant for us.)

Let Ry > 0, and let r € C1((0, Ry)) be a solution of (7.10) satisfying r(0) > 0, limp_ .
T(R) = 0, and 7'(R) > 0 for R e (0, Ry). Then from the proof of theorem 7.8 we see that
r" < r/R for R e (0, Ry) so that r/R is strictly decreasing. Thus r generates a solution to the
initial-value problem dT/dw = G(T, w),

7.25
7(0) = lim T(w) = 0 (7.25)

w—>0+

defined on the interval (0, Ry/r(R,)) and satisfying 6(T(w), w) < w~! there. This solution is
unique. To prove this note that since

1) = (7)) por+n e (7)),

it follows from our hypotheses that limy_,,, 7'(R) = 0, and hence that

Em 2 () 926
im 7 (E) =1, (7.26)

R—0+
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where 7 is the unique root of 2’ = 0. Hence any solution T(w) of (7.25) satisfies
i < O(T, w) /w1t < 29 (7.27)
for sufficiently small w > 0. From (7.19), (7.20) and (7.24) we deduce that

G(T, w) _ (n—1)w—3 t0¢”(0) (0—w) —w[4"(0) — ¢’(w“)l}
oT G—w)? w¥DG" (0 + K" (Gwi ) ’

and hence that, for sufficiently small w,

3G(T, w)

st < C (7.28)

whenever (7.27) holds, where we have used (A 5), (A 7), lim sup,_; ¢"(v) < o0 and A" > 0.
Let T3, T, be two solutions of (7.25). Then
d 0G(T(w), w)
oT

5 (L-T) (w) =

- (T,~T3) (u), (7.29)

where T(w) € [Ty(w), Ty(w)]. Since 90/3T > 0, 3y < 6(T(w), w) /w1 < 29 for sufficiently
small w > 0, and so by (7.28), (7.29) and Gronwall’s inequality we deduce that 7} = T, as
required.

Let A > 0 be such that a minimizer r,(R) of E on &7, exists with 7,(0) > 0. (Such A exist
by theorem 7.7 (a).) Since by (6.4) we have ri(R) > 0, there follows the a priori estimate

0 < n(R) < 7(S) < n(S)/S < r(R)/R for 0 <R <,

which implies that 7, can be extended uniquely to the whole of (0, c0) as a solution of (7.10).
Define
def

Aor  lim %’9 = lim r}(R). (7.30)

R—© R—>0

Then T'(w) is defined on [0, A;!], and by (7.20), (7.80), A, is the largest root of the equation

wt = 0(T(p™), p1); (7.31)

equivalently, A, is the largest root of

T(p) = gDy (s s -5 1) (7.32)

Since 6( T(w),w) < w=! for all w € (0, A;!), the uniqueness of T implies that A, is independent
of A, provided there is a solution of (7.10) on (0, 1] with 7,(0) > 0 and 7Y(0) = 0. Note
that 7 is increasing by the Baker-Ericksen inequalities, and hence that A, > max

R0, (A, 7%,...) = o).

THEOREM 7.9. A solution r) of (7.10) on (0, 1] with r,(0) > 0, r,(1) = A and T(0) = O exists
if and only if X > A The solution ry is the unique minimizer of E on o), and can be extended uniquely
as a solution of (7.10) to the whole of (0, c0). If A > p > Ay, then

r(R) = n(c(, WR) /oA, ) forall R >0, (7.33)

where c(A, p) is the unique number such that r)(c(A, p)) /c(A, ) = p. Furthermore ry(R) — AR uniformly
on [0,1] as A | Ay
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Progf. Let A be such that a minimizer 7, of E on &, exists with 7,(0) > 0. Then r, is the
unique solution of the initial value problem

d?;;gf) =0[T(—R——) —ﬁ—], 0 <R < oo,

n@®) n(®) (7.34)
(1) = A
If 4 > A, and 7, is defined by (7.33), then
d
%%Q N 0“(@&))’@%‘3]’ 0<k<x (7.35)
r,(1) = p.
The uniqueness of solutions to (7.34) shows that any solution 7, of (7.10) with 7,(0) > 0,

7,(1) = p and T(0) = 0 has the form (7.33). We have already shown that no such solution
exists for 4 < Ay
We now show that r, given by (7.33) minimizes % in «7,. We have that

E(r,) — E(uR) = o, f: Rr [qb (r,;, %, ) — b, 1, ...)]dR

_ Z(%Wr(w Rt [qs (r,{(R), 9—%‘1), ) —&(u, 1 )] dR

0

= 9,;" {D(alc(d, 1) s ) = [12(e(A, 1)) — ] D1 (12 (c(A, 1)), 125 )

1 . ;T
- . S g .36
L R LA (e LA (7.36)
where we have used (6.12).
But since r,(0) = 0 it follows that
lim R» (r;-’i) @, = 0. (7.37)
R0+ R

From (7.36) we deduce that limy_,,, R"®(r), r,/R, ...) exists, and thus, since E(r,) < oo, that

lim R (r;,%, ) o (7.38)

R0+

Since D(vy, ..., v,) is strictly convex in v; we deduce from (7.36)—(7.38) that
E(rﬂ) < E(uR).

Thus, from the discussion in §7.4, we see that r, minimizes E in 2/,
Finally, the fact that r,(R) - AR uniformly follows from (7.33) and the fact that lim,_,,
¢(A, A) = 0.

Remarks

(i) The formula (7.33) shows that as A | A, the value of r,(R) /R differs significantly from
A only in a boundary layer 0 < R < d, whose thickness d) is proportional to the cavity
radius 7,(0).

(ii) Note that, for each A > A, 7,(R) extended to (0, c0) solves the radial equilibrium
problem with zero Cauchy stress on the cavity surface and radial Cauchy stress A" ® ;
(Agrs Aeps - ) at infinity.
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We now discuss the stability of the equilibrium solutions to the displacement boundary
value problem. We say that a solution 7 € &, of (7.10) with 7(0) = 0 if 7(0) > 0 is stable if
there exists ¢ > 0such that E(r) > E(7) whenever r € &, and 0 < maxpp, 1 |7(R) —7(R)| < e.
(In the terminology of the calculus of variations 7 is stable if it is a strong relative minimum;
it is not obvious that this implies Lyapunov stability of 7 with respect to, for example, the
equations of nonlinear elastodynamics, even within the class of radial motions.) We say that
7 is unstable if it is not stable.

THEOREM 7.10. The trivial solution r = AR is stable if A < Ay and unstable if A > Ay If
A > A, then 7y is stable.

Proof. We have seen in theorems 7.1, 7.3 and 7.9 that r = AR is the unique absolute mini-
mizer of £ when A < A, and that r, is the unique absolute minimizer when A > A. It
therefore suffices to show that » = AR is unstable if A > A,. For A > A, v > A, define

((R) if 0 <R<R

14

AR if B <R<1,

where R, = 1/¢(A, v). Note that 7,(R,)) = r,(1)/¢(A, v) = AR,, so that r® e &/,. Also R, > 0
as v - Ay, so that 7® — AR uniformly. But

r(R) =

Ry
E(r®) —EQAR) = w, f Rr-1 [(D (r,',, %, ) —-D(A, A, ...)]dR
v 0

_ Z(‘%)Tzf: R [¢ (r;(R), ’A%R), ) —o(, A, )] dR

~ 5 B ~EQR) < o,

and hence r = AR is unstable.

We now study the bifurcation in the dead-load traction problem. Let A; > A, be fixed.
The non-trivial equilibrium solutions with 7°(0) = 0 and @,(1) = P are exactly those r,(R)

for which @ ,(rh(1), A, ...) = P. (7.39)
Thus bifurcation from the trivial solution occurs at P = P,;, where
Pcr = Ql(Acra Aers +- ) (7'40)
The direction of bifurcation is given by d® ,(ri(1), 4, ...)/dA|,_,,- But
—(—i—d> (1), A,...) = i@ (ra, (e(Ag, A)), A, .00)
dA L1\A 9 My oo d/\ ,I\TAy 1 PRATILRR]
" de(Ay, A
= Burf, e, 1) X2 4 (1) g,
_ " ¢(Ag; A)
= Dy, (¢(A4, A)) A=A it (n—1) Dy,
_ D, (ra(1), A, ...) =D 4(ra(1), A, ...)
=—(n—1) [ A=A , (7.41)
where we have used the definition of ¢(A;, A) and (6.4). Thus

d /
Eﬁ 45.1(7‘,\(1), /\; ~")I/\=Acr == (n*' 1) [gp,ll(Acr: /\cn ) _¢,12(Acr’ Acr: )] (7'42)
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Thus the bifurcation at P = P, is to the right (resp. left) if
D 11(Aers Agps +++) < (resp. >) D 1o(Aers Agpy oo 1) (7.43)

Bifurcation to the left would mean that as P is increased past P, the body snaps through’ to
an equilibrium solution with finite cavity radius; in bifurcation to the right the cavity radius
would initially grow continuously from zero.

We do not attempt a study of the stability of the various equilibrium solutions here, except
to remark that it follows immediately from theorem 7.10 that if A > A, then r = AR is un-
stable (i.e. it is not a strong relative minimum for £, on 7, where P is given by (7.39)).

In the Cauchy traction problem the non-trivial equilibrium solutions with 7°(0) = 0 and
T(1) = P are exactly those r,(R) for which

A (r3(1), A, ...) = 0. (7.44)
Thus bifurcation from the trivial solution occurs at P = P*, where
P* = A}:;nds,l(/\cm /\er: . ) (7'45)
Note that by (7.41), for all A > A,
d ., . , _ ()@ (ra(1), A, L) = AD o (ra(1), A, ...)
EI—XA D ,(rn(1),A,...) ==(n—-1)A [ ) =R ], (7.46)

which is negative by the Baker—Ericksen inequalities. Hence the bifurcation is always to the
left. If A = 1 is a natural state then A,, > 1 and so P,, > P*.

Finally, we make an observation analogous to proposition 5.1 concerning the existence of
equilibrium solutions with infinite energy.

ProrosiTION 7.11. If r is a solution of (7.10) on (0, 1] with r(0) > 0, then E(r) < oo if and only

if T(0) £ limy, ., T(R) is finite.
Progf. By the Baker—Ericksen inequalities 77(0) exists. From (6.12)

(1) +n f 1 R1(R)dR = C+ 17 [r'(f) —f(Ti)] (1), (7.47)

for any 7 > 0. Since 7’ is bounded it follows immediately that E(r) < coimpliesthat 77(0) = — co.
Conversely, if T(0) = —oo, then the left-hand side of (7.47) tends to infinity as 7 > 0+,
which implies that E(r) = oco.

7.6. An example

Consider the stored-energy function
n
D(vyy ...y v,) = ,u[z v3—n+H(v, ...vn)], (7.48)
i=1

where g > 0 and H:(0, ) - R* is a C® function satisfying lim,_ ., H(8) = oo, H"(§) > 0
for all & > 0, and H(S) = H(0—1—k1)2 for &3> }, (7.49)
where £ > 1.

The function @ is a compressible version of the incompressible neo-Hookean material having
stored-energy function u(¥7_,v%—n), this material being obtained formally by letting £ — co;
@ is strongly elliptic.

Suppose n > 3; then on setting ¢(v) = wv?, h(8) = u[H(J) —n], it is easily verified that
(A 1)-(A 7) and the hypotheses of §7.5 hold.
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The natural states of @ are determined by solving the » equations

D, =...=90,=0. (7.50)
We obtain v; = ... = v, = v, where v is a root of
2 +y7-2H’ (1) = 0. (7.51)

Since £ > 1, v = 1 is the largest root of (7.51).
Let 7(R) be a solution of (7.10) on (0, 1] with 7(0) > 0; 7(0) = 0. Then by (7.26)

n—1
lim r'(}%) = 14k (7.52)

R—0+

Also, substitution of (7.48) into (6.4) shows that

d [, (r\*?
= [r (’R) ] >0, R>o. (7.53)

Hence 7'(r/R)*»* > 1+k-1, R > 0, so that when considering non-trivial equilibrium solutions
we can assume that H is given by (7.49).7
We thus have that

T = 2p[r' (W™ + kw'—") — 1 — k], (7.54)
(T/2p+1+E) wr
so that 0T, w) = Ty . (7.55)
Thus (7.23) becomes
aT - n—2 -1
= 2(n—1) puw2[0( T, w) + w™1]
T w"

= 2(”—1)/1;1,0”"3 [(2—/‘ll+l+k) m-l-l] (756)

Writing (7.56) in the form

d [T+2u(1+k)] w3
< [ it | = 20V e (7.57)
we obtain the solution of the initial-value problem (7.25), namely
T(w)+2u(1+k) _ (1+k) ™-3dr
=TI 24 ! +2 n—1) ,uf (72 1)+k)5 (7.58)
Therefore A, is the largest root of the equation
1+k ©
(1 2n-1\% = — 17 _1f S S— .
(14+kX ) A +(n—1) » k)i (7.59)

In fact, since the left- and right-hand sides of (7.59) are increasing and decreasing functions
of A > 0 respectively, A, is the only root of (7.59).
The values of P,; and P* are given by

Py = 2piT A" — 1+ E(AG - 1)], (7.60)
and P* = 2u[A% " — 1 + k(N —1)]. (7.61)

1 In particular, the existence of equilibrium solutions with cavities is not attributable to the singularity in
W (F) as det F - 0+, and such solutions may exist even if H () is not convex for large d.
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We now study the behaviour of A, as £ — co. From (7.59) we see that as £ — o0

- 1 +k c
Aer (LRGP < —= 4,
and hence that k(A2r—1) < C
In particular, since A, > 1, lim A, = 1. (7.62)

k—>o0

Expanding (7.59) by the binomial theorem we deduce that

" L 1+/c (n— 1) 1 B
Acrk%[ 2k)(2(n—1)+( )] f s"-[ — g ok 1)](15»

3n—4

and it follows that ]}Lrg k(AL —1) = 5(n=2)" (7.63)
From (7.60)—(7.63) we obtain
lim P,, = lim P* — (3” - 4) 5 (7.64)
k—>c0 k—o0 n—2

Also we have that

k—>c0 n—2
(7.65)

. 4
hm [@,11(}(01” Acr; . ) _¢,12(Acr) Cry * )] - hm 2/’5[1 +A2}r 2 k)(g;2()(gr )] =HU (” )

so that bifurcation in the dead-load traction problem is locally to the right when » = 3 and
to the left when n > 4. The results (7.62), (7.64), (7.65) are in accord with those for the in-
compressible problem (see (5.60), (5.66) and proposition 5.2), except that in the incompressible
problem bifurcation is to the right for all » > 3.

We now consider the case n = 2. Recall that in the incompressible case non-trivial defor-
mations for the neo-Hookean material have infinite energy (example 5.1). From (7.57) we
see immediately that for (7.40) there is no non-trivial equilibrium solution satisfying 77(0) = 0.
However, it is possible for a non-trivial equilibrium solution to exist with 7°(0) = —oo; such
a solution must have infinite energy by proposition 7.11. We suppose that for sufficiently

small & > 0,
H(8) = —Iné. (7.66)

Writing w = R/r, 8 = /R, we note that the radial equilibrium equation (7.10) can be written
in the form
dé(w)  2(1—du?
dw = w[2w2+H"(8)]

(7.67)

We seek to solve (7.67) for a non-zero 8(-) satisfying 8(0) = 0. It will suffice to do this for
small w, and hence we can insert (7.66) into (7.67) to obtain

ds  28%(1—w?)

dw ~ w(l+2w?6?)" (7.68)

For small &, w the right-hand side of (7.68) is like ¢/w, and this motivates the change of
variables v = —1/2 In w after which (7.68) becomes

dé() _ f( 1—86“1’”) (7.69)

dv 14 202e1v)"



CAVITATION IN NONLINEAR ELASTICITY 607

We claim that (7.69) has a strictly positive solution on (0, »,) satisfying lim,_,, 8(v) = 0,
provided v, > 0 is sufficiently small; to prove this we set

K = {0€eC([0,v,]):8(0) = 0, 1+1e V" < 0(v)[v < 1+%eV? for 0 < v < vy}
C(P[8) B[ 1= 8(s)e Vs
and (Q9) (v) = fo [T] [1 30057 ds. (7.70)
Then it is not hard to show that K is a bounded, closed and convex subset of C([0, v,]) and
that for sufficiently small y, > 0 @ maps X into X and is compact and continuous. The existence

of the desired solution 8(v) now follows from Schauder’s theorem. Let §(w) be the corresponding
solution of (7.68). Given ¢ > 0 let 7(R) denote the solution of the initial value problem

Ry
dr " \r )’ (7.71)

r(0) =€

defined for 0 < R < R,, where R, is sufficiently small. The solution of (7.71) exists since
[8’(w)] is bounded for small w > 0. Clearly r satisfies (7.10) on (0, R,). This solution can be
extended to [0, 1] by the monotonicity of 7" and r/R. Since

R, R
T(R) = p [2 7 r'(R) +T_T7(—R—)-:|
it follows that 77(0) = —oco. Note also that since d(w) Inw ~ —} as w - 0+ it follows easily
that R®,(R), RD,(R) € L'(0, 1), and hence that by theorem 4.2 x = [r(R)/R] X is a weak
equilibrium solution.

8. CONCLUDING REMARKS

We begin by relating our analysis to the work of Gent & Lindley (1958) described in the
introduction. As explained there, Gent & Lindley calculated the radial dead load traction P,
at infinity required to expand a spherical cavity of initial radius R, indefinitely, and found
that P, was independent of R, and given (for their materials) by (5.22). To prove that P, = P,;
for an incompressible material we note that the arguments leading to (4.16) or (5.35) show
that, for a spherical shell of internal and external radii R, R, in the reference configuration, the
radial component P(R,) of the Piola—Kirchhoff'stress at R = R; in the deformation s = R™+ 4"
is given by

A‘)"]l—l/n ffH(A/R»"J”" 1 d@(v)d (8.1)
v, .

PRy = [1 * (E (4 /Rypm 00— 1 do
provided T(R,) = 0. The value of P, is obtained by setting R, = oo and letting r(R,)/R,
tend to infinity in (8.1), and this shows that P, = P,,. For compressible material P, = F,
also (cf. remark (ii) after theorem 7.9). The underlying reason is the invariance of the equili-
brium equation and boundary conditions under the transformation (X, x)— (¢X, cx); an
infinitesimal hole in a finite piece of material behaves like a finite hole in an infinite expanse of material.
We remark that the actual failure criterion proposed by Gent & Lindley was that failure occurs
at the least dead-load traction 2 that, when applied at infinity, will cause the circumferential
stretch at R = R, to reach a specified value v,. Gent & Lindley took v, to lie between 4 and 10,
and noted that then P differs little from P,.
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The boundary condition 7(0) = 0 supposes the cavity to be empty; it is easy, however, to
modify our static analysis to incorporate other assumptions concerning cavity contents (for
example that the cavity fills with air at atmospheric pressure; Gent & Lindley found this
correction to be small). Itis also possible to account for the effects of surface energy; we indicate
how to do this for an incompressible material. The total energy of the deformation

R (Rr4A™)Vr, A4 > 0, isnow (cf. (5.19))

def

I,(4) £ E(4) — Pu, (1 + A")Vn 4 0, e(4), (8.2)

where w, ¢(4) is the energy of the cavity surface. For equilibrium I3(4) (B—A4) > Oforall B > 0,
and thus 4 = O or

© 1 dd(v) e'(4)
= 1-V/
If lim,_,y, ¢’(4)/A™! = 0 then the non-trivial solutions bifurcate from the trivial solution
r = R at P = P, as before. However, if we take the standard model in which

e(d) = KA1 (8.4)

is proportional to surface area, then P - o0 as 4 - 0+ and no bifurcation occurs. The effect
of surface energy on cavitation for liquids has been studied by Fisher (1948) and Irwin (1958),
and for solids such as rubber by Gent & Tompkins (1969) and Williams & Schapery (1965).

The equilibrium solutions with cavities can be obtained as limits of non-singular deformations
in various ways. For example, consider the mixed boundary value problem for a spherical
shell of initial internal and external radii R, > 0, R, = 1 in which (1) = A and T(R,) = 0.
If A > A, then the energy minimizer for this problem (for a compressible material) tends to
72(R) as Ry —> 0+. (The corresponding result for an incompressible material holds trivially.)
However, certain other approximation schemes never converge to a solution with a cavity.
Suppose, for example, that we minimize

1e) = [ [wes)+e 3 a0at0)]ax, (8.5)
B M=k

i=1, .0,

subject to the boundary condition x(X) = AX for X € 0B, where ¢ > 0 and x} denotes a typical
kth-order derivative of x%. Then if £ is sufficiently large, any x with I(x) < oo is C! (provided
W is bounded below). Therefore if W is quasiconvex, x(X) = AX minimizes I, absolutely for
any € > 0, since it minimizes fa W(Vx)dX and makes the second term zero. Clearly as € - 0
these minimizers do not converge to a solution with a cavity, however large A may be.

A possible application of our theory of cavitation in two-dimensional compressible elasticity
(suggested to me by J. E. Marsden) is to the bursting of a balloon under an internal pressure.
Suppose that the balloon is incompressible and spherical with radius 1 and thickness ¢ < 1
in the reference configuration. If the balloon remains spherical and has deformed radius A
then locally the surface will be in two-dimensional extension with principal stretches both
equal to A. The corresponding (compressible) two-dimensional stored-energy function is

Y(vy, v5) = 8D(1/v,0y, v3,05). ' (8.6)

If bursting occurs initially by two-dimensional cavitation then the radius A at bursting should
equal the value of A, corresponding to ¥.
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The growth conditions assumed in the existence theory of Ball (19774, 6) and Ball et al.
(1981) exclude the stored-energy functions shown here to allow the existence of discontinuous
equilibrium solutions of finite energy. Essentially this is because for deformations with cavities
the distributional determinant Det Vx is a measure. Our examples have implications for
attempts to prove regularity of weak equilibrium solutions for strong materials; in particular,
example 5.1 and the example constructed at the end of §7 show that even for strong materials
there may exist discontinuous equilibria of infinite energy.

Koiter (1976) has drawn attention to the question of whether positivity of the second varia-
tion of the total energy at an equilibrium solution is a sufficient condition for stability. In a
displacement problem for a compressible material the second variation at the trivial solution
x = AX is given by the expression

L=, a;?%) B (X) 7 5(X)dX, 51

where the smooth functions ¢ are required to vanish on 9B. If W is strongly elliptic then it is
well known that L$ > 0 unless ¢ = 0. The examples of non-uniqueness to the incompressible

Jauchy problem in §5.4 and the results of §7 then strongly suggest that x = AX is unstable
if A > A,,; a proof of this would require a detailed study of radial solutions to the equations of
compressible elastodynamics (the related problem of collapse of a spherical bubble in a com-
pressible elastic fluid has been studied by Hunter (1960)). Without hypotheses preventing
cavitation the criterion of the second variation thus seems unlikely to be generally valid. We
remark that no information about A, is obtained by linearizing (1.2) around the trivial solutions
x = AX; the information obtained by linearization and application of the implicit function
theorem in Banach space is merely that x = AX is isolated in various spaces of smooth functions
from other equilibria (for the technique see Marsden & Hughes (1978)).

In the dead-load traction problem, bifurcation into a regular non-symmetric equilibrium
solution may occur before the critical load P, is reached. Consider, for example, an incompres-
sible material. Then it is known (see Hill 1957; Beatty 1967) that the trivial solution is a weak
relative minimum of the total energy provided 0 < P < F,, where

B=(@-9:,,+9,) |vl=v2=v3=1' (8.8)
(Formula (8.8) may be obtained by setting the second variation of
I(vy, v5) = D(vy, Va5 1/0105) — P(vy+ 05+ 1/010,)

atv; = v, = 1 equal to zero.) At P = P, bifurcation into a non-trivial homogeneous deforma-
tion in general occurs. Since Fy depends only on the behaviour of @ near v; = v, = v3 = 1,
while P, depends on the global behaviour of @, there is in general no relation between their
values. For a neo-Hookean material (see Rivlin 1948),

Py =4y < 5p = P,

cr

while for other materials P, > P,. For more information on the bifurcating homogeneous
solutions see Ball & Schaeffer (1982). For remarks on loss of spherical symmetry for elastic
shells under pressure see Haughton & Ogden (19%8).

Finally we remark that it would be interesting to extend our results by relaxing the hypothesis
of spherical symmetry. The work of Varley & Cumberbatch (1980) may be relevant here.
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