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Definable sets over finite fields
By Zoe Chatzidakis at Paris, Lou van den Dries at Urbana and Angus Macintyre at Oxford

Introduction and Statement of results

This article originated with a question posed by Ulrich Felgner (Oberwolfach,
January '90):

Is there aformula φ(Υ) in the language of rings that defines in each finite field ofthe
form Fq2 its subfield Fql

Note that for a given prime power q the formula Yq = Υ defines in Fq2 its subfield Fq9
but this formula depends on q. It turns out that a negative answer to Felgner's question
is easy to obtain from a theorem of Ax [1], see (4.2) below, but it is natural to look for a
stronger negative result, namely:

(*) Given any formula φ(Υ) in the language of rings there are onlyfinitely many prime
power s q such that φ(Υ) defines in Fq2 the subfield Fq.

We give here a new and (modulo the Lang-Weil estimates) selfcontained treatment of
various logical aspects of finite (and pseudo-finite) fields. In particular we get new results on
definable sets with (*) s an obvious consequence. Our main result extends the Lang-Weil
estimates on absolutely irreducible varieties to arbitrary formulas with parameters.
However, a finite number of case distinctions, depending on the formula, becomes necessary.
Here is a precise formulation.

Main Theorem. Lei φ (Χ, Υ) be a formula in the language of rings, with X =
(X19..., Xm) asparametric variables and Υ = (Yl9..., Y„). Then there is a positive constant C
and a finite set D ofpairs (d, μ) with d e {0,...,«} and μ α positive rational number, such that
for each finite field £ = Fq and each χ e /m, if the set φ(χ, Γ} :={ye£n;t^ φ (χ, y)} is
nonempty, then |card(<£(*, *")) - μqd\ ^ Cqd~(il2) for some (d, μ)εϋ.

For instance, when m = 0 (no parameters) and n = l, the theorem says:

Given aformula φ (Υ) in onefree variable Υ there are positive constants A, B and positive
rationals 0< μί< ... < μΗ ^ 1 such that for each finite l = Fq: either card (φ (4)) ^ A, or
|card(0(/)) -μ^Ι ^ B]fq for some ie{l, ...,&}.
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108 Chatzidakis, van den Dries, and Macintyre, Definable sets over finite fields

In particular there are constants A, C> 0 such that either card((/>(X)) ^ A, or
card ($(/)) ̂  C - card(/). By taking here l = Fq2 one obtains (*) above.

Remarks. (1) It can certainly happen that in this result about φ ( Υ) one needs more
than one rational μ{. For example, let φ(Υ) be the formula 3Z(Z2 = Y) ("7is a square").
When char(/) Φ 2 there are (\/2)(q + 1) squares in /, while for char(/) = 2 all elements
of / are squares. So here we need two rationals: μ1 = 1/2 and μ2 = 1. One obvious contrast
with Lang -Weil type estimates is the presence of proper fractions μ: this is the effect of
allowing quantifiers in the formulas.

(2) Here is an important addition to the Main Theorem.

For each (d, μ) e D there is a formula φά μ (Χ) that defines in each finite field £ = Fq the sei
ofxeJm such that |card (<£(*, /*")) - M*\ ^ Cqd~(i/2\

(3) In our main theorem it is clear that for sufficiently large / = Fq (depending on the
formula φ) there is for each χ e &m with φ(χ, /") Φ 0 a unique pair (d, μ) e D such that
\card(φ(x,Jn))-μq \ ^ Cqd~(i/2\ or equivalently:

In terms of φ^μ(χ) these numbers d and μ also make sense for pseudo-finite £ and
je e /m: d is the algebraic dimension of the Zariski closure of φ (χ, £n\ and μ is the measure
of φ (χ, &*) with respect to a finitely additive measure on its Zariski closure. These aspects are
treated in detail in section 4.

(4) A more difficult variant of Felgner's question is whether the field Fq is interpretable
in the field Fq29 uniformly for infinitely many q. Again the answer is negative: this follows by
extending the main theorem to definable sets modulo definable equivalence relations. See
(3.10) and (3.11) for details.

In this connection it would be interesting to know whether the theory of finite fields
admits some kind of elimination of imaginaries, cf. Poizat [11], where this notion is
introduced (for complete theories).

We now give a brief description of the contents of the various sections.

Proof of the Main Theorem (sections l, 2, 3). Basic to our approach is the
Decomposition-Intersection Procedure, a procedure that constructs from an affine algebraic
set a finite union of absolutely irreducible algebraic subsets defined over the same field F s
the original algebraic set and with the same F-points. For our purpose it is vital to obtain
some Information on how this procedure depends on parameters, and this aspect is studied in
section 1.

The next Step in the direction of our Main Theorem is a variant of Kiefe's quantifier
elimination for finite fields [9]. This variant is s follows. Enrich the language L of rings
with extra constant Symbols cnl, . . . , cnn, for each n > l, and consider enriched finite fields:
these are finite fields / in which for each n > l the Symbols cnl, . . . , cnn are interpreted s the
coefficients of an irreducible polynomial
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over £. Each finite field / can be so enriched, in infinitely many ways. In section 2 we prove
the following Positive Quantifier Elimination:

Eachformula<t)(X}, X = (Xi9 ..., Xm), in the enrichedlanguage is equivalent, uniformly
for all sufficiently large enriched finite fields, ίο α conjunction of formulas of the form
3 Tg(c, X, T) = 0, where g(c, X, T) is a polynomial over I in the extra Symbols cni, the
variables Xl9..., Xm and the single variable T.

In Kiefe's result φ is equivalent to a boolean combination of formulas 3 Tg (X, T) = 0,
so that negations -i 3 Tg (X, T) may appear; both φ and the boolean combination are in the
language of rings; Kiefe's theorem is not used in the proof of our positive quantifier
elimination. We also prove in section 2 that each pseudo-finite field is generated s a ring
by each ofits infinite definable subsets, cf. (2.12).

The rest of the proof of the Main Theorem is given in section 3 and consists of easy
counting arguments and estimates using the Lang-Weil Theorem.

(J. Denef suggested later another proof of our main result: instead of intersection-
Decomposition + Lang-Weil, one could use Galois stratification (cf. [6]) + formulas of
Grothendieck & Deligne involving the action of Frobenius on cohomology.)

Applications of the Main Theorem (section 4). We already mentioned Felgner's
question and its variants, which inspired our work. More important seem to us the following
model-theoretic consequences:

Given a pseudo-finite field F and a definable sei S Fm + * there is no infinite sei A Fm

such that all sets Sa (a e A) are infinite and all intersections Sa n Sb (a Φ b, a, b e A) are finite.

This answers a question raised by Cherlin and Hrushovski, and it seems to imply that
much of model theoretic stability theory makes sense for pseudo-finite fields, even though
these structures are unstable, cf. Duret [5].

Another result in the same spirit is the failure of the "strict order property" for the
theory of finite fields. This may sound ominous but is actually quite nice, cf. (4.6):

Given a formula φ(Χ,Υ) with X= ( \,..., Xm) and Y= (Yl9..., 7J, there is a
positive integer M = M (φ) such that for each finite field £ there is no strictly increasing
sequence of sets φ(χ\ Γ) c ... c φ(χΜ, 4") of length M, with χ1 Ε 4m.

Still open is the question, raised by Cherlin, whether the universal-homogeneous
triangle-free graph (cf. [8]) can be interpreted in a pseudo-finite field.

Algebraic boundedness (section 5). Here we prove that the theory of pseudo-finite
fields is algebraically bounded, cf. (5.7). We refer to the beginning of section 5 for the
definition ofalgebraically bounded theory of fields. The main ingredient in the proof is a new
general fact about perfect pseudo-algebraically closed fields (cf. (5.3)). Before our work on
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this topic Jarden had mentioned to us (in Oberwolfach, January '90) that he had obtained
algebraic boundedness of pseudo-finite fields, but his proof is not known to us.

Axiomatizability results (section 6). A totally different problem that was also
stimulated by Felgner's question is to axiomatize the class of fields of the form fq2, that is, to
give a (reasonable) set of axioms in the language of rings equivalent to the set of sentences
true in all Fq2. As usual it is convenient to disregard "small" finite fields, and change the
problem s follows.

Let Psf be the theory of pseudo-finite fields: its models are the infinite fields satisfying
the sentences that are true in all finite fields.

Given n > 0, let Psf" be the theory whose models are the infinite fields satisfying the
sentences that are true in all finite fields of the form Fqn with q a prime power.

Then it is reasonable to ask:

Is Psf2 axiomatized by Psf u {3x(x2 = n): n e Z} ?

If follows easily from Ax [1] that Psf2 and Psf u {3 χ (χ2 = ή): n e Z } have indeed the same
models of characteristic φ 0, but this is not true anymore in characteristic 0, s we shall see
in section 6, the last section. Nevertheless, we show, using again results from Ax [1], that
Psf2 can be axiomatized by Psf together with axioms requiring that certain one variable
monic polynomials over Z have zeros.

There seems to be however no simple description of these polynomials, for instance one
cannot restrict oneself to polynomials of degree bounded by some constant, nor to
polynomials solvable by radicals over Q, see (6.6) and (6.7).

Open questions. 1. Does the theory of finite fields eliminate imaginariesl

2. Can one Interpret the countable universal-homogeneous triangle-free graph in a
pseudo-finite fieldl (We don't have a clue: this may require new ideas.)

In both questions we may allow the use of extra constants.

Notarions and conventions. We fix for each field F an algebraic closure F\ we put
(j(F)s= Aut(F|F), also for nonperfect F. Formulas and sentences are in the language
L := {0, l, —, H-,.} of rings, unless specified otherwise. The theory of finite fields is the set of
all sentences true in all finite fields. We always let Xl9 ...,Xm9 Yt,..., Y„, Γ be distinct
variables, and put X = (Xl9..., Xm), Υ = (Yl9..., 7„). The X's generally serve s parametric
variables.

Acknowledgement. We thank MSRI at Berkeley for making the collaboration
between the authors on this topic possible, and G. Cherlin for a stimulating discussion. Van
den Dries thanks the NSF for support during the writing of this paper.
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§ 1. The decomposition-intersection procedure

(1.1) This procedure is basic in the logic of finite and pseudo-finite fields, but
important properties of it (uniform bounds, dependence on parameters) that we need here
seem to be unavailable elsewhere.

(1.2) Fix a field Fand an algebraic closure F. Given a set 7g F[7], Υ = (F15 . . . , Yn),
n ̂  l, we put F(7):= {yeFn : f ( y ) = 0 for all fei} and call F(7) an F-algebraic set.
Usually/is an ideal, or a finite set {/1? ...,/k} £ F[7] inwhichcasewewrite F(/t, ...,/*).

(1.3) To an F-algebraic set F = F(7) g Fn s in (l .2) we associate an F-algebraic set
V V s follows: let F1? ..., Ffc g F" be the (absolutely) irreducible components of V.
Some of these FJ's may not be F-algebraic sets but they are F'-algebraic sets for some finite
degree extension field Fr £ F, and each conjugate σ ( Vt), σ e G (F) = Aut (F \ F), also belongs
to {Kj, . . . ,K k }. For each i e {!,...,£}, set Ηζ.:= p| σ(^.), an F-algebraic set with

Ff n Fn = ^ n FM. We define Fr «= HP\ u . . . u Wk. Clearly V is an F-algebraic subset of V
with FnFn= F'nF".

We can now repeat the same process with V and get V". Continuing in this way we get
a decreasing sequence of F-algebraic sets F=> V ^ V" ̂  ... 2 K(r) 2 ··· · By Hilbert's
basis theorem all terms in this sequence from some point on are equal and we denote this
ultimately constant term by F*. Hence F* is a (possibly empty) F-algebraic set with

(1) FnF n =F*nF" .

So when we are just interested in the F-points of Fwe can restrict attention to F*. Call F*
the F-absolute kernel of V. The following properties are easy consequences of the
construction of F*:

(2) The absolutely irreducible components of F* (if any) are F-algebraic sets.

(3) F* contains every F-algebraic subset of F that is absolutely irreducible.

(1.5) How large should r be in order that F* = F(r)? In fact, r = n will do s the
following considerations show. Define a quantity a(F)E{ — οο,Ο, l , . . . ,« — 1} by:

a(F) := — oo if all absolutely irreducible components Vt of F are F-algebraic,

a(F):=max{dim(i<) : Vi is not F-algebraic}, otherwise.

We claim :

(i) a (F)^0 => a (FO<a(F) ,

(ii) a(F)= -oo *> F' = F(oF*= F).

Property (ii) is clear. For (i), assume a(F) ^ 0, let F1?..., Ve be the absolutely
irreducible components of F that are F-algebraic and of dimension ^a*=a(F), let
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Ve + i» · · · 9 V/ be the absolutely irreducible components of V of dimension α that are not F-
algebraic, and let Vf + l9 ..., Vk be the remaining absolutely irreducible components, which
are of dimension <a, so 0 ̂  e <f^ k. Then we have, with the notations of (1.3): W{ = V{
for l ^ / :§ e and dim(^) < α for the remaining ι 's. So

Let C l 5 . . . ,C0 be the absolutely irreducible components of We + lv ...vWk, so
dim(Cj) < α for all j. Hence the absolutely irreducible components of V are F19 ..., Fe,
plus those Cj that are not contained in Fx u . . . u Ve. From this description it is clear that

a (F ' )<a (F) .

Since a(F) g n - l, it follows that a(F(/1)) = - oo, hence by (ii) applied to F(n):

(1.5) F* = F (w).

(1.6) By similar arguments one proves, for F-algebraic subsets V1 and F2 of Fn:

x u F2)' = F/ u F2', hence (?i u F2)* = V* u F*2

We do not need this later on and leave the proof to the reader.

One of our goals in this section is the following proposition to be used in the proof of
the Main Theorem.

(1.7) Proposition (Existence of bounds). Let V-= F(/19 ...,/r), where
/1?...,/.eF[y] are all ofdegree ^ d. Then there are natural numbers D, M and R depending
only on (d, n, r) and independent of the field F and the specific polynomials fjy such that

(i) F* has at most M absolutely irreducible components,

(ii) each absolutely irreducible component of F* is of the form F(A15 . . . , hR)for h's in
ofdegree ^D.

This will be derived from a more precise result, Theorem (1.15) below, which states how
F* depends on parameters. We need several preparations.

(1.8) How does one actually get V from F:= F(/15 . . . ,/r) when /1? . . . ,/r e F[Y~]
are given? Imagine the l^'s s in (l .3) have been constructed and are F'-algebraic sets, where
F' £ F is a finite degree extension of F. Let bl9 . . . , bN be a basis of F' s F-linear space,
let Vi := F(gil? . . . , gl>(f)) with gtj ε F'[Y]9 and write gtj = ̂  bv - gijv, gijv e

We may and shall assume that F'\Fis separable, since we can replace the Z>v, the gtj,
and the gijv by their peth powers (e > 0) if char (F) = p > 0.
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Then one checks easily that, in the notation of (1.3):

W, = V({gijv :l^j^ r(i), l ^ v g 7V}) .

Combining this with V = Wl u . . . u Wk we obtain

v' = v(( Π £y<i)v<o : J and v are functions on {l, . . . , k} such that

(1.9) Now the key question: how does the intersection-decomposition procedure
depend onparameters^ The dependence is certainly not "rational" but we can expect it to be
"algebraic". To express this dependence in a precise and quantifier free way we extend the
language of rings with extra d-place function symbols Qd (d ̂  2), to be interpreted in each
field F s "root functions" according to the following axioms:

Formally, define a field with root functions to be a field Fequipped for each d ̂  2 with
a function ρά : Fd -» F satisfying the axiom above. Clearly each field can be expanded to a
field with root functions (in more than one way). Let LQ be the language of rings augmented
by the new function symbols ρ^.

(1.10) Lemma. There is for each d>0 a quantifier-free LQ-formula Irrd(;c),
χ = (xl9 . . . , xd), such that for each field F with root functions and each a E Fd we have:

F\= Irrd (a) <=> the polynomial Td + a1 Td~ 1 -h . . . -h ad e F[r] is irreducible.

Proof. By a famili r model theoretic criterion it suffices to check for fields Fl and
F2 with root functions with a common substructure s/ = (A, ...) and ai9...,adeA:
Td + αϊ Td " l + . . . + ad is irreducible in F^ [Γ] iff Td + ai T* ~ * + . . . 4- ad is irreducible in
F2 [Γ]. Since Λ/ is a substructure of /^ the fraction field F of y4 is relatively algebraically
closed in Fi9 and similarly in F2. It follows easily that Td + ai Td ~ i -h . . . + ad is irreducible
in FI [Γ] if and only if it is irreducible in F[r], which in turn is equivalent to its irreducibility
in F2 [Γ], α

(1.11) Fix polynomials f , ( X , ¥),..., f,(X, r)eZ[^T, F], X =
7 = (715 . . . , rj, and set for each field F and je e Fm.

b εΡ'-./Λχ,γ) = ... =/r(^^) = 0} ,

and let FF')JC and FF*X be F' and F* s defined in (1.3) above, for V = FF>JC .

Fix a field F and a point χ = (xl9 . . . , xm) e Fm. Let £ g F be^the relative algebraic
closure in F of the subfield of F generated by xl9 . . . , xm9 and let E g P be the algebraic
closure of E. Then the polynomials Λ (χ, 7), . . . , fr (χ, Υ) have their coefficients in the field
E. If in (1.8) we take E instead of F and VE^= {yeEn :/t (x,y) = ... = /r (x, y) = 0}
instead of V we obtain a tuple (# (Γ), gl9..., gk) with the following properties:
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(i) q(T) 6 E[T~] is a monic separable irreducible polynomial, say of degree N,

(ii) each gt is a tuple (gijv)i^j^r^t^v^N of polynomials in £"[7],
(iii) if α is a zero of q in E, and we sei E' '·=£(&), gij:=^lgijvoiv~1 e E'\^Y~\, and

ViE*= [yeEn: gn(y) = ... = gir(i)(y) = 0}, then the ViE are the absolutely irreducible
components of VE x.

We now claim: q(T) is also irreducible in F[T], and the absolutely irreducible
components of VFtX are exactly the V^F := {y e Fn : gn (y) = . . . = gir(i}(y) = 0} (l ^ ι ^ K),
where q and the gt and g^ are s in (i), (ii) and (iii) above.

To see this, note that if q would factor into two monic polynomials over F, then the
coefficients of these factors would be algebraic over E, hence would belong to E. The
Statement about absolutely irreducible components follows from the fact that "absolute
irreducibility of an algebraic set" can be expressed s a quantifier free condition on the
coefficients of defining polynomials in the language of rings. More precisely we have the
following general lemma, which we shall also need further on:

(1.12) Lemma. There are quantifier-free formulas AI(X) and Oimd(X),
d e { — oo , 0, . . . , «}, in the language of rings such that for each field F and xe Fm we have :

(i) VF x c: Fn is absolutely irreducible <=> Fh= AI(x)\

(ii) dim(VFtX) = d o F\= Dimd(jc).

These well-known results go back in one way or another to Kronecker. For modern
treatments of this and similar properties, cf. [7], Ch. 0, §9, or [4].

(1.13) Resuming the discussion of (1.11), let R be the subring of F generated by
xi> · - · » xm and K ^s integral closure in E, and note that E is the fraction field of R. Hence
by changing α we can take q and the gijv's to have coefficients in R.

Suppose now that F is equipped with root functions. Then one easily checks that
R = {τ (χ) : τ (X) an Z^-term}. Hence q can be taken of the form q(x, Γ), where q (X, T) is a
term in the language LQ that is polynomial and monic in the variable T. This leads us to the
following definition. Write /:= (/1? . . . , fr).

Definitions. (i) A potential decomposition for f over F is a tuple

9 - (q(X9 T), gl (X, Y),...,gk (X, Y))

such that

(Dl) q(X, T) is an Z^-term that is polynomial and monic in Γ, say of degree 7V > 0;

(D 2) each gt is a tuple (gijv(X, O)i<^r(i),i£v^jv of ^-tenns that are polynomial
in F(its "coefficients" c(X) may involve root symbols).

Brought to you by | Bibliotheque de Mathematiques
Authenticated

Download Date | 7/6/16 12:43 PM



Chatzidakis, van den Dries, and Macintyre, De nable sets over finite fields 115

(ii) Let 3 be a potential decomposition for / over F s in (i).

Then 2 is a decomposition for f over F at the point χ e Fm if

(D 3) q(x, r)eF[r] is separable and irreducible;

(D 4) if α E F is a zero of q(x, T) and we set &_/«= Σ#0·ν(χ, F)^'1 e F(a)[7] and
K := P (&i> · · · » £ir<i)) £ F"> then ̂  KJ are exactly the absolutely irreducible components
of VFtX g F\

Note that (Dl) and (D 2) are purely syntactic conditions, and that these defmitions
are relative to the data F and / = ( /19 . . . , /r) e I [_X, F] r.

The above discussion leads to the following conclusions, where Fdenotes an arbitrary
field with root functions and χ ranges over Fm.

(1) If& = (q9gl9...,gk) is a decomposition for f over F at x, then we have, with the
notations above, and Vf -·= VF x\

V = V({ Π gij(i}v(i}(x, Y): j and v are functions on {l, . . . , k}9

(2) There is a decomposition for f over F at x.

(3) Given a potential decomposition Q) = (q, g l9 . . . , gk) for f there is a quantifier free
LQ~formula Dec^ t f ( X ) (independent of F and x) such that

£t is a decomposition for f over F at χ ο Fh Dec^ y(x).

(4) There are finitelymany potential decompositions &> (1), ..., S! (J) for f , such thatfor
each F and x one of@(l), . . . , 2 (J) is an actual decomposition for f over F at x.

Note that (3) follows from lemmas (1.10) and (1.12), and that (4) follows from (2) and
(3) by model-theoretic compactness.

(1.14) By (1) and (4) above there is a "quantifier-free" construction that for input
VF x = V(fl(x, 7), ...,fh(x, Y)) £ Fn gives Output VF x\ which of the potential decom-
positions ®(1), ..., @(J) can be used depends by (3) on which of the conditions
Decw)>/(;c)(l ^j^J) holds in F.

We can now take V^x (that is, its defining polynomials f] £y<ov(i)(*> Y)\ as new inPut

and construct in the same way Vp[x. Repeating this procedure n times we arrive by (1.5) at
the F-absolute kernel VF*X of VFtX. Roughly speaking, we have given a construction of F*>x
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that is piecewise uniform in the parameter x. Here is a precise formulation of this piecewise
uniformity.

(1.15) Theorem. For each field F with rootfunctions we have a covering ofFm byfinitely
many sets C19 . . . , CI9 such that for χ e Ct the absolutely irreducible components of VF*X are
exactly the M (i) distinct sets V(hn (x, F)), . . . , V (hiM(i} (x, Y)). Here 7e /V and thefunction
M : {l, ...,/} -> N are independent o/F, each sei Ci £= Fm is defined in Fby a quantifier free
Le-formula ct(X) that is independent ofF, and each hij(X, Y) is a finite tuple, independent of
F, ofLfterms in (X, Y) that are polynomial in Y. (Note that M (i) = 0 means that VF*X is empty

(1.16) Note that proposition (1.7) is an immediate consequence of this theorem.
Another consequence that will be needed later on is the following.

Lei l ^ μ ^ max (Μ(ΐ): l ^ / ̂  /} and let de (0, ...,«}. Then the sei ofxeF™ such
that dim(VF*x) = d and VF*X has exactly μ absolutely irreducible components of maximal
dimension d is defined in F by an L-formula Sf^dffi(X) that does not depend on the field F.

To see this, note that by (1.12) and by the theorem this subset of Fm is certainly defined
in the field F with rootfunctions by an L -formula independent of F. But this subset of Fm

depends only on the field structure of Fand not on the particular root functions of F. Hence
by pure logic alone the subset must be definable in F by an L-formula independent of F.

§ 2. Positive quantifier elimination for enriched finite fields

(2.1) Let F be a perfect field with algebraic closure F, and suppose F has for each
integer n > l exactly one field extension Fn such that F £ Fn £ Fand \_Fn: F] = n. (Each finite
field has this property.) It follows easily that Fn\Fis then a cyclic Galois extension. Fix for
each n > l a generator απ of Fn so that Fn = F(a„), and let

be the minimum polynomial of απ over F.

(2.2) Letfurtherg(r) = a0 + a ir+ ... + adrdeF[r]beofdegreei/> 1. Wewant
to find an existential condition on the coefficients aQ9...9ad that is equivalent to the universal
condition that g has no zero in F. We will see this is possible provided we use cnl9...9cnn

s extra constants, where n = dl. With this value for n the polynomial g (T) splits into linear
factors over F(a„), hence :

(1) Fh-i3^(/) = 0

if and only if

(2) there are yl9 ..., yd in F(a„)\F such that F(a„)l= φά(α, y) where the formula
φά(α, y) is the conjunction of d+ l equations expressing that the polynomials g (T) and

yj) are equal, a = (α^...9αέ)9 y = (yl9...9yd).
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Now each element of F(<xn) can be coded by the «-tuple from F consisting of its
coefficients relative to the basis l, an, . . . , aj"1. In this way one codes the field F(a„) in the
field F. Write each yj from (2) s yj = z0j + zl} απ + . . . + z„ _ ̂  j ̂  ~ * with zfj 6 F. Then the
condition that ^ φ F can be expressed s Fh= \/ zf . φ 0.

If follows that (2) can also be equivalently expressed s

(3) F N 3 z ( Λ ( V Ζν*ΟΪ)&ΨΛ(α,

where z = (^7·)ο^η-ι,ι^<* and c« = fo,i> - - - » O » and %(w0, ..., wd, ι;ΐ9 ..., t;„, z) is a
certain conjunction of equations in the indicated variables. The equations are in the language
of rings; \pd (u, v, z) depends only on d, not on the particular field For choice of generator a„
or on the polynomial g(T).

It is especially important that cnl, ..., cnn can be replaced in (3) by the coefficients
bi9...,bn of any other monic irreducible polynomial Tn + b± Γ""1 + ... + bn over F.
The equivalence of (1) and (3) is of the desired form. (Although we shall not use it we note
that a similar equivalence holds for each perfect field F that has for each n > l only finitely
field extensions of degree n inside F.)

(2.3) Recall that a pseudo-algebraically closed field (or PAC-field) is by definition a
field F such that for each absolutely irreducible polynomial f ( X 1 9 X?) e F[X±9 A"2] there
is a point (xl9 x2) e F2 on the curve f(Xi9 X2} = 0.

It follows from Weil's famous theorem on curves over finite fields that all infinite
models of the theory of finite fields are PAC-fields. Below we need the following result from
[3] on PAC-fields. (This is a minor exception to our assertion in the introduction that the
proof of our Main Theorem is selfcontained modulo the Lang- Weil estimates; the exception
is minor since [3] is short, and elementary modulo Weil's theorem.)

(2.4) Lei φ(Χ) be an existential formula in the language of rings. Then φ(Χ) is
equivalent, uniformly for all perfect PAC-fields, to a conjunction of formulas
3 T(g(X, T) = 0), with g(X, T) ei [_X, Γ], Τ α single variable.

(2.5) We define a pseudo-finite field to be a perfect PAC-field that has for each n > l
exactly one field extension of degree n inside its algebraic closure.

By the remark in (2.3) we have: the infinite models of the theory of finite fields are
pseudo-infinite fields. The converse of this Statement also holds (and usually serves s the
definition of "pseudo-finite field") but is not needed in the proof of our Main Theorem.
(Later in this paper, when dealing with applications and axiomatization questions, we shall
freely use this conserve, which is due to Ax [1].)

(2.6) We now enrich the language L of rings with extra constant Symbols cnl, . . . , cnn,
for each n > l, and obtain the language L(c). We consider enriched finite fields \ these are
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118 Chatzidakis, van den Dries, and Macintyre, Definable sets over finite fields

the L(c)-structures that are finite fields Fin which for each n > l the Symbols cnl9 ...,cnn
are interpreted s the coefficients of an irreducible monic polynomial

over F. In the same way we define enriched pseudo-finite fields. Each finite or pseudo-finite
field can be so enriched in several ways.

(2.7) Proposition. Each L(c)-formula φ(Χ) is equivalent, uniformly for all enriched
pseudo-finite fields, to a conjunction offormulas 3T(g(c, X, T) = 0), with

Such an equivalence also holds for all sufficiently large enriched finite fields.

Proof. We need only prove the first part of the proposition since the second part
follows from it by pure logic. For existential φ the desired result is a consequence of (2.4).
Hence by simple logic, it suffices to show that each negation — 1 3 T(g(c, X, T) = 0) is
equivalent to an existential formula (uniformly for all pseudo-finite fields). This follows
easily from the equivalence between (1) and (3) in (2.2) above. In that equivalence the degree
d of the polynomial g(T) was given. To apply the equivalence to the L(c)-formula
-i 3 T(g(c, X, T) = 0), write g (C, Χ,Τ) = Σ aj (C X) Tj. By making the Substitution C -> c
and interpreting Xby a tuple χ in a pseudo-finite field a finite number of cases for the degree
of the polynomial g(c, x, T) arise, and one takes a disjunction over these possibilities. D

(2.8) The following results combine a property of the F-absolute kernel from section l
with our positive quantifier elimination. It is not needed for the proof of the Main Theorem,
but useful in applications of the Main Theorem. We shall find it convenient to write V(F) for
Vr\F\ where V ̂  Fk is an F-algebraic set.

(2.9) Lemma. Lei F be a pseudo-finite field and S £ Fm definable in F using constants.
Thenfor some integers e, n e N the set S is a finite union of sets of the form π (F(F)) with V
an F-algebraic subset ofFm + n, π : Fm + n -» Fm the projection on the first m coordinates, and
such that for all xeFm the set Vx-={yeFn'. (x, y) e V] is finite of cardinality ^e.

Proof. By (2.7) we may assume S is defined by a conjunction of formulas

(1) 3Γ/(*,Γ) = 0

where f ( X , T)eF IX, T]9X=(X19...9 XJ and T a single variable.

It may happen that for certain χ e Fm we have f(x9 Γ) = 0 and we take care of this s
follows. Write f(X9 T) = Σ/(ΑΓ)Γ ι and note that then (1) is equivalent to

(2) (Λ/ι(*) = 0) v (3T3U(f(X, T) = 0&(n(ft(X) · U- 1) = 0))) .

Working out the conjunction of the formulas (2) by means of the distributive law we see
that the conjunction of the formulas (1) is equivalent to a disjunction offormulas of the form
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(3) (M(*> = 0)Λ3Γ(ΛΜ* Yk) = 0)

where gjeF[_X'} and Ak6F[AT, 7J, I ^ £ ^ H , 7= (7^..., r„), and there i s e e / V such
that for each χ e Fm we have: card {>> E F" : Afc (x, >>k) = 0 for all k} ^ e. (We can take the
same e and « for each disjunct (3).) For each disjunct (3) we take the F-algebraic set

fc)) £ Fm + n and we note that S is the imion of the sets n(V(F)}. α

For m — l we can draw a further useful conclusion.

(2.10) Lemma. Lei F be a pseudo-finite field and S g F an infinite set definable in F
using constants. Then there is an absolutely irreducible polynomialf(X, T) in F [Jf, Γ] \F [X ]
such that S contains the infinite set [x e F : /(je, t) = 0 for some i e F}.

Proof. By the previous lemma S contains an infinite set of the form π (C (F)) where
C g F1 + " is an absolutely irreducibe F-algebraic set, and there is e e N such that for each
χ e F there are at most e points y e F" with (x, y) e C. Hence dim (C) = l ; let p be the ideal
of polynomials in F [X, F] that vanish on C, so p is an absolutely prime ideal. (Here we use
that F is perfect.) Then the function field of C over F is the fraction field F(T, y) of
Fpf, Γ]/ρ, where we put y -= Fmodp and identify X with Xmodp. The identification is
allowed since 7 (C(F)) is infinite, so that the canonical map F\_X, F] -> F[X, F]/p is
injective on F[Z]. The field F(X, y) is algebraic over F(X) (since dim(C) = 1) and F(JO
has degree of imperfectness at most l, hence F(X, y) = F^, a) for a single a, and we can
even take α such that y^...9yn€F[_X9d\. Let f ( X , r)eF[JSf, Γ] be irreducible with

', a) = 0. Then / is easily seen to have the desired properties. D

(2.11) We can now show that each infinite definable subset of a pseudo-finite field has
the same cardinality s the field : there are no Vaughtian pairs of pseudo-finite fields. In fact
we have a stronger result, which implies that each pseudo-finite field is the definable closure
of each of its infinite definable subsets, and which also gives once more an answer to problem
(*) in the beginning of the introduction.

(2.12) Proposition. Let F be a pseudo-finite field and S £ F an infinite set definable in
F using constants. Then each element of F is of the form a + b + cd with a, b, c, de S.

Proof. By the last lemma we may reduce to the case that for some absolutely
irreducible f ( X , r)inF[Z, Γ] \F[^] wehaveS' = {je eF:/(;c, /) = 0 for some ye F}. Let
e e F. The idea is to find elements a and c in S such that the two equations

f(X9T)=f(e-a-cX,T') = 0

in the unknowns (X, T7, T') define an absolutely irreducible F-algebraic set.

Then there will be an F-point ( d , t , t f ) on this variety, so that de S and
b-.= e — a-cdeS, hence e = a + b + cd, s desired.

As in the proof of the last lemma, let F [JT, τ] .= F [JT, T ] /(/) where τ .= Jmod (/)
and JHs identified with its image in F[X, J]/(/). Then F(X9 τ) is the function field of the
curve f(X9 Γ) = 0 over F, and similarly P(X9 τ) is the function field of this curve over F.
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120 Chatzidakis, van den Dries, and Macintyre, Definable sets over finite fields

We now apply a strong form of Hilbert's irreducibility theorem for function fields to the
irreducible polynomial f(X', T') over the function field F(x, τ), namely Theorem 3.4 from
Roquette [12]. Since S is infinite, this theorem gives us a, ce S such that the polynomial
f(e — a — cX, T') e F(X, τ)[Γ'] is irreducible. Hence the two equations

f(X9T)=f(e-a-cX,T') = 0

define an irreducible F-algebraic set, and therefore an absolutely irreducible F-algebraic
set, s required. D

(2.13) We conclude this section with a remark on an alternative definition of the F-
absolute kernel F* of Fwhen V'£i Fm is an F-algebraic set, and F is a PAC-field: in this
case F* is simply the Zariski closure in Fm of V(F). This follows easily from the properties
(1), (2) and (3) mentioned in (1.3), and [6], proposition 10.1.

§ 3. The main theorem

(3.1) In this section / denotes an arbitrary but fixed finite field of cardinality q, so

(3.2) Let /=(Λ,... ,/ r)e^[r] r,r=(r1,...,yj. Wecall/0/^m? ^e (where
e e /V) if each polynomial /|(Γ) is of total degree ^ e in Y.

We set

and

= 0} ,

Our starting point is the following theorem of Lang & Weil [10]:

Lei f be of degree ^ e. Then there is a positive constant C depending only on (e, n, r)
(not on £ or the particular polynomials /1? ...,/r) such that if F is absolutely irreducible
and dim(F) = d, then

|card(FOO) - qd\ ^ Cqd~(1/2}.

Actually the Lang-Weil theorem is more explicit, but we shall not use this extra
precision. We also remark that the Lang-Weil theorem is a relatively elementary consequence
of WeiFs earlier theorem on curves over finite fields.

Our first Step is to get Lang-Weil type estimates for the set of ^-points on a /-
algebraic set that is not necessarily absolutely irreducible.
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(3.3) Proposition. Lei f be ofdegree ^ e. Then there is a positive constant C and a
natural number M, both depending only on (e, n, r\ such that if V(£) Φ 0, then

for some de {0, ...,dim(F)} and some μ 6 {l, ..., M}.

Proof. By induction on dim(F). Assume F(/) Φ 0. Let K* be the result of the
intersection-decomposition procedure applied to V over /, and let Vi9 . . . , Vs be the distinct
absolutely irreducible components of V*9 so F(/) = Fx(/)u ... u Fs(/). By Proposition
(1.7) the number s is bounded by a natural number M depending only on (e,n,r). By
rearranging we may assume that V19 ..., Υμ are of maximal dimension

while dim (Vj) < d for μ < j ^ s.

We claim that then for these values of d and μ we have :

|card(F(^)) — μqd\ ^ Cqd~(ll2\ for a positive constant C depending only on (e, «, r) .

Clearly this claim implies the desired result. To see why the claim holds, note that by (1.7)
each Vj is of the form V(hl9 . . . , HR) for polynomials A15 . . . , hR e / [7] ofdegree ^ £", where
R and J? only depend on (e, n, r). By the Lang -Weil theorem this gives:

(1) \card(Vj(4))-qd\ ^ C1 qd~(1'^ for j e {l, ..., μ} and a positive constant Cl that
depends only on (E, n, R) and hence only on (e, n, r);

(2) |card(J^(/))| ^ C2qd~l for μ<} ̂  s and a positive constant C2 that depends
only on (E, n, R) and hence only on (e, n, r).

Let l ^y'(l) <y'(2) ^ 5. Then ^.(1) and Vj(2) are different absolutely irreducible /-algebraic
sets, hence their intersection is a /-algebraic set of dimension < d, and we have 2 jR defining
polynomials over / for this intersection, and their degrees are all bounded by E. Hence by the
inductive hypothesis:

(3) |card(^.(1)(/f)n V j ( 2 ) ( t ) ) \ ^ C3 qd ~ l for a positive constant C3 that depends only
on (£", «, R) and hence only on (e, n, r).

Our claim now follows by combinating (1), (2) and (3). α

(3.4) For later purposes we add some extra precision to this result.

Let now /=(/!,... ,/r) e Z [_X, YJ with X = (Xi9 . . . , XJ s parametric variables
and Υ = (Y19 . . . , YH). Say the yj's are all ofdegree <Ξ e in Y. Then Proposition (3.3) applies
in particular to f(x, Κ)«=(Λ (je, F), ...,/r(x, r))e/[7]r, for each finite field / and
χ e &™. Set Vx .= {7 6 P : /(je, ̂  = 0} and Vx (/) .= {>> e /" : /(x, y) = 0}(x
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Here is the additional Information:

LetCandMbe constants s in the proposition, and leid E {0,...,«} and μ 6 {l,..., M}.
Then the sei ofx e /msuch that \ card (Fx(/)) -μqd\^ Cqd~(1/2) is definedin the field £ by an
L-formula Sf^d^(X) that is independent of £.

This follows from the particular way we obtained μ and din the proof of (3.3), together
with the remarks made in (1.16). We also observe that if q = card(/) is sufficiently large
compared to the constant C, then there is for each χ e /m with Vx(£} Φ 0 exactly one pair
(rf, μ) G {0,..., n} x {l,..., Af} such that l h Sftdtll(x)9 while if Vx(t) = 0 there is no such
pair.

Next we extend the result to quantifier free formulas.

(3.5) Lemma. Lei φ(Χ, Υ) be a quantifier free L-formula. Then there is a positive
constant C and a natural number M, both depending only on φ and not on £, such that if
χ e &m and φ (χ, /") Φ 0, then \ card (φ (χ, tn}}-μqd\^ Cqd '(1/2) for some d E {0,..., n}
and some μ E {l,..., M}.

Proof. By disjunctive normal form manipulations we see that φ is equivalent to a
disjunction V (/v (* Υ) = 0 & gv (Χ, Υ) Φ 0), where /v (Χ, Υ) e Z {Χ, 7 ]'<">,

l^v^N
gv(X, 7], e Zpf, F] and where moreover any two different disjuncts are "disjoint", in the
sense of defining disjoint sets in every field. Now let Y' »= (Yn +19..., YH + N) be a tuple of new
variables, and let φ'(Χ, Y9 Y') be the formula

V (/ν(^,7) = ο&^ ν(^,7) ·Γ η + ν = ι & Λ >;+Λ = ο).
l^v^N Αφν

Then φ'(Χ, Υ, Y'} is & positive quantifier-free formula, and is therefore for fields equivalent
to a conjunction of polynomial equations in (X9 Y, Y'). Hence we can apply Proposition
(3.3) to the sets φ'(χ, /Π + Ν). Since clearly φ'(χ9 £n + N) has dimension ^ /i, it follows that
there is a positive constant C and a natural number M, both depending only on φ' and hence
on φ, such that if χ Ε /m and φ'(χ, 4η + Ν) Φ 0, then

|card(0Xjc,/" + N))-^|^C^- ( 1 / 2 )forsomerfG{0,. . . ,«} and μ 6 {l, ...,M}.

Because any two different disjuncts in the disjunctions above are disjoint we have for each
χ e £m a bijection (>>, /) -> >>: 0' (x, £n + N) -> φ (χ, /n). Hence C and M s above have the
desired property. D

(3.6) As before we have an additional result:

Let CandMbe constants s in the lemma, and let de {0,...,«} and μ e {l,..., M}. Then
the sei ofx e /m such that \ card (φ(χ, Γ)) -μqd\^ Cqd~(i/2} is defined in the field t by an
L-formula φάίμ(Χ) that is independent of £.

(3.7) Main Theorem. Let φ(Χ, Υ) be an arbitrary L-formula. Then there is a positive
constant C and a finite set D ofpairs (d, μ) with de {0,...,«} and μ α positive rational such
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The constant C and the sei D depend only on φ and not on 4.

Remark. In the introduction we gave the example "7 is a square" to show that in
contrast with (3.3) and (3.5) we cannot require μ to be an integer. It suffices to prove the
Main Theorem for q = card (t ) greater than some constant depending only on φ, since we
can always enlarge the constant C to take care of the exceptional /'s.

Proof. By (2.7) the formula φ is equivalent, for all sufficiently large enriched finite
fields, to a conjunction of formulas

(1) 3Tg(X,Y,T) = Q,

where g (X, 7, T) is a term in the enriched language. Each such term g can be written s
G(X, c, 7, T) where c -= (cl9 . . . , CM) is a tuple of new constant Symbols from the enriched
language, and G (X, X', 7, Γ) e Z [JT, X1, 7, Γ], with X' = (X[9 . . . , X'M). We may assume c
is the same for all conjuncts (1). It is easy to see that it suffices to prove the desired result for
the conjunction of the formulas 3 TG (X, X', 7, Γ) = 0 that correspond to the conjuncts (1).
(That is, we replace the constants c{ by extra parametric variables X·.) But
in order not to complicate notations, we may s well assume that φ is already a conjunction
of formulas (1) such that g (X, 7, Γ) e Z [_X, 7, Γ], Γ a single variable, so g is free of the new
constant Symbols from the enriched language.

It may happen that for certain (je, y) e 4 m + " we have g (je, y, T) = 0, and we take care
of this s follows. Write g(X, 7, T) = Σ&(*> γ">τί and note that CO is equivalent to

(2) (/\fc(* Y) = 0) v (3Tg(X, T) = 0&31/Π(*ι(* Π · t/- 1) = 0)

and that the two disjuncts are disjoint (:= define disjoint sets in every field). Working out the
conjunction of the formulas (2) by means of the distributive law, we see that φ(Χ, 7) is
equivalent to a disjunction of formulas of the form

(3) f ( X , 7) = 0 & 3Z(f\hj(X9 7, Zj) = 0) ,

where fe Z [JT, 7]r, h} e Z [JiT, 7, Z,·] for l ^ j ^ k, Z = (Z1? . . . , Zk), such that any two
distinct disjuncts (3) in φ are disjoint. Moreover, each such disjunct (3) has a bound on the
number of Solutions in Z, that is, there is a natural number e with the property:

(4) for each field F and (x, y)eFm + n there are at most e points (zi9...,zk)e Fk such
that FN ψ(χ,γ, z) where Ψ(Χ, 7, Z) «=/(*, 7) = 0 & A ¥*> 7' Z;) = °-

j

Therefore we may reduce to the following Situation:

φ is a formula (3), and a number e e N is given with property (4). We may and shall
also assume that q = card (4) is sufficiently large, depending on φ.
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By (3.5) there is a positive constant A and an integer 7V ̂  l (both only depending on Ψ
and hence only on φ, but independent of £) such that if χ e /m and Ψ (χ, £n + k) Φ 0, then

\card(Ψ(x,Jn + k))-μqd\^Aqd-(ί/2)forsomede{Q,...,n + k} and με {l, ..., 7V} .

Let us fix momentarily such xt&m with ?Oc, /w + f c) Φ 0, and let de {0, ..., n + k} and
μ e {l, . . . , 7V} have values such that the above estimate on card (Ψ (x, &m + fc)) holds. Then
we define

for j = l, ..., e ;

Hence by (4) and the definitions:

(5) card (3?) = card (^) + card (^2) + . . . + car
card (9) = card (&\) + 2 - card (^2) + ... +e- car

so that card(J^) ̂  card(^)/e, and therefore

(6) card(JF) ^ (μ/e)^

hence 0 ̂ d ^n, since # is large.

To get an estimate on card ( ·̂) we consider the quantifier free formulas

where the Zi:=(ZJ, ...,Zj[) are Jk-tuples of new variables, and Ζί(1) φ Ζί(2) is the dis-
junction expressing that some coordinate of Zi(1) differs from the corresponding coordinate
of Zi(2). Put Ji^:= Wj(x,£n + j k ) . Observe that each point ye&j gives rise to j\ points in
Jij, and more generally for 0 ̂  t ^ e —j\ each y E ̂ +t gives rise to

points in J^·. Hence

Solving for card («^), . . . , card (^) from these equations and using (5) we get

(7) card (3?) = rl card (jrj + . . . + re car
for rationals r1? . . . , re depending only on e .
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Next observe that card ( .̂) ̂  constant · card (&). Taking into account this inequality and
the estimate in (5) we apply (3.5) to the quantifier free formula ΨΛ and obtain:

(8) ic

for some μ] E {0, . . . , Mj} where Mj e /V and A j > 0 .

Note that we allow here the possibility that μ,· = 0; Mj and Aj depend only on Wj and hence
only on φ; which μj applies depends also on / and xe/m . From (7) and (8):

(9) |card(^)-(r l M l+.. .+r e / i e)^ |^C-^-< 1 / 2>,

with C*=\ri\Ai+...+\r€\A€.

From (6) we conclude that rlμl + . . . + τβμ€ ^ μ/e > 0, at least for sufficiently large
q = card(/). Since rl5 ..., re are determined by e alone and there are only finitely many
possibilities for μΐ5 . . . , μβ this finishes the proof. α

As before we have important additional Information:

(3.8) Proposition. Lei C and D be s in the Main Theorem, and let (d, μ) e D. Then
the sei ofx e £m such that \ card (φ(χ, /")) -μqd\^ Cqd~(i/2) is defined in thefield £ by a
formula φ^μ(Χ) that is independent of '/.

This is easily traced back to the existence of similar formulas for the Y^'s in the proof of
the Main Theorem. However, in the beginning of this proof we replaced certain constants ct
by extra parametric variables X[, which is fortunately harmless, since the c/'s are only subject
to definable restrictions, see (2.6).

(3.9) Another interesting fact that emerges from the proof is that the denominators of
the rationals μ can be bounded in terms of the "quantified variable complexity" of φ alone:
the complexity with which the free variables Xl9 ..., Xm9 F1? ..., Yn occur in φ does not
matter. We leave a precise Statement of this fact and its proof to the reader.

(3.10) We now extend our Main Theorem to cardinalities of "quotients". Let
φ(Χ9 Υ) and Ψ(Χ, Υ, Z) be formulas where X = (X^ ..., Xm) is a tuple of parametric
variables and Υ = (Y19 . . . , 7„) and Z = (Z1? . . . , ZJ have the same length.

Let A = fq and χ e 4m, and suppose the set φ (χ, £n) is nonempty and Ψ (χ, &η χ /") is an
equivalence relation on φ(χ, /")· Denote the set of equivalence classes by

(φ/ Ψ) (x, t") (the quotient set) .

Then we have the following estimates holding for all pairs (/£, x) that satisfy these
assumptions.

(3.11) Corollary. There is a positive constant Α = Α(φ,Ψ) and a finite set
B = Β(φ, Ψ) of pairs (/, ρ) with / e {0, ...,«} an d ρ α positive rational such that

\ card (φΐ Ψ)(χ, /") - Qqf \ ̂  Aqf~(ll2) for some (/, ρ) e B.

9 Journal f r Mathematik. Band 427
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The constant A and the sei B can be taken independent 0/(/, x).

Proof. The Main Theorem gives us a positive constant C and a finite set D of pairs
(d, μ) with de (0, ...,«} and 0 < μ E O, such that for each equivalence class S we have

(1) Ic

for some pair (d, μ) e D. Here C and D depend only on φ and Ψ, not on (X, x).

Fix a pair (d, μ) e Z), and write card (S) ~ μqά, if estimate (1) holds. Let U = U(d, μ)
be the union of the equivalence classes S for which card (5) ~ μqά. Keeping in mind that
we have fixed (d, μ) it follows from (3.8) that the set (7 is definable, uniformly for all relevant
pairs (X, x). Then another application of the Main Theorem provides a positive constant
C1 = C' (d, μ) and a finite set D' = D' (d, μ) of pairs (e, v) with e e {0, ...,«} and 0 < v E O
such that if U φ 0, then

(2) |c

for some (e, v) e D'. (Again C' and D' depend on φ, Ψ, d and μ but not on (/, x).)

Let £7 = (d, μ) be the set of equivalence classes S with card (S) ~ μqd, so U is the
union of the elements of U. Assume that U φ 0 and let (e, v) e /)' be such that estimate (2)
holds. The idea is now that since each Se has cardinality roughly μqd and their union
U has cardinality roughly vqe, there must be roughly vqel μqά = (v/μ)qe~d sets S E . In
fact we claim there is a positive constant C" such that

(3) |card(£7) - (v^)qe~d\ ^ C"

To show the existence of such a constant C" we may s well assume that q is large, so that
e^.d:e<d would imply, by (1) and (2), that card (U) < card (S) for large q and 5 an
equivalence class contained in £/, contradiction. Let K = card (£7), and let S19 . . . , SK be the
distinct elements of U. Taking their union and using (1) we get

| card (17) -Kμqd\^ KCqd

hence

so that

card(U)^qd = K(l-e) with |ε| ̂  d]/q ^ 1/2 for large q .

Using this equality in (2) and dividing by μqΛ we get

hence
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Since l /(l - ε) = l + δ with \δ\ ̂  2Cj]fq for large q this implies an estimate

\K- (ν/μ)?«-" | ̂  CV~'~(1/2)
 for large q

for some positive constant C" which depends only on φ and Ψ. This establishes (3). The
desired result now follows by combining the estimate (3) for card(t7(J, μ)) with the fact
that, for q sufficiently large, (φ/ Ψ)(χ, £n) is the disjoint union of the sets (d, μ) where (d, μ)
varies over D. α

§ 4. Further applications of the Main Theorem

(4.1) Until this point we needed little of the existing body of logical results on finite
and pseudo-finite fields. In particular, we simply defineda pseudo-finite field to be a perfect
PAC-field that has for each n > 0 a unique extension field of degree n inside its algebraic
closure. It then follows from Weil's theorem that each infinite model of the theory of finite
fields is a pseudo-finite field. In this section and the next two we shall also freely use the
converse, and some other results from Ax [1].

(1) The pseudo-finite fields are exactly the infinite models of the theory of finite fields.
(Usually this is taken s the definition of "pseudo-finite field".)

(2) The pseudo-finite fields ofcharacteristic 0 are exactly the infinite models ofthe theory
of finite prime fields Fp (p prime).

(The proof of these results needs besides Weil's theorem another deep arithmetic fact, namely
Cebotarev's density theorem.)

(4.2) Using (1) and (2) one can answer once more Felgner's original question, without
using our Main Theorem: Suppose φ(Υ) is a formula in the language of rings defining in
each finite field of the form Fq2 the subfield Fq. Lei F be a characteristic 0 model of the
theory ofthe fields Fq2. Then φ(Υ) defines in F a proper subfield, but Fis also a model ofthe
theory of finite prime fields Fp by (2), so φ ( Υ) must define for infinitely many prime numbers
p a proper subfield of Fp9 which is absurd. However, this kind of argument cannot prove the
stronger assertion (*) mentioned in the introduction to this paper. What the argument does
prove is the following:

There is no formula φ(Υ) that defines in infinitely many finite fields of infinitely many
different characteristics a proper subfield.

(This is of course also clear from our Main Theorem.)

(4.3) Lemma. Lei the sei S g Fm + n be definable (using constants) in the pseudo-finite
field F. Then there is M = M (S) e N such that for all xeFm:

if Sx is finite, then card (Sx) ^ M .
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Proof. Replacing the constants in the defining formula for S by extra variables we
may s well assume that S is defined by a formula φ (Χ, Υ) in the language of rings, where
X = (X19 . . . , XJ and Υ = (Yl9 . . . , Yn). Let the constant C, the finite set D of pairs (d, μ),
and the formulas φ^μ(Χ) be s in (3.7) and (3.8).

Suppose (α,μ)ΕΌ with d>0. Clearly, for finite fields a and χεά™ such that
φάιμ(χ) we have card φ (x9 /") > (positive constant) · card (/£), where the constant does

not depend on (^, Λ;); hence by (4.1) (1), if χ e Fm and F\== Φά,μ(χ), the set Sx must be infinite.
Similarly, for (Ο, μ) 6 D, finite fields / and xe / m such that ^M00^(x), we have
card φ (χ, £n) ^ M, where the constant ME N does not depend on (/, Λ:). Hence, for χ e Fm,
the set 5X is finite if and only if Sx is empty οτΡ\= φ0 μ(χ) for some pair (Ο, μ) e D, and in that
case card (Sx) ^ M. D

(4.4) We gave this proof in detail to show how (4.1)(1) can be used to draw con-
clusions for pseudo-finite fields from facts about finite fields. Below we will leave such routine
verifications to the reader. After all, such results about pseudo-finite fields are just elegant
recastings of more complicated Statements onfamilies of finite fields. Here is an example
which shows that pseudo-finite fields behave much like stable structures (according to
Cherlin and Hrushovski).

(4.5) Proposition. Lei the set S Fm + 1 be definable (using constants} in the pseu-
do-finite field F. Then there is no infinite set A g Fm such that all sets Sa with aeAare infinite
and all intersections Sa n Sb with a Φ b, a, b e A, are finite.

Proof. By the previous lemma there is a uniform bound B e /V on the size of finite sets
of the form SanSb. Therefore it suffices to prove the following result on formulas φ (Χ, Υ ) in
the language of rings, X = ( \, . . . , Xm), Υ a single variable:

There are positive integer s K, M and N with the property that there is no finite field £ of
size ^ K and finite set A g / m ofsize ^ M, such that all sets φ(α,£) with aeA have size ^ 7V
and all intersections φ (a, £) n φ (b, £) with a,beA,a^b, have size ^ B.

To see this, note that by the Main Theorem there is a positive integer N and a rational
μ > 0, such that if \φ(α, l)\ ^ N, then \φ(α,4)\^ μ?, where Λ = Fq.

Hence, if M > l /μ, there cannot be M distinct sets φ(α,ά) all whose pairwise inter-
sections are "small" of size ^ B, provided q is sufficiently large. D

(4.6) Proposition. Let φ(Χ, Υ) with X = (Xl9 . . . 9 X m ) and Υ = (Yl9 . . . , YH) be a
formula. Then there is M (φ) e N such that for each finite field £ there is no strictly increasing
cham ofsets φ(χ\ /") c . . . c φ(χΜ, Γ} of length M, xl e tm.

Remark. It follows that for pseudo-finite F and set S g pm + n definable in F using
constants, there is M e /V such that there is no strictly increasing chain

S«(i) c 5a(2) c . . . c Sa(M) of length M, α(ί) e Fm .

Proof. It suffices to prove the proposition for sufficiently large finite fields, and
below we assume tacitly that l is a "large" finite field. Consider a strictly increasing chain
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ΦΟ1, *") c: ... c φ(χΜ, 6n\ xl € 4m. We have to bound M. Let us write St «= φ(χ*> *"}
for convenience. Of course we may s well assume that Si φ 0. Our Main Theorem
associates to φ a finite set D of pairs (d, μ), and to each St exactly one of those pairs, say
(di9 ^). Since Λ is large, we have (W19 μ^ ^ ... g (</M, μΜ), where D is lexicographically
ordered. Our argument is now by induction on dM = max (rfj). Since D is finite, we may (in
order to bound M) s well assume all (di9 μ{) are equal, say (</f, μ.) = (</, μ) for all i. We now
look at the differences Si\Sl for i > l, which form themselves a strictly increasing chain
S 2 \ Si c ... c SM \ S ι of length M - l. Again our Main Theorem associates a finite set of
pairs (e, v) to nonempty sets of the form φ (α, /") \ </>(£, /T). Since t is large, and the St have
allapproximately μqdelements, whereq = card (/£), the sets Si\Si aremuchsmaller than the
Sj's, so the pairs (e, v) associated to them must have e<d=dM. Then the inductive
hypothesis gives us a bound on M — l, hence we get a bound on M. D

Interpretation of the numbers d and μ: dimension and measure.

(4.7) Given an infinite field F we define the algebraic dimension algdim (S) of a
nonempty set S ^ Fnto be the usual dimension of its Zariski closure in the affine space F",
or equivalently, the Krull dimension of the ring F[7]/7 where the ideal / is given by
/:= {/e F[F] :/ vanishes identically on S}. By convention, algdim(0) = — oo.

(4.8) Fix a pseudo-finite field F and a nonempty set S g Fn definable in F using
constants, say S = φ(χ, F") for a formula φ(Χ9 Υ) and χ e Fm. In section 3 we associated to
φ a finite set D of pairs (d, μ), and to each such pair a formula φά%μ(Χ)\ there is a unique pair
(d, μ) E D such that Fh φά,μ(χ). (If Fwere a large finite field of size 9 this would mean that 5
has roughly μqά elements.) One checks easily, by arguing with large finite fields, that this pair
(d, μ) associated to S via φ does not depend on the choice of the defining formula φ(χ, Υ)
for S. Here is an algebraic Interpretation of the integer d.

(4.9) Proposition. With S and d s above we have: d = algdim (S).

Proof. Suppose first that S = V(F) for an F-algebraic set Fg F". Then the proof
of (3.3) shows that d= dim(K*). Since F is pseudo-finite it follows, cf. [6], 10.1, that
S = F(F) = V*(F) is Zariski-dense in F*. Hence d= algdim (S).

We now reduce the general case to the special case just discussed: by Lemma (2.9) we
may s well assume that for some e, k E N we have S = π (F(F)) where F g Fn + k is an
F-algebraic set, π : Fn + k -> F" is the projection on the first n coordinates, and each fiber
Vy (y e Fn) has at most e points. In particular, each y e S has at most e inverse images under π
in F(F). Hence, by considering what this would mean if Fwere a "large" finite field, we see
that for the pair (d'9 μ') associated to F(F) we have d = d'. Now F* is the Zariski-closure
of F(F) in Fn + k, so by the special case already done we have d= d' = dim(F*), and
S = π (F(F)) is Zariski-dense in π (F*), hence Zariski-dense in the Zariski-closure π (F*)z

of π (F*). Each fiber V* (y e F") has at most e elements, so

algdim (S) = dim (π(F*)z) = dim (F*) = d. D

(4.10) We now give a "measure theoretic" Interpretation to the rational number μ
associated by our Main Theorem to a definable set.
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With F, S and (d, μ) s before, let Def (S) be the boolean algebra of subsets of S that
are definable in F using constants. Let μ8 : Def (S) -> [0, 1] be given s follows:

for any nonempty A e Def (S) with associated pair (e, v), put

μ3(Α) = 0 if e < d (and also μ5(0) = 0) ,

One easily checks that μ8 is then a finitely additive probability measure taking only rational
values, such that if there is a bijection between elements A and B of Def (S) definable in F
using constants, then μ8(Α) = μ$(Β).

Using the properties of this measure on Def (Fn) we easily obtain the following
extension of Proposition (4.5). We leave the proof to the reader.

(4.11) Proposition. Let the sei S g pm + n be definable using constants in the pseudo-
finite field F. Then there is no infinite sei A £ Fm such that dim (Sa) = n for all ae A and
dim (Sa n Sb) < n for all distinct a,be A.

§ 5. Algebraic boundedness

(5.1) An infinite field E is called algebraically bounded if for each set S £ Em that is
definable in E using constants there are polynomials /1?..., fr e E [X, T~\ such that if Sx is
finite, xeEm, then Sx g { t € E : f t ( x 9 1 ) = 0} for some /e {l, ..., r} with ft(x9 T) φ 0.

The importance of this property stems from the fact that if E is algebraically bounded,
then algebraic dimension behaves very well for sets S £ Em that are definable in E using
constants, cf. [2]; for instance, algdim(/(5')) ^ algdim(S') when /: S -> En is a map
definable in E using constants; also, if R g Em + n is definable in E using constants, then for
each de {0,...,«} the set {x e Em : algdim(J?x) = d} is definable in E using constants.
Below we prove that pseudo-finite fields are algebraically bounded, by first proving a general
property of perfect PAC-fields. In this proof we shall freely make use of known facts on
PAC-fields, cf. [6]. First a purely model-theoretic notion.

(5.2) Definition. A subfield Kof a field E is said to be finitely closed in E if for each
L(jRO-formula φ (T) such that φ (E) is finite we have φ (E) g K.

In pure model theory this is also called "algebraically closed in", but this terminology
is to be avoided here for obvious reasons.

(5.3) Proposition. Let Kbea relatively algebraically closed subfield ofa perfect PAC-
field E. Then K is finitely closed in E.

Proof. Given an L( T)-formula φ(Τ) such that φ(Ε) is finite we have to show that
φ(Ε)£Κ. Suppose that bεφ(E)\K. To derive a contradiction i t clearly suffices to
construct an element b' in an elementary extension E' of E such that b' e φ(Ε')\φ(Ε).
The idea is to get E' s a sort of free amalgam of two copies of E over K, and b' s the
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element that corresponds to b in the other copy. The details are s follows. Since E\ K is
regul r, the ^-algebra E®KE is a domain. Let P := Frac(F(g)KF), and identify E with
E® l g P via e -> e ® l, and put F«= l ® E g P, so F is just a second copy of E over K
but linearly disjoint from E inside P. The ΑΓ-isomorphism e-+l®e:E->F extends to an
isomorphism E K -> FK that is the identity on K, and then further to an isomorphism
λ'.Ε^Ρ that is the identity on K, see the following diagram of subfields of P.

E"

ΕΚ

E

~FK

F

Note that λ induces an isomorphism Φ : G(F) -> G (E) of absolute Galois groups:

Φ(σ) = λ'1 ο σ ο Α .

Next we consider the following diagram of subfields of P.

We now construct a field Z) between P and its Galois extension EF such that the restriction
maps Gal(FF|Z)) -> G (E) and Gal(FF|£>) -» G(F) are isomorphisms. First define an
embedding σ -> σ' : G(F) -> Gal(£F| P) by:

for je e F,
for xeE.

= σ (;c)

(Then σ' is well-defined since E and F are linearly disjoint over K, and σ(χ) = (Φ σ) (χ)
for Λ: Ε Κ.) In the same way we define an embedding

r" (χ) = T(JC) for χ e F, τ'' (;c) = (Φ~ 1 T)(JC) for χ e F. These two embeddings have the same
image in Gal(FF| P) since σ' = (Φ σ)" for σ e G(F).

Let D -.= fixed field of this image. Then clearly the restriction maps

and Gal(FF|Z)) -> G(F)

are isomorphisms, s desired. Now we take a regular^PAC-field extension Q of D, cf. [6],
p. 155, so that the restriction map G(Q) -* Gal(FF|/)) is surjective. Since G( ) is
projective, cf. [6], p. 1 37, it has a closed subgroup N that maps isomorphically onto
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Gal(£P\D) by this restriction map. Put £":= fixed field of N (inside ). Then E' is a
perfect PAC-field, cf. [6], p. 132, and G(E'} = TVmaps isomorphically onto G(E) and onto
</(F) by restriction. Hence E' is an elementary extension of E and of F9 cf. [6], p. 254.

Put £':= l ® b εφ(Ρ}\Κ. Then clearly b' εφ(Ε')\φ(Ε). D

(5.4) Remark. The construction of Z) in the proof is like the "field crossing argument"
in [6], p. 250.

(5.5) It is useful at this point to extend the notion of algebraic boundedness from
individual fields to theories of fields.

Definition. Let 3~ be an L-theory of fields (i.e., all its models are fields). Then we
call 2Γ algebraically bounded if for each formula φ (X, T) there are polynomials

such that for each ^-model E and each ae Em for which φ (a, E) is finite there is
i'e {!,...,£} such that f{ (a, T ) Φ 0 and φ(α,Ε)^ {t eE:ft(a, t) = 0}.

Clearly, if y is algebraically bounded, each infinite model of y is algebraically
bounded, in the sense defined earlier in (5.1). We do not know if the converse holds. The
significance of the algebraic boundedness of y is that "algebraic dimension" is definable
uniformly in all models of 3T\ given any formula φ (Χ, Υ) and de { — οο,Ο, ...,«} there is a
formula φά(Χ} such that for each infinite model £Of y we have

{x e Em : algdim (φ (χ, £")) = d] = φά (Em) .

(This follows by adapting the proof of [2], 1.4.) A simple example of an algebraically
bounded theory of fields is the theory of algebraically closed fields. Here is a useful
model-theoretic test for algebraic boundedness of theories.

(5.6) Lemma. Let y be an L- theory of fields. Then y is algebraically bounded if and
only if the following conditions are satisfied:

(i) For each L-formula φ (X, T) there is an integer M e N such that ifE\=3~,xeEm

and φ(χ,Ε) is finite, then card (φ (χ, E)) ^ M.

(ii) Each relatively algebraically closed subfield of a 9~-model E isfinitely closed in E.

Proof. That algebraic boundedness of y implies (i) and (ii) follows by a simple
argument that we leave to the reader. Conversely, assume (i) and (ii) hold for each ^"-model
E. Let φ (Χ, Γ) be a formula, and let M be s in (i). By (ii) there is for each ^-model E and
xeEm with finite φ(χ, E) a polynomial f ( X , T) E Z[X, Γ] such that f(x, T) Φ 0 and
Φ(*,Ε) £ {teE:f(x9 1) = 0}. Hence by a simple compactness argument we obtain
polynomials fl9 . . . ,fk in Z [Χ, Γ] with the desired property. α

(5.7) Corollary. The theory of pseudo-finite fields is algebraically bounded. In parti-
cular, each pseudo-finite field is algebraically bounded.
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(5.8) This follows from the proof of Lemma (4.3), and Proposition (5.3), in view of
Lemma (5.6). Initially we had a different (shorter) argument proving (5.7), but we took the
longer route via (5.3), since (5.3) seems interesting in its own right.

§ 6. Axioms for quadratic extensions of finite fields

(6.1) We recall from the introduction that Psf denotes the theory of pseudo-finite
fields, which has a famili r axiomatization, cf. (4.1), and that Psf2 denotes the theory of
pseudo-finite fields satisfying the sentences true in all finite fields of the form Fq2, with q a
prime power > 1. We also let Psf (p) (for p = 0 or p a prime number) denote the theory of
pseudo-finite fields of characteristic /?, and Psf2 (p) the theory of models of Psf2 of
characteristic p.

Below we use that the absolute Galois group G (F) of a pseudo-finite field F is
isomorphic to i, the profinite completion of the group of integers I.

(6.2) Lemma. Let F N Psf (0), and embed U into F, so that we have a restriction map
G(F) -> G(Q). Let σ be a gener-ator of the profinite group G(F). Then

F\= Psf2 <=> σ | U is a square in G(Q).

Proof. Suppose Ft= Psf2. Replacing F by an elementary extension (and lifting σ
accordingly) we may s well assume that Fis an ultraproduct of fields Fq2, so that Fcontains a
pseudo-finite subfield E over which it is of degree 2, namely the corresponding ultraproduct
of the FqS. Then G (E) has generator τ with σ = τ2, hence σ| ο = (τ| )2, so that σ| is
a square in G (O).

Conversely, let (σ|0) = π2, π E G(Q). Let K^ be the fixed field of π. By
Cebotarev's density theorem (cf. Ax [1] for the way how this is used here) there is an
ultraproduct Eof fields fp such that, after embedding U into E, n can be lifted to a generator
ρ o f G ( E ) . Let E' be the unique quadratic extension of .Einside E, so that E' is isomorphic
to the corresponding ultraproduct of the fields Fp2. It follows that E' \= Psf2, and (/(£") is
generated by ρ2. Now ρ21 = π2 = σ| , so E' and Fare two pseudo-finite fields such that
E' n U = fixed field of π2 = Fn . Hence F == E' by [6], Corollary 18.10, so Fh Psf2. D

(6.3) Since an element of G (Q) is a square if and only if its restriction to each finite
degree Galois extension of O is a square, this leads to the following considerations. For each
finite degree Galois extension K g U of Q, take a set S (K) g Gal(£] Q) such that every
square in Gal (K\ O) is conjugate to a power of σ2 for some σ e S (K). For each σ e S (K),
take ασ E K such that Q (aj = Fix (σ2) and ασ is integral over Z.

Let /σ(Γ)εΖ[Γ] be the minimal polynomial of ασ over O, and define
fK (T) := f] /σ (Γ), σ ranging over S (K). For example, ifK=Q (j/w), where n 6 Z is not a
square, then we can take S (K) = {identity} and ασ = |/w, so that fK(T) = T2 - n.
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(6.4) Proposition. An axiomatization of Psf2 (0) is given by

Psf(0)u{3jT(/x(r) = 0): K^ U is a finite degree Galois extension ofQ}.

Proof. Let FM Psf2(0), and take a generator τ of G(F), and let K £ g F be a
finite degree Galois extension of O. By (6.2) the restriction τ | ^is a square, hence conjugate
to some power σ21 with σ e S (K). Hence Fr\K contains a subfield isomorphic to Q (ασ),
and therefore FN= 3 T ( f K ( T ) = 0).

Conversely, suppose F\= Psf(O) and F\= 3 T ( f K ( T ) = 0) for each finite degree
Galois extension K g g F of O. Let τ be a generator of G(F). To show Ft= Psf2, it
suffices by (6.2) to show that τ | ^is a square in Gal (K\ Q) for each such K. Given such K, it
follows from Fl= 3 T(fK (T) = 0) that Fn K contains a subfield L isomorphic to Q (aff) for
some aeS(K). By definition of ασ, some conjugate of σ2 generates Gal( ^L), so that

is generated by a square of Gal( T| Q). Therefore

τ | K e Gal (K\ Fn K) £ Gal (AT| L)

is a square in Gal(K\ O). D

(6.5) As already said in the introduction, if p is a prime number, then Psf2 (p) is
axiomatized by Psf (p) u {3 T (T2 = n) : n e Z}. To see that a model F of the latter theory is
a model of the former, note that F contains a copy of Fp2, so the subfield

Fa '-={xeF:x is algebraic over Fp}

of Fis isomorphic to Fp2n for some supernatural number n, cf. [6], 20.9. If n φ /V, we form a
nonprincipal ultraproduct of the fields Fp2m with m e /V and m|«, and get a pseudo-finite
field E such that Ea ^ Fe, hence £ = F by [6], 18.10, and therefore F\= Psf2, since
JE" h Psf2. If n e /V, we form a nonprincipal ultraproduct of the Fp2mn with m ranging over
the primes not dividing «, and again we get a pseudo-finite field E with Ea = Fa and

Psf2, so that FN=Psf2 .

So for prime characteristic there is a much simpler result than (6.4), and this raises
the question whether the polynomials fK(T) e Z[T~\ in (6.4) can be replaced by, say, the
polynomials T2 — n for n e Z. The next results show this is not the case.

(6.6) Corollary . Suppose each polynomial in a sei 3? £ Z [ Γ] \ Ζ has solvable Splitting
field over Q. Then Psf (0) u {3 T(f(T) = 0) :/e 3F} is not an axiomatization of Psf2 (0).

Proof. Let E £ be the Splitting field of J^ over O, so E\ Q is a solvable Galois
extension (of possibly infinite degree over O). Take a Galois extension K £ of Q with
Gal (j£| Q) ^ A5; since ^45 is a simple non-abelian group we have Er\K= O, hence there is
aeG(E) such that a\Kis not a square in Gal (K\ O). Now take a pseudo-finite field F such
that Fn = Fix (σ) (after embedding into F). Then F g F, so

Fh Psf(0)u[37(/(r) = 0) :/e

but Fis not a model of Psf 2, since σ lifts to a generator of G (F) and σ \ Kis not a square. D
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(6.7) The same argument proves that if J* g Z[T~\\Z and

axiomatizes Psf 2(0), then for each Galois extension K g ö of Q with simple Galois group
over Q there must be /e & such that Kis contained in the Splitting field of / over Q in Ö.
In particular, the degrees of the polynomials in & cannot be bounded by a constant, since
every alternating group Am is realized äs a Galois group over Q.

(6.8) What has been said about quadratic extensions of finite fields generalizes
without difficulty to w'th degree extensions of finite fields, for each fixed n. We leave this to
the reader.
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