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Abstract

Martensitic microstructures are studied using variational models based on nonlinear elasticity. Some relevant mathematical tools from
nonlinear analysis are described, and applications given to austenite—martensite interfaces and related topics.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction product phases (Ball et 48,8], Ball and JameflL1], Forclaz
[32]), thin films (see Bhattacharya and Jani28], Luskin

This article reviews some mathematical contributions to [42]), and generalizations of the Hadamard jump condition

the study of martensitic microstructures via continuum mod- (Ball and Carstensefb], lwaniec et al[33)).

els based on nonlinear elasticity. These contributions have

exploited techniques from branches of mathematics such as

nonlinear analysis, the calculus of variations, partial differ- 2. Nonlinear elasticity model

ential equations and geometry. As often happens, however,

when different disciplines come into contact, their interac-  \We describe the elements of the nonlinear elasticity model

tion is a two-way process. This is particularly striking for used by Ball and Jamd&2,13] Consider a single crystal

continuum models of martensitic microstructure, which have occupying in a reference configuration the bounded region

suggested quite new mathematical questions, for exampleg of three-dimensional Euclidean spaR@. In a deformed
of multi-dimensional calculus, and for which the relation of configuration, the material point ate £2 in the reference

experimental observation to fundamental unresolved math-configuration is displaced to the pointx) € R3. Here, we
ematical issues is strikingly immediate. are considering statics, so there is no dependence on the

This is not intended to be, and space prevents it from time . Thus, the deformation of the crystal is described by
being, a comprehensive review of the field. Rather it em- a mappingy : 22 — RS,

phasises some issues which have concerned the author and We denote the set of reab33 matrices byv°*3, and set
collaborators over recent years, together with other related|A| = (tir ATA)1/2, Mix3 = {A € M3<3: detA > 0}. Here,
research. For a broader view, the reader is referred to they, g _ Zle Eii denotes the trace df ¢ M3*3. Wherever

books Bhattacharyfl9], Dolzmann[28], Muller [45], Pit- it is defined, the deformation gradieWity(x) = (3y;/dx;) is

teri and Zanzottg49] and Ball and Jamed.0]. Some spe- ; ; 3x3
. . ) required to satisfy de¥ 0, so thatVv M37*°,
cific issues not considered here (together with representa- d o Y00 > Y € My

: . I . ) The relation of this condition to the invertibility of, and
tive refere.nces_), t.o Wh.'Ch similar mathemgtlcal techr_uques thus to non-interpenetration of matter, is somewhat subtle
have provided insight, include the mechanical behavpur of and is discussed in Baf®], Ciarlet and Necaf5], Sverak
polycrystals (see Bhattacharya and K¢at], Kohn and Ni- 52].

ethammen40], Paroni[47]), magnetoelastic materials (see

! _ Because we want to include deformationehose defor-
James a_nd_ K|nderlehr<§84], DeS.'”f"?”e and Jamgg7]), mation gradients can jump across a smooth surface, such as
hysteresis induced by incompatibility between parent and

a twin plane, it is important to specify precisely what such
singularities iny will be allowed. Thischoice of function
*E-mail addressball@maths.ox.ac.uk (J.M. Ball). spaceis part of the mathematical model, and affects its pre-

0921-5093/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
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dictions. For example, we could decide to allow deforma-
tionsy which are discontinuous and allow the crystal to frac-
ture. Because fracture is not the main issue for martensitic
transformations, however, we will not allow such singulari-
ties. Instead, we will suppose thabelongs to theSobolev
spaceW! = wl1(2; R®), which roughly speaking is the
set of mappingy : 2 — R such that

[ @1+ 195 dr < o &
Here, Vy(x) is the weak derivativeof y, which is defined
except possibly for a set of pointshaving zero volume.
The precise definition and properties of weak derivatives,
the integral in(1), and the Sobolev spacég’?, 1 < p <

oo, can be found in numerous standard texts, for example,
Adams and Fournigl]. For the purposes of understanding
the main points of this article, it is enough to think of the
allowed deformations as including piecewise continuously
differentiable mappings.

We consider the problem of minimizing the total free
energy of the crystal
Io(y) = fg Y(Vy(x), 6) dx 2
amongy € W1 satisfying suitable boundary conditions, for
example thay is specified on a portiofis21 of the boundary
982 of £2, so thaty(x) = y(x) forallx € 9521, wherey is a
given mapping. The meaning to be ascribed to this boundary
condition fory € W11 can be found in the previously cited
texts. The fact that no boundary condition is specified on the
remainderds2, of the boundary corresponds to the surface
tractions being zero there, this formally being a ‘natural
boundary condition’ for the variational problem.

In (2), ¥ = ¥(A,0) is the free-energy density of the
crystal, andd is the temperature, regarded as a constant
parameter (that is, independentxf We assume that is
frame-indifferentthat is

W(RA 6) = ¥(A,0) forallR € SO(3), (3)

where SO(3) denotes the set of proper orthogonal matrices

(rotations), and thaf satisfies thenaterial symmetrgon-
dition
V(AQ. 0) = ¥(A, 0) 4)

whereS is the point group of the crystal, which is a subgroup
of SO(3). A well-known argument using the polar decom-
position theorem for matrices implies thatsatisfies(3) if
and only if it has the representatiah = (U, 6), where
U = (ATA)Y/2, and then(4) reduces to the requirement that

forall Q € S,

Y(QUQ', 0) = y(U,H) forallQ e S. (5)
An important role is played by the set
K(0) = {A € M>3: Aminimizesy (4, 6)) (6)

of energy-minimizing deformation gradients. By adding to
Y a suitable function o we may and do assume that the
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0> 0.

0=0,
1 UI(OC) UZ(GC) U3(00)
0> 6.

Fig. 1. Schematic of the assumed energy-well structure for the free-energy
density ¢ showing the exchange of stability as the temperatupasses
through6,.

minimum value ofy (A, 6) is zero for allg, so thatK(0) =
{A € M®3 : (A, 6) = 0}. From (5), it follows that if
U € K9 thenQUQ" € K(¥) for all Q € S. For a marten-
sitic transformation with transformation temperatageand
transformation strai/(0), 6 < 6., the N distinct matrices
QU®) QT for Q € S describe theV variants of martensite
with strains

UL(0), ..., Un(6).

Taking the reference configuratiof2 to be undistorted
austenite at the temperatutg we then assume (sé&ég. 1)
that K(0) has the form

() SO3), 0> 0,
K(0) = { SOB) UL, SOB3)Ui(0), 6 =6, 7)
UY., SO3)U;(6), 0 <0,

where the thermal expansion coefficiensatisfiesx(6,.) =
1. Thus, foré < 6, the ith variant of martensite is associ-
ated with an energy-well that locally rises above its zero set
SO(3)U;.

For cubic austenite we have th&t= P?*, the group
consisting of the 24 rotations of a cube into itself. For a cubic
to tetragonal transformation, we find thst= 3 and that

U1(6) = diag(nz, n1, n1), U2(6) = diagni, n2, n1),

Us(0) = diag(ni, n1, n2),

wheren; = n1(0) > 0, n2 = n2(6) > 0 are the deforma-
tion parameters. Other transformations give rise to different
values ofN; for example, N = 6 for cubic to orthorhombic
and N = 12 for cubic to monoclinic transformations.
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Why is it preferable to use nonlinear elasticity, rather sponding to lattice invariant shears associated to slip and
than linear elasticity, as a model for martensitic transfor- plastic flow (cf. Erickserj29]). Including these symmetries
mations? To understand this, one should remember that lin-in a naive way leads to the material behaving like an elastic
ear elasticity is not a special case of nonlinear elasticity, fluid (see Fonsed®0]). It is not clear how to give the theory
but a linearization of it about a natural state. Not only the described here, with the smaller point group as symmetry
stress—strain behaviour, but also rotations, are linearized, sayroup, a clear status with respect to that with the full sym-
that the frame-indifference conditiof8) no longer holds. metry group, or to developing theories of elasto-plasticity
In fact, a rigid rotation of a body in a stress-free state, (cf. Ortiz[46]). Likewise, reconstructive transformations are
which according to nonlinear elasticity correctly results in not covered.
another stress-free state, produces non-physical ‘phantom’ Consider now a smooth surfaSeontaining the point €
stresses according to linear elasticity. In martensitic trans- R3 and having unit norman there. IfVy is continuous on
formations, rotations of several degrees are commonplace either side ofS with limits V*y(z) = A, V™ y(z) = B from
so this becomes an important issue. It is possible to con-above and below, respectively, then equating the tangential
struct a ‘linearized’ theory of martensitic transformations, derivatives at leads to theHadamard jump condition
in which the austenite and each variant of martensite are as- B—

. : : : : —B=a®N. (9)
signed their own linearized stress—strain law, as was done by
Khachaturyarid5,36], Khachaturyan and Shatal{&7], and for somea € R3, where the right-hand side ¢®) is the
Roitburd[50,51] Since the regions occupied by each phase 3 x 3 matrix of rank one (provided # 0) with entries
are unknowns, this theory is still nonlinear, but in certain (¢ ® N)j = a;N;. An important special case is whehis
cases is more tractable. It is not easy to give this linearizeda plane{x - N = k}. In this case, it is worth making the
theory a satisfactory status with respect to the nonlinear one following remark. Suppose that: R® — R has bounded
though an attempt to do this was made in Ball and Jamesgradient, so thatVy(x)| < M < oo for all x, and that
Section 9 in[12]), and of course in situations where there . :

;re significar[n rl))tations it will not give good results (for a x.Nlmroo Vyx) =4, xJ\/IE)n—oo Vyx) = B. (10)
comparison of the theories see Bhattachdiy19).

The energy functionaf2) ignores, among other things,
the interfacial energy associated with surfaces of disconti-
nuity of Vy, such as twin boundaries. As a consequence
the theory based ofR) predicts infinitely fine microstruc-
tures, whereas including small interfacial energy will typ-
ically set a length-scale for these microstructures resulting te
from the balance between bulk and interfacial energy. Ex-
pressed differently, the theory based(@phas no preferred
length-scale; if, for example, the deformation R® — R3
describes a deformation withiy(x) € K(6) for all x (ex-
cepting, perhaps, a set of points of zero volume), the defor-
mation

¥ =ey(2) ®)

Then(9) still holds. In fact, using the elasticity scalir{§)

we obtain a sequence of deformatiorfs: R — R2 with
bounded gradient converging to a deformatiosatisfying

"Vy(x) = Aif x-N>0,Vykx) = Bif x-N <0, so that
(10) follows.

Because of the Hadamard jump condition, zero-energy in-

rfaces between variants are in one-to-one correspondence

with rank-one connections between the sets30;. More

generally, givenU = UT > 0,V = VI > 0, we seek
rank-one connections between &/ and SQ3)V. That

is, we ask when there are rotatioRs, R» and vectors:, N

such that

RiU = Ray(V +a® N). (11)

Theorem 2.1. Let D = U? — V? have eigenvalues; <
defines for arbitarily smalt > 0 another deformation with A2 < A3. ThenSO(3)U andSO(3)V are rank-one connected
the same propertiesy Sinmg(x) = Vy(ex). Nevertheless, if and only if ., = 0. There are exactly two solutions up
the zero interfacial energy theory based @ is of inter- to rigid rotation providedi; < Az = 0 < Ag, and the
est because its simplified, though singular, mathematical corresponding normalsvi, N2 are orthogonal if and only
structure leads to explicit predictions of certain features of if tr U2 =tr V2, that isiz = —A1.
observed microstructures that can be compared, often suc-
cessfully, to experiment. The situation is analogous to the ~Theorem 2.1is taken from Ball and Jam¢$2] (see also
relationship of the Navier-Stokes equations for flow of a Khachaturyar{36]). However, the simple observation con-
viscous fluid, with those for inviscid flow and gas dynamics Ccerning the orthogonality of the normals seems to be new. In
obtained by setting the viscosity to be zero; these equationsthe case of martensitic variants we have= U;, V = Uj,
likewise have a singular structure, with solutions represent- @nd since/; = QU; 0" for some rotatiorQ the requirement
ing vortices and shock-waves, for example, that can give atr U? = tr UZ is automatically satisfied, and the condition
good description of, and much insight concerning, the flow 11 < A2 = 0 < A3 holds if and only if detle.2 — UJZ) = 0.
of fluids with small viscosity. If this condition holds then up to rigid rotation there are ex-
The theory based of2) also, through the assumptign), actly two such rank-one connections (twins) and the corre-
ignores the symmetries of the free-energy dengityorre- sponding twin planes are orthogonal. For example, for the
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case of a cubic to tetragonal transformation, taklhg=
U,, V = U1 and R, = 1, the two twins are given by

\/—77% - ’7% 1
a= 2 (_ 2, K 70)7 N = _(17 K, O)v
72 (12 7

ny TN
wherex = £1. An equivalent condition for the existence of
twins, due to Forclag31], is that de{U; — U;) = 0.

3. Mathematical tools

J.M. Ball/Materials Science and Engineering A 378 (2004) 61-69

To define it, we act like a microscopist, fixirjgand a point

x € £2, and looking at the deformation gradients in a ball
B(x, §) with centrex and small radiug > 0. We pick points

z distributed uniformly at random fronB(x, §), and look

at the corresponding probability distribution of the matrices
VyW(z). The probability thaty (z) belongs to a subset
G c M3<3is given by

volumez € B(x, §) with Vy (z) € G}

Vx,.s(G) volumeB(x, §)

(12)

Now, we letj — oo, to obtain the limiting value of this

We briefly describe some mathematical tools that prove probability, and finallys — 0, to localize the probability to

useful for describing and analyzing martensitic microstruc-
tures at the continuum level. The firstigak convergencge

or convergence in the sense of averages. Consider a se-

quence of deformation gradierféy ), which for simplicity

we assume to be uniformly bounded independently, a&.
|[VyP(x)] < M < oo for all j andx € £2 (again with the
possible exception of a set of points of zero volume). We
say thatvy”) converges weakiip the deformation gradient
Vy, written Vy) —~ vy, if

/Vy(j)(x) dx — / Vy(x) dx
E E

for all open subregiong of 2 (equivalently, for all balls,
or all cubes, contained if2). For example consider the
simple laminate shown iRig. 2formed from gradientd, B
satisfyingA — B = ¢ ® N with separating interfaces with
normalN, the A layers having thickness/j and theB layers
thickness(1 — A)/j, where 0< A < 1. ThenVy”) has weak
limit Vy(x) = AA + (1 — ) B. Note thatVy/ (x) does not
converge tov y(x) in the usual sense for any

Next, we describe th¥oung measureorresponding to a
sequence of gradientgy”). This concept was introduced
by Young (sed56]), while Tartar[54] drew attention to its
importance for nonlinear partial differential equations and
for carrying information from microscales to macroscales.

N N\ BN
AR \
% B %
V}-(f) = \A N
\ ‘-\‘ ‘\\.
R (BN
A/

Fig. 2. Simple laminate formed from layering compatible gradient®
with volume fractionsi, 1 — A respectively.

the pointx. Thus, we expect to obtain a probability distri-
bution on 3x 3 matrices given by

e (G) = lim lim v, ;5(G). (13)
§—0 j—o0

In fact, it is a theorem (see for example BEl) that such

a limiting probability exists for any sequence of gradients
satisfying a suitable bound such @&y (x)| < M < oo,
provided we extract a suitable subsequence ofthe . We
call (vy),ecp the (gradient)Young measureorresponding to
vy, The Young measure contains exactly the information
needed to determine the weak limit 6{VyY) for any
continuous functiork. In fact, this weak limit is given by the
expectation of: with respect to the Young measure, that is

RVYD) — (vy h) = / (14)

h(A) dvy(A).
M3x3

In particular, takingi(A) = A for all A € M3 we have
that Vy) — Vy(x), whereVy(x) = v, and the centre of
massv;, is defined by

ax:/ Adv(A).
M3x3

From the definition, we see immediately that the Young mea-
sure corresponding to the simple laminateFig. 2 corre-
sponds to a limiting probability. of finding the matrixA,

1— i of finding the matrixB, and zero of finding any other
matrix. That is

(15)

vy = Ada + (1 —1)dp, (16)

where for any matri>xC the Dirac massi¢ is defined for any
G c M3 py

1,
0,

ifCeG

‘SC(G):{ ifCé¢G

Finally, we describe the deeper ideagoiasiconvexitgue
to Morrey[43,44] An integrandf = f(A) is quasiconvexf

/ f(Vz(x)) dx > / f(A)dx = (volumeg2) f(A)  (17)
2 2

wheneverz : 2 — R3 is smooth withz(x) = Ax for all
x € 052. Despite appearances, the condition does not depend
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on £2. Quasiconvexity off has important implications for ~ which equality holds in(17). Thus, from(19) applied to
whether or not the functional f + £J we deduce theninors relations

/ J(A) dv(A) = J() (20)
M3x3

for any minorJ = J(A), that is for J(A) = Ajj, J(A) =
attains a minimunsubject to given boundary conditions. If  (cof A)jj, or J(A) = detA. These useful and nontrivial re-
the minimum is not attained then although there are admissi-lations can be verified explicitly for the special case of the
ble y for which I(y) becomes arbitrarily close to its greatest Young measur¢l16) of a simple laminate.
lower bound, there is ng which realizes this lower bound For martensitic transformations with< 6., K(6)9° can
(just as there is no real number O that realizes the lower  be interpreted as the set of stress-free macroscopic deforma-
bound zero of the function/). In fact, under suitable tech-  tion gradients corresponding to zero-energy microstructures.
nical conditions quasiconvexity implies thaattains a min- Unfortunately, there is no known tractable characteriza-
imum, while lack of quasiconvexity is suggestive of nonat- tion of quasiconvexity, and it has been shown by Kristensen
tainment. If f is quasiconvex thery is rank-one convex  [41]thatthere is no such local characterization. Thus, for ex-
that is the functiorg(r) = f(A +tc® N) is convex (i.e. the  ample, there can be no set of inequalitiesforand its deriva-
tangents to the graph gfnever lie above the graph) for any tives at an arbitrary matrixd which is necessary and suffi-
A, c and N. However, the converse is false (Svef&R]). cient for f to be quasiconvex. Thus, we are in the awkward

For martensitic transformations, the existence of twins im- position that the key mathematical concept for the analysis
plies immediately thai/(-, 6) is not rank-one convex, since  of microstructure is shrouded in mystery.
in the corresponding rank-one directions the functiois
minimized at exactly two points. Hena#-, 6) is not quasi-
convex, suggesting that the minimum kfis not in general 4. Some successes of the theory
attained. In this case, we expect the deformation gradients
vy of a minimizing sequence fof, to have a nontriv-
ial Young measure corresponding to an infinitely fine mi-
crostructure, thus explaining in the context of the elasticity
model why fine microstructures are formed.

Even thoughy (-, 6) is not quasiconvex, quasiconvexity
plays an important role in analyzing. Let 49 be thequa-
siconvexificatiorof y, that is the greatest quasiconvex func-
tion less than or equal tg (-, ), defined by

I(y) = / f(Vy)dx
2

4.1. The crystallographic theory of martensite

As was shown by Ball and Jamé¢$2], the nonlinear
elasticity model incorporates the crystallographic theory of
martensite, due to Wechsler et §5] and Bowles and
Mackenzig24]. A (classical) austenite—martensite interface
is described by a minimizing sequeng® for Iy, in which
a simple laminate comprised of two twin-related marten-
sitic variants with gradientd = R1U,, B = RoUy, where
c ) . R1, R2 € SO(3), meets undistorted austenite, represented by
V(A 6) =supl f(4) : f quasiconvexf(B) the constant deformation gradievy’) = 1 at a habit plane

< y(B, o) forall B}. (18) with normalm. Because neither variant is compatible with
the austenite (that is there is in general no rank-one con-
i ” T nection between S@) and S@3)U;), a boundary layer is
free-energy function corresponding . (This interpre- o0 jired 1o interpolate between the laminate and the austen-
tation follows from the relaxation theorem of Dacorogna ite, the volume of this layer tending to zero as> oo (see
[26], which, however, does not strictly speaking apply to Fig. 3.
elasticity; for a discussion see B#].) In particular we can The construction of such a minimizing sequence with
consider the quasiconvexificatioki(9)9¢ of K(0), namely 1o,y — 0 is possible if and only kA + (1 — A)B =
the set defined equivalently as 1+b®m for somex, 0 < A < 1, and vectors, m. Solving
KO = (A : Aminimizesy(A. 6)) for R1, Rz2 A, b andm leads to thg formulae of the crys-
- ’ tallographic theory. For example, in the case of a cubic to
= {b : vanx-independent gradient Young tetragonal transformation there are 24 possible habit planes

measure with supp C K(6)}. with 2 = A* or 1— 1%, where

Then 9 can be interpreted as being thmeacroscopic

2 2 2, 2
More generally, gradient Young measures are characterized, « _ } 1— 2(n5 — Dy — (g + 1) +1).
(see Kinderlehrer and PedredaB,39) by the fact tha, 2 (5 — 12)2

is a gradient and and

/Mm f(A) dve(4) = f() 9 = (% B+ D), % (T — 8), 1),

for all quasiconvexf. Now, the minors (subdeterminants)

1 1
of A are up to linear combinations the only functiofigor b= <§X§(8 +vo), Sxgeve —9), ﬂ) : (1)

2
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habit
plane.
/N
N ; My pyltit= 1
\A S m
/A / {
Al / A / /
Y / / / /
AJj A B/ / et
N Lod A S
(1= £ |
|

boundary layer

Fig. 3. Mathematical description of an austenite—martensite interface.

wherev = 1 forAx = A*, v = —1 for A = 1 — A*. Here,

8 = [ +ni—2)A—nD Y2, v = [@ngns—nf— ) (1—

D) Y2, ¢ = Q=D /A+n2), B=n201f — 1)/ (L+n2),

x = =£1. These solutions exist provided the inequalities
n%—i—n% < 2ifn > 1, nIZ—i—nEZ < 2ifn1 < 1 hold (see
Fig. 4).

4.2. The two well problem

The general question of characterizing(6)9¢ for
6 < 6. is open. However, in the case when there are

a4y

classical and nonclassical
interfaces possible

?
7

3T only nonclassical

interfaces possible

Fig. 4. Deformation parameterg, n, allowing classical and nonclassical
austenite—martensite interfaces.
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just two martensitic variants, such as for orthorhombic
to monoclinic transformatiosk()9° can be calculated
using the minors relationg19). In this case, we can
take

K(6) = SO(3)U1 U SO(3)Us, (22)

where Uy = diag(nz, n1, n1), U2 = diag(ni, n2, n1) are
the first two variants for a cubic to tetragonal transformation.

Theorem 4.1 (Ball and Jame$§13,10])). For K(¥) given by
(22) K(6)%° consists of thos@ e M3*3 such that

0
0
n

ATA =

)

OO Q
oS o

where ab— ¢2 = n%n%, a+b+ 2| < n% + n%.
If y is invertible andVy(x) € K(8)%° for all x theny is a
plane strain

Since a plane strain cannot coincide on the boundary of
a three-dimensional regiof2 with a linear mapping un-
less it is itself linear, this provides a case when we can
rigorously prove that the minimum of the energy is not
attained.

Corollary 4.2 (Ball and Carstense[V]). Let A € K(6)%°
with A ¢ K(6). Then the minimum df,(y) subject toy|ye =
AX is not attained

4.3. The role of special deformation parameters

Certain microstructures are only geometrically possible if
the deformation parameters satisfy special relations. A case
in point is provided by the analysis by Bhattachaj/@] of
thewedge microstructurebserved in certain shape-memory
alloys, in which austenite surrounds a wedge-shaped re-
gion of martensite consisting of two simply-laminated
plates meeting along a midrib plane. Bhattacharya ana-
lyzed this microstructure for cubic to tetragonal and for
cubic to orthorhombic transformations and showed that
it was only possible at zero energy if certain special re-
lations held, and that these relations were indeed nearly
satisfied for alloys for which wedges are observed. In the
case of a cubic to tetragonal transformation there is a single
relation

(1 —13)% + 431+ 13)
(1= 15)% + 81

= : (23)

and the wedge must involve all three variants, with the mi-
crotwin planes in each plate meeting at the midrib at°120
For other results in the same spirit see Bhattachfty§
Pitteri and Zanzott¢48].
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5. Towards a more predictive theory or surface is approached? From a mathematical perspective,
one difference between the double laminate case and the

Although much new and useful information can be ob- fractal one is that the former can be represented by a gra-
tained from the theory described above, it is not truly pre- dient Young measurév,),c> that is independent of in
dictive of the microstructure morphology that arises in a the martensite, whereas the latter corresponds, teary-
given experimental situation. For example, in the analysesing as the habit plane or surface is approached. It turns
of Sections 4.1 and 4.the basic microstructure geometry out that for cubic to tetragonal transformations the former
is assumed (guided by experimental observation) and thiscase can be analyzed. The analysis, which does not make
geometry is then shown to be consistent with a zero-energyany extra assumptions about the microstructure morphol-
microstructure provided various quantitative relations hold. ogy in the martensite, reduces to determining the possible
The theory does not tell us why the assumed microstructurerank-one connections between @Pand the quasiconvex-
geometry is preferred to others. ification K(9)9¢, whereK () = U?=180(3)U,-. Even though

Of course, the problem of predicting microstructure ge- K(8)9¢is unknown in this case, it turns out to be possible to
ometry is apattern formation problemwhich can only determine the values of the deformation parameiers»
be satisfactorily treated using appropriate dynamic equa-for which such rank-one connections are possible. In fact
tions. Such a dynamic theory should tell us what features (see Ball and Carstensd8,7]), 1+ b ® m € K(6)9 for
of microstructure morphology are predictable, that is which someb, m if and only if nmin < r;r;ild < Nmax, Wherenmin <
should arise in repetitions of the same experiment, and whichnmig < nmax are the numberss, n1, n2 in nondecreasing
are not. In principle, one might expect the conceptspf order (so thatymig = n1). This region is shown irFig. 4.
namical systems thegrguch as invariant manifolds and at- Note that in the neighbourhood of the poipt = n2 = 1
tractors, to be important in such an analysis. Unfortunately, the region for which only nonclassical interfaces are possi-
to carry out such a programme at present seems out of reachble is cusped, suggesting that one is more likely to observe
firstly because it is not clear what dynamic equations to a classical interface with simply-laminated martensite for
use (a key issue being the laws governing the motion of such deformation parameters. However, the situation is not
interfaces—see Bhattacharya et[@R]), and secondly be-  quite as simple as this, since even in the region correspond-
cause the mathematical analysis of such systems is poorlying to classical interfaces planar nonclassical interfaces are
developed. For example, the author is not aware of a sat-possible with a much larger set of normaisthan the 24
isfactory three-dimensional treatment of motion of a single allowed for classical interfaces. Thus, a nonclassical inter-
austenite martensite interface. face might be preferred if the conditions of the experiment

Nevertheless, there are examples for which the static the-(such as the orientation of a temperature gradient) favoured
ory can be made somewhat more predictive, or give someone of these extra normals. Whether these more complicated
limited insight into the dynamic formation of patterns of austenite-martensite interfaces will arise in suitable experi-

microstructure, and we discuss two of these. ments, or whether they are disfavoured for reasons outside
the model, such as interfacial energy or dynamic effects, re-
5.1. Nonclassical austenite—martensite interfaces mains to be determined.

Is there a reason why simple laminates of martensite are5.2. Macrotwin formation by coalescence of martensitic
preferred in austenite—martensite interfaces, or could a moreplates
complicated geometry arise, for example a double laminate
(layers within layers structure) or a fractal-like microstruc-  Boullay and Schryver§23] made HRTEM observations
ture which refines in a self-similar way as the habit plane of macrotwins in quenched B§Al 35 polycrystals Fig. 5).

Fig. 5. Low magnification image of crossing-type macrotwins. The insert shows details of the crossing at twice the magnification. Bands of different
grey levels correspond to different variartfs and Us.
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Table 1

RotationsQ1 and Q, that bring Plate 1l into compatibility with Plate k{ = x1 = v1 = 1) and the corresponding macrotwin normals and N,
Parameter values 01 02

K2 X2 Vo Axis Angle () N1 Axis Angle () N>

-1 1 1 (070, 0, —0.71) 1.64 (0, 1, 0) (0.75, 0, 0.66) 1.75 1,0, 0)

-1 -1 1 (0, 0.99, 0.16) 7.99 (1,0,0) (0.99, —0.14) 7.99 0, 1,0)

-1 1 -1 (0.65, 0.48, —0.59) 6.76 (059, —0.81, 0) (0.68, 0.50, 0.54) 6.91 —~0.81, —0.59, 0)
-1 -1 -1 (—0.48, 0.65, 0.59) 6.76 (0.81, —0.59,0) (—0.50, 0.68, —0.54) 6.91 (059, —0.81, 0)
1 1 -1 (—0.54,0.54, 0.64) 5.87 %(1, 1, 0) (0.57,0.57, —0.59) 6.08 %(1, -1,0

1 ] (0.60,0.60, —0.52)  7.37 %(1, —-1,0) (0.62, 0.62, 0.47) 7.47 %(1, 1, 0)

The direction of rotation is that of a right-handed screw in the direction of the given axis. For thescase = 1, x, = —1 see the text.

The macrotwin interfaces separate a pair of simple laminatesin fact, the macrotwin normals observed for ‘crossing-type’
of martensite. Although it is natural to believe that these macrotwins correspond exactly to those in the table for this
macrotwins arise via coalescence of impinging martensitic case. Further, the larger angles of rotation for the case
plates, such a time evolution is too fast to observe. Does —1 of reversed volume fractions suggests why this situation
the static theory nevertheless provide any supporting evi- was not seen by Boullay and Schryvers. In order to achieve
dence for this scenario, or other insights? This alloy under- compatibility at the macrotwin plane, the microtwins bend
goes a cubic (bcc) to tetragonal (bct) transformation. For slightly as they approach this plane. The corresponding
macrotwins involving just two of the three tetragonal vari- angles and directions of rotations agree well qualitatively,
ants in the two contingent laminates, the corresponding mi- and fairly well quantitatively, with those observed, lending
crotwin planes are close to orthogonal. Now, the rank-one further confirmation to the coalescence scenario. For more
connections required for the wedge microstructure are ex-details the reader is referred to Boullay et 3], and
actly the same as those needed for two martensitic plates taBall and Schryverg15,14] Much remains to be done to
be simultaneously compatible with the austenite and with complete our understanding of these macrotwins and their
each other across the macrotwin plane. Thus, although thegenesis.

special relationshig23) holds approximately for N5Al 35,

and macrotwins involving all three variants with microtwins
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